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ABSTRACT

We propose SpARQ (outlier-free SpeechLM for Fast Adaptation and Robust
Quantization) to tackle the outlier problem of Speech and Language multi-modal
Models (SpeechLMs). Our primary observation is that outliers stemming from
cross-modal (speech and text) low-rank adaptation and post-training quantiza-
tion stages affect the performance of the current SpeechLMs. Methodologically,
SpARQ leverages a pretrained language model as its foundation, substituting the
traditional attention layer with a novel stabilized outlier-free layer. This modifica-
tion eliminates outliers typically arising during cross-modal low-rank adaptation
and post-training quantization. The model is then fine-tuned on multi-modal data
using proposed outlier-free architecture, allowing it to handle textLM, speechLM,
ASR, and TTS tasks through a unified interface while maintaining compatibil-
ity with parameters adapted from standard pretrained LLMs. Consequently, on
the OPT-1.3b model, the proposed framework achieves relative performance im-
provements: 41% in cross-modal low-rank adaptation and 45% in post-training
quantization, along with a 1.33x training speedup. We benchmark it against state-
of-the-art low-rank adaptation and post-training quantization methods.

1 INTRODUCTION

SpeechLM leverages pretrained language models to significantly enhance speech recognition and
synthesis technologies, transforming our ability to understand and generate natural speech (Nguyen
et al., 2024). Traditional Automatic Speech Recognition (ASR) (Park et al., 2019) and Text-to-Speech
(TTS) (Hayashi and Watanabe, 2020) systems rely on specialized components like feature extraction,
acoustic or linguistic modeling, and waveform synthesis. In contrast, as illustrated in Figure 1,
SpeechLM integrates these modalities within a single Large Language Model (LLM) framework,
using a unified token space for both speech and text as input and output. This integration enables
ASR, TTS, speech generation (SpeechLM), and text generation (textLM) tasks within the same
framework (Maiti et al., 2023; Yang et al., 2023), leveraging the robust capabilities of text-based
language models to enhance performance, efficiency, and adaptability in speech-related applications.

However, efficiently adapting LLMs to handle speech remains a major challenge (Mehrish et al.,
2023). While some speech and audio understanding models (Chu et al., 2023; Wang et al., 2023a;
Gong et al., 2023; 2024) have employed efficient techniques like low-rank adaptation or freezing
the entire LLM when integrating new inputs, these methods have not been applied to the SpeechLM
framework for generating outputs in both speech and text modalities (Maiti et al., 2023; Yang et al.,
2023; Zhang et al., 2024; Défossez et al., 2024). The fundamental differences between text and
speech modalities—such as variable sequence lengths and data representations—complicate this
adaptation process. Consequently, there is a pressing need for methods to achieve the efficiency gains
of low-rank adaptation and post-training quantization for the SpeechLM framework.

Studies have shown that transformer-based models often focus on less informative tokens, resulting in
inefficiencies due to outliers (Clark et al., 2019; Kovaleva et al., 2019; Zhao et al., 2024; Huang et al.,
2024). In multimodal frameworks, outliers present in pretrained LLMs and multimodal generation
tasks (Zhang et al., 2020) exacerbate these challenges, and as demonstrated in (Crabbé et al., 2024),
multimodal models exhibit a substantial number of outliers in their attention mechanisms. During
low-rank adaptation, outliers from the pretrained model mix with those introduced by the multimodal
data, leading to distorted outputs and diminished performance. Similarly, in post-training quantization,
outliers inherited from the pretrained model negatively impact the quality of the final output.
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Figure 1: Illustration of the SpeechLM System. The language model is trained using a next-token prediction
objective. Speech tokens are generated by encoding speech with the HuBERT encoder and can be decoded back
to their original modality. We train the SpeechLM models on a combination of sequences: text-only, speech-only,
speech-to-text (ASR), and TTS. In the figure, we demonstrate an ASR example that uses special tokens "ST"
(start of text) and "GS" (generate speech) alongside text and speech tokens.

To address these issues and enable efficient fine-tuning and post-training quantization (e.g.,
SmoothQuant (Xiao et al., 2023)) in transformer-based models with multimodal inputs, we propose a
novel stabilized outlier-free layer as a substitute for the conventional attention mechanism (Vaswani
et al., 2017). Unlike prior work that applies outlier mitigation during pretraining, we apply our
approach during the domain adaptation fine-tuning procedure for low-rank adaptation (LoRA) and
post-training quantization on pretrained LLMs. Our design builds upon the outlier-free Hopfield layer
introduced by (Hu et al., 2024a), which has been proven to effectively identify and filter out outliers.

Our approach enhances transformer-based pretrained Language Learning Models (LLMs) through the
integration of a specialized stabilization module within the outlier-free layer. This innovative design
enables direct parameter adaptation of existing pretrained vanilla LLMs, eliminating the need for
training an outlier-efficient model from scratch. Such an approach preserves the inherent capabilities
of pretrained transformers while substantially reducing computational overhead. The framework’s
effectiveness is further amplified through the incorporation of low-rank adaptation techniques, such as
LoRA (Hu et al., 2021), alongside post-training quantization methods. These implementations yield
marked performance improvements compared to conventional transformer-based models. Through
this enhancement strategy, we have developed a solution that not only optimizes efficiency but also
increases practical applicability, making it valuable in resource-constrained environments where
training capabilities may be limited.

Contributions. We propose Stablized Outlier-free SpeechLM with Fast Adaptation and Robust
Quantization (SpARQ) for multi-modal speech-text tasks. Our contributions are as follows:

• Methodological Innovation: We present a stabilized outlier-free layer as a replacement for
the standard transformer attention mechanism in the SpeechLM model. This layer mitigates
outliers that emerge during text-based LLM adaptation to multi-modal generation, improving
performance in speech applications while maintaining stability through LoRA and quantization
processes. The outlier-free layer works in concert with LoRA to minimize trainable parameters in
LLM-to-SpeechLM adaptation, resulting in enhanced quantized model performance.

• Efficient Adaptation of Pretrained LLMs: The stabilization module in our outlier-free layer
enables direct parameter initialization from transformer-based LLMs to outlier-free SpeechLM.
This method matches the performance of full LLM retraining under outlier-free conditions. The
integration with LoRA delivers superior results in ASR and TTS tasks compared to standard
transformer-based SpeechLM architectures. Our approach optimizes resource utilization while
maintaining performance, making it ideal for deployment in computationally constrained environ-
ments.

• Empirical Validation: Our work presents the first successful implementation of this approach in
a multi-modal SpeechLM framework that combines speech and text generation through LoRA,
QLoRA, and post-training quantization techniques. Using the Open Pretrained Transformer (OPT)
as our foundation, we conducted comprehensive evaluations of our method’s performance and
efficiency. Benchmarks against current low-rank adaptation methods and post-training quantization
techniques demonstrate the framework’s effectiveness. The results show relative performance
gains of 41% in cross-modal post-training quantization and 45% in low-rank adaptation compared
to standard frameworks.
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Organization. Section 2 includes a description of recent work in SpeechLM and Low-rank adaptation
fine-tuning. Section 3 details the system settings of SpeechLM and the outlier-efficient architecture
in our framework. Section 4 presents the numerical evaluation results demonstrating the efficiency of
our framework. Section 5 provides a conclusion and discusses future research directions.

2 RELATED WORK

Discrete Speech Representation. Recent advances in Self-Supervised Learning (SSL) for speech
have improved our ability to derive meaningful representations from raw audio data. These advance-
ments enable the extraction of discrete speech tokens from SSL models like HuBERT (Hsu et al.,
2021) and w2v-BERT (Chung et al., 2021) for various speech-processing applications. These SSL
models generate semantic tokens by clustering learned features, capturing the linguistic content of the
speech. This approach transforms speech into pseudo-text, facilitating applications in speech-based
natural language understanding and generation. Models like HuBERT cluster continuous speech
features into discrete tokens that represent phonetic or sub-word units, improving the accuracy
and efficiency of high-level speech processing tasks, such as TTS (Hayashi and Watanabe, 2020) ,
speech-to-speech translation (S2ST) (Lee et al., 2021), and ASR (Park et al., 2019).

Speech and Text LMs. Joint modeling of speech and text has gained significant attention in recent
studies. Initial approaches (Ao et al., 2021; Chen et al., 2022) proposed learning shared speech-text
representations with separate encoders and decoders, requiring alignment losses for cross-modal
transfer. Recent methods employ a single model for multiple tasks. For example, SpeechGPT
(Zhang et al., 2023) combines audio generation with textLMs, PolyVoice applies speechLM to S2ST
(qian Dong et al., 2023), SpiritLM (Nguyen et al., 2024) excels in speech and expressive speech
generation, also adapted for related speech tasks, and Voxtlm (Maiti et al., 2024) conducts speech/text
generation along with ASR and TTS. We utilize textually pre-trained OPT (Zhang et al., 2022) for
better initialization inspired by (Maiti et al., 2024; Hassid et al., 2024) and leverage different speech
tokens, ensuring full reproducibility of our work.

Low-Rank Adaptation and Post Training Quantization. Low-Rank Adaptation (Xin et al., 2024)
and Post Training Quantization (PTQ) (Gholami et al., 2022) are essential techniques for reducing
the memory footprint and latency of large foundation models (Bommasani et al., 2021), i.e. huge
transformer-based models. Those large foundation models play a crucial role not only in machine
learning area but also in a huge scientific area, such as (Zhou et al., 2024) for genomics, (Wang et al.,
2023b; Wu et al., 2023) for financial, and (Maiti et al., 2024) for speech. However, large foundation
models are resource-intensive. Low-Rank Adaptation and PTQ play crucial roles in deploying these
large models on edge devices with limited resources. Significant contributions have been made in
the area of Low-Rank Adaptation (Dettmers et al., 2024; Li et al., 2023; Hu et al., 2021) and PTQ
(Zafrir et al., 2019; Dettmers et al., 2022). However, these methods typically do not address the
outlier problem during the Low-Rank Adaptation and quantization processes, as highlighted by (Hu
et al., 2024a). To tackle this issue, we propose the Outlier-Free Layer to manage outliers effectively
during both the Low-Rank Adaptation and quantization processes.

3 METHODOLOGY

This section introduces the Stabilized Outlier-Free SpeechLM system, which adapts LLMs to speech
and text modalities by replacing standard transformer layers with a stabilized Outlier-Free Layer. This
layer mitigates challenges posed by outliers during cross-modal low-rank adaptation and post-training
quantization, addressing instabilities encountered with existing outlier layers.

3.1 SPEECHLM SETUP

Our goal is to model both speech and text modalities within a unified framework. To achieve this, we
convert continuous speech signals into discrete tokens si ∈ Vsp using a speech tokenizer, such as a
HuBERT model with k-means clustering. These speech tokens are integrated with text tokens ti ∈ Vtxt
to form a shared vocabulary Vjoint = Vtxt∪Vsp. We combine tokenized training data from multiple tasks
to create a joint dataset and train a subword model (e.g., BPE or SentencePiece) on this data. We model
the probability of a text utterance T = (ti) as p(T ) =

∏
i p(ti | t1, · · · , ti−1). Similarly, continuous

speech signals are converted into discrete tokens S = (si) and modeled likewise. The joint probability
of speech and text tokens J = (ji ∈ Vjoint) is expressed as p(J) =

∏
i p(ji | j1, · · · , ji−1). To enable

the model to handle multiple tasks within this unified framework, we incorporate four special tokens
to indicate tasks: start of speech (SS)/text (ST) and generate speech (GS)/text (GT), following (Maiti
et al., 2023). In SpeechLM and textLM tasks, GS and GT appear at the beginning of sentences. For
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Figure 2: Illustration of the SpARQ Framework and Outlier-free Layer. The vanilla SpeechLM framework
employs a pretrained LLM as its backbone for processing cross-modal inputs (text and speech). However, this
approach often results in output outliers, as illustrated in Figure a). To address this issue, we propose SpARQ,
which replaces the original softmax activation function with an outlier-free layer. Figure b) demonstrates
SpARQ’s effectiveness in reducing outliers. The structure of our outlier-free layer, detailed in Figure c),
comprises a max-shift normalization followed by a softmax_1 activation function.
ASR and TTS tasks, sentences start with SS or ST and use GT or GS as prediction start tokens. This
setup enables unified next-token prediction across all tasks.

Modality Fusion. SpeechLM accepts both speech and text inputs within the shared vocabulary Vjoint,
formed by combining text characters and discrete speech tokens obtained using k-means clustering
on pre-trained HuBERT features (Hsu et al., 2021), as described earlier. For speech synthesis, we use
HiFi-GAN (Kong et al., 2020), incorporating x-vector (Snyder et al., 2018) as the speaker embedding,
both pretrained on LJSpeech (Ito., 2017). Additionally, to enhance contextual information and
reduce sequence length, we apply sentencepiece subword modeling (Kudo and Richardson, 2018)
within Vjoint(Radford et al.; Song et al., 2020; Chang et al., 2023). During training, we employ
teacher forcing in an autoregressive manner. At each timestep i, SpARQ predicts the distribution
p̂i = SpARQ(j1, . . . , ji−1)., and the cross-entropy loss is computed as:

LCE(pi, p̂
i) = −

|Vjoint|∑
c=1

pi(c) log p̂
i(c),

where pi is the true probability distribution. During inference, the model predicts the next tokens
conditioned on the input as p(· | condition). For TTS, given a text utterance Ttest, it predicts speech
tokens Ŝ. For ASR, given speech tokens Stest, it predicts text T̂ . For speech or text continuation, it
predicts continued speech tokens Ŝ or text Ŷ based on the respective prefixes. The model is trained
on these cross-modality tasks using the task-specific tokens introduced earlier.

3.2 OUTLIER FREE ARCHITECTURE

The Outlier-free layer is our proposed solution to mitigate challenges posed by outliers during the
model’s cross-modal low-rank adaptation and post-training quantization processes. The proposed
outlier efficient architecture is shown in Figure 2.

Problem Setup. We consider a multimodality speech-text framework where the input is a d-
dimensional speech-text sequence of length L, represented as a matrix X ∈ Rd×L for compatibility
with the transformer architecture. The matrix X is then processed by transformer layers, which are
composed of multiple self-attention mechanisms followed by feed-forward neural networks.

Motivational Example. Studies by (Clark et al., 2019) and (Kovaleva et al., 2019) find that in BERT,
certain tokens such as delimiters and punctuation marks receive disproportionately high attention
weights compared to other tokens. Additionally, as stated in (Bondarenko et al., 2024) and (Hu
et al., 2024a), tokens, despite having low informational value, tend to attract significant attention
probabilities. Such behaviors lead to excessive computational and memory demands during the model
training process and contribute to significant performance degradation during model quantization.
As demonstrated in (Crabbé et al., 2024), multimodal models exhibit a substantial number of outlier
in their attention. We use this observation as a starting point by considering the following attention
mechanism:

Output = Residual(Softmax(XWqXWT
k /

√
d)XWv +X). (3.1)

With the given formula, if the attention input X already holds sufficient information, the transformer
should prevent from making updates. However, due to the characteristics of the Softmax function,
tokens with smaller values receive disproportionately high attention weights. This results in a
broad distribution of attention scores and introduces outliers that negatively impact the model’s
performance. Furthermore, cross-modal inputs (text and speech) may inherently possess distinct
statistical characteristics. This can complicate the normalization of attention scores and potentially
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introduce additional outliers that affect the model’s performance. We provide a visualization of the
outliers in the SpeechLM system in Appendix A.

Given this challenge, we would like to develop a transformer architecture that can efficiently solve
the challenge in Equation (3.1). To achieve this, we propose an outlier-free layer consisting of
a stabilized layer and a memory-associated activation function. There is a huge amount of work
proposed to reduce the outlier challenges in each of the model stages, pre-training (Hu et al., 2024a),
fine-tuning (Chen et al., 2024; Hu et al., 2024b), and inference (Xiao et al., 2023; Bondarenko et al.,
2024). following (Miller, 2023; Hu et al., 2024a), we use outlier-free memory associated (Softmax1)
function (as shown in 3.2) for input vector S to tackle the challenge of the outliers in LLMs. We
term this architecture outlier-free Transformer, and briefly comment on it. Firstly, our proposed
architecture is applied to the attention mechanism in the transformer layer with the activation function
Softmax1. Secondly, we introduce a stabilized layer to ensure numerical stability in the Softmax1
function, forming a stabilized outlier-free layer as:

Softmax1(S) =
exp(S)

1 +
∑L

i=1 exp(Si)
, where S = S− max(S). (3.2)

With the model size increasing, the Softmax1 function in (Hu et al., 2024a) brings gradient problem
due to the numerical instability in Softmax1 function (Alman and Song, 2024). Recent works (Hu
et al., 2024b; Jiang et al., 2023) provide theory support for the essential of the stabilized layer, and
we have tried different stabilized methods as shown in Table 7.

3.3 INTEGRATING THE OUTLIER-FREE ARCHITECTURE INTO SPEECHLM
We accommodate the outlier-free architecture into the SpeechLM framework to create our proposed
SpARQ system. This integration enables efficient adaptation of pre-trained LLMs to the multi-modal
speech-text setting and facilitates effective post-training quantization.

Two main challenges arise in this process. First, adapting text-only pre-trained LLMs to a multi-
modal environment involves handling an expanded vocabulary Vjoint, longer sequences due to speech
tokens—which are about five times more numerous than text tokens—and the presence of outliers
that hinder both low-rank adaptation and post-training quantization. This complexity makes applying
parameter-efficient training methods like LoRA and quantization techniques challenging. Second,
since the pre-trained LLMs are based on vanilla transformer architectures, replacing the standard
transformer layers with the outlier-free layers can introduce instability. The model parameters are
not initially optimized for the new architecture, necessitating a stabilization mechanism to ensure
training proceeds smoothly without significant perturbations.

Cross-Modal Adaptation. To address the first challenge, we utilize our stabilized outlier-free layers
to mitigate the impact of outliers during adaptation. By effectively handling outliers, our approach
enables both efficient low-rank adaptation techniques like LoRA and robust post-training quantization
methods such as SmoothQuant. This allows the model to manage the expanded vocabulary and longer
sequences more effectively, facilitating parameter-efficient training and quantization. Consequently,
we reduce trainable parameters and computational overhead compared to full fine-tuning methods used
in previous works (Maiti et al., 2023; Nguyen et al., 2024), and improve quantization performance.

Stabilized Outlier-Free Adaptation. For the second challenge, we incorporate a stabilization module
within the outlier-free layers. This addition mitigates instability caused by layer replacement, allowing
us to initialize directly from pre-trained vanilla LLM parameters without extensive pretraining specific
to the outlier-free architecture. As a result, we achieve effective cross-modal learning with improved
training stability and significant performance gains in ASR and TTS tasks compared to traditional
transformer-based SpeechLM systems.

3.4 THEORETICAL JUSTIFICATIONS

Building on the theoretical advantages of the outlier-free transformer reported by (Hu et al., 2024a),
we provide two additional justifications for applying LoRA to the outlier-free transformer.

Expressiveness. We provide the expressive guarantee of Low-Rank Adaption for transformer model
with Softmax1. We identify the conditions for the existence of low-rank adapters for exact adaptation.
We summarize our main findings in the following informal theorem.
Proposition 3.1 (Expressiveness of LoRA Softmax1 (Informal Version of Theorem C.1)). Let f⋆ and
f denote the pretrained and target transformer models, respectively, using the Stabilized Outlier-Free
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layer (3.2) as the backbone. Under mild non-singularity and LoRA-rank conditions, there exist
low-rank adapters such that the modified model f is exactly equal to f .

Training Efficiency. We find that the attention weights are concentrated on significant tokens,
enabling less training time cost during fine-tuning compared to the vanilla version, as shown in Table 3.
We provide a theoretical justification for why we observe improved LoRA training efficiency.
Proposition 3.2 (Fast LoRA Requires Proper Normalization (Informal Version of Proposition C.1)).
Let X ∈ Rd×L be the input sequence, and let r denote the rank of the LoRA adapters for a pretrained
transformer model. Sub-quadratic time-efficient LoRA training up to a precision of ϵ = O((logL)−4)
is achievable if the following conditions hold: (i) long sequence setting with d = O(logL), (ii) mild
rank r < d, and (iii) proper normalization of the input and model weights.
Remark 3.1. Our outlier-free layer ensures proper normalization of the model weights. Our stabi-
lization technique ensures proper normalization of the model input.

We defer more comprehensive theoretical justifications to Appendix C.

4 EXPERIMENTAL STUDIES

In this section, we conducted experiments to validate our proposed framework’s effectiveness,
comparing its performance against state-of-the-art methods described in (Maiti et al., 2023). Our
evaluation utilized three sizes of OPT pretrained models: OPT-125m, OPT-350m, and OPT-1.3b.

Computational Resource. We perform all experiments using 4 NVIDIA A100 GPU with 80GB
of memory and a 24-core Intel(R) Xeon(R) Gold 6338 CPU operating at 2.00GHz. Our code is
developed in PyTorch and utilizes the Hugging Face Transformer Library for experimental execution.

Models. Following (Maiti et al., 2023), we validate our method using different sizes of Open
Pretrained Transformer (OPT) models. We employ the same BPE model as (Maiti et al., 2023)
for four tasks: textLM, speechLM, ASR, and TTS. The training procedure for all OPT models
follows (Hu et al., 2024a).

Datasets. Our experiments utilize four datasets across different tasks. For textLM, we use Lib-
rispeech (Panayotov et al., 2015), comprising 40 million text utterances. SpeechLM employs
LibriLight (LL) (Kahn et al., 2020), which contains 60,000 hours of audiobook recordings from 7,000
speakers, totaling 12 million utterances. For ASR tasks, we use the English Multilingual Librispeech
(MLS) dataset (Pratap et al., 2020). TTS experiments are conducted using LibriTTS (LT) (Zen et al.,
2019) and VCTK (VC) (Veaux et al., 2017) datasets.

Evaluation Metrics. We employ specific metrics for each task in our evaluation process. For speech
and text generation tasks, we assess models with identical vocabulary sizes using perplexity (PPL).
In ASR tasks, we utilize Word Error Rate (WER) as our primary metric. For TTS evaluation, we
employ Hifi-gan (Kong et al., 2020) as the vocoder and measure intelligibility using the WER derived
from whisper decoding results. Notably, lower scores in these metrics indicate superior performance.
Additionally, to evaluate the model performance on the next-token prediction, we report the model’s
next-token accuracy in the ablation study Section 4.3.

4.1 POST-TRAINING QUANTIZATION (PTQ)
To evaluate the efficiency of our method, we employ the proposed Outlier-free layer in all OPT
models (Zhang et al., 2022) as a substitute for the standard attention layer as described in (Vaswani
et al., 2017). We utilize the pre-trained OPT model checkpoints with the SpARQ framework (Hu
et al., 2024a), and fine-tune the model at full rank according to the approach outlined in (Maiti et al.,
2023). We then evaluate them on the test datasets using FP16 (16-bit floating-point) and perform
state-of-the-art Post-training Quantization (PTQ) methods to assess the performance drop from FP16.
We conduct each evaluation 3 times with different random seeds and present the average and standard
deviation for each metric. Since the standard deviations of all results are less than 2%, we omit them
in our result tables.

Baselines. Following (Maiti et al., 2023), we validate our method with three different quantization
methods: SmoothQuant (Xiao et al., 2023), AffineQuant (Ma et al., 2024), and OmniQuant (Shao
et al., 2023). We consistently apply the same hyperparameters detailed in their respective studies.
Specifically, the hyperparameters for SmoothQuant follow the guidelines set forth in (Xiao et al.,
2023). Similarly, for AffineQuant, we adhere to the parameters described in (Ma et al., 2024). Lastly,
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Table 1: Comparing SpARQ with Vanilla Framework in a Post-Training Quantization (PTQ) setting.
Experiments were conducted across three quantization methods (SmoothQuant, AffineQuant, OmmiQuant) on
a low bit weight and activation quantization setting – weight 4 bits and activation 4 bits (W4A4). Evaluation
metrics included Text PPL, SpeechLM PPL, ASR WER, and TTS WER. We assessed the average performance
drop across these four tasks post-quantization. Results show SpARQ consistently outperforms Vanilla framework,
exhibiting smaller performance drops when applying low bit quantization methods, demonstrating its superior
efficiency in PTQ settings.

Model Method #Bits Quantization
Method

TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

TTS
WER (↓)

Avg Performance
Drop (↓)

O
PT

-1
25

m Vanilla

W16/A16 - 22.56 59.42 12.40 12.08 -
W4/A4 SmoothQuant 45.23 96.87 52.31 48.79 197.31%
W4/A4 AffineQuant 31.25 80.19 29.44 28.34 86.37%
W4/A4 OmmiQuant 31.28 80.21 31.98 29.55 94.04%

SpARQ

W16/A16 - 22.70 59.45 12.61 12.11 -
W4/A4 SmoothQuant 37.14 84.55 35.32 36.73 112.05%
W4/A4 AffineQuant 26.11 68.42 14.33 15.71 18.52%
W4/A4 OmmiQuant 26.12 68.63 14.53 16.01 19.63%

O
PT

-3
50

m Vanilla

W16/A16 - 13.13 43.10 8.42 17.56 -
W4/A4 SmoothQuant 36.74 75.38 40.17 70.53 233.37%
W4/A4 AffineQuant 27.28 66.31 36.84 40.83 157.92%
W4/A4 OmmiQuant 27.85 67.83 37.54 41.37 162.73%

SpARQ

16/16A - 13.47 43.34 9.81 17.31 -
W4/A4 SmoothQuant 23.48 62.17 36.22 40.83 130.71%
W4/A4 AffineQuant 22.82 51.74 25.78 28.44 78.97%
W4/A4 OmmiQuant 22.83 52.08 26.11 29.15 81.05%

O
PT

-1
.3

b Vanilla

W16/A16 - 12.62 41.33 8.00 18.73 -
W4/A4 SmoothQuant 36.74 87.46 48.96 53.15 249.63%
W4/A4 AffineQuant 24.31 61.74 43.68 32.47 165.33%
W4/A4 OmmiQuant 24.43 62.38 44.52 33.03 169.34%

SpARQ

W16/16A - 12.95 42.48 8.25 12.07 -
W4/A4 SmoothQuant 23.83 58.33 32.27 33.12 146.72%
W4/A4 AffineQuant 20.81 48.84 22.78 25.46 90.68%
W4/A4 OmmiQuant 20.88 48.97 23.58 26.83 96.15%

for OmniQuant, the hyperparameters are in line with those specified in (Shao et al., 2023). This
approach ensures that our evaluations are based on standardized settings, allowing for accurate
comparisons and assessments of each quantization method.

Results. Table 1 demonstrates SpARQ’s superior performance over standard training frameworks in
W4A4 post-training quantization scenarios using state-of-the-art PTQ methods. Under AfflineQuant,
the vanilla framework experiences performance drops of 86.37%, 107.78%, and 165.33% for OPT-
125m, OPT-350m, and OPT-1.3b respectively. SpARQ reduces these declines to 18.52%, 64.96%, and
90.68%. For OPT-1.3b, SpARQ achieves a 45% relative improvement in average W4A4 quantization
performance, highlighting its robustness in low-bit quantization for large models. Additional Weight-
8bit-Activation-8bit (W8A8) quantization results appear in Appendix D.

4.2 LOW-RANK ADAPTATION METHODS

To show the effectiveness of the SpARQ framework in the cross-modal low-rank adaptation process,
we compare SpARQ with the vanilla training framework across two different LoRA techniques.

LoRA Methods. We compare SpARQ with the vanilla training framework across two different LoRA
methods: LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2024). We fine-tune the model without
using any adaptation method as the full-rank baseline, following the setting in (Maiti et al., 2023).
For the LoRA method, following (Hu et al., 2021), we fine-tune the model with low-rank adaptations
using a rank of 128 and an alpha value of 256. For the QLoRA method, following (Dettmers et al.,
2024), we fine-tune the model with quantized low-rank adaptations, maintaining the same rank and
alpha value as specified in LoRA, but using Int8 (Dettmers et al., 2022) quantization instead of 4-bit
NormalFloat (NF4) (Dettmers et al., 2024).

Results. In Table 2, our results demonstrate the effectiveness of SpARQ in cross-modal low-rank
adaptation. As a result, the SpARQ framework offers a performance improvement of relative 41%
in low-rank adaptation over the vanilla framework in OPT-1.3b. Specifically, SpARQ exhibits a
smaller performance drop across all three model sizes. However, we observe a significant decline
in performance when using LoRA, with WER dropping from 8.00% to 46.92% for ASR and from
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Table 2: Comparing SpARQ with Vanilla Framework in a Low-Rank Adaptation Setting. We conduct
experiments on SpARQ with vanilla attention across two Low-Rank Adaptation methods (LoRA, QLoRA). The
evaluation metrics include Text Perplexity (PPL), SpeechLM PPL, and Word Error Rate (WER) in Automatic
Speech Recognition (ASR) and Text-to-Speech (TTS). We also measure the average performance drop after
low-rank adaptation to assess the efficiency of SpARQ in the low-rank adaptation setting. In most configurations,
SpARQ results in better fine-tuning performance compared to vanilla attention.

Model Method Low-Rank
Adaptation Method

TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

TTS
WER (↓)

Average Performance
Drop (↓)

O
PT

-1
25

m Vanilla
Full 22.56 59.42 12.40 12.08 -

LoRA 25.69 62.16 12.39 15.47 11.61%
QLoRA 25.97 62.43 12.86 15.02 12.06%

SpARQ
Full 22.58 59.46 12.61 12.11 -

LoRA 25.77 62.23 12.56 11.80 3.96%
QLoRA 25.77 62.23 13.42 12.46 7.03%

O
PT

-3
50

m Vanilla
Full 13.13 43.10 8.42 17.56 -

LoRA 17.87 51.65 93.91 97.06 233.98%
QLoRA 18.07 51.50 76.02 98.63 211.49%

SpARQ
Full 13.47 43.34 9.81 17.31 -

LoRA 17.71 51.13 18.52 75.18 106.68%
QLoRA 16.64 48.34 22.30 83.36 123.93%

O
PT

-1
.3

b Vanilla
Full 12.62 41.33 8.00 18.73 -

LoRA 17.14 50.22 46.92 94.53 237.12%
QLoRA 17.87 51.43 87.64 43.11 369.20%

SpARQ
Full 12.95 42.48 8.20 12.07 -

LoRA 16.83 49.51 8.25 74.21 140.44%
QLoRA 17.54 50.99 43.18 94.23 290.16%

18.73% to 94.53% for TTS in vanilla OPT-1.3b. One possible explanation for this substantial
performance drop is that larger models have greater difficulty forgetting the original knowledge
learned from text and adapting to new knowledge in a different modality, especially with a limited
number of fine-tuning epochs. This anomaly aligns with the findings of (Von Oswald et al., 2019;
Ramasesh et al., 2021). On the other hand, although the SpARQ models experience a performance
drop with low-rank adaptation, the decline is minimal for ASR (8.20% to 8.25%) and remains better
than the vanilla version for TTS (12.07% to 74.21%) for OPT-1.3b.

4.3 ABLATION STUDY

This section presents experimental results across three key areas. We analyze outlier dif-
ferences between vanilla and SpARQ frameworks, evaluate our training methodology’s con-
tribution to efficiency, and examine stabilization methods’ impact on model convergence.
These analyses reveal critical factors driving our framework’s performance improvements.

Table 3: Comparison of the Full Fine-
tuning Training Time (Per Epoch) between
the Vanilla Framework and SpARQ.

Model Method Training Time per Epoch

OPT-350m Vanilla 74 mins
SpARQ 58 mins

OPT-1.3b Vanilla 84 mins
SpARQ 63 mins

Outlier in the SpeechLM System. Our quantitative as-
sessment of outlier effects compares vanilla and SpARQ
frameworks using maximum infinity norm and average
kurtosis metrics (lower values indicate better performance).
The evaluation spans three tasks and three low-rank adap-
tation methods. Results in Figure 3 show SpARQ’s consis-
tent reduction of outlier effects across all scenarios. This
improvement manifests in both uni-modal (text or speech)
and cross-modal (text and speech) tasks, maintaining consistency across all low-rank adaptation
methods. The findings demonstrate SpARQ’s enhanced stability in managing diverse input modalities
and adaptation techniques, yielding superior SpeechLM performance.

Efficient Training. To evaluate the efficiency of our proposed framework, SpARQ, we compared
its training speed with the vanilla training framework. We measured the training time per epoch for
both methods in two different model sizes. As shown in Table 3, SpARQ consistently accelerates
training across various model sizes. Specifically, SpARQ achieves a 1.28x speedup for OPT-350m
and a 1.33x speedup for OPT-1.3b compared to the vanilla framework.
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Figure 3: Outlier Comparison between Vanilla and SpARQ Framework. We evaluate the average kurtosis
and maximum infinity norms of outliers for (a) text modalities using TextLM data, (b) speech modalities using
SpeechLM data, and (c) speech-text cross-modalities using ASR data. Outliers are measured at the sentence
level for all scenarios. For ASR, we include both speech and corresponding ground-truth text as input.

Table 4: Comparison of Different Stabi-
lized Methods.

Model Stabilized Method Val Accuracy (%)

OPT-1.3b

N/A N/A
L_1 N/A

Max-Shift 34.6
Mean-Centering N/A

Different Stabilized Methods. To investigate the efficacy
of various input vector stabilization techniques, we con-
ducted a systematic comparative analysis of three normal-
ization strategies: L1 normalization, max-shift normaliza-
tion, and mean-centering normalization. Our experimental
results, presented in Table 7, reveal that max-shift normal-
ization uniquely achieves model stabilization and resolves
gradient-related issues. In contrast, both L1 and mean-centering normalizations proved ineffective,
resulting in numerical instabilities during the training process. These instabilities are denoted as ’N/A’
in our results, indicating that the model encountered NaN (Not a Number) losses, rendering training
infeasible. These findings underscore the critical role of appropriate normalization in maintaining
model stability and highlight the superior performance of max-shift normalization in our framework.

5 DISCUSSION AND CONCLUSION

We introduce SpARQ, an outlier-robust multi-modal foundation model for speech-text tasks. SpARQ
addresses the computational challenges arising from outlier effects in modality fusion and cross-
modality adaptation of SpeechLM. Our approach mitigates outlier impacts in transformer-based
models and enhances both low-rank adaptation and post-training quantization performance. SpARQ
demonstrates significant improvements over existing methods, achieving a 41% relative performance
gain in cross-modal low-rank adaptation (Section 4.2) and 45% in quantization (Section 4.1)

Limitations and Future Work. SpARQ currently has two key limitations. First, it does not support
LoftQ and other SVD-based low-rank adaptation methods that operate on weight matrices. Second,
due to computational constraints, SpARQ uses neither the 6.7B parameter OPT model nor other large
decoder-based models for pretraining. “ Future work will expand SpARQ to incorporate SVD-based
methods and evaluate performance with larger decoder architectures, including 3B LLama2 and
6.7B OPT models. Additionally, the framework’s focus on reducing computational demands could
inadvertently amplify biases inherited from pre-trained models. Further investigation is necessary to
understand and address the impact of biases within our framework.

Broader Impact. Our methodology advances foundation model fine-tuning and inference through
insights from associative memory models, enhancing both low-rank adaptation and post-training
quantization. This solution enables edge computing deployment of large foundation models and
resource-efficient fine-tuning. However, the approach may amplify existing training data biases,
potentially disadvantaging underrepresented groups.
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Appendix

A VISUALIZATION OF THE OUTLIER IN THE SPEECHLM SYSTEM

（a)

（b)

Attention Probability Attention Values Attention Weight

Figure 4: Visualization of Attention Probability, Value and Weight in LoRA Funetuning. We
present a visualization of the attention probability, value, and weight for a cross-modality speech
sample processed by the OPT-125m model. The visualization includes two scenarios: (a) the vanilla
OPT-125m model, and (b) the Outlier-Free OPT-125m model (Hu et al., 2024a). Additionally, we
visualize the model’s hidden representations in the last hidden layers during the LoRA fine-tuning
process and scale up all heatmaps from range 0 (blue) to 1 (red). In the vanilla model, we observe
that the attention probability is distributed across various tokens rather than being concentrated
on specific, significant tokens. This dispersion causes the model to expend effort on unnecessary
tokens during fine-tuning, leading to performance degradation and resources inefficiency. In contrast,
the Outlier-Free model shows a more focused attention distribution, which helps in reducing the
computational effort required for fine-tuning by concentrating on the significant tokens.

As shown in Figure 4, we use visualization to highlight the challenges posed by outliers in transformer-
based models during the fine-tuning period. We visualize the model’s hidden representations in
the last hidden layers during the LoRA fine-tuning process. In the figure, deeper shades of red
indicate higher values of attention probability, value, and weight. Conversely, deeper shades of
blue represent lower values. This color coding helps illustrate the concentration of attention and
computational focus within the model. In the vanilla model, we observe that the attention probability
is distributed across various tokens rather than being concentrated on specific, significant tokens. This
dispersion can cause the model to expend effort on unnecessary tokens during fine-tuning, leading to
performance degradation and resources inefficiency. In contrast, the Outlier-Free model shows a more
focused attention distribution, which helps reduce the computational effort required for fine-tuning by
concentrating on the significant tokens. Additionally, we find that the attention weight in Outlier-Free
is higher for tokens with high attention values. This indicates that the model does not spend extra
computational resources on less significant tokens, allowing the fine-tuning process to converge more
efficiently.

B INFLUENCE OF ADAPTOR RANK

Table 5: Comparison of Different Ranks
Using LoRA by Validation Accuracy
Method Fine-Tuning Method Rank Val Acc (%)

Vanilla Full Fine-Tuning N/A 30.5
SpARQ Full Fine-Tuning N/A 30.2
Vanilla LoRA 512 27.6
SpARQ LoRA 512 27.8
Vanilla LoRA 256 28.1
SpARQ LoRA 256 28.9
Vanilla LoRA 128 27.5
SpARQ LoRA 128 27.5

We conducted a detailed analysis to evaluate the perfor-
mance of our proposed method across various ranks when
applying Low-rank Adaptation (LoRA) in comparison to
the standard, or vanilla, method. The results, as shown in
Table 5, consistently demonstrate that our method outper-
forms the vanilla approach across all tested ranks. Notably,
we observed that a rank of 256 delivers the optimal perfor-
mance; therefore, we have chosen to use a rank of 256 for
all subsequent low-rank adaptation experiments. Expand-
ing on the observed results, it’s important to understand
why increasing the rank beyond 256 does not lead to further performance improvements. Typically,
a higher rank in LoRA introduces more trainable parameters into the model. While this could
potentially enhance the model’s learning capacity, it also requires significantly more training epochs
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for the model to effectively converge. This extended training process can introduce inefficiencies and
practical limitations, which may negate the benefits of a higher parameter count. Thus, the rank of
256 strikes a balance between performance enhancement and computational efficiency, making it the
most effective choice for our low-rank adaptation experiments.

C THEORETICAL ANALYSIS

C.1 FAST LORA TRAINING OF Softmax1 REQUIRES INPUT AND WEIGHT NORMALIZATION

Our theoretical justification for fast LoRA training on our outlier-free stabilized models an application
of efficiency results of (Hu et al., 2024b). We follow the notation of (Hu et al., 2024b) in this section.

To present our results, we introduce the Strong Exponential Time Hypothesis (SETH) as a stronger
form of the P ̸= NP conjecture.

Hypothesis 1 (SETH). For every ϵ > 0, there is a positive integer k ≥ 3 such that k-SAT on formulas
with n variables cannot be solved in O(2(1−ϵ)n) time, even by a randomized algorithm.

Formally, we formulate the partial adaptation of an attention head as the following LoRA loss.

Definition C.1 (Adapting WQ, WV of Generic Attention with LoRA). Let D =

{
(
X

(K)
i , X

(Q)
i , X

(V )
i

)
, Yi}Ni=1 be a dataset of size N with the triplet X(K)

i , X
(Q)
i , X

(V )
i ∈ RL×d

being the input and Yi ∈ RL×d being the label. The problem of fine-tuning WQ, WV a generic
attention with LoRA with ℓ2 loss from dataset D is formulated as

min
BQ,BV ∈Rd×r

AQ,AV ∈Rr×d

L
(
W ⋆

K ,WQ = W ⋆
Q +

α

r
BQAQ,WV = W ⋆

V +
α

r
BV AV

)
(C.1)

:= min
BQ,BV ∈Rd×r

AQ,AV ∈Rr×d

1

2N

N∑
i=1

∥∥∥∥∥Softmax1

{
X

(Q)
i WQ(W

⋆
K)

T
(
X

(K)
i

)T
β

}
︸ ︷︷ ︸

(I)

X
(V )
i WV︸ ︷︷ ︸
(II)

−Yi

∥∥∥∥∥
2

F

.

To further simplify, we introduce C
(1)
i , C

(2)
i , C

(3)
i ∈ RL×d via

C
(1)
i := X

(Q)
i

α

r
∈ RL×d, C

(2)
i := X

(K)
i W ⋆

K ∈ RL×d C
(3)
i := X

(V )
i W ⋆

V . (C.2)

Notably, C(1)
i , C

(2)
i , C

(3)
i are constants with respect to adapting (C.1) with gradient updates. To

prove the hardness of Definition C.1for both full gradient descent and stochastic mini-batch gradient
descent, it suffices to consider adapting on a single data point. Thus, we deduce Definition C.1 to

min
BQ∈Rd×r

AQ∈Rr×d

L(BQ, AQ) = min
BQ∈Rd×r

AQ∈Rr×d

1

2

∥∥∥∥D−1 exp

{
C(1)

(
W ⋆

Q +BQAQ

)(
C(2)

)T}
C(3) − Y

∥∥∥∥2
F

,

(C.3)

where W ⋆
Q := rW ⋆

Q/α,D = diag
(
exp
{
C(1)

(
W ⋆

Q +BQAQ

) (
C(2)

)T}
1L + IL×L

)
∈ RL×L.

We introduce the next problem to characterize all possible (efficient or not) gradient computation of
optimizing (C.3). Let Y [i, ·] and Y [·, j] be the i-th row and j-th column of Y , respectively.

Problem 1 (Approximate LoRA Gradient Computation ALoRAGC(L, d, r, ϵ)). Given
C

(1)
i , C

(2)
i , C

(3)
i , Yi ∈ RL×d. Let ϵ > 0. Assume all numerical values are in log(L)-

bits encoding. Let L follow (C.3). The problem of approximating gradient computation
of optimizing (C.3) is to find two matrices G̃

(A)
Q ∈ Rd×r and G̃

(B)
Q ∈ Rr×d such that

max
(
∥G̃

(B)

Q − ∂L
∂BQ

∥∞, ∥G̃
(A)

Q − ∂L
∂AQ

∥∞
)
≤ ϵ.

Finally we arrive our main result, the inefficient threshold for approximating gradient computation of
(C.3). In the other words, we provide a inefficient threshold for adapting transformer-based models
with LoRA in L2−o(1) (sub-quadratic) time. For convenience, we consider the special case Problem 1.
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Proposition C.1 (Efficient Threshold (Formal Version of Proposition 3.2, Modified from Theorem 5.1
of (Hu et al., 2024b))). Let κ : N → N by any function with κ(L) = ω(1) and κ(L) = o(logL). Let
Γ = O(

√
logL · κ(L)). Assuming Hypothesis 1, there is no algorithm running in time O(L2−δ) for

any constant δ > 0 for ALoRAGC(L, d = O(logL), r < d, ϵ), i.e., Problem 1, subject to (C.3), even
in the case where the input and weight matrices satisfy ∥X(K)W ⋆

K∥∞ ≤ Γ, ∥αX(Q)
i BQAQ/r∥∞ ≤

Γ, Y = 0 and ϵ = O((logL)−4).

Remark C.1 (Remark 5.1 of (Hu et al., 2024b)). Proposition C.1 suggests a efficiency threshold for
norm bound Γ (norm of some composition of input X and weights W s.) Specifically, Proposition C.1
implies that, only below this threshold, efficient (sub-quadratic) LoRA training of Softmax1-based
transformer is possible.

C.2 EXPRESSIVENESS GUARANTEE

In this section, we provide the expressive guarantee of Low-Rank Adaption for transformer model
with Softmax1. Moreover, we identify the conditions for the existence of low-rank adapters.

We start with the definition of the target model f and the adopted model f .

Definition C.2 (Definition of target model f and adopted model f ). For any input X ∈ RD×N , where
D denotes the dimension of token embedding and N denotes the number of tokens. We consider
a H-heads transformers TFθ, consist of L-Transformer blocks and an output layer with parameter
θ =

(
(Wh

Ol,W
h
V l,W

h
Kl,W

h
Ql)

H
h=1,W1l,W2l, b1l, b2l)

L
l=1,Wo

)
. Specifically, we formulate it as

Hidden layer: Attn(Zl−1) =

H∑
h=1

W
h

OlW
h

V l · Zl−1 · Softmax1(Z
⊤
l−1W

h⊤
KlW

h

QlZl−1),

Zl = W2l · ReLU(W1l ·Attn(Zl−1) + b1l1
⊤
N ) + b2l1

⊤
N

OutputLayer : TFθ(X) = Softmax1(WoZL),

where we define Z0 := X . Here, Wh
1l,W

h
V l,W

h
Kl,W

h
Ql ∈ RD×D are weight matrices in l-th attention

layer. Further, W1l,W2l ∈ RD×D are weight matrices and b1l, b2l are the bias vectors in the l-th
feedforward layer. Then we define the target model f and the adopted model f are

f := TFθT , θT =
(
(W

h

Ol,W
h

V l,W
h

Kl,W
h

Ql)
H
h=1,W 1l,W 2l, b1l, b2l)

L
l=1,W o

)
f := TFθA , θA = ((Wh

Ol +∆Wh
Ol,W

h
V l +∆Wh

V l,W
h
Kl +∆Wh

kl,W
h
Ql +∆Wh

Ql)
H
h=1,

W1l +∆W1l,W2l +∆W2l, b̂1l, b̂2l)
L
l=1,Wo +∆Wo).

Moreover, we define the best low-rank approximation for matrix W .

Definition C.3 (Best Low-rank Approximation for W ). For any matrix W ∈ RD×D, the singular
value decomposition (SVD) of W is expressed as W = UDV ⊤. Above U, V ∈ RD×D are
orthonormal matrices and D ∈ RD×D is a diagonal matrix. Let the singular value of W are denoted
as σ1(W ) ≥ . . . ≥ σD(W ) ≥ 0. When d > D,let σd(W ) = 0. For any rank r > 0, we define

LRAr(W ) :=

r∑
i=1

σi(W )uiv
⊤
i ,

where ui, v
⊤
i are the i-th column of U, V , respectively.

According to (Eckart and Young, 1936; Mirsky, 1960), LRAr(W ) are the best rank-r approximation
in the Frobenius norm or the 2-norm of W . To present our results, we now introduce non-singularity
assumption based on Definition C.3.
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Assumption C.1 (Non-Singularity). For a fixed R ∈ [D], the weight matrices of both the target
model, the pretrained model and the following matrices are non-singular, for all r ∈ [R]. Specifically,

Wh⊤
Kl W

h
Ql + LRAr(W

h⊤
KlW

h

Ql −Wh⊤
Kl W

h
Ql), for all h ∈ [H] and l = 1,

Wh⊤
Kl W

h
Ql + LRAr(W

−1⊤
2,l−1W

⊤
2,l−1W

h⊤
KlW

h

QlW 2,l−1W
−1
2,l−1 −Wh⊤

Kl W
h
Ql), for all h ∈ [H], l ∈ [L]\{1},

Wh
OlW

h
V l + LRAr(W

−1
1l W 1lW

h

OlW
h

V l −Wh
OlW

h
V l), for all h ∈ [H] and l = 1,

Wh
OlW

h
V l + LRAr(W

−1
1l W 1lW

h

OlW
h

V lW 2,l−1W
−1
2,l−1 −Wh

OlW
h
V l), for all h ∈ [H] and l ∈ [L]\{1},

WoW2L + LRAr(W oW 2L −WoW2L),

are non-singular, where LRA denotes the rank-r approximation follows Definition C.3.

Under a non-singularity assumption (Assumption C.1), we apply another helper lemma from (Zeng
and Lee, 2023) to construct the weight matrices in Theorem C.1.

Lemma C.1 (Exactly represent target model, Lemma 7 of (Zeng and Lee, 2023)). Define error matrix
E := W −

∏L
l=1 Wl, and denote its rank by RE = rank(E). For a given LoRA-rank R ∈ [D],

assume that all the weight matrices of the frozen model (Wl)
L
l=1, and

∏L
l=1 Wl + LRAr(E) are

non-singular for all r ≤ R(L− 1). Then, the approximation error

min
∆Wl:rank(∆Wl)≤R

∥∥∥∥∥
L∏

l=1

(Wl +∆Wl)−W

∥∥∥∥∥
2

= σRL+1

(
W −

L∏
l=1

Wl

)
︸ ︷︷ ︸

Error matrix E

and the optimal solution to the matrix approximation problem satisfies
∏L

l=1 (Wl +∆Wl) =∏L
l=1 Wl + LRARL∧RE

(E). Therefore, when R ≥
⌈
RE

L

⌉
, we have

∏L
l=1 (Wl +∆Wl) = W ,

implying f ≡ f .

With Assumption C.1 and Lemma C.1, we show that for any input X ∈ RD×D, there exists a adapted
model f capable of approximating target model f exactly, i.e, f(X) = f(X).

Theorem C.1 (Express capability of transformers (Formal Version of )). Suppose LoRA-rank
R ∈ [D]. Let Assumption C.1 hold. Define the rank-based functionality gap Gi to i-th Stabilized
Outlier-Free block (i ∈ [L]) or output layer (i = L+ 1) as

Gi =


maxh(rank(W

h⊤
KiW

h

Qi −Wh⊤
Ki W

h
Qi)) ∨maxh(rank(W 1iW

h

OiW
h

V i −W1iW
h
OiW

h
V i)), i = 1,

maxh(rank(W
⊤
2,i−1W

h⊤
KiW

h

QiW 2,i−1 −W⊤
2,i−1W

h⊤
Ki W

h
QiW2,i−1),

∨maxh(rank(W 1iW
h

OiW
h

V iW 2,i−1 −W1iW
h
OiW

h
V iW2,i−1)), 2 ≤ i ≤ L,

rank(W oW 2L −WoW2L), i = L+ 1.

If R ≥ maxi∈[L+1]⌈Gi

2 ⌉, then there exists low-rank adapters with rank lower than R

((∆Wh
Kl,∆Wh

Ql,∆Wh
V l,∆Wh

Ol)
H
h=1)

L
l=1,∆W2L,∆Wo with other low-rank adapters set to O, and

updated bias vectors (̂b1l, b̂2l)Ll=1, such that for any input X ∈ RD×N , the adapted model f exactly
approximates target model f , i.e., f(X) = f(X).

Proof. We build our proof on (Zeng and Lee, 2023).

First, we ensure that, for each Stabilized Outlier-Free block, the output from the first feedforward
layer in the target model matches that in the adapted model. Then, we select an appropriate output
layer weight matrix to complete the proof.
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We define H l ∈ RD×N and Zl ∈ RD×N as the intermediate and final outputs of the l-th transformer
block in the target model f , respectively. For any l ∈ [L], they are formulated as

H l := ReLU(W 1l(

H∑
h=1

W
h

OlW
h

V l · Zl−1 · Softmax1(Z
⊤
l−1W

h⊤
KlW

h

QlZl−1)) + b1l1
⊤
N ),

Zl :=W 2lH l + b2l1
⊤
N .

Correspondingly, we introduce Ĥl and Ẑl to denote the intermediate output of the first feedforward
layer and the final output of the l-th Stabilized Outlier-Free block for the adapted model f ,

Ĥl = ReLU(W1l(

H∑
h=1

(Wh
Ol +∆Wh

Ol)(W
h
V l +∆Wh

V l) · Ẑl−1 (C.4)

· Softmax1(Ẑ
⊤
l−1(W

h
Kl +∆Wh

Kl)
⊤(Wh

Ql +∆Wh
Ql)Ẑl1) + b̂1l1

⊤
N ),

Ẑl = W2lĤl + b̂2l1
⊤
N , (C.5)

for any l ∈ [L]. Note that Z0 = Ẑ0 = X . Next, we inductively construct the adapter weight
matrices ((∆Wh

Ol,∆Wh
V l,∆Wh

Kl,∆Wh
Ql)

H
h=1, b̂1l, b̂2l)

L
l=1 such that Ĥl = H l for all l ∈ [L]. We

then select the low-rank adapters for W2L and the Wo to approximate the output of the target model.
For unmentioned low-rank adapters, we set them as O.

When l = 1. To achieve Ĥl = H l for all X , the following conditions must be satisfied:

• Bias Vector: b̂1l = b1l,

• Query and Key: (Wh
Kl +∆Wh

Kl)
⊤(Wh

Ql +∆Wh
Ql) = W

h⊤
KlW

h

Ql,

• Value and First Feedforward Layer: (Wh
Ol +∆Wh

Ol)(W
h
V l +∆Wh

V l) = W−1
1l W 1lW

h

OlW
h

V l,

It is simple to check that we only need to set b̂1l = b1l to, and select rank-R or lower matrices
∆Wh

Kl,∆Wh
Ql,∆Wh

Ol,∆Wh
V l as suggested by Lemma C.1. This ensures Ĥl = H l for l = 1.

When l > 1. For the cases l = 2, . . . , L, we assume the induction hypothesis holds for l − 1,
which is Ĥl−1 = H l−1. We let b̂2,l−1 = W2,l−1W

−1

2,l−1b2,l−1, then it holds,

Ẑl−1 = W2,l−1W
−1

2,l−1Zl−1. (C.6)

Substituting (C.6) into (C.4) and (C.5), the necessary conditions become:

• Bias Vector: b̂1l = b1l,

• Query and Key: (Wh
Kl +∆Wh

Kl)
⊤(Wh

Ql +∆Wh
Ql) = W−1⊤

2,l−1W
⊤
2,l−1W

h⊤
KlW

h

QlW 2,l−1W
−1
2,l−1,

• Value and Output Projection: (Wh
Ol + ∆Wh

Ol)(W
h
V l + ∆Wh

V l) =

W−1
1l W 1lW

h

OlW
h

V lW 2,l−1W
−1
2,l−1.

By setting b̂1l = b1l and adjusting ∆Wh
Kl,∆Wh

Ql,∆Wh
Ol,∆Wh

V l for all h ∈ [H] based on
Lemma C.1, we satisfy all three conditions above, thereby obtaining Ĥl = H l for l ∈ [L]\{1}.

Output Layer Analysis. By applying the induction method, we have established Ĥl = H l for all
l ∈ [L]. We only need to select appropriate weight matrices to ensure that f(X) = f(X) for all
X ∈ X . The final output of the target model f with input X can be written as

f(X) = Softmax1(W oZL) = Softmax1(W o(W 2LHL + b2L1
⊤
N )).

Similarly, the final output of the adapted model f with input X can be written as

f(X) = Softmax1((Wo +∆Wo)ẐL)

= Softmax1((Wo +∆Wo)((W2L∆W2L)ĤL + b̂2L1
⊤
N )).
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To achieve f(X) = f(X), we select ∆W2L and ∆Wo based on Lemma C.1, and let b̂2L =
(Wo + ∆Wo)

−1W ob2L, where Wo + ∆Wo is invertible as shown in the proof of Lemma C.1.
Combining above, we complete the proof.

D POST-TRAINING QUANTIZATION EVALUATION

We evaluated our methods across OPT-125m, OPT-350m, and OPT-1.3b using three PTQ methods:
SmoothQuant (Xiao et al., 2023), AffineQuant (Ma et al., 2024), and OmniQuant (Shao et al., 2023).
Performance was assessed using Text Perplexity (PPL), SpeechLM PPL, Word Error Rate (WER)
for Automatic Speech Recognition (ASR), and WER for Text-to-Speech (TTS). Detailed results for
W8A8 and W4A4 configurations are presented in Table 6.

Table 6: Comparing SpARQ with Vanilla Framework in a Post-Training Quantization (PTQ) setting.
Experiments were conducted across three quantization methods (SmoothQuant, AffineQuant, omniQuant) and
two weight and activation quantization configurations (W8A8, W4A4). Evaluation metrics included Text PPL,
SpeechLM PPL, ASR WER, and TTS WER. We assessed the average performance drop across these four
tasks post-quantization. Results show SpARQ consistently outperforms Vanilla framework, exhibiting smaller
performance drops in most configurations, demonstrating its superior efficiency in PTQ settings.

Model Method #Bits Quantization
Method

TextLM
PPL (↓)

SpeechLM
PPL (↓)

ASR
WER (↓)

TTS
WER (↓)

Avg Performance
Drop (↓)

O
PT

-1
25

m

Vanilla

W16/A16 - 22.56 59.42 12.40 12.08 -
W8/A8 SmoothQuant 22.63 59.53 12.46 12.38 0.85%
W8/A8 AffineQuant 22.61 59.52 12.42 12.37 0.74%
W8/A8 omniQuant 22.62 59.53 12.44 12.38 0.81%
W4/A4 SmoothQuant 45.23 96.87 52.31 48.79 197.31%
W4/A4 AffineQuant 31.25 80.19 29.44 28.34 86.37%
W4/A4 omniQuant 31.28 80.21 31.98 29.55 94.04%

SpARQ

W16/A16 - 22.70 59.45 12.61 12.11 -
W8/A8 SmoothQuant 22.71 59.49 12.64 12.18 0.23%
W8/A8 AffineQuant 22.71 59.48 12.62 12.13 0.08%
W8/A8 omniQuant 22.71 59.49 12.63 12.14 0.13%
W4/A4 SmoothQuant 37.14 84.55 35.32 36.73 112.05%
W4/A4 AffineQuant 26.11 68.42 14.33 15.71 18.52%
W4/A4 omniQuant 26.12 68.63 14.53 16.01 19.63%

O
PT

-3
50

m

Vanilla

W16/A16 - 13.13 43.10 8.42 17.56 -
W8/A8 SmoothQuant 13.17 43.14 8.47 17.71 0.46%
W8/A8 AffineQuant 13.15 43.12 8.45 17.66 0.28%
W8/A8 omniQuant 13.15 43.12 8.46 17.68 0.33%
W4/A4 SmoothQuant 36.74 75.38 40.17 70.53 233.37%
W4/A4 AffineQuant 27.28 66.31 36.84 40.83 157.92%
W4/A4 OmmiQuant 27.85 67.83 37.54 41.37 162.73%

SpARQ

16/16A - 13.47 43.34 9.81 17.31 -
W8/A8 SmoothQuant 13.50 43.39 9.88 17.38 0.36%
W8/A8 AffineQuant 13.48 43.36 9.85 17.35 0.19%
W8/A8 omniQuant 13.48 43.36 9.85 17.37 0.22%
W4/A4 SmoothQuant 23.48 62.17 36.22 40.83 130.71%
W4/A4 AffineQuant 22.82 51.74 25.78 28.44 78.97%
W4/A4 OmmiQuant 22.83 52.08 26.11 29.15 81.05%

O
PT

-1
.3

b

Vanilla

W16/A16 - 12.62 41.33 8.00 18.73 -
W8/A8 SmoothQuant 12.68 41.48 8.14 18.80 0.74%
W8/A8 AffineQuant 12.65 41.46 8.12 18.75 0.54%
W8/A8 omniQuant 12.66 41.46 8.12 18.75 0.56%
W4/A4 SmoothQuant 36.74 87.46 48.96 53.15 249.63%
W4/A4 AffineQuant 24.31 61.74 43.68 32.47 165.33%
W4/A4 OmmiQuant 24.43 62.38 44.52 33.03 169.34%

SpARQ

16/16A - 12.95 42.48 8.25 12.07 -
W8/A8 SmoothQuant 13.00 42.49 8.33 12.11 0.43%
W8/A8 AffineQuant 12.96 42.48 8.29 12.08 0.16%
W8/A8 omniQuant 12.98 42.48 8.31 12.10 0.30%
W4/A4 SmoothQuant 23.83 58.33 32.27 33.12 146.72%
W4/A4 AffineQuant 20.81 48.84 22.78 25.46 90.68%
W4/A4 OmmiQuant 20.88 48.97 23.58 26.83 96.15%
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E HYPER-PARAMETER SETTINGS

E.1 LORA TRAINING/FINE-TUNING

We present the hyperparameters used in the low-rank adaptation stage for each model. We use Adam
(Kingma, 2014) as the optimizer. Most of the other hyperparameters remain the same across all
models and datasets, including a batch bin size of 5000, a warmup step of 2500, and a weight decay
of 1e−6. A learning rate of 3e−4 is used for all models during fine-tuning. For low-rank adaptation,
we apply a dropout rate of 0.05, with a LoRA rank and alpha both set to 256. We fine-tune the
attention module weights Wk, Wq , Wv , Wo, along with the MLP layer in the attention mechanism.

E.2 POST-TRAINING QUANTIZATION

For SmoothQuant, we adopted the recommended hyperparameter α=0.5, as suggested in the original
paper. This value typically provides a balanced trade-off between smoothing activations and adjusting
weights. In the case of OmniQuant, we set the group size to 128. This parameter determines the
granularity of the quantization process, balancing between quantization accuracy and computational
efficiency. For AffineQuant, we configured the stability factor to 0.01. This factor helps in maintaining
numerical stability during the quantization process, particularly for values close to zero. Across all
three PTQ methods, we utilized a consistent calibration batch size of 256.

E.3 HIFI-GAN DECODER FOR SPEECH SYNTHESIS

Within our SpeechLM framework, the TTS system synthesizes speech by converting the discrete
speech tokens generated by SpeechLM into speech waveforms using a HiFi-GAN-based vocoder.
These discrete speech tokens are derived from a pre-trained HuBERT model with a dictionary size of
200 (HuBERT k=200). The HiFi-GAN vocoder is trained on the LJSpeech-1.1 dataset, downsampled
to 16 kHz, using the HuBERT k=200 unit representations as input features.

The vocoder configuration includes 200 discrete unit embeddings, each with a dimensionality of
128. The model utilizes a ResBlock type 1 architecture with upsampling rates of [5, 4, 4, 2, 2] and
corresponding kernel sizes of [11, 8, 8, 4, 4]. The initial channel size is set to 512, and the vocoder
operates at a 16 kHz sampling rate. We use the Adam optimizer with an initial learning rate of 0.0008.
Training is performed with a batch size of 64 and a code hop size of 320 to ensure proper alignment
between discrete units and waveform segments.

To evaluate the quality of the synthesized speech from our TTS system, we employ an ASR system
based on OpenAI’s Whisper model. The synthesized speech is fed into Whisper to obtain transcrip-
tions, which are then compared to the ground truth text to compute the Word Error Rate (WER). This
WER serves as a measure of the quality of the synthesized speech within the SpeechLM framework.

F OUTLIER EVALUATION SETTINGS

We report the maximum infinity norm ∥x∥∞ of activation tensors x across all Transformer layers as
a metric to detect outliers. We also report the average kurtosis of x, computed by averaging across
all output components in the Transformer layers. Those two metrics have been demonstrated to
strongly correlate with the model’s ability (i.e., robustness against outliers) to be quantized, as shown
in previous studies (Bondarenko et al., 2021; Hu et al., 2024a).

G ADDTIONAL EXPERIMENT

G.1 COMPARISON WITH CLIPPED SOFTMAX AND GATED ATTENTION

Model Method W/A Bits Text PPL ↓ Speech
PPL ↓

ASR
WER ↓

TTS
WER ↓

Avg Performance
Drop Rate

OPT-350m

Vanilla 8/8 13.17 43.14 8.47 17.71 0.46%
SpARQ 8/8 13.50 43.39 9.88 17.38 0.36%
Clipped Softmax 8/8 13.16 43.16 8.47 17.71 0.45%
Gated Attention 8/8 13.16 43.15 8.47 17.70 0.43%
Vanilla 4/4 36.74 75.38 40.17 70.53 233.36%
SpARQ 4/4 23.48 62.17 36.22 40.83 130.71%
Clipped Softmax 4/4 35.86 73.91 38.82 68.35 223.72%
Gated Attention 4/4 35.26 73.02 37.44 66.29 215.03%
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We have conducted additional experiments comparing SpARQ with these alternative techniques. The
results demonstrate that at 8-bit quantization, all methods perform similarly well, with performance
drops under 0.5%. This suggests that for moderate quantization, the choice of outlier mitigation
strategy is less critical. However, the differences become pronounced at 4-bit quantization, where
SpARQ achieves a 130.71% performance drop compared to 215.03% for Gated Attention, 223.72%
for Clipped Softmax, and 233.36% for the vanilla approach. SpARQ’s superior performance under
aggressive quantization (4-bit) can be attributed to its architectural approach to outlier mitigation,
which addresses the issue at its source rather than merely limiting attention values. This is particularly
important for speech-text cross-modal tasks where maintaining precise attention patterns is crucial
for accurate modality fusion. These results validate SpARQ’s effectiveness compared to alternative
attention modification approaches, particularly in challenging low-bit quantization scenarios.

G.2 STABILIZATION MODULE TO A STANDARD TRANSFORMER

Table 7: Vanilla Transformer with Stabilization.
Model Stabilized Method Val Accuracy (%)

Vanilla OPT-1.3b N/A 34.3
Max-Shift 34.4

We have conducted an additional experiment to
isolate the effect of max-shift stabilization by ap-
plying it to a standard Transformer architecture.
The results show that applying max-shift sta-
bilization alone to a standard Transformer pro-
vides minimal improvement (34.4% vs 34.3%
validation accuracy). This suggests that the significant performance improvements we observe in
SpARQ (as shown in Tables 1 and 2) are primarily attributable to the synergistic combination of
the outlier-free Hopfield layer and max-shift stabilization, rather than either component alone. The
minimal improvement from stabilization alone is understandable given that max-shift stabilization
was specifically designed to address numerical stability issues that arise when using the outlier-free
layer, rather than to directly improve model performance. These results help clarify that SpARQ’s
effectiveness comes from the complementary nature of its components: the outlier-free layer provides
the fundamental mechanism for outlier mitigation, while max-shift stabilization enables practical
training with this architecture.

G.3 APPLYING PTQ TO LORA-TRAINED MODELS

To provide a complete picture of how SpARQ performs when combining these techniques, we
conducted additional experiments applying post-training quantization to LoRA-trained models. The
results demonstrate that SpARQ maintains its advantages even when combining LoRA with post-
training quantization (SQ). When applying 8-bit quantization to LoRA-trained models, SpARQ
exhibits a significantly lower performance drop (155.95%) compared to the vanilla framework
(396.34%). This advantage persists even under more aggressive 4-bit quantization, where SpARQ
shows a 186.66% performance drop versus 417.52% for the vanilla framework. Most notably,
SpARQ’s ASR performance remains relatively stable under quantization (18.52% to 28.32% WER),
while the vanilla framework shows severe degradation (93.91% to 97.24% WER). These results
further validate SpARQ’s effectiveness in handling outliers, as it maintains better performance
not just in individual scenarios (as shown in Tables 1 and 2) but also when combining low-rank
adaptation with quantization. This is particularly important for practical applications where both
model compression techniques might need to be applied simultaneously.

Table 8: Results of combining LoRA with Post-Training Quantization (PTQ) on OPT-350m. We eval-
uate the performance when applying Smooth Quantization (SQ) to LoRA-trained models, OPT-350m,
for both vanilla and SpARQ frameworks. The results show SpARQ maintains better performance
when combining these compression techniques.

Model Method W/A Bits Text PPL ↓ Speech
PPL ↓

ASR
WER ↓

TTS
WER ↓

Avg Performance
Drop Rate

Vanilla
LoRA 16/16 17.87 51.65 93.91 97.06 381.00%

LoRA + SQ 8/8 20.54 56.88 95.36 99.11 396.34%
LoRA + SQ 4/4 27.31 60.03 97.24 99.73 417.52%

SpARQ
LoRA 16/16 17.27 50.14 18.52 75.18 116.75%

LoRA + SQ 8/8 18.91 53.24 25.47 86.71 155.95%
LoRA + SQ 4/4 25.89 59.11 28.32 91.63 186.66%
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G.4 WEIGHT CLIPPING DURING PTQ

Weight clipping is an important baseline to include. The experiments use percentile-based clipping
with smoothquant (clip 1% tail weights and 5% tail weights) show as below:

Table 9: Comparison of quantization results with different weight clipping strategies. Results show
that traditional weight clipping leads to performance degradation in multimodal settings, while
SpARQ performs best without clipping.

Method W/A Text
PPL ↓

Speech
PPL ↓

ASR
WER ↓

TTS
WER ↓

Avg Performance
Drop Rate ↓

Vanilla + SQ 8/8 13.17 43.14 8.47 17.71 0.46%
Vanilla+SQ+Clip-1% 8/8 21.33 52.53 13.71 26.26 49.18%
Vanilla+SQ+Clip-5% 8/8 25.34 55.03 16.83 28.91 71.30%

SpARQ+SQ 8/8 13.50 43.39 9.88 17.38 0.36%
SpARQ+SQ+Clip-1% 8/8 21.14 50.87 13.31 25.42 39.21%
SpARQ+SQ+Clip-5% 8/8 24.37 52.77 16.22 27.04 55.75%
Vanilla + SQ 4/4 36.74 75.38 40.17 70.53 233.36%
Vanilla+SQ+Clip-1% 4/4 36.22 78.33 40.46 75.88 267.56%
Vanilla+SQ+Clip-5% 4/4 40.73 82.51 45.14 80.02 273.36%

SpARQ+SQ 4/4 23.48 62.17 36.22 40.83 130.71%
SpARQ+SQ+Clip-1% 4/4 35.11 70.21 37.29 68.08 199.02%
SpARQ+SQ+Clip-5% 4/4 37.03 74.24 39.16 70.31 212.89%

G.5 QLORA WITH LOWER BITS

We investigate how different quantization levels affect LoRA-adapted models. The results show
that SpARQ maintains its benefits under aggressive quantization, reducing performance degradation
from 330.47% to 136.07% at 8-bit quantization and from 387.50% to 176.52% at 4-bit quantization.
The performance degradation with SpARQ shows a more gradual pattern across quantization levels,
suggesting better stability under increasingly aggressive compression. Furthermore, the confounding
effects between LoRA and quantization are significantly mitigated by SpARQ, as evidenced by the
smaller performance gaps between 8-bit and 4-bit configurations.

Table 10: Comparison of QLoRA performance under different quantization settings. Results demon-
strate SpARQ’s superior ability to maintain performance under aggressive quantization compared to
the vanilla framework.

Method W/A Text
PPL ↓

Speech
PPL ↓

ASR
WER ↓

TTS
WER ↓

Avg Performance
Drop Rate ↓

Vanilla+QLoRA 8/8 18.07 51.50 76.04 98.63 330.47%
Vanilla+QLoRA 4/4 25.83 58.24 88.71 99.14 387.50%

SpARQ+QLoRA 8/8 16.64 48.34 22.33 83.36 136.07%
SpARQ+QLoRA 4/4 23.45 56.33 27.36 90.55 176.52%

H LORA PERCENTAGE

We conducted an analysis of Low-Rank Adaptation (LoRA) parameters across different sizes of
Open Pre-trained Transformer (OPT) models. Our findings are summarized in the table below, which
compares the number of LoRA parameters to the full model parameters for three OPT variants.
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Table 11: LoRA Parameters Comparison for OPT Models

Model LoRA Parameters Full Model Parameters LoRA Percentage

OPT-125M 9.4M 125M 7.5%
OPT-350M 25.2M 350M 7.2%
OPT-1.3B 50.3M 1.3B 3.9%
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