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ABSTRACT

In recent years, zero-cost proxies are gaining grounds in the field of neural archi-
tecture search (NAS). These methods allow to find the optimal neural network
for a given task faster and with lesser computational load than conventional NAS
methods. Equally important is the fact that they also shed some light on the internal
workings of neural architectures. In this paper we present a zero-cost metric that
is highly correlated with the train accuracy across the NAS-Bench-101, NAS-
Bench-201 and NAS-Bench-NLP benchmark datasets. Architectures are initialised
with two distinct constant shared weights, one at a time. Then, a fixed random
mini-batch of data is passed forward through each initialisation. We observe that
the dispersion of the outputs between two initialisations is positively correlated
with trained accuracy. The correlation further improves when the dispersion is
normalised by the average output magnitude. Our metric does not require gradients
computation and true labels. It thus unbinds NAS procedure from training hyper-
parameters, loss metric and human-labelled data. Our method is easy to integrate
within existing NAS algorithms and takes a fraction of second to evaluate a single
network.

1 INTRODUCTION

The field of neural architecture search (NAS) has emerged about a decade ago as an effort to
automatise the process of neural geometry optimisation. At the early stages of NAS field development,
every candidate architecture was evaluated through training process (reinforcement learning (Williams,
1992), evolutionary algorithms (Real et al., 2019), Bayesian optimisation (Falkner et al., 2018; White
et al., 2021)).

One-shot algorithms adopting weight sharing alleviate the necessity of multiple architectures training,
reducing the search time drastically (efficient reinforcement learning (Pham et al., 2018), random
search with parameters sharing(Li & Talwalkar, 2020), differentiable methods (Liu et al., 2018; Dong
& Yang, 2019a;b; Chu et al., 2020)). Yet, they require the training of a massive hypernet, which
necessitates elaborate hyperparameters tuning. While these methods prove efficient, they do not
always achieve satisfactory results (Dong & Yang, 2019b). One of the best performing of them,
DARTS- (Chu et al., 2020), shows significant uncertainty comparing to evolutionary or reinforcement
algorithms.

There also exist methods that estimate network performance without training the dataset of interest,
but relying on an auxiliary predictive machine learning (ML) model built on a dataset of trained
architectures (Istrate et al., 2019; Deng et al., 2017). These methods aim to accelerate the NAS
process for image recognition, but still rely on training and cannot be applied to other ML problems.

Evaluating geometries through training clearly brings multiple disadvantages. The most obvious of
them is that training is a computationally expensive process, and large-scale geometry evaluation
often cannot be carried on massive datasets. As consequence, architectures are usually trained with
a single random seed and a fixed set of hyperparameters. This raises the question as to whether a
chosen architecture is statistically reliable, and might lead to selecting a sub-optimal model, optimal
only in the context of the chosen set of hyperparameters. Training also implies usage of hand-labelled
data, which brings in human error – ImageNet dataset, for instance, is known to have a label error of
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about 6% (Northcutt et al., 2021). Importantly, from the fundamental point of view, the above NAS
methods do not provide an explanation as to why a given architecture is chosen.

1.1 ZERO-COST NAS

To alleviate the process of architecture search, many researchers are focused on developing methods
that allow to find optimal architectures without model training – so-called zero-cost NAS methods.
Here, networks are evaluated via some proxy metric, which typically requires the equivalent of one
or a few training epochs. These methods are therefore 2-3 orders of magnitude faster than those
requiring training.

Weight agnostic neural networks One of pioneering works in zero-shot NAS is presented by Gaier
& Ha (2019). They demonstrate a constructor that builds up neural architectures based on the mean
accuracy over several initialisations with constant shared weights and the number of parameters
contained within the model. They report that the resulting model achieves 82.0%±18.7% on MNIST
data (LeCun et al., 2010) with random weights at initialisation, and over 90% when the weights are
fixed to the best performing constants. While these results are very intriguing, the authors admit
that these architectures do not perform particularly well upon training. Moreover, back in 2019 the
benchmark databases of trained architectures that are routinely used now to compare NAS metrics
with each other were not released yet, which disables us to compare this zero-shot method against the
most recent ones.

Jacobian covariance In 2020, Mellor et al. (2020) present another metric, which employs the fact
that rectified linear unit (ReLU, Agarap (2018)) activation functions lead to distinct activation patterns
among architectures. Concretely, every image from a single mini-batch yields a binary activation
vector. Together these vectors form a binary matrix, and the logarithm of its determinant serves as a
scoring metric. Following the established notation from the NAS community, we refer to this metric
as jacov1. Authors show that larger jacov values are associated with better training performances,
which leads to a conclusion that high performing networks should be able to distinguish the inputs
before being trained. This important takeaway comes with a considerable drawback: the method can
only be implemented on networks with ReLU activation functions, which limits its applicability to
convolutional architectures.

Coefficient of variance Another early work on fully trainless NAS belongs to Gracheva (2021), who
evaluates the stability of untrained scores over random weights initialisations. The author initialises
the networks with multiple random seeds, and architectures are selected based on the coefficient of
variance CV of the accuracy at initialisation. While CV performance is associated with high error
rate, the author makes a conclusion that a good architecture should be stable against random weight
fluctuations. While this method can in theory be applied to any neural architecture type, it requires
multiple initialisations and is relatively heavy comparing to jacov and later methods. Furthermore,
accuracy-based scoring metrics can only be applied to classification problems, and it is not clear how
to extend CV implementation to the regression tasks.

Pruning-at-initialisation proxies Several powerful zero-cost proxy have emerged as an adaptation
of pruning-at-initialisation methods to NAS in the work by Abdelfattah et al. (2021): grad norm
(Wang et al., 2020), snip (Lee et al., 2018), synflow (Tanaka et al., 2020). These metrics are
originally developed to evaluate the salience of network’s parameters, with the aim to prune away
potentially meaningless synapses prior to training in order to reduce its cost. They require a single
forward-backward pass to compute the loss. Then, the importance of parameters is computed as
multiplication of the weight value and gradient value. Abdelfattah et al. (2021) integrate the salience
over all the parameters in the network to evaluate its potential upon training. What is particularly
interesting about the synflow metric is that it evaluates the architectures without looking at the
data, by computing the loss as the product of all the weights’ values (which are randomly initialised).
synflow metric show the most consistent performance among various search spaces, and sets the
state-of-the-art for the zero-cost NAS.

1Anecdotally, in their first version of the paper released in June 2020, the authors presented another scoring
method using Jacobian covariance, and achieved significantly different performance. The metric was updated
several months later, but the nickname jacob cov persisted and was recently shortened down to jacov.
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Both jacov and synflow do not depend on true labels, which arguably reduces the effect of the
human error during data labelling. Moreover, jacov does not require gradient computation, which
renders this method less memory-intensive.

The above results imply that neural networks might have some intrinsic property which defines
their prediction potential prior to training. Such property should not depend on the values of
trainable parameters (weights), but only on network’s topology. In the present work, we combine
the takeaways from the existing trainless NAS implementations to present a new metric, which
significantly outperforms existing zero-cost NAS methods.

1.2 NAS BENCHMARKS

To guarantee the reproducibility of our metric and to compare its performance against other NAS
algorithms, we evaluate it on the three widely used NAS benchmark datasets.

NAS-Bench-101 The first and one of the largest NAS benchmarks sets of trained architectures. It
consists of over 423k cell-based convolutional neural networks (Ying et al., 2019). The architectures
are made of three stacks of cells each followed by max-pooling layers. Cells may have up to 7 vertices
and 9 edges, with 3 possible operations. This benchmark is trained multiple times on a single dataset,
CIFAR-10 (Krizhevsky et al., 2009), with a fixed set of hyperparameters for 108 epochs.

NAS-Bench-201 This is a set of architectures with fixed skeleton, consisting of convolution layer
and three stacks of cells, connected by a residual block (Dong & Yang, 2020). Each cell is a densely-
connected directed acyclic graph with 4 nodes, 5 possible operations and no limits on the number of
edges, providing a total of 15, 625 possible architectures. Architectures are trained on three major
datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and a downsampled version of ImageNet
(Chrabaszcz et al., 2017). Training hyperparameters are fixed, and the training spans 200 epochs.

NAS-Bench-NLP As the name suggests, this benchmark is focused on architectures suitable for
neural language processing (Klyuchnikov et al., 2022). Concretely, it consists of randomly-generated
recurrent neural networks. Recurrent cells are comprised of 24 nodes, 3 hidden states and 3 input
vectors at most, with 7 allowed operations. Here, we only consider models trained evaluated on Penn
Treebank (PTB, Marcinkiewicz (1994)) dataset: 14, 322 random networks with a single seed and
4, 114 with tree seeds. Training was conducted with fixed set of hyperparameters and the perplexities
are reported for the mark of 50 epochs.

2 EPSILON METRIC

2.1 INCEPTION

The metric that we share in the present work is inspired by two existing NAS methods: CV (Gracheva,
2021) and weight agnostic neural networks (Gaier & Ha, 2019). Both metrics aim to exclude the
values of individual weight from consideration when valuating networks: the former cancels out the
individual weights via multiple random initialisations, while the latter sets them to the same value
across the network. It is indeed very intriguing to see that architectures can be characterised purely
by their topology.

As it was mentioned above, CV metric has two principal disadvantages. While it shows quite
consistent trend with trained accuracy, it clearly suffers from high uncertainty. This can be partly
explained by the fact that random weights initialisations bring in some noise. Our idea is that replacing
random initialisations with constant shared weight initialisations, similarly to Gaier & Ha (2019),
should improve the method’s performance.

The second weak point is that the metric is developed for classification problems and is based on
accuracy, and it is not clear how to apply this metric to regression problems. Coefficient of variation
is a ratio of standard deviation to mean, and Gracheva (2021) shows that CV metric shows negative
correlation with train accuracy. This implies that the mean untrained accuracy should be maximised.
On the other hand, for regression tasks the performance is typically computed as some kind of error,
which is sought to be minimised. It is not obvious whether division by mean untrained error result in
the same trend for CV metric.
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Algorithm 1 Algorithm for epsilon zero-cost metric computation
Select a batch of data from train set
for arch in search search do

Initialise empty output matrix
for weight in [val1, val2] do

Initialise arch with constant shared weight
Forward pass the batch through arch
Get and flatten outputs
Minmax normalise outputs (Eq. 1)
Append outputs to the output matrix

end for
Compute difference between the rows of the output matrix (Eq. 2)
Compute mean over the output matrix (Eq. 3)
Compute epsilon metric (Equation 4)

end for

To address this issue we decided to consider raw outputs. This modification renders the method
applicable to any kind of neural architecture. Yet it comes with a difference: accuracy returns a single
value per batch of data, while raw outputs are [NBS × L] matrices, where NBS is the batch size and
L is the length of a single output.2 We flatten these matrices to obtain a single vector v of length
Lv = NBS × L per initialisation. We then stuck both initialisations into a single output matrix V .

Before proceeding to statistics computation over initialisations, we also must normalise the out-
put vectors: in the case of fixed weights, outputs scale with weight values. In order to compare
initialisations on a par with each other, we use min-max normalisation:

V ′
i =

Vi −min(Vi)

max(Vi)−min(Vi)
, (1)

where i is the index for initialisations, i ∈ [0, 1].

We noticed that two distinct weights are sufficient to grasp the difference between initialisations.
Accordingly, instead of standard deviation we use mean absolute error between the normalised
outputs of two initialisations:

δ =
1

Lv

Lv∑
j=0

|V ′
1,j − V ′

2,j |. (2)

The mean is computed over the outputs of both initialisations as following:

µ =
1

Lv

Lv∑
j=0

V ′
1,j + V ′

2,j

2
=

1

2Lv

2∑
i=0

Lv∑
j=0

V ′
i,j (3)

Finally, the metric is computed as the ratio of δ and µ:

ε =
δ

µ
. (4)

We refer to our metric as epsilon, as a tribute to ε symbol used in mathematics to denote error
bounds. The algorithm for the epsilon computation is given in Algorithm 1.

2This length depends on the task and/or architecture: for regression tasks L = 1, for classification L is equal
to the number of classes, and for recurrent networks it depends on the desired length of generated string.
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3 RESULTS AND DISCUSSION

3.1 EMPIRICAL VALUATION

Here we evaluate the performance of epsilon and compare it to the results for other major zero-cost
NAS metrics reported in Abdelfattah et al. (2021). We use the following evaluation scores (computed
with NaN omitted):

• Spearman ρ (global): Spearman rank correlation ρ evaluated on the entire dataset.
• Spearman ρ (top-10%): Spearman rank correlation ρ for the top-10% performing architec-

tures.
• Kendall τ (global): Kendall rank correlation coefficient τ evaluated on the entire dataset.
• Kendall τ (top-10%): Kendall rank correlation coefficient τ for the top-10% performing

architectures.
• Top-10%/top-10%: fraction of top-10% performing models within the top-10% models

ranked by zero-cost scoring metric (%).
• Top-64/top-10%: number of top-64 models ranked by zero-cost scoring metric within

top-5% performing models.

Table 1: Zero-cost metrics performance evaluated on NAS-Bench-201 search space and its three
datasets: CIFAR-10, CIFAR-100 and ImageNet16-120. Values from Abdelfattah et al. (2021) are
given for reference between brackets.

Metric Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

CIFAR-10

synflow 0.74 0.18 0.54 0.12 45.75 46 29 (44)
grad norm 0.59 (0.58) −0.36 (−0.38) 0.43 −0.21 30.26 30 1 (0)
grasp 0.51 (0.48) −0.35 (−0.37) 0.36 −0.21 30.77 30 3 (0)
snip 0.60 (0.58) −0.36 (−0.38) 0.44 −0.21 30.65 31 1 (0)
fisher 0.36 −0.38 0.26 −0.24 4.99 5 0 (0)
jacov −0.73 (0.73) 0.15 (0.17) 0.55 −0.10 24.72 25 11 (15)
epsilon 0.87 0.55 0.70 0.40 67.39 59

CIFAR-100

synflow 0.76 0.42 0.57 0.29 49.71 50 45 (54)
grad norm 0.64 −0.09 0.47 −0.05 35.00 35 0 (4)
grasp 0.55 (0.54) −0.10 (−0.11) 0.39 −0.06 35.32 34 3 (4)
snip 0.64 (0.63) −0.08 (−0.09) 0.47 −0.05 35.25 36 0 (4)
fisher 0.39 −0.15 (−0.16) 0.28 −0.10 4.22 4 0 (0)
jacov −0.70 (0.71) 0.07 (0.08) 0.54 0.05 22.11 24 7 (15)
epsilon 0.90 0.59 0.72 0.43 81.24 62

ImageNet16-120

synflow 0.75 0.55 0.56 0.39 43.57 44 26 (56)
grad norm 0.58 0.12 (0.13) 0.43 0.09 31.29 31 0 (13)
grasp 0.55 (0.56) 0.10 0.39 0.07 31.61 32 2 (14)
snip 0.58 0.13 0.43 0.09 31.16 31 0 (13)
fisher 0.33 0.02 0.25 0.01 4.61 5 0 (0)
jacov 0.70 (0.71) 0.08 (0.05) 0.53 0.05 29.63 44 10 (15)
epsilon 0.85 0.53 0.67 0.37 71.51 59

Comparing the results for epsilon with other zero-cost NAS metrics, we can see that it outperforms
them by a good margin. The illustrations (Figure 1, 5) further confirm the applicability of the method
to the NAS-Bench-201 field. However, NAS-Bench-201 is a relatively compact search space,
furthermore, it has been used for epsilon development.
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3.1.1 NAS-BENCH-201

The results for epsilon performance on NAS-Bench-201 are given in Table 1 along with other
zero-cost NAS metrics. The Kendall τ score is not reported in Abdelfattah et al. (2021), but it is
considered to be more robust than Spearman ρ and being increasingly used for NAS metric evaluation.
We use the data provided by Abdelfattah et al. (2021) to evaluate their Kendal τ . For some evaluation
scores, the results that we obtain differ from the original paper. In such cases, we report our results
and indicate the original values between brackets. In particular, there is a discrepancy in computing
the values in the last column, Top-64/top-10%, while the rest of the results are consistent. We have
double-checked our calculations and Figure 5 (Appendix) suggest that our calculations are correct.

Figure 1: Zero-cost NAS epsilon metric performance illustration for NAS-Bench-201 search
space evaluated on CIFAR-10, CIFAR-100 and ImageNet16-120 datasets. Each point represents an
architecture with colours representing the number of parameters – the darker the more parameters in
the network. Figure represents search space of 15, 625 networks (excluding architectures with NaN
scores).

3.1.2 NAS-BENCH-101

Figure 2: Zero-cost NAS epsilon met-
ric performance on NAS-Bench-101 search
space, CIFAR-10 dataset (top) and NAS-
Bench-NLP search space, PTB dataset (bot-
tom) . Each point corresponds to an architec-
ture, the darker the colour the more parame-
ters it contains. Figure shows 423, 624 and
14, 322 networks for NAS-Bench-101 and
NAS-Bench-NLP, respectively (excluding ar-
chitectures with NaN scores).

We use NAS-Bench-101 space to confirm that the
success of epsilon metric in the previous section
is not due to overfitting to the NAS-Bench-201 search
space, and to see how its applies to a vaster search
space. Table 2 together with Figure 2 confirm that it
works well on NAS-Bench-201, too.

3.2 NAS-BENCH-NLP

Both NAS-Bench-201 and NAS-Bench-101 are cre-
ated to facilitate NAS in the field of image recogni-
tion. They operate convolutional networks of very
similar constitution. To truly probe generalisability
of the epsilon metric we test it on NAS-Bench-
NLP. Both input data format and architecture type are
different from he first two search spaces.

Unfortunately, there are no data available for NAS-
Bench-NLP in Abdelfattah et al. (2021). Conse-
quently, we could not reproduce their results. There-
fore, in Table 3 we give only values provided in the
paper together with our epsilon metric. We would
like to note that unlike accuracy, perplexity used for
language-related ML problems should be minimised.
Therefore, the signs of correlations with scoring met-
rics should be reversed, which is not the case for
numbers given in Abdelfattah et al. (2021).

6



Under review as a conference paper at ICLR 2023

The performance of epsilon metric on the NAS-Bench-NLP space is not exceptional. While there
is a trend towards better architectures with increasing metric value, the level of noise is beyond
acceptable. This might stem from the characteristics of the benchmark itself (factors like relatively
small sample of networks given large space, chosen hyperparameters, dropout rates, etc may distort
NAS performance). Nonetheless, the trend is visible enough to conclude that epsilon metric can
be applied to recurrent type architectures.

Table 2: Zero-cost metrics performance evaluated on NAS-Bench-101 search space, CIFAR-10
dataset. Values from Abdelfattah et al. (2021) are given for reference between brackets.

Metric Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

CIFAR-10

synflow 0.37 0.14 0.25 0.10 22.67 23 4 (12)
grad norm −0.20 −0.05 (0.05) −0.14 −0.03 1.98 2 0 (0)
grasp 0.45 −0.01 0.31 −0.01 25.60 26 0 (6)
snip −0.16 0.01 (−0.01) −0.11 0.00 3.43 3 0 (0)
fisher −0.26 −0.07 (0.07) −0.18 −0.05 2.65 3 0 (0)
jacov 0.38 (0.38) −0.08 (0.08) −0.05 0.05 1.66 2 0 (0)
epsilon 0.62 0.12 0.44 0.08 40.33 10

Table 3: Zero-cost metrics performance evaluated on NAS-Bench-NLP search space, PTB dataset.

Metric Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

PTB

synflow 0.34 0.10 — — 22 —
grad norm −0.21 0.03 — — 10 —
grasp 0.16 0.55 — — 4 —
snip −0.19 −0.02 — — 10 —
fisher | | — — — —
jacov 0.38 0.04 — — 38 —
epsilon 0.34 −0.16 0.23 −0.14 3.57 3

3.3 INTEGRATION WITH OTHER NAS METHODS

While it is possible to utilise zero-cost metrics on their own, usually they are implemented within
other NAS. Here we provide simple examples of random search and ageing evolution algorithms
when used together with epsilon.

Similarly to Abdelfattah et al. (2021), we compare random search performance with and without
warm-up. During the warm-up session, initial pool of 3, 000 architectures is formed, and the first 64
steps algorithm updates the best test performance based from this pool, starting with the networks
with highest epsilon score.

For ageing evolution, the same principle is applied. En plus, we report the results of implementation
where every next parent is decided based on the highest epsilon score (move), with and without
warm-up Then, the child is created by parent mutation (within edit distance of 1) and added to pool.

For both NAS algorithms, we run procedure until the number of trained architectures reaches 300,
and perform 100 random rounds. Figure 3 shows that epsilon metrics leads to considerable
improvements, both in terms of time and precision. Unsurprisingly, the best setup during ageing
evolution is warm-up with move.
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Figure 3: epsilon integration within ageing evolution (top) and random search (bottom) NAS
algorithms for three datasets from NAS-Bench-201 search space.

4 ABLATION STUDIES

While our metric is quite straightforward to implement, it does require several hyperparameters to be
set. In this section, we provide the results of the ablations studies and analyse their results.

4.1 WEIGHTS

To compute the epsilon metric we initialise the networks with two distinct constant shared weights.
The question is: how do we choose their values, and how much does this choice affect the efficiency
of the whole method?

To answer this question, we ran a series of tests with multiple pairs of weights. In pairs, it makes
sense to set the first weight always greater than the second one. This consideration stems from the
fact that epsilon is based on mean absolute difference between two initialisations. Therefore, it will
output the same score for [w1, w2] and [w2, w1] combinations, and will be exactly zero in case where
the two weights are equal. Tables 8, 8, 9 summarises the results of our tests (see Appendix).

The results show that there is indeed some variation between different initialisations. There are two
effects that impact the performance. Firstly, the greater is the difference between the two weights,
the higher is the correlation between epsilon and trained performance. This makes sense, since
if the weights are too close to each other the difference between the outputs becomes minimal, and
distinction between architectures in terms of epsilon is no longer possible.

Secondly, we can see that too low and too high weights results in lower number of architectures with
non-NaN scores. Extreme weights result in all zeros or infinite output values and, consequently, in
NaN value of the epsilon metric. Naturally, the deeper the network is, the more there is of signal
attenuation, and the higher is the probability of NaN score. We remind that prior to epsilon
computation, the outputs are normalised to the same range [0, 1], which means that the metric itself
does not become smaller for deeper networks. This extinction effect is due to the limited sensitivity
of float type. Theoretically, with infinite float sensitivity, there would be no extinction and hence
no effects of the choice of the weights.

As the rule of thumb, for every new ML problem we suggest to run epsilon evaluation on a
subset of architectures with several weights, and select the minimum and maximum weights that
do not cause excessive NaN outputs. While we acknowledge that this procedure is quite subjective,
importantly it does not require any training.
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Weight combinations that we selected for each search space are given in Table 4.

4.2 BATCH SIZE

Table 4: Optimal weights for epsilon evaluation for
three search spaces and their datasets.

Search space Dataset Optimal weights

NAS-Bench-101 CIFAR-10 [10−4, 10]

NAS-Bench-201
CIFAR-10 [10−7, 1]
CIFAR-100 [10−7, 1]
ImageNet16-120 [10−7, 1]

NAS-Bench-NLP PTB [10−5, 10−5]

To test the sensitivity of the method
against the batch size, we ran the scor-
ing routine with 8 different batch sizes
[8, 16, 32, 64, 128, 512, 1024], each with
10 random batches. Figures show that
as expected the larger the batch size, the
better and more stable is performance of
epsilon metric. There is almost no im-
provement for batch sized over 256, and in
our experiments we set it to this value.

4.3 EMBEDDING INITIALISATION

Care should be taken when initialising the networks containing embedding layer: if embedding is
initialised with all constants, there is no difference between the embedded input. The performance of
our metric in this case will be analogous to that with batch size of 1.

Our ablation studies, reported in detail in Appendix A.2, show that as soon as the embedding is
initialised with any non-constant weights, it practically does not influence the final results.

5 CONCLUSIONS

In this work, we present a novel zero-cost NAS scoring metric epsilon. It is reflects how the
different are the outputs of neural networks depending on the value of the constant shared weight
used at initialisation. It shows that the higher is this difference, the better will the network perform
upon training. In other words, epsilon probes networks sensitivity to varying weights magnitudes.

Our method requires only two initialisations followed by two forward passes. It does not require
true labels, gradient computation, and according to our tests can even be used with synthetic data
(see Section A.4. The evaluation of the metric takes 0.1 ∼ 1 seconds per architectures on a GPU
(depending on the size of architecture and batch size), but can be easily realised on a CPU. epsilon
is not limited to any specific neural network type, in other words, it can be implemented for any ML
problem (care should be taken for embedding initialisation, as explained in Section 4.3).

Our metric is evaluated on three staple NAS search spaces: NAS-Bench-201, NAS-Bench-101 and
NAS-Bench-NLP. It shows stable good performance with each of them, regardless the data set. It also
brings significant improvements when implemented with random and evolutionary NAS algorithms
(see Section 3.3).

The only factor that affects epsilon metric performance is the choice of the values for the constant
weights during initialisation. Our tests show that it must be setup individually for each search
space. For each search space, the weights are set so that they span the maximum range of orders of
magnitude, under condition that they do not lead to excessive signal extinction (different architectures
show different sensitivities to big and small weights). We are not completely satisfied with this
heuristic and hope to automate the process of weights selection in our future work.

REPRODUCIBILITY STATEMENT

The codes that reproduce all the results in this paper can be found at the following HTML:
https://anonymous.4open.science/r/EpsilonNAS-FB1B/. Our results are produced with DGX station
(4 NVIDIA V100 GPUs).
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A APPENDIX

A.1 BATCH SIZE ABLATION STUDY

Here are the results of the batch size ablations. The tests are done on NAS-Bench-201 search space
with its three datasets. For each batch we report medians, together with 25 and 75 percentiles, over
10 runs. We evaluate epsilon on 5, 000 architectures.
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Figure 4: Batch size ablation study.
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A.2 EMBEDDING ABLATION STUDY

In order to verify the effect of the embedding initialisation, we have run tests with 6 different
initialisations:

• uniform positive 0.1: random uniform from ranges [0, 0.1]
• uniform positive 1: random uniform from ranges [0, 1]
• uniform centred 0.1: random uniform from ranges [-0.1, 0.1]
• uniform centred 1: random uniform from ranges [-1, 1]
• random 0.1: random normal centred at 0 with standard deviation of 0.1
• random 1: random normal centred at 0 with standard deviation of 1

Table 5 summarise our results of the embedding ablations. Ablation is done on NAS-Bench-NLP
search space, PTB dataset (the only search space implementing embedding).

Table 5: Embedding ablation studies. Metric computed over 5000 initial architectures. Number of
remaining architectures is given in the second column.

Embedding Archs Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

uniform positive 0.1 782 −0.38 0.17 −0.26 0.15 3.80 2
uniform positive 1 776 −0.37 0.21 −0.26 0.18 2.56 2
uniform centered 0.1 783 −0.40 0.18 −0.28 0.15 2.53 2
uniform centered 1 782 −0.46 0.18 −0.33 0.16 1.27 1
random 0.1 783 −0.42 0.18 −0.29 0.15 2.53 2
random 1 782 −0.47 0.19 −0.33 0.16 1.27 1

A.3 VISUALISATION OF OTHER ZERO-COST NAS METRICS

In the work of Abdelfattah et al. (2021) the metrics are presented through statistical measures, but we
feel that visualisation helps to improve understanding. Here we provide visualisations for two search
spaces built on the data provided by authors.

A.4 SYNTHETIC DATA

In this section we test the importance of the input data by feeding our metric several synthetic input
data on CIFAR-10. We feed networks with 5 types of data:

• real data: batch of CIFAR-10 data
• grey scale images: images within the batch are solid colour ranging from black to white
• random normal: images are filled with random values following normal distribution with
[µ, σ] = [0, 1]

• random uniform: images are filled with random values following uniform distribution with
[µ, σ] = [−1, 1]

• random uniform (+): images are filled with random values following uniform distribution
with [min,max] = [0, 1]

All the tests are performed with batch size of 256, weights [10−7, 1] and 5000 architectures. Table 6
shows that even though the performance with synthetic data drops comparing to real data, it is still
very good.

Curiously, grey scale images, which are filled with constant values, show the closest results to the
real data. Also, epsilon metric with grey scale data outperforms synflow. This is an important
achievement, because synflow does not use input data, and is therefore data independent. Our
results show that epsilon has a potential to be used with no data whatsoever.
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Figure 5: Zero-cost metrics performance illustration for NAS-Bench-201 search space evaluated on
CIFAR-10, CIFAR-100 and ImageNet16-120 datasets, based on data from Abdelfattah et al. (2021).
Each point represents an architecture with colours representing the number of parameters – the darker
the more parameters in the network. Figure represents search space of 15, 625 networks (excluding
architectures with NaN scores).
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Table 6: Synthetic data tests with CIFAR-10 dataset, NAS-Bench-201 search space. Tests are based
on evaluation of 5000 architectures.

Metric Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

real data 0.87 0.59 0.70 0.43 65.88 45
grey scale 0.87 0.44 0.68 0.31 59.46 34
random normal 0.54 0.15 0.38 0.14 14.97 3
random uniform 0.56 0.17 0.40 0.16 14.19 3
random uniform (+) 0.61 0.17 0.43 0.16 16.22 4

A.5 OPTIMAL WEIGHTS SEARCH

In this section, we print the tables for weights ablation study. There are three of them – one per search
space. For NAS-Bench-201 search space, tables are very similar between the datasets, and the minor
differences do not affect the conclusions drawn from this data.

Table 7: Zero-cost metrics performance evaluated on NAS-Bench-101 search space, CIFAR-10
dataset. Number of architectures with non-NaN values are given in the second column.

Weights Archs Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

0.0001, 0.001 2120 0.47 0.41 0.33 0.28 38.21 23
0.0001, 0.01 2120 0.61 0.03 0.43 0.02 41.98 24
0.0001, 0.1 2120 0.61 0.03 0.43 0.02 41.98 24
0.0001, 1 2120 0.61 0.03 0.43 0.02 41.98 24
0.0001, 10 2120 0.61 0.03 0.43 0.02 41.98 24
0.001, 0.01 4968 0.29 −0.05 0.20 −0.03 17.30 10
0.001, 0.1 4968 0.29 −0.05 0.19 −0.03 17.30 8
0.001, 1 4968 0.29 −0.05 0.19 −0.03 17.30 8
0.001, 10 4968 0.29 −0.05 0.19 −0.03 17.30 8
0.01, 0.1 5000 0.21 −0.12 0.14 −0.08 4.60 0
0.01, 1 5000 0.21 −0.12 0.14 −0.08 4.60 0
0.01, 10 5000 0.21 −0.12 0.14 −0.08 4.60 0
0.1, 1 5000 −0.47 0.04 −0.32 0.03 0.20 0
0.1, 10 5000 −0.45 0.00 −0.30 0.00 0.20 0
1, 10 5000 −0.44 0.01 −0.29 0.00 0.20 0
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Table 8: Zero-cost metrics performance evaluated on NAS-Bench-201 search space, CIFAR-10
dataset. Number of architectures with non-NaN values are given in the second column.

Weights Archs Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

1e-08, 1e-07 2957 0.27 −0.46 0.20 −0.37 0.00 3
1e-08, 1e-06 2957 0.42 −0.41 0.28 −0.30 4.39 1
1e-08, 1e-05 2957 0.43 −0.19 0.31 −0.13 9.12 2
1e-08, 0.0001 2957 0.47 −0.01 0.32 0.00 9.12 2
1e-08, 0.001 2957 0.62 0.06 0.43 0.05 18.92 3
1e-08, 0.01 2957 0.83 0.69 0.64 0.49 68.40 56
1e-08, 0.1 2957 0.84 0.64 0.65 0.46 68.03 56
1e-08, 1 2957 0.87 0.59 0.70 0.43 65.88 45
1e-08, 10 2957 0.87 0.58 0.70 0.43 66.78 46
1e-07, 1e-06 2957 0.33 −0.20 0.22 −0.13 4.76 1
1e-07, 1e-05 2957 0.39 −0.06 0.29 −0.04 9.15 2
1e-07, 0.0001 2957 0.47 −0.01 0.32 0.00 9.12 2
1e-07, 0.001 2957 0.62 0.06 0.43 0.05 18.92 3
1e-07, 0.01 2957 0.83 0.69 0.64 0.49 68.40 56
1e-07, 0.1 2957 0.84 0.64 0.65 0.46 68.03 56
1e-07, 1 2957 0.87 0.59 0.70 0.43 65.88 45
1e-07, 10 2957 0.87 0.58 0.70 0.43 66.78 46
1e-06, 1e-05 2957 0.41 −0.06 0.30 −0.04 9.15 2
1e-06, 0.0001 2957 0.47 −0.01 0.32 0.00 9.12 2
1e-06, 0.001 2957 0.62 0.06 0.43 0.05 18.92 3
1e-06, 0.01 2957 0.83 0.69 0.64 0.49 68.40 56
1e-06, 0.1 2957 0.84 0.64 0.65 0.46 68.03 56
1e-06, 1 2957 0.87 0.59 0.70 0.43 65.88 45
1e-06, 10 2957 0.87 0.58 0.70 0.43 66.78 46
1e-05, 0.0001 2957 0.47 −0.01 0.32 0.00 9.12 2
1e-05, 0.001 2957 0.62 0.06 0.43 0.05 18.92 3
1e-05, 0.01 2957 0.83 0.69 0.64 0.49 68.40 56
1e-05, 0.1 2957 0.84 0.64 0.65 0.46 68.03 56
1e-05, 1 2957 0.87 0.59 0.70 0.43 65.88 45
1e-05, 10 2957 0.87 0.58 0.70 0.43 66.78 46
0.0001, 0.001 2957 0.62 0.06 0.43 0.05 19.26 3
0.0001, 0.01 2957 0.82 0.69 0.63 0.49 68.42 56
0.0001, 0.1 2957 0.84 0.64 0.65 0.46 68.14 56
0.0001, 1 2957 0.87 0.58 0.69 0.42 65.88 46
0.0001, 10 2957 0.87 0.58 0.69 0.42 67.24 61
0.001, 0.01 4802 0.25 0.41 0.17 0.28 30.35 52
0.001, 0.1 4802 0.31 0.27 0.20 0.19 26.82 25
0.001, 1 4802 0.31 0.22 0.21 0.15 26.26 6
0.001, 10 4802 0.26 0.21 0.17 0.15 26.82 7
0.01, 0.1 4907 0.15 0.42 0.10 0.29 37.47 57
0.01, 1 4907 0.12 0.39 0.06 0.27 35.85 57
0.01, 10 4907 0.12 0.39 0.06 0.27 35.85 56
0.1, 1 4907 0.01 0.26 −0.03 0.16 0.84 0
0.1, 10 4907 0.01 0.26 −0.03 0.16 0.43 0
1, 10 4907 −0.02 0.25 −0.05 0.16 0.00 0
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Table 9: Zero-cost metrics performance evaluated on NAS-Bench-NLP search space, PTB dataset.
Number of architectures with non-NaN values are given in the second column.

Weights Archs Spearman ρ Kendall τ Top-10%/ Top-64/
global top-10% global top-10% top-10% top-5%

1e-07, 1e-06 2393 −0.24 0.32 −0.16 0.22 0.00 0
1e-07, 1e-05 2391 −0.22 0.52 −0.15 0.39 1.67 0
1e-07, 0.0001 2388 −0.35 0.49 −0.24 0.37 0.42 1
1e-07, 0.001 2332 −0.42 0.50 −0.29 0.37 2.99 1
1e-07, 0.01 1215 −0.30 0.13 −0.21 0.09 4.20 1
1e-07, 0.1 585 −0.49 0.55 −0.36 0.44 1.69 1
1e-07, 1 403 −0.12 0.08 −0.08 −0.00 12.20 7
1e-06, 1e-05 3286 −0.11 0.49 −0.07 0.36 0.91 0
1e-06, 0.0001 3283 −0.24 0.47 −0.16 0.34 0.62 0
1e-06, 0.001 3226 −0.33 0.44 −0.23 0.33 4.64 1
1e-06, 0.01 1639 −0.26 0.13 −0.18 0.09 3.40 2
1e-06, 0.1 841 −0.41 0.13 −0.28 0.12 10.71 1
1e-06, 1 594 −0.09 0.13 −0.06 0.08 11.67 7
1e-05, 0.0001 3948 −0.32 0.30 −0.21 0.22 0.51 0
1e-05, 0.001 3892 −0.35 0.20 −0.24 0.16 3.85 2
1e-05, 0.01 1900 −0.32 0.27 −0.22 0.18 2.86 1
1e-05, 0.1 913 −0.38 0.31 −0.28 0.25 13.04 1
1e-05, 1 649 −0.18 0.36 −0.12 0.25 10.77 7
0.0001, 0.001 3987 −0.35 0.18 −0.24 0.14 3.76 0
0.0001, 0.01 1943 −0.37 0.38 −0.26 0.25 3.59 1
0.0001, 0.1 925 −0.43 0.26 −0.30 0.21 11.83 1
0.0001, 1 663 −0.26 0.35 −0.18 0.24 10.45 7
0.001, 0.01 1936 −0.32 0.40 −0.21 0.26 2.59 3
0.001, 0.1 918 −0.38 0.27 −0.30 0.22 8.70 2
0.001, 1 663 −0.23 −0.20 −0.19 −0.17 7.46 5
0.01, 0.1 910 −0.36 0.04 −0.25 0.02 8.79 2
0.01, 1 654 −0.25 0.06 −0.16 0.04 9.09 5
0.1, 1 652 −0.27 0.20 −0.19 0.13 10.61 7
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