
Private Data Leakage via Exploiting Access Patterns of
Sparse Features in Deep Learning-based

Recommendation Systems

Hanieh Hashemi∗
University of Southern California

hashemis@usc.edu

Wenjie Xiong
Meta AI/Virginia Tech
wenjiex@meta.com

Liu Ke∗
Washington University in St. Louis

ke.l@wustl.edu

Kiwan Maeng∗
Pennsylvania State University

kvm6242@psu.edu

Murali Annavaram
University of Southern California

annavara@usc.edu

G. Edward Suh
Meta AI

edsuh@meta.com

Hsien-Hsin S. Lee∗∗
Intel

lee.sean@gmail.com

Abstract
Deep Learning-based Recommendation models use sparse and dense features of a
user to predict an item that the user may like. These features carry the users’ private
information, service providers often protect these values by memory encryption
(e.g., with hardware such as Intel’s SGX). However, even with such protection,
an attacker may still learn information about which entry of the sparse feature is
nonzero through the embedding table access pattern. In this work, we show that
only leaking the sparse features’ nonzero entry positions can be a big threat to
privacy. Using the embedding table access pattern, we show that it is possible
to identify or re-identify a user, or extract sensitive attributes from a user. We
subsequently show that applying a hash function to anonymize the access pattern
cannot be a solution, as it can be reverse-engineered in many cases.
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Figure 1: left: DLRM, right: example of embedding lookup.

Deep learning-based personalized rec-
ommendation models empower mod-
ern Internet services. These models
exploit different types of information,
including user attributes, user prefer-
ences, user behavior, social interac-
tion, and other contextual informa-
tion Erkin et al. (2010) to provide
personalized recommendations rele-
vant to a given user. They drive
35% of Amazon’s revenue Gupta
et al. (2020) and influence 80% of the
videos streamed on Netflix Gomez-
Uribe and Hunt (2015).
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Deep learning-based recommendation models use dense (continuous) and sparse (categorical) features
of a user as an input to a deep neural network to predict an item that a user may like (Figure 1, left).
The features may include both static features that do not change frequently (e.g., age or gender)
and dynamic features that changes frequently (e.g., a user’s recent behavior history). Both features
can hold sensitive information and must be kept private. Private user features are often encrypted
in memory for privacy, using hardware such as trusted execution environment (TEE), e.g., Intel
SGX team (2022). However, even when using hardware like TEE, the information of which entries of
the sparse features are nonzero can be leaked. This is because sparse features must be projected into a
lower-dimension space through an embedding table, where the index of the nonzero entries are used as
an index for an embedding table lookup (Figure 1, right). In this paper, we show that this information
leakage can be an enough threat to privacy. We first show that it is possible to (1) identify a user,
(2) extract sensitive attributes of a user, or (3) re-identify a user, by only looking at the embedding
table access pattern even when the data is fully encrypted. We subsequently show that applying a
hash function to randomize the access pattern cannot be a general solution, by demonstrating a set of
hash-inversion attacks. Specifically, we show that the below attacks are possible by only observing
the embedding table access patterns in modern deep learning recommendation models:

• Identification attack. We demonstrate it is possible to identify a user by only observing the access
pattern of sparse features’ embedding table access pattern.

• Sensitive attribute attack. We show it is possible to extract sensitive attributes of a user (e.g.,
demographics) from seemingly unrelated sparse features, such as dynamic user behavior history.

• Re-identification attack. We show it is possible to identify if two queries are from the same user
by only looking at seemingly innocuous sparse features, such as the users’ recent purchase history.

• Hash inversion with frequency-based attack. We show that hiding the access using a hash cannot
be a solution against these attacks, by demonstrating a hash inversion attack based on the access
frequency. Our hash inversion attack can invert even sophisticated private hash functions as well as
simple hash functions that are mainly used by the industry today.

2 Background and Threat Model

Deep learning-based recommendation model Zhou et al. (2018, 2019); Naumov et al. (2019);
Ishkhanov et al. (2020); Cheng et al. (2016) uses dense and sparse features of a user and an item to
predict whether the user will likely to interact with the item (e.g., click an Ad or purchase an item).
Figure 1 shows the operation of a representative recommendation model, DLRM Naumov et al. (2019).
In DLRM, the dense features go through a bottom MLP layer, while the sparse features go through an
embedding table layer and get converted into a lower-dimensional dense features. Then, the two out-
puts go through a feature interaction layer (e.g., pairwise dot product) and go through a top MLP layer
to predict the likelihood of an interaction. Other modern recommendation models work similarly Zhou
et al. (2018, 2019); Ishkhanov et al. (2020); Cheng et al. (2016). Embedding tables convert a sparse
feature into a dense representation by using the index of the nonzero entries in the sparse features as
an index to perform lookup to a large table (Figure 1, right). Even when the entire dense and sparse
features are fully encrypted and processed on a secure environment (e.g., by using Intel SGX Costan
and Devadas (2016), hardware that encrypts content in the memory and protects computations),
it is possible to learn which index holds a nonzero entry by looking at the table access pattern.

Figure 2: Our threat model assumes only the access
pattern to the embedding table is revealed.

Threat Model We assume a scenario where
users share their private features with the ser-
vice provider to get recommendations from the
model. We assume that the values of the dense
and sparse features of a user is fully protected
from the attacker, e.g., with Intel SGX team
(2022), but the access pattern of the embedding
table is revealed, essentially revealing which en-
tries are nonzero in the sparse features. In the
real world, a honest-but-curious service provider
running model inference on Intel SGX can fall
into this category. Figure 2 demonstrates our
threat model.
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Table 1: Attack summary.

Attack Goal Assumption Evaluation Metric

Identification Finding the identity of users Attacker observes accesses
Has prior knowledge about distribution of accesses K-anonymity

Sensitive Attribute Extracting sensitive user features Attacker observes accesses
Has prior knowledge about distribution of accesses Ambiguity

Re-Identification Tracking users over time Attacker observes accesses Precision and Recall

Frequency-based attack Finding users’ raw feature values

Attacker observes accesses
Has prior knowledge about distribution of accesses
Knows hash function
Does not know secret key for hash

Inversion Accuracy

OMP-based frequency attack
for private hash Finding users’ raw feature values Attacker observes accesses

Has prior knowledge about distribution of accesses Inversion Accuracy

Table 2: The number of users with anonymity level bellow K in the identification attacks (out of 1.14
million users).

1-anonymity 2-anonymity 3-anonymity 4-anonymity 5-anonymity 6-anonymity 7-anonymity 8-anonymity 9-anonymity 10-anonymity
56 154 256 380 480 606 739 867 984 1104

Table 1 summarizes the attacks we explored in this work. It includes other assumptions we had for
each of the attacks and attacker’s knowledge. We explained each attack in a separate section with
details.

3 Identification Attack with Static User Features

A single user’s inference request contains a series of sparse features, each of which in isolation has
limited user information. However, multiple sparse features together can form a distinctive fingerprint
for personal identification. User profile attributes (e.g. gender, city, etc) are usually static, in other
words, they do not change or the frequency of the change is extremely low. We categorize this type of
features into two subcategories—identifiable features and unidentifiable features. However, because
of strict regulations in many domains, most of the recommendation systems do not collect and use
such identifiable features. The question is if unidentifiable features such as age, gender, education,
and shopping history can provide sufficient information to identify a user.
Evaluation Setup: To answer this question, we analyzed an open-source dataset released by Alibaba.
This dataset contains static user features including user ID (1.14M), micro group ID (97), group ID
(13), gender (2), age group (7), consumption grade/plevel (4), shopping depth (3), occupation/is
college student (2), city level (5). More details about datasets is on Appendix A.
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Figure 3: Percentage of the users belong to each
user bucket.

Attack Method In this set of features, the only
directly identifying feature associated with a sin-
gle user is the user ID. After removing the user
ID, the collection of all other features provides
2.1 million possible combination. Hence, after
removing the user ID, a user may mistakenly
think that he or she is anonymous, and revealing
any of the other features to the attacker on its
own will not reveal the identity of the user. How-
ever, based on the user profile information from
more than 1 million users, it is observed that in
the real world only 1120 combinations of these
static feature values are possible based on the
real ope-source data. We refer to this 1120 as
user buckets. We plotted the histogram of users
in these 1120 buckets as shown in Figure 3. The
x-axis in the figure indicates the bucket number ([1− 1120]) and the y-axis shows the percentage of
users per bucket. This histogram is quite illuminating in how the user distributions follow a long tail
pattern. In particular, there are only a few users in buckets 600 to 1120. In fact, there are only 989
users on average across all these buckets, and the last 56 buckets have only 1 user. Consequently,
observing the entire combinations of seemingly innocuous features from each allow may allow an
attacker to launch an identification attack to extract the unique user ID with very high certainty.
Evaluation Metric: For our analysis, we used a well-known property known as K-anonymity used

in information security/privacy. It describes a scenario in which if a user’s bucket number is revealed
and there are K users in the same bucket, the probability of finding the user is 1

K . For instance,
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Figure 5: Using the accessed brands, ambiguity about A) user buckets (defined in previous section),
B) user age groups, and C) user gender groups.

1-anonymity for a user means that this is the only user having this particular set of feature values.
Evaluation Result: As shown in Table 2, for 56 of the user buckets, there is only one user with the
specific combination of static features which implies that an attacker can identify these users with
1-anonymity if they can observe this combination of feature values. Also for more 1000 users, the
anonymity level is 10 or below.

4 Sensitive Attribute Attack by Dynamic User Features

Figure 4: Different brands are popular between different
customer age groups

In this section, the question is when the
user removes the static features, can sen-
sitive features leak through other non-
sensitive features? For instance, a user may
provide no age information and they may
have a sense of protecting more of their
private data by not disclosing their static
features. However, we demonstrate that
even when a user hides their sensitive static
features, adversaries are still able extract
the sensitive attributes through cross corre-
lations with user-item interaction data.
Evaluation Setup: For evaluation, we use dynamic sparse features that includes user-item inter-
actions Zhao et al. (2019) in the Alibaba Ads Display dataset. This dataset contains 723, 268, 134
tuples collected over three weeks. Each tuple includes a user ID (1.14M ), a btag (4: browse, cart,
favor, buy), a category id (12K), and a brand (379K).
Attack Method: Figure 4 depicts an example of how different brands of the items are accessed by

different user groups. The user/item interactions are depicted as graphs where each edge weight rep-
resents the fraction of the total interactions with that specific item from the corresponding age group.
In real-world datasets, there are certain brands, where users from just a single age group interact with,
in this example Legoland. A user who wants to protect their age group may not provide their age,
but the adversary may deduce their age with a high probability if the user interacted with Legoland.
While this simple illustration highlights the extremity (only one age group interacting with an item),
this approach can be generalized. In General attacker, uses their prior knowledge on popularity of
the items between different demographic groups. Then based on this prior information, they link
the query to the demographic who formed most of the accesses to that item. Please note this prior
information can be extracted by the users who are willing to share their information. Furthermore,
for some of the products this is part of the product information.
Evaluation Metric: In this part, we employ a metric called ambiguity to determine the likelihood an
adversary fails to predict a user’s static sparse feature by just viewing their interactions with items. We
define ambiguity for each item i as: ambiguityi = 100%−max(frequencyi) where frequencyi
is the distribution vector of all accesses to brand i by different user groups. Using Figure 4 as an
example, frequencyapple = [0, 0, 20%, 50%, 30%, 0, 0] and as a result ambiguityApple = 50%,
meaning if a user has interacted with item i (Apple), the attacker can predict the static feature (age
group) successfully for 50% of the users. With this definition, ambiguityi = 0 indicates if a user has
interacted with item i, the attacker can successfully determine the user’s sparse feature.
Evaluation Result: As shown in Figure 5, we quantify the ambiguity of predicting a user’s sparse
feature, such as age and gender, by using their item (brand) interaction history alone. The x-axis of
these figures shows the percentage of ambiguity where a value of 0 indicates that there is no ambiguity,
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and this brand is always accessed by only one user bucket. On the other hand, higher values indicate
more ambiguity, and hence brands with higher values on the x-axis are popular across multiple user
buckets. We plot both probability density function (PDF) and cumulative distribution function (CDF)
of the ambiguity of different brands. What is revealing in the data is that in Figure 5(A), we observe
that more than 17% of brands are only accessed by 1 user bucket represented by the leftmost tall
bar of PDF, meaning the attacker can determine the user bucket using those brands interactions. As
shown in the CDF curve in Figure 5(A), for 38% of the brands, the attacker can predict the user
bucket with a success rate of greater than 50%. We present the information of age and gender group
versus ambiguity in Figure 5(B) and Figure 5(C) respectively.

5 Re-Identification Attack
In re-identification attack, the goal of an attacker is to identify the same user over time by just
observing their interaction history. Studies have shown the majority of the users prefer not to be
tracked even anonymously Teltzrow and Kobsa (2004). Please note that this attack is different from
identity resolution attack Bartunov et al. (2012), which tries to link the users whiten different systems.
In this section, we first study if the history of the purchases of a user can be used as a tracking
identifier for the user. Hence, we analyze if the history of the purchases is unique for each user.
Second, we study if an attacker can re-identify the same user who sent queries over time by only
tracking the history of their purchases, with no access to the static sparse features.
Evaluation Setup: For evaluation we used Taobao datase that has more than 723 million user-item
interactions. Within them, we separated about 9 million purchase interactions. We then pre-processed
and formatted that data in a time series data structure (user history data structure) shown below:

user1 : (time1, item1), (time4, item10), (time500, item20)

user2 : (time3, item100), (time20, item100)

...
userX : (time5, item75), (time20, item50),

(time100, item75), (time400, item1)(time420, item10)

Second, for each set of consecutive items purchased by any user, we create a list of users who have
the same set of consecutive purchases in exactly that order. We refer to these sets of consecutive
recent purchases as keys. Multiple users may have the same key in their history. That is why each key
keeps a list of all the users that created the same key and the duration of the time they had the key.
An example of the recent item purchase history when we consider two most recent purchases shown
below. Each key consists of a pair of items. For instance, the first line shows item 1 and item 10 were
the most recent purchases of user 1 from time 4 to time 500.

key : list of values
[item1, item10] : [user1, time4, time500]

[userX , time420, Current]

[item10, item20] : [user1, time1000, Current]

[item100, item100] : [user2, time20, Current]

...
[item75, item50] : [userX , time20, time100]

[item50, item75] : [userX , time100, time400]

[item75, item1] : [userX , time400, time420]

The goal of the this attack is to use only the m (m = 2 in the example above) most recent purchases
by a user to track the user across different interaction sessions, which are separated by timestamps as
sessions. To evaluate this attack:
1. We randomly select a timestamp and a user.
2. For the selected user, we check the m most recent purchases of the user at the selected timestamp
and form a key = [recent purchase 1, recent purchase 2, ... recent purchase m]
3. We look up this key in the recent item purchase history dataset. If the same sequence of m most
recent items appear on another user at the same time window, this means these recent purchases are
not unique for that specific user at that time and cannot be used as a fingerprint of a single user.
4. On the other hand, if the m item purchase history only belongs to that specific user, the duration of
the time in which this key forms the most recent purchases of the user is extracted.
5. This experiment is repeated for many random time stamps and users to obtain 200, 000 samples.
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Figure 6: A) Uniqueness of most recent purchases of users. B and C) Precision/recall trade-off based
on different time threshold values.

As depicted in Figure 6 A, we observe that even the two most recent purchases can serve as a unique
identifier for 98% of our samples. In other words, at a random point in time, the two most recent
purchases of a user are unique for 98% of randomly selected users. We found that three, four, and
five most recent purchases uniquely identify users with 99% probability.
Attack Method: Most recent items purchased by a user usually do not change with a very high
frequency. For the period of time that these recent purchases remain the same, every query sent
by the user has the same list of recent purchases. Therefore, the attacker is interested in using this
knowledge to launch the attack. To accomplish this, the attacker first selects a time threshold. This
time threshold is chosen to help the attacker to decide if the queries come from the same user or not.
Meaning that if the time difference between receiving them is less than the time threshold and two
distinct queries received by the cloud have the same most recent purchases, the attacker will predict
that they comes from the same use. Otherwise, it is assumed queries come from two different users.
Evaluation Metric: To measure the accuracy of this attack, we use the machine learning terms
precision and recall defined in Buckland and Gey (1994) as shown in Eq (1).

Precision =
TP

(TP + FP )
, Recall =

TP

(TP + FN)
, (1)

where TP stands for True Positives, FP represents False Positives, and FN is False Negatives.
Precision indicates what percentage of positive predictions are accurate and Recall indicates what
percentage of actual positives are detected.
Evaluation Result: To evaluate the precision/recall tradeoff, we start from a very small time threshold
and increase it gradually. As expected, with low time thresholds, precision is high with few false
positives. But as the attacker increases the time threshold and can identify more of the actual positives
(higher recall), they false positives increase as well, which reduces the precision. The reason for
having more false positives with a large threshold is that, during a longer period of time, other users
may generate the same key. Table 3 shows when the 2 most recent purchases are used, there are
around 4.5 million keys but the total number of occurrences of these keys is around 8 million times.
This means for a fraction of the keys, the same keys are generated for different users at different
times. These repeated keys are the source of false positives in our experiments. The decision of
selecting the right threshold depends on the attacker’s preference to have a higher recall or precision.

Table 3: Re-identification attack statistics about
the number of keys and repeated keys.

Number of
recent purchases Number of users Number of keys Total occurrences

of keys
2 898, 803 4, 476, 760 8, 114, 860
3 799, 475 5, 679, 087 7, 216, 057
4 705, 888 5, 587, 578 6, 416, 582
5 620, 029 5, 197, 043 5, 710, 694

Figure 6 shows this trade-off for different time
threshold values. We gradually increase the
time threshold from 1 second to 277 hours (11.5
days). As shown in this figure, by increasing the
time threshold to 11 days recall will reach 1.0
while there is an almost 0.02 drop in precision.
This means the attacker can link all the queries
that come from the same users correctly. This
comes at the cost of 2% miss-prediction of the
queries that do not come from the same user and
only generates the same key at some point in their purchase history. These high precision and recall
values, indicates how an attacker can track users who send queries to the recommendation model
over time.

6 Hash inversion with frequency-based attack
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Figure 7: Frequency-based attack tries to reverse
engineers the hash based on the frequencies.

Applying hash on the indices before embedding
table lookup is an important performance opti-
mization (more details about the data pipeline
in production-scale recommendation systems
and different hashing schemes can be found in
Appendix B). Here, we analyze how hashing im-
pact information leakage. This section studies
how an attacker can recover the raw values of
sparse features even when hashing is used for
embedding indices. Through a hash function,
users’ raw data are remapped to post-hash val-
ues for indexing the embedding tables as shown in Fig. 7.
Evaluation Setup: For evaluation, we used Taobao, Kaggle and Criteo datasets. For each dataset we
selected two disjoint random sets; training set and test test. The training set samples forms the prior
distribution and the test sample are used for the evaluation.
Attack Method: An adversary can launch attacks by collecting the frequency of observed indices,

Table 4: Accuracy of hash inversion for the frequency-based attack for Taobao dataset.
Number of Samples used
for Learning Distribution

Number of Samples
for Evaluation Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

1,000,000 1,000 0.64 0.76 0.83 0.87 0.89 0.90 0.91 0.92 0.93 0.94
1,000,000 100,000 0.61 0.75 0.82 0.86 0.88 0.90 0.92 0.92 0.93 0.93
2,000,000 100,000 0.62 0.76 0.82 0.86 0.89 0.91 0.92 0.93 0.93 0.94
2,000,000 1,000,000 0.62 0.76 0.82 0.86 0.89 0.91 0.92 0.93 0.93 0.94

use prior knowledge about the distribution of feature values, and find the mapping between input and
output of the hash. Here we show how an attacker can compromise a system with hashed input values
where the hash function is output = (input+maskadd)mod P and P is the hash size. We denote
the frequency of possible input to a hash function by x1, x2, . . . , xN for N possible scenarios and its
output frequency by y1, y2, . . . , yP of a hash size P. We form the matrix M ∈ RP×P in which each
column represents a different value for Mask ([0, P − 1]). Basically, for each value of a mask, we
compute the frequency of outcomes and form this Matrix. As shown, by increasing the value of the
mask by 1, the column values are shifted. Hence, the Matrix M is a Toeplitz Matrix. Since a single
column in this matrix is shifted and repeated the order of forming this matrix is O(P ).

M =


y1 yP−1 · · · y2
y2 y1 · · · y3
...

...
. . .

...
yP yP−2 · · · y1


P×P

(2)

The attacker’s goal here is to invert the hash using the input distribution and its observation of the
output distribution. Note an input dataset and an output dataset should be independent. We define at
as the distribution of embedding table accesses (post-hash) at time t. To reverse engineer the mask, an
attacker has to find out which mask is used by the hash function. To do so, the attacker has to solve
the optimization problem in Eq( 3).

min
i

∥(mi − at)∥2 = min
i
(∥mi∥2 + ∥at∥2 − 2m⊺

i at) (3)

In Eq (3), mi represents the vector containing the frequencies of output values when mask i is used.
So its absolute value will be a constant one. This is similar for ∥at∥. As a result, the optimization
problem can be simplified to Eq(4).

P̄ = argmax
i

(mi
⊺at) for i ∈ [0, P − 1] =⇒ P̄ = argmax

i
(M⊺at) (4)

The order of computing such a matrix-vector product is O(P 2). However, because M is a Toeplitz
matrix, this matrix vector computation can be done in time complexity of O(P logP ) Strang (1986).
To implement this attack, we created two disjoint sets. The first set is used to extract the distribution
(known distribution) and the second set is used for frequency matching and evaluating the frequency-
based attack. First, attackers try to reverse engineers the hash function and find the key based on the
frequency matching. The attacker was able to reverse engineer the hash and find the key based on the
method described above. Next, the attacker tries to reverse engineer the post-hash indices and find
out the value of raw sparse features. After finding the key of the hash, the attacker reverse engineer
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the post-hash value to the top most frequent pre-hash values based on the input distributions.
Evaluation Metric: Accuracy in this case is the probability that the attacker correctly identifies an
input raw value from the post-hash value. Let the function g(y) be the attacker’s estimate of the input,
given the output query y, g(y) = argmaxx Prob(x) s.t. ĥ(x) = y , where ĥ(x) is the attackers
estimation of the hash function. Using this definition, accuracy is defined:

Accuracy = Probx∼PX
(x = g(h(x))) , (5)

where h(x) is the true hash function, and the probability is over the distribution of the input query.
We also use the notation of top K accuracy in this section. Essentially top K accuracy is the
probability of the input query being among the top guesses of the attacker. To formally define this,
we first denote the set Ŝ(y) as, Ŝ(y) = {x | ĥ(x) = y} , which is the set of all possible inputs,
given an output query y, based on attacker’s estimation of the hash function. We now define the
set gK(y) to be the top k members of the set Ŝ(y) with the largest probability, gK(y) = {x ∈
Ŝ(y)|Prob(x) is in the top K probabilities.}. This means that gK(y) is the set of the top K attacker’s
guesses, of the input query. Now we can use the function gk(y) to formally define the top K accuracy,

Accuracytop K = Probx∼PX
(x ∈ gK(h(x))) , (6)

where h(x) is the true hash function, and the probability is over the distribution of the input query.
Evaluation Result: As shown in Table 4, we change the number of interactions in these test sets to
see the accuracy of hash-inversion and the attacker could achieve up to 0.94 top 10 accuracy for the
Taobao dataset. Results on Kaggle and Criteo datasets are reported in C.The key observation here is
that, if an attacker observes the frequency of queries, they can reconstruct the values of raw features
with high accuracy by knowing the distributions of the pre-hash values and type of the hash function.
We also expand this attack and support a general attack for more complex hash functions using OMP.
The details of this machine learning based attack is explained in Appendix D. In Appendix F we
disccussed why none of the current solutions can solve all the issues.

7 Potential Solutions

One approach to obfuscating the embedded table access pattern is to use Oblivious RAM
(ORAM) Goldreich and Ostrovsky (1996); Stefanov et al. (2018); Ren et al. (2014). In a high
level, for each read or write operation, ORAM controller reads and writes not only the requested
block, but also many random blocks. In this way, ORAM hides the information about real blocks
from the attacker. However, the overhead of ORAM is unlikely to be acceptable for real-time applica-
tions such as recommendation system inference due to Service Level Agreement (SLA) Hazelwood
et al. (2018). Even the most optimized version of ORAM suffers from 8-10 times performance
overhead Raoufi et al. (2022). A previous study Rajat et al. (2021) tries to optimize ORAM for
recommendation systems training. But, the scheme relied on pre-determined sequence of accesses
in training and is not applicable to inference. In our future work, we plan to investigate low-latency
protection schemes for embedding table accesses in recommendation system inference.

8 Conclusion
In this work, we shed light on the information leakage through sparse features in deep learning-based
recommendation systems. Our work pivoted the prior investigation focus on dense feature protection
to the unprotected access patterns of sparse features. The new insight from this work demonstrates
even the access patterns can be a big threat to privacy.
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A Data sets

For studying the attacks in the following sections, we use multiple open source datasets such as
Taobao Ads Display, Kaggle Ads Display, and Criteo Display. In this section, we briefly explain the
content of these datasets, and in each of the following sections, we explain more about the dataset
characteristics that we used.

Taobao Ads Display Team (2018): This dataset contains user static features that includes 1, 140, 000
users and 10 static features per user including their user IDs. There are also other features representing
a user’s profile, e.g., age, gender, occupation level, living city, education level, etc. Another file
contains user behavior data that includes seven hundred million records of user past behaviors. It
contains shopping behavior over 22 days. Each row of this file indicates an interaction between a
user (represented by user ID) and an item (represented by item brand ID and category ID). The type
of interaction (buy, brows, fav, cart) and the time stamp of the interactions.

Kaggle Ads Display Lab (2018b): CriteoLabs shared a week’s worth of data for you to develop
models predicting ads’ click-through rates (CTR). This dataset contains three data files including
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training file and test files. Training file consists of a portion of Criteo’s traffic over a period of 7 days.
Each row corresponds to a display ad served by Criteo. Positive (clicked) and negative (non-clicked)
examples have both been subsampled at different rates to reduce the dataset size. Each row contains
13 dense features and 26 sparse features that form embedding table accesses. The semantic of these
features is not released. The test set is computed in the same way as the training set but for events on
the day following the training period.

Criteo Ads Display Lab (2018a): This dataset is similar to Kaggle. But it is a much larger dataset
containing 24 data files collected over 24 days with a different subsampling ratio.

For the identification attack, sensitive attribute attack, re-identification attack, and OMP-based
frequency attack our analysis requires user IDs, static profile features, or user past behaviors in
the same dataset. Hence, for these attacks, we used the Taobao dataset, which is the only public
dataset containing all these features. For the frequency-based attack, we need less information to
implement the attacks. Thus all the datasets meet the requirement and we evaluate all of them in the
hash information leakage study and the frequency based attack.

B Data Pipeline in Production-Scale Recommendation Systems

As mentioned earlier, exposing raw values of sparse features can leak sensitive information of a user.
In this section, we discuss the current production-scale data pipeline for sparse feature processing
and how such real system designs may impact the information leak.

One challenge in designing efficient embedding tables is that the values of sparse features may be
unbounded, resulting in very large embedding table sizes. Consider the news articles produced in
the world as a dynamic sparse feature item that a user may interact with. There are thousands of
news articles in just a day from around the world and creating embeddings for each news item in
an embedding table is impractically large. For instance, the DLRM recommendation model in 2021
needs 16x larger memory, compared to the one used in 2017 Lui et al. (2021); Sethi et al. (2022).
Furthermore, 99% of model parameters belong to embedding tables Gupta et al. (2020). That is why
production-scale models demand 10s of TB memory capacity Mudigere et al. (2021); Sethi et al.
(2022). One common solution for converting high dimensional data to a low-level representation is to
use hashing Shi et al. (2009). Using hashing for recommendation systems was first suggested in Zhang
et al. (2018). In addition to bounding sparse features to a fixed size, hashing helps with responding to
the rare inputs that are not seen before Acun et al. (2021); Kang et al. (2020). Furthermore, using
high-cardinality features may cause over-fitting problems due to over parameterization Liu et al.
(2020); Kang et al. (2020). Considering all these reasons, sparse feature inputs in production-scale
models are hashed prior to embedding look-ups.

In the appendix B.1, we briefly explain how different hashing schemes work and then we analyze
how hashing impact information leakage. Recall that all the information leakage that we discussed in
the prior sections is due to the fact that an adversary sees the raw value of embedding table indices.
We analyzed and demonstrate embedding table hashing in recommendation systems, which was not
necessarily designed for protecting data privacy could not help with reducing information leakage.

B.1 Hash Functions

There are multiple ways of reducing the embedding table size using hash functions, and they all have
trade-offs. We explain some of the most common hashing schemes here.

Embedding table as a hash-map: With hash-map, embedding table entries are combined based
on their similarity and a smaller embedding table is formed. However, to use the embedding table,
a hash map should be kept to keep track of merged entries. This is the most accurate but the most
expensive method in practice. In a previous study Zhang et al. (2018), the authors suggested that
using locality sensitive hashing can approximately preserve similarities of data while significantly
reducing data dimensions. Frequency hashing Zhang et al. (2020) also keeps a separate map with hot
items and carefully maps only hot items to different entries in the table. This ensures that hot items
do not collide, while items that are less frequently accessed may in fact be mapped to a same entry.
Modulo hashing: This is the cheapest and simplest hash to implement. This hashing performs
modulo division based on the pre-defined size of the hash table. For hash size P , the hash function is
as simple as input mod P . Though simple, it has the disadvantage that two completely different
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entities might collide.
Cryptographic hashing: This approach is a one-way cryptographic algorithm that maps an input of
any size to a unique output of a fixed length of bits. A small change in the input drastically changes
the output. Cryptographic hashing is a deterministic hashing mechanism.

B.2 Statistical Analysis on Information Leakage After Hashing

In this section, we analyze if the amount of randomization created by hashing can have any effect
on reducing data leakage. In the following, we report our analysis on the entropy of pre-hash and

Table 5: Entropy and mutual information analysis of pre-hash and post-hash embedding table indices.

Dataset Table Name Original Table Size Post Hash Table Size Pre-Hash Entropy Post-Hash Entropy MI
Taobao Brands 379, 353 37, 935 9.91 9.28 9.28
Taobao Categories 12, 124 1, 212 6.19 5.72 5.72
Kaggle C3 1, 761, 917 176, 191 10.15 9.41 9.41
Kaggle C18 4, 836 483 5.92 5.27 5.27
Kaggle C24 110, 946 11, 094 6.57 6.28 6.28
Criteo C7 6, 593 659 7.63 5.84 5.84
Criteo C12 159, 619 15, 961 7.20 6.85 6.58
Criteo C20 11, 568, 963 1, 156, 896 7.37 7.18 7.18

post-hash indices as well as the mutual information analysis. Given a discrete random variable X,
with possible outcomes: x1, . . . , xn which occur with probability p(x1), . . . , p(xn), the entropy is
formally is defined as Cover (1999):

H(X) = −
N∑
i=1

p(xi)× log(p(xi)) (7)

The binary (Base 2) logarithm gives the unit of bits (or "shannons"). Entropy is often roughly used
as a measure of unpredictability. In this part we measure the entropy of the input and output of the
hash function. In our specific evaluation, we first measure the probabilities in Eq (7) by measuring
the frequency of each outcome for pre-hash. We used modulo hash function for compressing the
values and measured the post-hash frequencies. Finally by applying Eq (7), we find out the amount
of uncertainty in each of these values. As shown in Table 5, the pre-hash entropy of the brand table in
Taobao dataset is almost 10 bits. Even after reducing the table size with hashing by 10 times, the
amount of information is not reduced significantly for the post-hash values. For the category table,
the amount of information was 6 bits and it remains the same after 10 times reduction in the table size.
For Kaggle, we selected three embedding tables with different sizes. C3 is the largest embedding table
with 1, 761, 917 entries. C18 represents the small tables with 4, 836 entries while C24 represents
the moderate tables with 110, 946 entries. As shown in this table, the entropy of the sparse features
varies between 10 bits to 6 bits depends on the feature. This entropy is not reduced significantly in
the post hash values. Finally, the Criteo dataset is evaluated. Note that since the dataset is hashed
in a different way, feature names are different from the Kaggle dataset. In this dataset, C7 is the
smallest table with 6, 593 entries. C12 is the average-size table and C20 is the largest embedding
table with 159, 619 and 11, 568, 963 entries respectively. The details about embedding table sizes are
reported in Appendix A. An important observation is that the entropy of information in indices is
not reduced significantly after hashing. It implies that the post-hash indices hold almost the same
amount of information as the pre-hash indices.

Mutual Information (MI) Analysis In probability and information theory, the mutual information of
two random variables is a measure of the mutual dependence between the two variables. More specif-
ically, it quantifies the "amount of information" obtained about one random variable by observing
the other random variable. Mutual information between two random variables X and Y is measured
by Cover (1999):

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (8)

Many prior works used MI as a measure of privacy guarantee Cuff and Yu (2016); Kalantari et al.
(2017); Liao et al. (2017); Guo et al. (2020); Mireshghallah et al. (2020). In our example, we compute
the mutual information between the pre-hash indices (X) and the post-hash indices (Y ). Based on
Eq(8), the mutual information between post-hash and pre-hash indices is equal to the entropy of
the post-hash indices (H(Y)) minus the conditional entropy of post-hash indices given the pre-hash
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indices (H(Y |X)). With deterministic hash functions, a post-hash index is deterministic for a given
pre-hash index. This means there is no ambiguity in the conditional entropy. So H(Y |X) in Eq( 7) is
equal to zero and MI is equal to the entropy of post-hash indices. Our empirical result in Table 5 also
validates this point. Based on this observation, the mutual information between input and output of
the hash is almost equal to the entropy of the hash input. This means that an adversary with unlimited
computational power can recover almost all the information in the pre-hash indices by just observing
the post-hash indices.

C Frequency Based Attack: Kaggle and Criteo Datasets

In Table 6, we show the accuracy of this attack model for the Kaggle dataset. As demonstrated in this
table for small embedding tables (represented by C18), even a small sample of prior distribution and
online queries observed by an attacker can lead to a high inversion accuracy while for large tables
(represented by C3) more accurate distributions are needed. The evaluation for the Criteo dataset is
reported in Table 7. In this dataset C7 is the smallest table, C20 is the average-size table and C12 is
the largest embedding table (More details about embedding table sizes are reported in Appendix A.).
Criteo dataset also validates the same observation as previous datasets.

Table 6: Accuracy of hash inversion for the frequency-based attack for Kaggle dataset.
Number of Samples used
for Learning Distribution

Number of Samples
for Evaluation Feature Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

100, 000 1, 000 C3 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
100, 000 1, 000 C18 0.74 0.90 0.95 0.96 0.98 0.98 0.98 0.98 0.98 0.98
100, 000 1, 000 C24 0.87 0.92 0.92 0.92 0.93 0.93 0.93 0.93 093 0.93
1000, 000 10, 000 C3 0.63 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
1000, 000 10, 000 C18 0.75 0.89 0.94 0.96 0.98 0.98 0.98 0.99 0.99 0.99
1000, 000 10, 000 C24 0.90 0.95 0.96 0.97 0.97 0.97 0.97 0.97 097 0.97
4, 000, 000 100, 000 C3 0.68 0.71 0.71 0.72 0.72 0.73 0.73 0.73 0.74 0.74
4, 000, 000 100, 000 C18 0.78 0.91 0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.99
4, 000, 000 100, 000 C24 0.91 0.95 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98

Table 7: Accuracy of hash inversion for the frequency-based attack for Criteo dataset.

Number of Samples used
for Learning Distribution

Number of Samples
for Evaluation Feature Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

3, 000, 000 200, 000 C7 0.33 0.48 0.61 0.68 0.74 0.80 0.84 0.88 0.91 0.93
3, 000, 000 200, 000 C12 0.89 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
3, 000, 000 200, 000 C20 0.93 0.98 0.99 0.99 1 1 1 1 1 1
30, 000, 000 2, 000, 000 C7 0.33 0.48 0.58 0.65 0.73 0.80 0.85 0.88 0.92 0.93
30, 000, 000 2, 000, 000 C12 0.89 0.96 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
30, 000, 000 2, 000, 000 C20 0.85 0.88 0.91 0.94 0.96 0.98 0.99 0.99 0.99 0.99
400, 000, 000 4, 000, 000 C7 0.33 0.48 0.58 0.65 0.73 0.80 0.83 0.88 0.90 0.93
400, 000, 000 4, 000, 000 C12 0.89 0.96 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
400, 000, 000 4, 000, 000 C20 0.84 0.88 0.90 0.92 0.95 0.97 0.98 0.99 0.99 0.99

D Is Private Hash a Solution?

Note that hash functions are currently used for reducing the sizes of embedding tables rather than
designed for privacy purposes. But if a private hash function is employed, can it guarantee zero
information leakage? In other words, using any random mapping between inputs and outputs of the
hash, and if an attacker does not know the hash, can they find the mapping just by observing the
frequency of the accesses? To answer this question, we first use a simple greedy attack to demonstrate
the leakage of information. Then we use a more sophisticated machine learning based optimization
exploiting sequences of access to show how an attacker can achieve a high hash inversion accuracy
even when the hash function is unknown.

We first design a greedy attack to map the inputs and outputs by matching the frequencies without
having any further information about the hash function. The only knowledge the attacker has are the
prior distribution of pre-hash accesses and the observed post-hash access to the embedding table. We
analyzed the category table of 12, 000+ pre-hash entries and 1, 200 post-hash entries (P = 0.1N ).
We randomly map each of the 12, 000 inputs to an output. Then we launched the frequency-based
attack without providing any information about this mapping to the attacker. This simple attack
could successfully figure out the correct mapping for 23% of the accesses. This analysis showed
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that although a private hash can reduce the amount of information leakage, it will not eliminate the
leakage completely and is still susceptible to this type of attack. Now we take a step further to show
how this attack can achieve an even higher inversion accuracy.
Evaluation Setup: As we explained in the previous sections, the user shares their most recent
behaviors with the recommendation system to receive accurate suggestions. In this section, we show
that the combination of the users’ past shopping behaviors within one query, can help attackers launch
more sophisticated attacks. Hence, for evaluating this attack we use Taobao dataset that provides this
shopping behaviours. We evaluated both Category and Brand tables with more than 379K and 12K
raw entries respectively.
Attack Method: Assume that N is the size of the input, and P is the size of the output, and the
hash function h(.) maps the input to the output. Thus, h[i] = j means that the hash function, maps
input index i to output index j. We do not impose any assumptions on the hash function in this
part. Assume that the joint distribution of the indices of the input and the output are shown by the
matrices X ∈ RN×N and Y ∈ RP×P , respectively. This means that the probability of (i1, i2) in the
input is Xi1,i2 and the probability of (j1, j2) in the output is Yj1,j2. Also assume that the matrix
B ∈ RP×N is the one-hot representation of the hash function h(.), such that

Bj,i =

{
1 h(i) = j
0 otherwise (9)

Using these notations, we can show that,

Y = BXBT . (10)

To prove this, note that

Yi1,i2 =
∑
j1,j2

1h(j1)=i11h(j2)=i2Xj1,j2

=
∑
j1,j2

Bi1,j1Xj1,j2Bj2,i2 , (11)

where 1E is the indicator function of the event E , therefore 1h(j1)=i1 = Bi1,j1 . Eq (11) yields (10).
Now, to estimate B, we would like to ideally solve the following optimization.

B̂ = arg min
B∈B

∥Y −BXBT ∥2F , (12)

where ∥X∥2F =
∑

i,j X
2
i,j is the Frobenius norm and B is the space of all possible matrices B, that

represents a hash function. Optimization (12) is an integer programming and NP-hard problem, due
to the constraint in the minimization. To approximately solve this, we use Orthogonal Matching
Pursuit (OMP) Tropp and Gilbert (2007). The idea behind OMP is to find one column of the matrix B
in each iteration, in such a way that the new column satisfies the constraint on B, and the new added
column minimizes the loss function in (12) the most (compared to any other feasible column). Note
that in each iteration of our algorithm, we make sure that the matrix B can represent a hash function.
The size of Matrix B can grow large based on the embedding table size. Thus, in our implementation
we used CSR format since this matrix is sparse.
Evaluation Metric: Accuracy is the probability that the attacker correctly identifies a raw input value
from the post-hash value. We used top-1 accuracy which is defined in Eq (5).
Evaluation Result: To evaluate this attack, we measure the accuracy of the hash inversion function
when changing the hash size. Figure 8 demonstrates the hash-inversion accuracy using this opti-
mization for the Taobao category table. We used different hash sizes to evaluate this attack. The
size of the hash table changes from 0.05 (P = 0.05N) of the original table size to 0.80 of the table
size. It shows how this accuracy increases over iterations until it saturates. For the large hash sizes,
P = 0.8N , accuracy reaches 94%, which means the this attack can recover raw values from hashed
values for 94% of accesses. Since the embedding table size for the Brand table is large, we used
the Compressed Sparse Row (CSR) implementation to optimize the memory usage of the attacker.
This way we could analyze the same attack on the brand embedding table with 379, 353 raw entries.
Figure 9 shows how different hash sizes can change the attacker’s accuracy for hash inversion in the
brand table. The key takeaway is that, even an unknown private hash cannot reduce the information
leakage. An attacker can use this frequency-based machine learning optimization to recover the raw
value features with high accuracy.
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Figure 8: Hash-inversion accuracy increases with more optimization iterations and Larger hash sizes
(Category Table).
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Figure 9: Hash-inversion accuracy increases with more optimization iterations and Larger hash sizes
(Brand Table).

E Implications for Private Recommendation Systems

Our threat model is based on the common practices employed by the industry’s recommendation
systems. They are typically deployed in the cloud for inference serving Niu et al. (2020). In such a
setting, a pre-trained model is hosted by a cloud server. The interaction history of each end user is kept
in a user’s local web browser or on a merchant’s site where the merchant is precluded from sharing
these data with other platforms without users’ consent. This assumption is particularly important as it
reflects the growing awareness in protecting personal data privacy.

There are various techniques that protect computations on cloud systems. These techniques include
fully homomorphic encryption (FHE) Shmueli and Tassa (2017), multi-party computation (MPC) Gol-
dreich (1998), and trusted execution environments (TEEs) Costan and Devadas (2016); Salter (2021).
However, none of these techniques protect the privacy of memory access patterns. For example, while
Intel SGX protects computational confidentiality and integrity, it has been shown to be vulnerable
to side-channel attacks via memory access pattern leakage Wang et al. (2017). This paper shows
that the information leakage through embedding table accesses may be used to extract private user
information, suggesting that memory access patterns need to be protected if strong privacy protection
is necessary for recommendation systems in the cloud.

Table 1 summarizes the attacks introduced in this paper. Each of them has a different goal. In all of
these attacks, an attacker launches the attack by exploiting and analyzing the access patterns they
observe. In some of the attacks, an attacker uses prior knowledge gleaned from the distribution of the
accesses. In this work, we also define different metrics to evaluate each of these attacks. The high
success rate of these attacks, highlights the importance of access pattern protection in the cloud-based
recommendation systems.
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F Related Work

The risk of information leakage in recommendation systems has been explored in prior works.
However, most of the research in this area focused on other models (e.g. content filtering) or
dense features. Access pattern privacy in recommendation systems is a new topic and current
Federated learning and Oblivious RAM schemes have shortcomings when it comes to DNN-based
recommendation systems as we discuss here.

The study in Zhang et al. (2021) designed a membership inference attack against a recommendation
system to infer the training data in a content filtering model.Abdelberi et al. used a statistical learning
model to find a connection between users’ interests and the demographic information that users
are not willing to share Chaabane et al. (2012). Previous studies also investigated the risk of cross-
system information exposure Chaum (1985); Sweeney (2002). For instance, a former Massachusetts
Governor was identified in voter registration records by the combination of a zip code, a birth
date, and gender. Using this information, the researchers were able to identify him in a supposedly
anonymous medical record dataset Sweeney (2002). Most of the prior research in this domain was
focused on information leakage through dense features Akhtar and Mian (2018); Choquette-Choo
et al. (2021); Li and Zhang (2021); Calandrino et al. (2011); Beigi and Liu (2020). Also, there are
prior works investigating sparse feature leakage in other domains Ghinita et al. (2008); Aggarwal and
Yu (2007). However, these leakages are through sparse feature values and not the embedding table
accesses. Sparse feature’s information leakage through embedding table accesses was explored for
NLP models Song and Raghunathan (2020); Aggarwal and Yu (2007). This attack aimed to disclose
the embedding tables’ input values based on their output which is different from our threat model.
Access pattern attacks are also investigated in databases research Grubbs et al. (2019); Bindschaedler
et al. (2017). However, these attacks and defense schemes are fundamentally different from the ones
in recommendation systems. In databases attack the goal is to find the value of the encrypted data of
the database based on the range queries or the correlation of different rows.

Using federated learning for training centralized recommendation models has gained attention re-
cently Yao et al. (2021); Yang et al. (2020). One of the problems of using federated learning for
recommendation systems is the large size of embedding tables. These schemes usually use decompo-
sition techniques such as tensor train to fit embedding tables on the edge devices Oseledets (2011).
However, because of the accuracy drop, the compression ratio is not high which makes them incom-
patible with edge devices. TT-Rec mitigates the performance degradation of tensor decomposition
by initializing weight tensors by Gaussian distribution Yin et al. (2021). Niu et al. proposed an
FL framework to perform a secure federated sub-model training Niu et al. (2020). They employed
Bloom filter, secure aggregation, and randomized response to protect users’ private information.
But, inference solutions are not discussed in these federate learning approaches. DeepRec Han et al.
(2021) proposed an on-device recommendation model for RNNs. In this work, there is a global model
trained by public data that is available from before GDPR. Each device downloads this global model
and re-train the last layer with their data. The problem with this model is that it depends on before
GDPR public data. However, with new models come new features, which were not collected before.
Thus they can not rely on this scheme for future models.
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