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ABSTRACT

Mixture-of-Experts (MoE) models typically fix the number of activated experts
k at both training and inference. Intuitively, activating more experts at inference
k′ (where k′ > k) means engaging a larger set of model parameters for the com-
putation and thus is expected to improve performance. However, contrary to this
intuition, we find the scaling range to be so narrow that performance begins to
degrade rapidly after only a slight increase in the number of experts. Further in-
vestigation reveals that this degradation stems from a lack of learned collaboration
among experts. To address this, we introduce Elastic Mixture-of-Experts (EMoE), a
novel training framework that enables MoE models to scale the number of activated
experts at inference without incurring additional training overhead. By simulta-
neously training experts to collaborate in diverse combinations and encouraging
the router for high-quality selections, EMoE ensures robust performance across
computational budgets at inference. We conduct extensive experiments on various
MoE settings. Our results show that EMoE significantly expands the effective
performance-scaling range, extending it to as much as 2-3× the training-time k,
while also pushing the model’s peak performance to a higher level.

1 INTRODUCTION

Large-scale models based on the Transformer architecture (Vaswani et al., 2017) have demonstrated
remarkable performance across a wide range of tasks (OpenAI, 2023; Touvron et al., 2023b;a).
However, this performance gain is often accompanied by a substantial increase in model size,
leading to prohibitive computational costs for both training and inference. To address this challenge,
the Mixture-of-Experts (MoE) paradigm (Fedus et al., 2022; Lepikhin et al., 2021) has garnered
significant attention. By employing a sparsely activated architecture, MoE models effectively maintain
model capacity while enhancing computational efficiency, leading to its widespread adoption.

Most MoE models (DeepSeek-AI et al., 2024; Team, 2024; Dai et al., 2024; Team et al., 2025)
are typically implemented via a Top-k strategy (Shazeer et al., 2017), where a fixed number of
experts k is selected for each token. This design ensures a predictable computational budget for
training and keeping this number fixed for inference. This prompts a natural question: if a larger
computational budget is available at inference, could performance be enhanced by activating more
experts? Intuitively, leveraging a larger number of experts at inference time means engaging a larger
set of model parameters for computation and thus is expected to improve performance.

We uncover an intriguing and previously under-explored phenomenon: when a model is trained
with k experts, the effective scaling range at inference is so narrow that increasing this to a slightly
larger k′ (> k) causes performance to degrade rapidly. While increasing the number of activated
experts during training offers some partial relief, we observe that such models collapse once inference
returns to the original k budget. Upon further analysis, we identify the root cause of this inability to
extrapolate to larger k′ values as disparities in expert co-occurrence frequencies. Specifically, the
additionally activated experts at inference have not been trained to collaborate effectively with the
originally selected experts, as these new combinations are rarely encountered during training. This
lack of learned collaboration causes the observed performance degradation.

In this paper, we introduce Elastic Mixture-of-Experts (EMoE), a novel training framework that
equips MoE models with computational flexibility. The effectiveness of EMoE stems from two key
designs. First, to address co-activation failure, we propose stochastic co-activation sampling, which
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draws inspiration from Monte Carlo sampling to stochastically select diverse expert combinations
during training. This strategy efficiently increases the co-occurrence frequency of expert combinations
without incurring significant training overhead, thereby enabling the model to learn collaborative
capabilities required for effective inference with high expert counts. Second, to ensure reliable
performance across varying computational budgets, we introduce the hierarchical router loss. This
loss leverages KL divergence to push the router’s output distribution away from uniformity, thereby
imposing a clear hierarchical ranking upon the experts for each token. This yields a high-quality set
of top-k experts across budgets, allowing the model to scale gracefully with available computation.

We conduct extensive experiments to validate the performance and adaptability of our EMoE frame-
work across LoRA-based and FFN-based MoE scenarios. These experiments are performed on three
model architectures with varying parameter scales, and performance is assessed across nine bench-
mark datasets. Results show that, unlike standard Top-k models, EMoE achieves significant gains
across a much wider range of activated expert counts during inference, which can reach up to 2-3×
the training-time k. Moreover, it consistently outperforms baselines under various computational
budgets (k′), highlighting its strong utility in diverse settings. Further experimental analysis confirms
that both stochastic co-activation sampling and the hierarchical router loss are crucial to EMoE’s
effectiveness. In summary, these results collectively establish EMoE as a powerful and practical
framework that successfully unlocks the elastic potential of MoE models during inference.

2 RELATED WORK

Mixture-of-Experts The Mixture-of-Experts (MoE) architecture is an efficient model design
that increases model capacity while controlling computational costs by activating only a subset of
parameters for each input. The idea is first introduced by Jacobs et al. (1991) and later popularized
in deep learning through the work of Shazeer et al. (2017). Subsequent developments such as
GShard (Lepikhin et al., 2021) and Switch Transformer (Fedus et al., 2022) demonstrate that replacing
the feed-forward layers in Transformers with MoE layers enables efficient pre-training at the trillion-
parameter scale, achieving remarkable results. Most follow-up research has since focused on
key areas like optimizing expert design (DeepSeek-AI et al., 2024; Wang et al., 2024a), routing
mechanisms (Puigcerver et al., 2024; Wang et al., 2025), and load balancing strategies (Wang et al.,
2024b). Recently, several studies (Huang et al., 2024; Zeng et al., 2024; Jin et al., 2025) explore
dynamic routing, where the number of activated experts varies per token to allocate more computation
to complex tokens and less to simpler ones, all under a fixed computational budget. Different from
previous studies, our work does not focus on redistributing computation under a fixed budget. Instead,
we explore how to ensure and enhance the performance of MoE models when the total computational
budget changes during inference. Our goal is to endow MoE models with inference-time scalability.

Inference-Time Computational Scaling Scaling computation at inference is a strong strategy for
addressing the performance-efficiency trade-off in LLMs (Snell et al., 2024). Current studies mainly
explore two dimensions: the depth dimension, which aims to enhance model ability by increasing the
length of the reasoning chain during inference (Chen et al., 2025; Bae et al., 2025); and the width
dimension, where prior work primarily on dense models extracts subnetworks of varying sizes from a
pre-trained large model by drawing on the concept of pruning (Devvrit et al., 2024; Haberer et al.,
2024), to accommodate different hardware or latency constraints. Our work adopts a fundamentally
new perspective on inference-time scalability for MoE models. Instead of increasing model depth or
extracting sub-models, we are the first to explore how to effectively utilize increased computational
budgets by activating and combining a greater number of experts. This compositional approach to
computation scaling at inference allows the model to transition smoothly from a sparse activation
state to a denser one, thereby unlocking its full potential in accordance with available resources.

3 AN EMPIRICAL STUDY ON INFERENCE-TIME EXPERT SCALING

3.1 PRELIMINARIES

A standard MoE layer is composed of two primary components: a set of N independent expert
networks {Ei(·; θi)}Ni=1, and a router network G, which dynamically selects a sparse combination
of these experts for each input token. Each expert Ei is a neural network (e.g., an FFN or a LoRA
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module (Hu et al., 2022)) parameterized by θi. Given an input token representation x, the router
produces logits h(x) that determine the assignment of the token to the experts. This is typically done
via a linear mapping h(x) = Wgx, where Wg is the router’s learnable matrix. To enforce sparsity
and reduce computation, the standard approach is Top-k gating, where a fixed number k of experts
are selected for each token. Let π(x) denote the permutation that sorts the logits h(x) in descending
order. The set of Top-k active experts Sk(x) is then defined as:

Sk(x) = {π1(x), π2(x), . . . , πk(x)}. (1)

The final output of the MoE layer is a weighted combination of the outputs from these active experts.
The weights are derived from the router’s logits, which are normalized via a softmax function applied
only over the selected experts. The final output y(x) is formulated as:

y(x) =
∑

i∈Sk(x)

exp(hi(x))∑
j∈Sk(x)

exp(hj(x))
· Ei(x; θi). (2)

3.2 FINDINGS AND ANALYSIS

The static Top-k design of standard MoE models raises a foundational question regarding their
flexibility. Given additional computational resources at inference, a natural strategy for performance
enhancement would be to activate more experts, thereby leveraging a larger portion of the model’s
total capacity. Intuitively, this should improve model performance. To investigate this, we train a
LLaMA2-7B (Touvron et al., 2023b) model equipped with LoRAMoE (Dou et al., 2023) containing
32 experts. We train separate models, each with a different number of activated experts k.
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Figure 1: Performance of MoE mod-
els trained with fixed k under varying
inference-time activated experts (k′).
The color regions show where opti-
mal performance briefly holds.

As shown in Figure 1, our initial experiments reveal a counter-
intuitive phenomenon: when the number of experts activated
at inference k′ exceeds the training-time budget (e.g., k = 2),
performance holds briefly but quickly drops thereafter, even
though more parameters are being utilized. Using a larger
training budget (e.g., k = 4), the performance peak shifts to
a higher budget and the decline occurs later on the k′ axis.
However, overly large k configurations incur prohibitive com-
putational overhead, and pushing k further introduces another
failure mode: such models perform poorly when the inference
budget is reduced (k′ < k), leading to performance collapse
when returning to the original inference budget. Empirically,
this occurs because the model learns to rely solely on activat-
ing many experts simultaneously, without teaching the router
how to make effective selections under conventional budgets.
These findings motivate our central goal: to develop a method that provides flexibility across different
inference-time budgets while preserving the standard training cost of conventional k configurations.

To diagnose the cause of the inability of models trained with k to extrapolate to larger k′, we
investigate the discrepancy in expert activation patterns between training and inference. We introduce
an expert co-occurrence matrix, M (k) ∈ RN×N , to quantify the frequency with which any two
experts are activated together for the same token. The matrix is defined as:

M
(k)
ij =

1

|D|
∑
x∈D

1[i ∈ Sk(x) ∧ j ∈ Sk(x)], (3)

where D is the dataset, and Sk(x) is the set of experts selected by Top-k gating for a given token x.
Figures 2a visualize these co-occurrence matrices for models trained with k = 2 and k = 6 experts,
respectively, across different layers. A significant disparity emerges. For the model trained with
k = 2, the co-occurrence matrix observed during training is sparse, reflecting a specific set of learned
expert pairings. However, when this model is subjected to inference with k′ = 6, the matrix becomes
much denser and qualitatively different. This indicates that the model is forced to utilize many expert
combinations that are seldom, if ever, seen during training. These experts have not been optimized to
collaborate, leading to a breakdown in their collective output. Conversely, for the model trained with
k = 6 (Figures 2b), the co-occurrence matrices from training and inference are structurally similar.
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(a) Trained with 2 activated experts (b) Trained with 6 activated experts

Figure 2: Visualization of expert co-occurrence matrices. Panels show models trained with (a) k = 2
and (b) k = 6 experts. Each panel compares the co-occurrence patterns observed during training and
inference. Extrapolating from k = 2 to k′ = 6 substantially changes the co-activation structure.

This alignment between training and inference conditions explains why the model’s performance
is more stable. We therefore hypothesize that the inability of MoE models to extrapolate to higher
expert counts stems from a lack of collaborative training among the sparsely activated experts.
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Figure 3: Co-occurrence distance
vs. model performance for a model
trained with k = 2.

To quantify the impact of this co-occurrence disparity, we
measure the Frobenius norm of the distance between the co-
occurrence matrix from training, M (k), and the one from infer-
ence, M (k′):

∆(k → k′) = ∥M (k) −M (k′)∥F . (4)

This metric captures the distance in expert activation patterns.
A small ∆ indicates that the expert combinations encountered
at inference are similar to the distribution seen during train-
ing. Conversely, a large ∆ signifies a severe distributional shift,
where the model is used on untested expert collaborations. Fig-
ure 3 plots this relationship for a model trained with k = 2
experts. The results show a clear and compelling trend. As the number of activated experts at
inference (k′) increases, the F-norm distance ∆ grows monotonically, which is anti-correlated with
model performance. Beyond the optimal point, every subsequent increase in the number of experts
leads to a larger co-occurrence distance and a corresponding, significant drop in performance. This
means that one of the main reasons for the performance degradation observed when extrapolating to
more experts is that using new expert combinations that are not sufficiently trained to handle.

4 ELASTIC MIXTURE-OF-EXPERTS

To unlock inference-time scalability without incurring the prohibitive training overhead, we introduce
Elastic Mixture-of-Experts (EMoE) as shown in Figure 4. EMoE incorporates two designs: stochastic
co-activation sampling, which resolves the expert co-occurrence discrepancy by training diverse
combinations of experts to collaborate effectively, and a hierarchical router loss, which regularizes
the router to produce stable and decisive expert rankings for each token. Together, these designs
ensure robust performance across varying computational budgets.

4.1 STOCHASTIC CO-ACTIVATION SAMPLING

Our pilot study reveals that the inability of models trained with k to extrapolate to larger k′ stems from
insufficient collaborative training among experts, with certain expert combinations rarely encountered
during training with a k. The ideal solution would be to train with a large number of experts kideal for
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Figure 4: Comparison of the standard Top-k MoE and our Elastic Mixture-of-Experts (EMoE). EMoE
is designed to unlock scalability at inference time. For each input, it first forms a candidate pool
Skideal of top-scoring experts. A smaller subset Sco-act is then uniformly drawn from this pool for
computation. The total objective combines standard MoE losses with the hierarchical router loss LHR,
which regularizes the router to produce a decisive, non-uniform expert distribution.

every token. Given input x, the MoE output would be:

yideal(x) =
∑

i∈Skideal (x)

exp(hi(x))∑
j∈Skideal (x)

exp(hj(x))
· Ei(x; θi). (5)

However, implementing this is computationally prohibitive, as it defeats the purpose of a sparse
MoE. To approximate this co-activation training without the associated cost, we therefore introduce
stochastic co-activation sampling. Inspired by Monte Carlo sampling, it approximates the ideal
training objective by sampling a small subset of experts from a larger candidate pool of experts
Skideal(x). Specifically, for each token x, we draw a subset of size ktrain < kideal:

Sco-act(x) ∼ UniformSample(Skideal(x), ktrain), (6)

and compute the MoE output yco-act(x) on this subset. Co-activation sampling provides a stochastic
approximation to the ideal objective over multiple training steps, effectively capturing diverse expert
co-activation patterns without the prohibitive cost of large-k training.

To further ease the optimization burden, we introduce a dynamic sampling process in practice. This
strategy replaces the fixed-size kideal with a variable one, adjusting the sampling space to stabilize
training. For each input token, we stochastically determine the size of a candidate pool k̃ideal, by
drawing it uniformly from the integer interval [ktrain, kideal]. It ensures that the candidate pool is
frequently drawn from a smaller, higher-confidence set (i.e., when k̃ideal is sampled to be close to
ktrain) and guarantees that the core group of top experts receives consistent and focused training
signals. Concurrently, the uniform sampling up to kideal introduces controlled exploration, allowing
the model to learn diverse co-activation patterns. From this dynamically sized candidate pool, we
then perform the above sampling step in Eq 6, selecting a final training subset Sco-act(x).

Why Co-activation Sampling Works? The efficacy can be directly understood by examining its
impact on the expert co-occurrence matrix M (k) from our pilot study. We previously established that
performance degradation when scaling from a training budget k to an inference budget k′ correlates
strongly with a large co-occurrence distance ∆(k → k′) = ∥M (k) − M (k′)∥F . This distance
arises because many entries in the matrix M

(k)
ij during training are zero or near-zero, while the

corresponding entries M (k′)
ij become substantially non-zero at inference, forcing the model to rely on

untested expert combinations.

Our proposed co-activation sampling is designed to minimize this future discrepancy by “filling in”
the sparse training co-occurrence matrix in advance. The mechanism is probabilistic. For any token
where two experts i and j fall within the candidate pool Skideal(x), their probability of being jointly
selected for a training update is uniformly defined as:

P (i, j ∈ Sco-act(x) | i, j ∈ Skideal(x)) =
C(kideal − 2, ktrain − 2)

C(kideal, ktrain)
. (7)
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This ensures that a wide range of expert pairs receive collaborative training signals. Let’s revisit our
concrete example (N = 32 experts, standard training k = 2, versus EMoE with ktrain = 2, kideal = 8).
Consider an expert pair (i, j) where one or both experts are ranked outside the top-2 but within the
top-8. In standard training, their co-occurrence entry M

(2)
ij is effectively zero. With co-activation

sampling, assuming this pair is in the top-8 pool for a given token, their co-activation probability
becomes C(6, 0)/C(8, 2) = 1/28 ≈ 3.6%. While this probability seems small for a single instance,
when aggregated over multiple training steps, it guarantees that the corresponding entry (M

(2)
co-act)ij

becomes substantially non-zero, mitigating the distance with the co-occurrence matrix at inference.

4.2 HIERARCHICAL ROUTER LOSS

Recall that the router does not reliably make effective selections under low-activation budgets, leading
to degraded performance (Figure 1), and the inference budget k′ can vary in practical deployments,
we expect the model to achieve strong performance across different budget levels. A key issue arises
when the router assigns nearly uniform weights to experts: in this case, the distinction between
Top-k and the rest becomes ambiguous, and a small k′ will underperform. Therefore, the router
should produce a clear, hierarchical expert ranking for each token, such that activating only a few
experts (small k′) or many experts (large k′) both lead to reliable performance. To achieve this, we
encourage the router distribution h(x) to be far from a uniform distribution. Concretely, we introduce
a KL-based regularization:

LHR = −DKL(h(x) ∥U) = −
N∑
i=1

hi(x) log

(
hi(x)

1/N

)
, (8)

where U denotes the uniform distribution over experts. Here we use reverse KL rather than forward KL.
Using forward KL, i.e.,−DKL(U ∥h(x)) = 1

N

∑
i(log hi(x)+logN), the resulting gradients would

be − ∂
∂hi

DKL(U ∥h(x)) = 1
Nhi(x)

. In contrast, reverse KL yields smoother gradients ∂LHR/∂hi =

− log(hi(x)N)− 1. The gradients of forward KL increase more rapidly as hi(x) approaches zero,
since 1/hi(x) diverges much faster than − log hi(x) does. For example, when hi(x) = 0.01, we
have 1/hi(x) = 100, while − log hi(x) ≈ 4.6. This sharp increase in gradients can cause instability
during training. By contrast, the reverse KL sharpens the distribution without excessive concentration,
preserving stable Top-k rankings while maintaining the potential contribution of other experts. Thus,
the full EMoE training objective integrates the cross-entropy loss Lce, load balance loss Lb, and our
proposed loss LHR: L = Lce + Lb + λ · LHR, where λ is a coefficient balancing the objectives.

Putting them together. EMoE provides a lightweight yet powerful framework for training inference-
scalable MoE models. Stochastic co-activation sampling directly tackles the problem of co-activation
failure by teaching experts to collaborate within diverse, stochastically sampled combinations. Con-
currently, the hierarchical loss guides the router to learn a stable and decisive expert ranking. Together,
they ensure that the model can gracefully and effectively scale its performance to match the given
computational budget at inference time, eliminating the need to train or deploy multiple MoE variants
tailored to different computational settings. Notably, EMoE maintains the same training cost ktrain as
the Top-k method. A detailed analysis of training cost is provided in Appendix A.2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model Settings. Our experiments consider two common MoE scenarios: LoRA-based and FFN-
based settings. In the LoRA-based scenario, we adopt LLaMA2-7B (Touvron et al., 2023b) as the base
model and configure 32 LoRA experts in each layer. In the FFN-based scenario, we evaluate three
advanced MoE models of different scales: OLMoE-0924 (Muennighoff et al., 2024), DeepSeekV2-
Lite (DeepSeek-AI et al., 2024), and ERNIE-4.5-21B-A3B (Team, 2025). Their parameter sizes are
7B-A1B, 16B-A2.4B, and 21B-A3B, respectively.

Baselines. We compare against two categories of baselines. The first category consists of main-
stream MoE models that employ a fixed Top-k strategy. The second category includes dynamic
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Table 1: Comparison between EMoE and the Top-k method across different numbers of activated
experts (k′) during inference. For each base model, both methods are trained with the same budget.
All experiments are repeated three times, and we report the mean results along with the standard
deviation.

ARC-c ARC-e GSM8K HellaS. HumanE. NQ Tri.QA Wino. MMLU AVG

LoRAMoE (trained with 2 activated experts)
Top-k (k′ = 1) 56.95 73.55 33.33 52.71 15.97 22.89 54.32 53.59 46.04 45.48±0.91
Top-k (k′ = 2) 56.54 75.98 37.54 54.87 20.24 25.55 57.62 55.06 47.55 47.88±0.57
Top-k (k′ = 4) 56.75 76.65 38.16 53.07 19.39 26.91 59.06 55.19 47.23 48.05±0.36
Top-k (k′ = 6) 57.74 75.60 35.94 50.76 18.70 27.17 59.53 55.49 47.20 47.57±0.52

EMoE (k′ = 1) 55.25 71.78 31.24 51.52 17.68 25.46 54.79 56.75 46.64 45.68±1.19
EMoE (k′ = 2) 56.95 78.66 37.98 53.57 18.90 26.62 58.20 55.41 47.65 48.22±0.62
EMoE (k′ = 4) 58.31 79.72 38.21 55.95 18.29 27.78 59.24 55.64 47.89 49.00±0.70
EMoE (k′ = 6) 60.34 79.37 38.21 56.14 20.73 27.87 59.77 55.33 47.73 49.50±0.65

OLMoE-1B-7B-0924 (trained with 8 activated experts)
Top-k (k′ = 4) 43.73 65.96 17.13 41.40 13.41 14.57 32.04 50.36 39.17 35.31±1.06
Top-k (k′ = 8) 52.54 71.78 24.94 48.68 21.34 17.95 38.98 52.09 43.85 41.35±0.55
Top-k (k′ = 16) 53.56 72.31 25.85 48.59 17.07 18.12 39.10 51.62 43.61 41.09±0.75

EMoE (k′ = 4) 45.08 72.84 21.83 42.82 15.24 14.32 34.43 51.93 37.78 37.36±1.29
EMoE (k′ = 8) 51.86 75.49 26.54 50.42 20.12 19.34 40.99 53.43 40.29 42.05±0.67
EMoE (k′ = 16) 55.93 74.25 27.98 51.84 18.90 18.31 41.61 52.64 41.80 42.58±0.92

DeepSeek-V2-Lite (trained with 6+2 activated experts)
Top-k (k′ = 3 + 2) 58.98 72.66 42.99 57.36 28.66 18.89 41.36 55.96 47.76 47.18±0.48
Top-k (k′ = 6 + 2) 64.07 75.49 49.36 58.52 36.59 21.63 46.86 57.22 49.88 51.07±0.01
Top-k (k′ = 12 + 2) 62.71 74.43 50.19 57.60 39.02 21.05 46.38 57.22 49.89 50.94±0.16

EMoE (k′ = 3 + 2) 58.64 79.37 47.01 60.06 34.15 22.16 47.31 57.46 48.33 50.50±0.69
EMoE (k′ = 6 + 2) 62.71 82.72 47.92 62.48 40.24 23.74 51.41 57.77 49.83 53.20±0.28
EMoE (k′ = 12 + 2) 62.03 83.77 50.80 61.83 42.68 24.35 52.43 56.27 50.11 53.81±0.17

ERNIE-4.5-21B-A3B (trained with 6+2 activated experts)
Top-k (k′ = 3 + 2) 88.81 94.18 75.44 80.86 66.46 26.18 59.10 64.17 71.58 69.64±0.15
Top-k (k′ = 6 + 2) 89.15 95.24 79.83 81.56 71.34 26.43 61.10 66.93 72.86 71.60±0.23
Top-k (k′ = 12 + 2) 88.81 94.89 80.52 80.08 68.29 26.81 60.24 67.09 71.92 70.96±0.41

EMoE (k′ = 3 + 2) 88.47 94.00 76.50 83.74 72.56 24.88 60.08 64.80 72.04 70.79±0.18
EMoE (k′ = 6 + 2) 88.47 94.89 78.92 84.54 74.39 25.07 61.76 67.40 73.87 72.15±0.30
EMoE (k′ = 12 + 2) 89.49 94.89 81.05 83.32 76.22 25.62 60.46 68.11 73.33 72.50±0.32

routing methods: AdaMoE (Zeng et al., 2024) and Top-p (Huang et al., 2024), which dynamically
adjust the number of activated experts across tokens while keeping the total number of activated
experts fixed. In contrast, our method allows the total number of activated experts to be flexibly
adjusted according to computational budgets. More comprehensive details about the baseline methods,
including their implementation and configurations, are provided in Appendix A.1.

Training and Evaluation Data. Following Hui et al. (2024), we construct a diverse instruction-
tuning dataset comprising 50K samples spanning three domains: coding, mathematics, and general
abilities. Specifically, the dataset incorporates Magicoder (Wei et al., 2023) for coding, Meta-
MathQA (Yu et al., 2024) for mathematics, and SlimORCA (Lian et al., 2023) for general abilities.
For evaluation, we assess model performance across a comprehensive suite of nine downstream
benchmark datasets, covering knowledge, reasoning, coding, and open-domain question answering.
More details about the evaluation datasets can be found in Appendix A.1.

Implementation Details. In the LoRA-based MoE scenario, we activate 2 experts per layer during
training to align with the sparse activation pattern typically used in large-scale models. In the FFN-
based scenario, we follow the original pretraining configurations of the respective models: OLMoE
activates 8 experts per layer, while DeepSeekV2-Lite and ERNIE-4.5-21B activates 6 fine-grained
experts and 2 shared experts per layer. All MoE models are trained for 4 epochs. The learning rate is
set to 2× 10−4 for LoRA-based settings and 2× 10−5 for FFN-based settings. All experiments are
conducted three times, and we report the average results along with the standard deviation. More
details about the hyperparameters can be found in Appendix A.1.
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Table 2: Comparisons between EMoE and dynamic routing methods across different numbers of
activated experts (k′) at inference. All methods are trained with a training budget equivalent to that of
a standard Top-k MoE with ktrain = 2. For AdaMoE and Top-p, k′ refers to the average number of
activated experts across all tokens.

k′ ARC-c ARC-e GSM8K HellaS. HumanE. NQ Tri.QA Wino MMLU AVG

Top-k

1.0 56.95 73.55 33.33 52.71 15.97 22.89 54.32 53.59 46.04 45.48±0.91
2.0 56.54 75.98 37.54 54.87 20.24 25.55 57.62 55.06 47.55 47.88±0.57
4.0 56.75 76.65 38.16 53.07 19.39 26.91 59.06 55.19 47.23 48.05±0.36
6.0 57.74 75.60 35.94 50.76 18.70 27.17 59.53 55.49 47.20 47.57±0.52

Top-p

1.0 56.95 74.25 35.56 49.19 15.85 24.60 55.58 56.43 46.41 46.09±0.33
2.2 55.59 77.60 36.62 50.14 17.07 25.79 57.67 55.88 47.04 47.04±0.72
4.1 59.66 79.01 36.92 49.54 20.12 27.06 59.41 54.30 46.88 48.10±1.23
6.0 56.95 78.84 36.92 46.48 20.12 27.12 60.14 53.51 47.25 47.48±0.69

AdaMoE

1.3 55.93 67.20 34.12 49.83 18.29 14.74 35.95 52.17 43.83 41.34±1.42
2.2 60.68 75.13 37.30 55.28 20.73 22.58 52.03 53.99 46.89 47.18±0.72
4.2 58.31 77.25 37.68 56.30 20.12 27.81 58.63 54.70 46.06 48.54±0.31
6.1 56.95 77.07 37.60 56.11 20.73 28.95 59.25 54.30 45.76 48.52±0.40

EMoE

1.0 55.25 71.78 31.24 51.52 17.68 25.46 54.79 56.75 46.64 45.68±1.19
2.0 56.95 78.66 37.98 53.57 18.90 26.62 58.20 55.41 47.65 48.22±0.62
4.0 58.31 79.72 38.21 55.95 18.29 27.78 59.24 55.64 47.89 49.00±0.70
6.0 60.34 79.37 38.21 56.14 20.73 27.87 59.77 55.33 47.73 49.50±0.65

5.2 MAIN RESULTS

Comparisons to the Top-k Method on Different Models. Table 1 presents a comprehensive
evaluation of our proposed EMoE framework against the standard Top-k approach across three
different model settings. These results align with our observations in Section 3.2. Across all models,
we consistently observe performance degradation when the number of activated experts at inference
exceeds the training budget. For example, using the standard Top-k method achieves an average
performance of 51.07 on DeepSeekV2-Lite, when the model is trained with ktrain = 6 + 2. However,
increasing the number of activated experts to k = 12 + 2 during inference results in a performance
drop to 50.94. In contrast, models trained with the EMoE framework exhibit robust and monotonically
increasing performance scalability. For every model architecture, increasing the number of activated
experts at inference consistently leads to performance gains, confirming the effectiveness of the
co-activation sampling. Notably, EMoE not only eliminates the performance drop observed in
baselines but also leverages the proposed hierarchical loss to deliver further improvements under
varying computational budgets, ultimately reaching new peaks in performance.

Comparisons to Dynamic Routing Methods. In Table 2, we further analyze EMoE and compare it
with mainstream dynamic routing strategies. These methods are designed to optimize computational
resource allocation under a fixed global computation budget by reallocating experts from simpler
tokens to more complex ones. The results show that although these dynamic methods do provide
some improvements over the static Top-k baseline, for example, AdaMoE achieves a higher average
performance of 48.54, and Top-p performs best at low activation levels (k′ = 1), but they ultimately
still face the same issue of performance degradation. Their performance either plateaus or begins to
degrade after reaching a peak, because these approaches are fundamentally not designed to go beyond
a fixed computational limit. In contrast, EMoE demonstrates a distinctly superior scaling trend.
Its performance increases monotonically as the number of activated experts grows, starting from a
competitive baseline and eventually reaching the highest average score at k′ = 6. This highlights a
key distinction: prior methods focus on optimal reallocation under a fixed compute budget, whereas
EMoE is uniquely designed to efficiently utilize variable and scalable computational resources.

5.3 ANALYSIS

Ablation Study. Table 3 presents the individual contributions of the two key designs in EMoE:
stochastic co-activation sampling and hierarchical router loss. The variant without stochastic co-
activation sampling performs well when the number of experts is small, achieving the highest
score of 45.83 at k′ = 1. This strong performance can be attributed to the proposed router loss,
which encourages a more hierarchical ranking among route experts and is particularly beneficial
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(a) Standard Top-k MoE (b) Our proposed Elastic MoE

Figure 6: Visualization of expert co-occurrence matrices for (a) the standard Top-k baseline and (b)
our proposed EMoE. We compare the training pattern with inference using k′ = 6, and report the
F-norm distance between the corresponding matrices during training and inference.

under constrained computational budgets. However, as k′ increases to 6, the performance of this
variant drops sharply. This result demonstrates that, without co-activation sampling, the model lacks
effective collaboration between experts, ultimately leading to the collaboration collapse problem.

Table 3: Ablation study on EMoE’s two key designs:
stochastic co-activation sampling (co-act.) and the
hierarchical router loss (LHR), compared with the full
EMoE framework and the standard Top-k baseline.

k′ = 1 k′ = 2 k′ = 4 k′ = 6

Top-k 45.48 47.88 48.05 47.57

EMoE 45.68 48.22 49.00 49.50
w/o co-act. 45.83 48.03 48.68 48.15
w/o LHR 45.19 47.79 48.81 49.08

On the other hand, the variant without LHR
effectively alleviates the performance degra-
dation at k′ = 6, achieving a high score of
49.08. This confirms that co-activation sam-
pling successfully facilitates collaboration
among a wider set of experts. Neverthe-
less, this variant consistently underperforms
the full EMoE model across all configura-
tions and exhibits its lowest score at k′ = 1.
These results underscore the critical role of
the proposed router loss in establishing a
stable and hierarchical ranking of experts.
Overall, these results demonstrate that both designs are essential, and only their combination allows
the model to fully realize its potential for scalable performance at inference time.
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Figure 5: Analysis of the effect of
the hyperparameter kideal. All experi-
ments are conducted with ktrain = 2.

Effect of kideal. We conduct analysis on the key hyperpa-
rameter kideal in the co-activation sampling to verify the ro-
bustness of its configuration. The results in Figure 5 clearly
demonstrate that the choice of kideal is rather flexible and re-
laxed. Compared to the standard Top-k baseline, even setting
kideal to just 2 × ktrain = 4 yields significant performance
gains, with both peak performance and low-budget perfor-
mance surpassing the baseline. In particular, we observe
that when kideal is set between 2-4× the training expert count
ktrain, the model achieves optimal performance and scalability,
reaching the highest average scores within this interval. On
the other hand, when kideal is set too high (e.g., exceeding
4 × ktrain = 8), a trade-off emerges: while the model main-
tains strong performance under high inference budgets, its
performance with a low number of activated experts (such as k′ = 1), as well as its overall peak
performance, begin to degrade. Analysis on DeepSeekV2-Lite further confirms the validity of this
relaxed range, as shown in Appendix A.2. Based on this analysis, we choose kideal ∈ {2, 3, 4}, using
4× ktrain for the LoRA-based models, 3× ktrain for DeepSeekV2-Lite and 2× ktrain for OLMoE.
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(a) Math (b) Commonsense

Figure 7: Expert co-occurrence visualization under a low activation budget (k′ = 2) across two
domains. Across domains, models with LHR exhibit sparse, concentrated hotspots, while models
without LHR show diffuse patterns with higher uncertainty.

Effect of Stochastic Co-activation Sampling. We visualize the expert co-occurrence matrix in
Figure 6 and compare our method with the standard Top-k method. When the EMoE trained model is
extrapolated to k′ = 6 during inference, co-activation sampling enables the co-occurrence matrix to
maintain a high structural similarity to that observed during training. This stability is quantitatively
supported by a sharply reduced Frobenius norm distance; for example, the F-norm distance at the
12th layer is only 0.79 for EMoE, in stark contrast to 1.56 for the Top-k method. These results
indicate that co-activation sampling effectively learns the expert combination patterns required under
higher budgets, thereby ensuring scalability during inference.

Effect of LHR on Expert Selection Stability. To verify the effect of LHR on selecting more
favorable expert combinations, we further visualize expert co-occurrence matrices under a low
activation budget (k′ = 2) on two domains: math and commonsense, using GSM8K (Cobbe et al.,
2021) and HellaSwag (Zellers et al., 2019) respectively. As shown in Figure 7, models without LHR
exhibit diffuse, weakly structured co-activation patterns, indicating unstable selection when only a
few experts can be used. In contrast, models with LHR display sparse, concentrated hotspots, evidence
of more decisive and consistent expert selection. This sharpening effect is also reflected quantitatively:
entropy decreases from 7.09 to 5.78 (math) and from 8.63 to 7.87 (commonsense). These results
show that LHR significantly stabilizes routing and is a key contributor to EMoE’s elasticity.
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Figure 8: Average performance of
EMoE for different training-time bud-
gets ktrain ∈ {2, 3, 4}.

Scaling EMoE with Larger Training Budgets To study
whether EMoE continues to benefit from additional training
compute, we further vary the training-time activation budget
ktrain and compare models trained with ktrain ∈ {2, 3, 4}. For
each setting, we evaluate the resulting EMoE model under
multiple inference budgets k′ and report the average per-
formance across the same evaluation suite as in the main
experiments. Figure 8 summarizes the results. We observe
two trends. First, for each ktrain, EMoE maintains an elastic
regime in which performance improves smoothly as k′ in-
creases beyond ktrain. Second, increasing ktrain consistently
lifts the entire curve, especially at larger inference budgets.
This shows that EMoE continues to benefit from additional
training compute, while preserving its elasticity across k′.

6 CONCLUSION

In this paper, we identify that existing MoE models suffer from performance degradation when
scaling activated experts at inference due to insufficient expert collaboration. To address this issue,
we propose Elastic MoE (EMoE), a training framework that enables flexible expert scaling without
additional training overhead. EMoE incorporates stochastic co-activation sampling to foster expert
collaboration and a hierarchical router loss to ensure stable expert selection. Extensive experiments
show that EMoE exhibits robust, monotonically increasing performance as the inference budget grows,
consistently outperforming the baseline at each budget level and surpassing its peak performance.
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A APPENDIX

A.1 IMPLEMENTION DETAILS

Details of Baselines. We evaluate our proposed EMoE framework against two primary categories
of baselines: standard Top-k routing and dynamic routing methods.

• Standard Top-k Routing: This is the most prevalent approach in mainstream MoE models.
Crucially, our EMoE framework is trained with the exact same number of activated experts
to ensure an identical training overhead.

– For the FFN-based MoE models, we adhere to the official configurations of OLMoE-
0924 and DeepSeek-V2-Lite as used during their pre-training.

– For the LoRA-based MoE, we adopt the sparse activation pattern commonly used in
large-scale models (DeepSeek-AI et al., 2025), activating 2 out of 32 total experts (a
6.25% activation rate).

• Dynamic Routing Methods: We compare against two state-of-the-art dynamic routing
techniques, Top-p and AdaMoE, which adjust expert activation per token.

– Top-p Routing (Huang et al., 2024) activates the smallest set of experts whose cumula-
tive probability mass exceeds a threshold p. To maintain a comparable training budget,
we set p = 0.15 during training. At inference, to match the average expert counts of
other methods, we use p values of {0.05, 0.16, 0.25, 0.34}.

– AdaMoE (Zeng et al., 2024) introduces null experts that can be routed to, effectively
allowing the model to skip computation for certain tokens. Following the original
implementation, we set the number of null experts to be twice that of the standard
experts. For a fair inference-time comparison, we vary its target active expert count
k′ to {3, 6, 14, 22} to align its average number of activated non-null experts with the
computational budgets of Top-k and EMoE.

Details of Training Hyperparameters. In our main experiments, the learning rate is set to 2×10−4

for all methods under the LoRA-based settings, and 2× 10−5 under the FFN-based settings. We use
a batch size of 128 in all cases. All models are fine-tuned for 4 epochs on the dataset with a sequence
length of 2048. For the hierarchical loss coefficient λ, we use a value of 5× 10−4 in LoRA-based
scenarios and 1×10−8 in FFN-based scenarios. Experiments are performed on 8 Nvidia H100 GPUs,
each equipped with 80GB of memory. Every experiment is repeated three times, and we report the
mean and standard deviation of the results.

Details of Evaluation. We conduct a comprehensive evaluation utilizing the OpenCompass pack-
age (Contributors, 2023) to assess model performance across a diverse suite of downstream bench-
marks. We report zero-shot accuracy on the commonsense and multitask reasoning tasks ARC-e,
ARC-c (Clark et al., 2018), MMLU (Hendrycks et al., 2021), and WinoGrande (Sakaguchi et al.,
2020). For reasoning capabilities, we measure 8-shot accuracy on the mathematical reasoning bench-
mark GSM8K (Cobbe et al., 2021) and 3-shot accuracy on HellaSwag (Zellers et al., 2019). Coding
is evaluated via the pass@1 metric on HumanEval (Chen et al., 2021). To complete the assessment,
our evaluation also includes two prominent open-domain question-answering benchmarks, Natural
Questions (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017).

A.2 EXTENDED EXPERIMENTS

Training Efficiency An essential consideration for the EMoE framework is its computational
efficiency during the training process. To quantify its overhead, we compare it with the standard
Top-k baseline method. As shown in Table 4, EMoE achieves the same training overhead as the Top-k
baseline. This is because the core components of EMoE are introduced in the non-dense computation
part of the computation graph. Specifically, both the sampling of experts from a larger candidate pool
Skideal(x) and the calculation of the hierarchical loss incur negligible computational cost compared
to the dense matrix operations in Transformer models. Overall, EMoE successfully unlocks elastic
scalability during inference with no extra training overhead, demonstrating its practical value as a
lightweight and efficient training framework.
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Table 4: Training overhead comparison between EMoE and the Top-k baseline under the LoRA-based
settings used in our main experiments. Both methods are trained with ktrain = 2 on the same hardware.

Method ktrain Training Time Memory Usage Per GPU

EMoE 2 10.92h 43.4GB
Top-k 2 10.92h 43.4GB

k ′ = 2 k ′ = 4 k ′ = 6
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(a) Epoch 1 checkpoint
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(b) Epoch 2 checkpoint
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(c) Epoch 3 checkpoint
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(d) Epoch 4 checkpoint

Figure 9: Performance evolution of EMoEco-act (i.e., only using co-activation sampling) versus the
Top-k baseline at different training checkpoints. The subplots (a) through (d) show performance
snapshots at the end of epochs 1, 2, 3, and 4, respectively.

Training Dynamics. To gain deeper insight into the learning process of EMoE and investigate the
impact of co-activation sampling on performance, we evaluate the model’s performance at the end of
each training epoch and compare it to the Top-k baseline. Figure 9 illustrates this dynamic process.
The experiments reveal a key trade-off. In the early stage of training (epoch 1), when only a small
number of experts are activated during inference (k′ = 2), EMoE with co-activation sampling only
(i.e., EMoEco-act) underperforms the Top-k baseline. We believe this is because the random sampling
mechanism forces the model to explore a broader range of expert combinations, thus dispersing
learning resources away from optimizing the most frequent Top-2 combinations. This leads to slightly
slower convergence in this specific setting. However, even at this stage, our method already begins to
outperform the Top-k method in broader activation regimes (k′ = 4 and k′ = 6), indicating that the
model has started to learn how to leverage more experts in collaboration.

As training progresses, this early trade-off is perfectly resolved. From epoch 2 onwards, EMoEco-act
consistently matches or surpasses the baseline across all inference configurations. By the end of
training (epoch 4), both models converge to their optimal performance, but with markedly different
results. EMoEco-act achieves optimal performance under all inference budgets: not only does it match
the Top-k performance in the standard k′ = 2 setting, but more importantly, it successfully extends
this optimization to all activation regimes, exhibiting strong and monotonic performance scalability.
In contrast, although the Top-k baseline also converges to its optimal performance at k′ = 2, its
performance curve demonstrates that it fails to learn how to utilize additional experts.
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Figure 10: Analysis of the effect of the hy-
perparameter kideal. All experiments are con-
ducted with ktrain = 6 + 2.

Effect of kideal on DeepSeekV2-Lite. We con-
duct an analysis of the hyperparameter kideal on the
DeepSeekV2-Lite model to further validate the ro-
bustness of its configuration. The results in Fig-
ure 10 clearly demonstrate that the choice of kideal
offers considerable flexibility and tolerance. Con-
sistent with the conclusions drawn from Figure 5,
setting kideal to only twice the number of training
experts (ktrain = 12 + 2) leads to significant im-
provements in the performance of EMoE, exceeding
the standard Top-k in both peak and low-budget sce-
narios. Furthermore, when kideal is set within 2 to
4 times the number of training experts, the model
achieves optimal performance and scalability, reach-
ing the highest average scores within this range.
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Table 5: Comparison between EMoE and Top-k trained with large ktrain.

Model k′ = 1 k′ = 2 k′ = 4 k′ = 6 Mem / GPU

Top-k (ktrain = 6) 42.87 46.26 48.30 49.14 76.0GB
EMoE (w/o LHR, ktrain = 2) 45.19 47.79 48.81 49.08 43.4GB
EMoE (with LHR, ktrain = 2) 45.68 48.22 49.00 49.50 43.4GB

Table 6: Comparison between EMoE and standard Top-k across inference-time budgets k′ on larger
instruction-tuning datasets (100K and 200K samples). For each dataset size, both methods are trained
under the same ktrain = 2.

ARC-c ARC-e GSM8K HellaS. HumanE. NQ Tri.QA Wino. MMLU AVG

100K instruction data
Top-k (k′ = 1) 53.90 71.25 34.19 58.47 20.12 21.99 52.70 55.41 46.05 46.01
Top-k (k′ = 2) 54.24 75.66 42.00 56.67 25.61 24.82 57.49 54.38 46.66 48.61
Top-k (k′ = 4) 55.93 77.78 43.75 55.53 26.83 27.37 59.14 55.49 45.38 49.69
Top-k (k′ = 6) 56.27 77.25 40.33 53.51 21.34 28.42 59.88 54.62 46.45 48.67

EMoE (k′ = 1) 57.29 76.54 37.45 57.01 14.02 24.07 54.76 53.51 46.57 46.80
EMoE (k′ = 2) 60.00 79.72 40.64 59.47 17.07 26.40 58.45 55.33 47.86 49.44
EMoE (k′ = 4) 62.71 80.95 41.09 61.04 20.12 27.09 59.57 55.56 48.86 50.78
EMoE (k′ = 6) 63.05 80.95 42.30 61.13 21.34 27.42 60.09 56.20 48.87 51.26

200K instruction data
Top-k (k′ = 1) 58.31 76.54 40.03 61.26 27.44 23.13 53.92 52.41 48.35 49.04
Top-k (k′ = 2) 60.34 79.37 44.66 63.92 29.88 25.60 58.09 53.20 50.09 51.68
Top-k (k′ = 4) 61.02 81.13 44.96 63.46 28.66 27.40 59.91 54.14 50.66 52.37
Top-k (k′ = 6) 59.32 81.31 43.52 62.11 25.61 27.34 60.29 53.67 50.27 51.49

EMoE (k′ = 1) 62.71 75.13 42.30 60.98 21.95 25.04 56.08 55.33 47.51 49.67
EMoE (k′ = 2) 65.08 78.84 44.28 62.31 25.61 25.57 58.67 58.56 49.19 52.01
EMoE (k′ = 4) 64.75 81.31 46.47 63.29 22.56 27.70 60.20 58.17 50.21 52.74
EMoE (k′ = 6) 66.44 78.13 47.38 63.60 25.61 27.98 60.36 57.14 51.99 53.18

Comparison to Training with Larger ktrain. We compare EMoE trained with ktrain = 2 against
a standard Top-k MoE trained with ktrain = 6. The large-ktrain model achieves only a marginal
advantage than EMoE without LHR at its native inference budget (k′ = 6), but exhibits two clear
drawbacks: (1) Lack of flexibility. Performance degrades sharply when reducing the inference
budget (e.g., k′ = 2 < ktrain), showing that standard MoE training strongly couples the router to the
training-time budget. (2) Excessive training cost. beyond the standard k configuration (e.g., from 2
to 6) requires roughly 3× FLOPs and more activation memory in MoE layers, making such large-k
training impractical at scale.

In contrast, EMoE maintains strong performance under both lower inference budgets (k′ <
ktrain) and higher inference budgets (k′ > ktrain), while retaining the training cost of standard
Top-k models. Thus, EMoE provides inference-time elasticity that large-ktrain training is unable to
offer and eliminates the need to deploy multiple MoE variants for different computational budgets.

Scalability Analysis on Larger Instruction-Tuning Datasets. We extend our experiments to
larger 100K and 200K instruction datasets. The results are reported in Table 6. Across both data
scales, EMoE consistently preserves its elastic window and maintains strong extrapolation capability
beyond the training-time activation budget. Importantly, enlarging the dataset does not diminish
the benefits of EMoE: the method continues to outperform standard Top-k training at both lower
(k′ < ktrain) and higher (k′ > ktrain) inference budgets. These results show that EMoE’s effectiveness
is independent of dataset scale and, as confirmed by our main experiments, can already be achieved
efficiently with a lightweight 50K instruction set.

Analysis of Expert Diversity. To examine how the two components in our method influence
expert specialization, we measure the mutual information (MI) between expert selection and task
domains (math: GSM8K (Cobbe et al., 2021), commonsense: HellaSwag (Zellers et al., 2019),
code: HumanEval (Chen et al., 2021)). Let P (e) denote the marginal expert usage and P (e | d) the

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

domain-conditional usage. We compute:

MI(E;D) =
∑
e,d

P (e, d) log
P (e, d)

P (e)P (d)
, (9)

where P (e, d) = P (e | d)P (d). As shown in table 7, co-activation sampling is the primary factor that
enhances specialization by exposing experts to diverse collaborative configurations during training.
A higher degree of specialization indicates that experts consistently assume distinct functional roles
across domains, which is an important symptom of successful collaborative organization rather than
redundant or interchangeable behaviors. The hierarchical router loss further improves this structure
by producing more decisive expert rankings, achieving the highest MI. These findings show that LHR
works synergistically with co-activation sampling and plays a central role in EMoE’s elasticity.

Table 7: Mutual information between expert usage and task domain.

Model Setup MI ∆

Baseline (Standard Top-k) 0.0473 –
+ Co-activation Sampling (w/o LHR) 0.0603 +27.5%
+ Full EMoE (with LHR) 0.0630 +4.5%

A.3 ALGORITHM OF EMOE

Here, we present the complete algorithm of the proposed EMoE training framework in Algorithm 1.

Algorithm 1 Elastic Mixture-of-Experts (EMoE) Training Framework

1: Require: Input x, Router G, Experts {Ei(·; θi)}Ni=1
2: Hyperparameters: kideal, λ

3: Step 1: Get router logits
4: h(x)← G(x) ▷ Raw logits for all experts, h(x) ∈ RN

5: Step 2: Stochastic co-activation sampling
6: Step 2a: Determine candidate pool size
7: k̃ideal ∼ UniformInt(ktrain, kideal)

8: Sk̃ideal
(x)← TopKIndices(h(x), k̃ideal) ▷ Select candidate experts based on top logits

9: Step 2b: Sample experts for forward pass
10: Sco-act(x) ∼ UniformSample(Sk̃ideal

(x), ktrain) ▷ Final subset used for training

11: Step 3: Compute MoE output
12: yco-act(x)←

∑
i∈Sco-act(x)

exp(hi(x))∑
j∈Sco-act(x) exp(hj(x))

· Ei(x; θi)

13: Step 4: Compute total loss
14: Lce ← CrossEntropyLoss(yco-act(x), target)
15: Lb ← LoadBalancingLoss(h(x))
16: LHR ← −

∑N
i=1 hi(x) log

hi(x)
1/N ▷ Hierarchical router loss (encourage decisive ranking)

17: Ltotal ← Lce + Lb + λ · LHR
18: return Ltotal

A.4 BROADER IMPACT AND LIMITATIONS

Broader Impact. Our work introduces the Elastic Mixture-of-Experts (EMoE) framework, which
aims to address a fundamental technical challenge: enabling scalable computation for large models
during inference without increasing training costs. While this technical breakthrough is rooted in
model architecture, its potential applications may have far-reaching implications for both the field
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of artificial intelligence and society. The most immediate contribution of EMoE is lowering the
barrier to high-performance model inference. By allowing users to dynamically adjust computational
expenditure based on available hardware resources, EMoE makes state-of-the-art models more
accessible to a broader range of researchers, small and medium-sized enterprises, and independent
developers, thereby promoting the democratization of AI technology. Furthermore, the flexible
computation enabled by EMoE allows systems to switch to low-power modes (activating fewer
experts) during off-peak periods or for simpler tasks. This adaptability can significantly reduce
overall energy consumption in large-scale deployments, contributing to the development of a greener
and more sustainable AI ecosystem.

Limitations. Although our study provides strong evidence for the effectiveness of the Elastic
Mixture-of-Experts (EMoE) framework across various model sizes and architectures, we acknowledge
the following limitations in our current work: First, while EMoE significantly expands the scalability
of MoE models during inference, this elastic range is not without boundaries. Our analysis of the
hyperparameter kideal in Figure 6 clearly reveals this inherent trade-off. We observe that when kideal is
set within the range of 2 to 4 times the number of training experts ktrain, the model achieves optimal
performance and scalability. However, setting kideal excessively large may lead to diminishing returns.
Specifically, in the extreme case where kideal is set to the total number of experts N while ktrain is
2, this is equivalent to randomly selecting two experts from all experts for training, which renders
the router ineffective. This means that such a boundary naturally exists and cannot be extended
indefinitely. We will explore approaches to further extend this effective range in future work.

Second, our validation on ultra-large-scale models is limited. Due to computational constraints,
our experiments primarily focus on models ranging from 7B to 16B parameters. While EMoE
demonstrates consistent and robust scalability across these sizes, suggesting promising generalization
to even larger models, we have not yet directly evaluated it on models with over 100B parameters.
Extending EMoE to such ultra-large models represents an important and promising direction for
future research, and our current results provide encouraging preliminary evidence for this potential.

A.5 USE OF LLMS

We use large language models solely for the purpose of improving the grammar and language
clarity of our manuscript. No LLMs are used for generating ideas, designing experiments or writing
substantive content. All scientific contributions, results, and conclusions are entirely the work of the
authors.
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