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Abstract

Non-invasive arterial spin labeling is a magnetic resonance imaging technique that can
be used for kidney transplant evaluation and perfusion estimation. This work proposes
an automatic workflow for renal segmentation and perfusion estimation based on a deep
learning approach and image analysis, for the postoperative evaluation of the allograft.
Our method outperforms state-of-the-art results in terms of multiclass segmentation on
low spatial resolution and low signal-to-noise-ratio data. Similarity coefficients above 90%
are achieved for kidney, cortex, and medulla segmentation results and perfusion values
within the acceptable ranges are obtained.
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1. Introduction

Renal transplant is the treatment of choice in patients suffering from chronic kidney disease,
characterized by a progressive and irreversible loss of kidney function (Jiang and Lerman,
2019). Renal blood flow (RBF) has a great value for clinicians as it enables the identification
of perfusion impairment as an emerging biomarker of transplanted renal dysfunction. The
overall RBF is determined by the vasoconstriction of renal arterial tree and changes in the
intrarenal vascular resistance (Field et al., 2010). Pseudo-continuous arterial spin labeling
(PCASL) is a non-invasive magnetic resonance imaging (MRI) technique that allows the
characterization of RBF using magnetically labeled arterial blood water spins as endogenous
tracer with a combination of a train of radiofrequency pulses and slice-selective gradients
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(Nery et al., 2018). It is considered an appropriate imaging technique for patients with
renal dysfunction for whom the administration of contrast agents could be contraindicated
(Odudu et al., 2018). RBF estimation derived from PCASL entails extra segmentation work,
which is tedious and prone to error. To date, the applications of machine and deep learning
models in renal MRI are scarce compared to those found for computerized tomography (CT)
(Zhang et al., 2020) and high spatial resolution MRI (Klepaczko et al., 2021). We propose
a fully-automated pipeline that; first performs a preliminary whole kidney segmentation
by Mask R-CNN; secondly classifies the pixels within the kidney region into cortex and
medulla classes; and finally estimates RBF for quantitative assessment (see Figure 1).

2. Experimental setup and results

Figure 1: Automatic renal perfusion estimation pipeline.

The dataset used consists of PCASL and T1-weighted (w) images from 16 transplanted
patients with acquisition matrix of 96 x 96, and 3 slices. Each dataset contains a M0

reference image, 25 control and labels PCASL pairs, and 14 T1-w images. Binary masks
encompassing the kidney, the cortex, and the medulla are used in the training and testing
steps. Data augmentation and intensity normalization is used in the training process.

Segmentation of the kidney and renal compartments

We implement the Mask R-CNN for the segmentation of the kidney on PCASL images. It
consists of a two stage (Feature Pyramid Network (FPN) and a ResNet101 backbone) con-
volutional neural network (CNN) that generates bounding boxes and segmentation masks
for each instance of an object in the image (He et al., 2018). The model is trained for
150 epochs, using supervised gradient descent optimizer, learning rate of 10−4, and pre-
trained weights for MS COCO (Abdulla, 2017). We use Python 3.8 and Tensorflow on GPU
NVIDIA GeForce RTX 3090. Training takes ≈ 120 min. We compare the performance of
the Mask R-CNN against the U-Net (Ronneberger et al., 2015) and Supervised Descent
Method (Xiong and De la Torre, 2013). The method proposed achieves a Dice similarity
coefficient (DSC) score (mean ± standard deviation, SD) of 93.90 ± 2.00%, whereas the U-
Net and SDM achieve DSC values of 87.87 ± 1.30% and 84.40 ± 11.89%, respectively. The
multiclass segmentation method proposed is based on temporal information thresholding of
T1-w images. Due to the lack of labeled cortex and medulla tissues to train the network,
we use simple image processing tools for tissue differentiation. Based on ground truth (GT)
cortex and medulla annotations, we construct time-intensity curves for each tissue along
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the inversion times (TI) and analyse the temporal distribution of the null points for each
pixel. We note that cortical tissue attains its null point before the medulla does. Pixels
within kidney masks resulted from Mask R-CNN are classified as cortex if its null point is
found at 5 ≤ k ≤ 8 TIs and as medulla if found at 10 ≤ k ≤ 13. Unclassified pixels are
designated the uncertain class. In a second stage, pixels are reclassified according to GT T1

values. Instance segmentation is evaluated using a set of standard metrics: DSC, precision
(PC), recall (RC), and F-measure (FM) with β value of 2. In order to counteract the class
imbalance between cortex and medulla, metrics are weighted according to the number of
pixels for each class. Thus, attained RC is 89.66 ± 9.99%, PC is 91.85 ± 4.89%, FM is
89.47 ± 10.61% and DSC is 89.70 ± 10.23%.

RBF estimation

Mean cortical and medullary signals are calculated over respective tissues of subtracted
control and label pairs. RBF maps are computed using the single compartment model
(Nery et al., 2020). Pairwise comparisons between predicted and GT perfusion values show
positive association, as the GT perfusion values increases, so does the predicted values.
Obtained cortical perfusion values for proposed and GT values are: 153 ± 87 mL/min/100
g and 162 ± 70 mL/min/100 g, respectively; and medullary perfusion values of 69 ± 74
mL/min/100 g, and 67 ± 62 mL/min/100 g, respectively. Moreover, the cortical and
medullary perfusion value discrepancy is 6.78% and 18.31%, respectively.

3. Discussion

The approach proposed leads to a reliable renal perfusion estimation. Segmentation results
based on Mask R-CNN presents outstanding results, obtaining averaged DSC values above
93%, outperforming the current state-of-the-art. The segmentation performance highly
depends on the intensity range of the images. Even if intensity rescale is applied, the
heterogeneity of image intensity should be considered when testing with new data. As ex-
pected, the results obtained for the cortex are better than the ones extracted for the medulla
compartment. The segmentation performance of medullary tissue shows higher dissimilar-
ities between manually drawn labels and automatically achieved ones. This discrepancy
is mainly caused by the mislabeling of the medulla region, which tends to be less precise
than the segmentation of the cortex due to the low differentiation of interfaces and partial
volume effects. The method proposed also generates an uncertain class mask in areas where
the differentiation between cortex and medulla pixels is not clear, that could be processed
in further steps to complete cortical and medullary masks, and indeed, the estimation of
perfusion values. Regarding the estimation of renal perfusion, our work demonstrates that
multiclass segmentations do have an effect on cortical and medullary RBF estimation.
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