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Summary
Video generation has been effective both for creative content and as a tool for planning in

robotic control. Given an image observation and a language instruction, prior work generates
video plans that are then converted into executable robot actions. However, the quality of
these videos often limits real-world applicability due to hallucinations and ungrounded physics,
leading to low task success. In this work, we propose VideoAgent to ground video generation in
the physical world via external feedback. VideoAgent trains a goal-conditioned video diffusion
model on robot trajectories without action labels or rewards using a novel self-improving
objective called self-conditioning consistency. At inference, VideoAgent refines sampled video
plans guided by a vision-language model (VLM), leveraging inference-time compute to improve
video quality. As refined plans are executed, VideoAgent collects additional online data to
further enhance training. Experiments in MetaWorld and iTHOR show VideoAgent significantly
reduces hallucinations and improves task success. We also demonstrate VideoAgent refining real-
robot videos, suggesting the potential for grounding video generation in real-world feedback.

Contribution(s)
1. In this work we present VideoAgent, a reward free goal conditioned framework for self-

improving video policies through : (1) iteratively learns to refine generated plans using a
novel self-conditioning consistency objective during training along with diverse feedback
from VLMs, and (2) implementing a efficient search mechanism using VLM feedback at
inference-time for selecting plans to finally convert to executable actions.
Context: Our approach contrasts with prior video policies (Ko et al., 2023; Du et al., 2024)
which perform direct, video plan generation. By introducing iterative refinement as a learning
objective at training and inference while also incorporating diverse feedback, VideoAgent
parallels the feedback-driven grounding paradigm of LLMs (e.g., RLHF), adapting it to
ground video policy models in the physical world using real world interaction and VLMs for
feedback mechanism.

2. Through experiments we empirically show the significant improvements in task success due
to grounding the video policy. We also show detailed ablations of the benefit of scaling
inference-time compute to search better plans guided by VLM feedback for decoding actions,
further improving performance all in the absence of any defined rewards. Another axis of
scaling performance was by using VideoAgent to autonomously collect online data filtered
using VLM and environment feedback for further finetuning of the agent.
Context: We demonstrate results of leveraging test-time compute to improve video plans
fro robot learning taking inspiration from recent developments in the LLM literature (Snell
et al., 2024). Training the refinement model with VLM feedback on how to improve a
video plan also gives significant performance boost bypassing the need for hard to specify
rewards in complex domains. Self-generated online data collection further helps improve the
agents abilities, suggesting that generative video policies, can leverage diverse feedback and
autonomously collect data to bootstrap self-improvement.
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Abstract

Video generation has been effective in generating visual plans for controlling robotic1
systems. Specifically, given an image observation and a language instruction, previous2
work has generated video plans which are then converted to robot controls to be executed.3
However, a major bottleneck in leveraging video generation for control lies in the quality4
of the generated videos, which often suffer from hallucination (e.g., unrealistic physics),5
resulting in low task success when control actions are extracted from the generated6
videos. In this work, we propose VideoAgent to ground video generation in the physical7
world by integrating external feedback. VideoAgent trains a video diffusion model to8
perform video refinement through a novel objective which we call self-conditioning9
consistency. During inference, VideoAgent samples and refines generated video plans10
under the guidance of a vision-language model (VLM) as reward, enabling inference-11
time compute to be turned into better generated video plans. As refined video plans are12
executed, VideoAgent collects additional data from the environment to further improve13
video plan generation. Experiments in simulated robotic manipulation from MetaWorld14
and iTHOR show that VideoAgent drastically reduces hallucination, thereby boosting15
success rate of downstream manipulation tasks. We further illustrate that VideoAgent16
can effectively refine real-robot videos, providing an early indicator that robots can be17
an effective tool in grounding video generation in the physical world.18

1 Introduction19

Large text-to-video (T2V) models pretrained on internet-scale data enable generation of creative20
video content (Ho et al., 2022; Hong et al., 2022; Singer et al., 2022), games (Bruce et al., 2024),21
animations (Wang et al., 2019), and movies (Zhu et al., 2023). Recent work demonstrates their22
potential as real-world simulators (Yang et al., 2023b; Brooks et al., 2024) and as policies with unified23
observation and action space (Du et al., 2024; Ko et al., 2023; Du et al., 2023). These advances24
can lead to internet-scale knowledge transfer and progress toward generalist agents—a single policy25
for controlling multiple robots across various morphologies, environments and tasks. Nevertheless,26
T2V models have only had limited success in downstream applications in reality. For instance, in27
video generation as policy (Du et al., 2024; Ko et al., 2023), when an observation image and a28
language instruction are given to a video generation model, generated videos often hallucinate (e.g.,29
objects randomly appear or disappear) or violate physical laws (e.g., a robot hand going through an30
object) (Yang et al., 2023b; Brooks et al., 2024). Such issues have led to low task success rate when31
generated videos are converted to control actions through inverse dynamics models, goal conditioned32
policies, or other action extraction mechanisms (Wen et al., 2023; Yang et al., 2024; Ajay et al.,33
2024). While scaling up dataset and model size can be effective in reducing hallucination in large34
language models (LLMs) (Hoffmann et al., 2022), it is more difficult in video generation as language35
labels for videos are labor intensive to curate and we have not yet converged to an architecture that36
is more favourable to scaling (Yang et al., 2024). Scaling aside, two major directions to improve37
generation in LLMs have been to incorporate external feedback (Ouyang et al., 2022b) and to scale38
search with increased inference time compute (Snell et al., 2024; Wu et al., 2024). It is therefore39
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Figure 1: The VideoAgent Framework. VideoAgent generates a video plan conditioned on an initial image and
task description, similar to (Du et al., 2023). It then (1) iteratively refines this plan using VLM feedback, (2) the
VLM selects the best refined video, converting to control actions via optical flow, and (3) executes these actions
in an environment, collects real-world feedback and additional online data to further improve the generation.

natural to wonder what kind of feedback and inference-time compute can be leveraged to improve40
T2V generations.41

To answer this question, we explore two types of feedback that are natural to obtain for video42
generation models, namely AI feedback from a vision-language model (VLM) and real-world43
execution feedback when generated videos are converted to motor controls. To utilize these feedback44
for self-improvement, we propose VideoAgent. Different from video generation as policy, which45
directly turns a generated video into control actions (Du et al., 2023; Ko et al., 2023), VideoAgent is46
trained to refine a generated video plan iteratively using feedback from a pretrained VLM. During47
inference, VideoAgent queries the VLM to select the best refined video plan, allowing inference-time48
compute to be turned into better generated video plans, followed by execution of the plan in the49
environment. During online execution, VideoAgent observes whether the task was successfully50
completed, and further improves the video generation model based on the execution feedback from51
the environment and additional data collected from the environment. The improvement to the52
generated video plan comes in three folds: First, we propose self-conditioning consistency for video53
diffusion model inspired by consistency models (Song et al., 2023; Heek et al., 2024), which enables54
low-quality samples from a video diffusion model to be further refined into high-quality samples.55
Second, VLM feedback combined with more inference-time compute leads to better video plans.56
Lastly, when online access to the environment is available, VideoAgent executes the current video57
plan and collects additional successful trajectories to further finetune the video generation model. A58
visual illustration of VideoAgent is shown in Figure 1.59

We first evaluate VideoAgent in two simulated robotic manipulation environments, Meta-World (Yu60
et al., 2020) and iTHOR (Kolve et al., 2017), and show that VideoAgent improves task success61
across all environments and tasks evaluated. We additionally provide ablation studies on the effect of62
different components in VideoAgent, including different types of feedback from the VLM and the63
amount of inference-time compute spent.Lastly, we illustrate that VideoAgent can iteratively improve64
real-robot videos, providing early signal that robotics can be an important mean to ground video65
generation models in the real world.66

2 Background67

In this section, we provide the background on video generation as policy in a decision making68
process (Du et al., 2023). We also introduce consistency models (Song et al., 2023; Heek et al., 2024;69
Daras et al., 2024), which VideoAgent builds upon for self-refinement.70

2.1 Video as Policy in Sequential Decision Making71

We consider a predictive decision process similar to (Du et al., 2024): P := ⟨X ,G,A, H, E ,R⟩,72
where X denotes an image-based observation space, G denotes textual task description space, A73
denotes a low-level motor control action space, and H ∈ R denotes the horizon length. We denote74
π(·|x0, g) : X × G 7→ ∆(XH)1 as the language conditioned video generation policy, which models75

1We use ∆(·) to denote a probability simplex function
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the probability distribution over H-step image sequences x = [x0, ..., xH ] determined by the first76
frame x0 and the task description g. Intuitively, x ∼ π(·|x0, g) correspond to possible visual77
paths for completing a task g. Given a sampled video plan x, one can use a learned mapping78
ρ(·|x) : XH 7→ ∆(AH) to extract motor controls from generated videos through a goal-conditioned79
policy (Du et al., 2023), diffusion policy (Black et al., 2023), or dense correspondence (Ko et al.,80
2023). Once a sequence of motor controls a ∈ AH are extracted from the video, they are sequentially81
executed in the environment E , after which a final rewardR : AH 7→ {0, 1} is emitted representing82
whether the task was successfully completed. For simplicity, we only consider finite horizon, episodic83
tasks. Given a previously collected dataset of videos labeled with task descriptions D = {(x, g)},84
one can leverage behavioral cloning (BC) (Pomerleau, 1988) to learn π by minimizing85

LBC(π) = E(x,g)∼D[− log π(x|x0, g)]. (1)
Equation 1 can be viewed as maximizing the likelihood of the videos in D conditioned on the initial86
frame and task description.87

2.2 Consistency Models88

Diffusion models (Ho et al., 2020; Song et al., 2020b) have emerged as an important technique for89
generative modeling of high-dimensional data. During training, a diffusion model learns to map noisy90
data (at various noise levels) back to clean data in a single step. Concretely, let x(0) denote a clean91
image and x(t) denote the noisy image at noise level t, where t ∈ [0, T ], the training objective for a92
diffusion model fθ(x(t), t) can be written as93

Ldiffusion(θ) = Ex(0),ϵ,t

[
∥fθ(x(t), t)− x(0)∥2

]
, (2)

where ϵ ∈ N (0, I) is the added noise, and x(t) =
√
αtx

(0)+
√
1− αtϵ where αt are time-dependent94

noise levels. Although diffusion models have achieved high-quality image/video generation, they95
require hundreds or thousands of denoising steps during inference, which induces tremendous com-96
putational cost. To overcome the slow sampling speed of diffusion models, consistency models (Song97
et al., 2023; Song & Dhariwal, 2023) were initially proposed by enforcing a consistency loss across98
different noise levels, i.e.,99

Lconsistency(θ) = Ex(0),ϵ,t1,t2

[
∥fθ(x(t1), t1)− stopgrad

(
fθ(x

(t2), t2)
)
∥2
]
, (3)

which encourages the output of the single-step map between different noise levels to be similar. In100
fact, both the diffusion loss in Equation 2 and the consistency loss in Equation 3 can be understood101
as exploiting the structure of the denoising procedure which corresponds to an ordinary differential102
equation (ODE). Specifically, as introduced in Song et al. (2023; 2020a), the backward denoising103
procedure of a diffusion model can be characterized by an ODE, i.e.,104

dx(t)

dt
= −t · s(x(t), t), (4)

with s(x(t), t) is some score function. During the entire path along t ∈ (ϵ,∞], following this ODE105
should always map x(t) to x(0). If we parametrize the model f(x(t), t) as the simulation following106
the ODE governed by s(x(t), t), we obtain the diffusion loss (2). Meanwhile, for all t, t′ ∈ (ϵ,∞],107
we have f(x(t), t) = f(x(t′), t′) along the simulation path, which induces the consistency loss (3).108
Therefore, we can combine the diffusion loss and consistency loss together for model training, i.e.,109

L(θ) = Ldiffusion(θ) + λ · Lconsistency(θ), (5)
where λ denotes consistency regularization hyperparameter across different noise levels.110

3 Video Generation as An Agent111

In this section, we introduce VideoAgent, a framework for improving video plan generation. In112
Section 3.1, we develop self-conditioning consistency to iteratively refine generated video plans.113
In Section 3.2, we describe how a diffusion model trained with self-conditioning consistency can114
leverage inference-time compute to select the best video plans. Finally, in Section 3.3, we illustrate115
how VideoAgent closes the self-improvement loop by collecting additional online data to further116
enhance video generation and refinement.117

3.1 Refinement through Self-Conditioning Consistency118
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Figure 2: An illustration of Self-Conditioning Con-
sistency. The horizontal direction represents regular de-
noising process. The two rows represent two refinement
iterations. x̂i denotes generated video plan at refinement
iteration i. We condition the refinement iteration i+ 1
on generated video from the previous iteration x̂i.

We consider first-frame-and-language condi-119
tioned video generation following Du et al.120
(2023); Ko et al. (2023), which generates a se-121
quence of image frames to complete the task122
described by the language starting from the ini-123
tial image. In practice, generated videos of-124
ten contain hallucinations (Yang et al., 2023b).125
While such inaccuracies may prevent a video126
plan from fully completing the task, the gener-127
ated video may still make meaningful progress128
towards completing the task. Thus, instead of in-129
dependently sampling many videos hoping that130
one may be free from hallucinations, we propose131
refining previously generated videos iteratively.132

Specifically, let x(0) denote the ground truth133
video and x̂ a generated video from the original T2V diffusion model. We introduce a self-134
conditioning consistency model, f̂θ(x̂,x(t), t), which takes a generated video x̂ and a noisy version135
of the ground truth x(t) as inputs to predict the clean video. This formulation enables iterative136
refinement by conditioning the model on its previous predictions, as illustrated in Figure 2. We137
denote video samples from the refinement model after the i-th iteration as x̂i. Self-conditioning is138
inspired by a reparameterization of the implicit ODE solver for Equation 4 (Song et al., 2020a; Lu139
et al., 2022; Zhang & Chen, 2022; Chen et al., 2022). For instance, Song et al. (2020a) considered140
the first-order ODE solver for Equation 4 following:141

x(t−1) =
√
αt−1x

(0) +
√
1− αt−1 − σ2

t · s(x(t), t). (6)

In VideoAgent, we adapt Equation 6 by replacing the x(0) term with x̂, the previously generated142
video sample, as illustrated in Figure 2. In standard DDIM-based methods (Song et al., 2020a), x(0)143
is typically obtained as an intermediate estimate from x(t) within the same iteration. In contrast,144
our approach reuses x̂ from a previous iteration, allowing for a self-conditioning mechanism that145
improves temporal coherence. By enforcing consistency across iterations, our method enables the146
denoising process to correct potential failures more effectively.147

We learn the ODE solver through self-conditioning consistency by directly predicting the clean video148
x̂i+1 using:149

LSC-consistency(θ) = Ex̂,x(0),t

[
∥f̂θ(x̂,x(t), t)− x(0)∥2

]
+ µEx̂1,x̂2,t

[
∥f̂θ(x̂1,x

(t), t)− f̂θ(x̂2,x
(t), t)∥2

]
. (7)

The first term in Equation 7 represents the standard diffusion loss with the additional conditioning150
on x̂, while the second term regularizes the similarity between different refinement iterations (x̂1151
and x̂2) to promote coherence across iterations. This iterative refinement process distinguishes152
self-conditioning consistency from traditional consistency models. Combined with the standard153
objective for video diffusion:154

Lvideo-diffusion(θ) = Ex(0),ϵ,t

[
∥fθ(x(t), t)− x(0))∥2

]
, (8)

the overall objective for training a self-conditioning-consistent video diffusion model thus becomes:155
L(θ) = Lvideo-diffusion(θ) + λLSC-consistency(θ). (9)

Note that while the video generation model fθ and the video refinement model f̂θ have different156
input arguments (first frame versus previously generated video), we can share their parameters to157
train a single unified model for both video generation and refinement tasks. This parameter-sharing158
approach allows us to leverage the same model architecture for generating initial video plans and159
iterative refinement. The training process for fθ and f̂θ is detailed in Algorithm 1 in Appendix 7.160

Feedback Guided Self-Conditioning Consistency. While we can refine videos only from previ-161
ously generated samples, it may be desirable to condition the refinement process on any additional162
feedback for the previously generated video that is available (e.g., feedback from humans or vision163
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language models critiquing which part of the generated video is unrealistic). When such feedback is164
available, we can have the refinement model f̂ further take the additional feedback as input, combined165
with the task description, to guide the refinement process, i.e.,166

f̂θ(x,x
(t), t|feedback), (10)

which can be plugged into our framework for learning feedback-guided self-refinement using Equa-167
tion 9.168

3.2 Inference-Time Planning through VLM-Guided Video Generation.169

After training the video generation model fθ and the video refinement model f̂θ described in170
Equation 8 and Equation 7, we can sample from fθ and iteratively apply f̂θ for video refinement.171
Specifically, let η be the step size for the noise schedule, σt be a time dependent noise term,172
VideoAgent first generates a video plan through173

x(t−1) = x(t) − η · ∇θfθ(x
(t), t) + σt · ϵ. (11)

The sample x̂ after T denoising steps corresponds to the generated video. Next, we can iteratively174
apply f̂θ to refine the generated video sample175

x̂i+1 = f̂θ(x̂i,x
(t), t), (12)

where i denotes the video refinement iteration, with x̂0 = x̂ = x(T ). We denote the final video after176
refinement as x̂refined. A natural question is when to stop the iterative video refinement process. We177
use a VLM as a proxy for the environment’s reward to assess whether a refined video is likely to178
lead to successful execution in the environment. Specifically, we denote a VLM as R̂, which takes a179
refined video x̂i and returns a binary value {0, 1} to determine whether a video is acceptable based180
on overall coherence, adherence to physical laws, and task completion (See prompt for VLM in181
Appendix 8). With R̂, the refinement stops when the VLM decides that the refined video is acceptable.182
Namely, we have183

x̂refined = x̂i∗ , where i∗ = min
{
i : R̂(x̂i) = 1

}
(13)

Algorithm 2 in Appendix 7 shows details for video plan generation, refinement, and selection during184
inference.185

3.3 Self-Improvement through Online Finetuning186

In addition to video refinement through self-conditioning consistency and inference-time compute187
as described in Section 3.1 and Section 3.2, we can further characterize the combination of video188
generation and video refinement as a policy, which can be improved by training on additional data189
collected from the environment during online interaction. Specifically, the goal is to maximize the190
expected returns of a policy through trial-and-error interaction with the environment:191

Jonline(θ) = E [R(a) |πθ, ρ, E ] , (14)
where R is the true reward function, E is the interactive environment, and πθ corresponds to the192
combination of fθ and f̂θ.193

A broad array of reinforcement learning methods (Sutton & Barto, 2018) such as policy gradi-194
ent (Schulman et al., 2017) can be employed to maximize the objective in Equation 14. For simplicity,195
we consider the setup of first executing the policy in the environment, then filtering for successful196
trajectories, continuing finetuning the video policy using additional online data, and executing the197
finetuned policy again to collect more data. Specifically, each online iteration constructs an additional198
dataset by rolling out the policy πθ at the current online iteration199

Dnew = {x̂refined ∼ πθ(x0, g) | R(ρ(x̂refined)) = 1} , (15)
where ρ is the optical flow model that maps the refined video to low-level control actions. See200
Algorithm 3 in Appendix 7 for details of online policy finetuning.201

4 Experiments202

In this section, we evaluate the performance of VideoAgent. First, we measure the end-to-end task203
success rate of VideoAgent against the baselines in Section 4.1, and study the effect of different204
components of VideoAgent in Section 4.2. Finally, we show that VideoAgent is effective in improving205
the quality of real robotic videos in Section 4.3.206
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Table 1: Meta-World Results. Mean success rates of baselines and VideoAgent on 11 simulated robot
manipulation environments from Meta-World. VideoAgent consistently outperforms baselines across all tasks.

door-open door-close basketball shelf-place btn-press btn-press-top

AVDC 30.7% 28.0% 21.3% 8.0% 34.7% 17.3%
AVDC-Replan 72.0% 89.3% 37.3% 18.7% 60.0% 24.0%

VideoAgent 40.0% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent-Online (Iter1) 48.0% 40.0% 24.0% 12.0% 42.7% 36.0%
VideoAgent-Online (Iter2) 58.7% 50.7% 28.0% 18.7% 53.3% 41.3%
VideoAgent-Online-Replan 82.7% 97.3% 40.0% 26.7% 73.3% 44.0%

faucet-close faucet-open handle-press hammer assembly Overall

AVDC 12.0% 17.3% 41.3% 0.0% 5.3% 19.6%
AVDC-Replan 53.3% 24.0% 81.3% 8.0% 6.7% 43.1%

VideoAgent 46.7% 12.0% 36.0% 0.0% 1.3% 22.3%
VideoAgent-Online (Iter1) 53.3% 28.0% 52.0% 1.3% 5.3% 31.2%
VideoAgent-Online (Iter2) 58.7% 36.0% 64.0% 1.3% 9.3% 38.2%
VideoAgent-Online-Replan 74.7% 46.7% 86.7% 8.0% 10.7% 53.7%

Evaluation Setup. We follow the evaluation setup of AVDC (Ko et al., 2023), a method for207
controlling simulated robots using dense action correspondence extracted from generated videos.208
We follow AVDC and perform evaluation in three environments: Meta-World (Yu et al., 2020),209
iTHOR (Kolve et al., 2017), and BridgeData V2 (Walke et al., 2023) (see detailed dataset description in210
Appendix 10). We compare variants of VideoAgent, including VideoAgent with only self-refinement211
(Section 3.1), VideoAgent-Online (Section 3.3), and VideoAgent-Replan against AVDC and AVDC-212
Replan (replanning when movement stalls) from Ko et al. (2023). More detailed descriptions of the213
baselines and the VideoAgent variants are provided in Appendix 11.214

4.1 End-to-End Task Success215

Meta-World. We report the task success rates of baselines and VideoAgent in Table 1. Following Ko216
et al. (2023), we evaluate performance across three camera poses with 25 seeds per pose. Without217
online environment access, VideoAgent improves the overall success rate through self-conditioning218
consistency alone from 19.6% (AVDC) to 22.3%. For certain difficult tasks, e.g., faucet-close,219
VideoAgent improves performance from 12.0% to 46.7%. With online data collection, VideoAgent-220
Online further improves success rates with each additional online iteration of rolling out the policy,221
collecting successful trajectories, and finetuning. VideoAgent-Online can be further combined with222
replanning, achieving 53.7% overall success, surpassing prior state-of-the-art on this benchmark.223
Detailed baseline comparisons are provided in Appendix 12.2, and qualitative improvements in224
refined videos are shown in Figure 9 in Appendix 16.225

Table 2: iThor Success Rates comparing VideoA-
gent with the AVDC baseline. VideoAgent outper-
forms AVDC across all four rooms averaged over
all three objects in each room.

Room AVDC VideoAgent

Kitchen 26.7% 28.3%
Living Room 23.3% 26.7%
Bedroom 38.3% 41.7%
Bathroom 36.7% 40.0%

Overall 31.3% 34.2%

iTHOR. Next, we evaluate VideoAgent on iThor.226
Due to the high computational cost of running the227
iThor simulator(approx. 20 minutes per roll-out),228
we focus only on evaluating self-conditioning consis-229
tency (without online access). We follow the same230
setup as (Ko et al., 2023), where we measure the av-231
erage success rate across four rooms each with three232
objects using 20 seeds. As shown in Table 2, VideoA-233
gent consistently outperforms the AVDC baseline,234
demonstrating the effectiveness of self-conditioning235
consistency in producing more plausible video plans236
for first-person view navigation (i.e., what iThor mea-237

sures).238

4.2 Effect of Different Components in VideoAgent239
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Figure 3: Effect of Refinement Iterations. The
accuracy of downstream tasks generally increases as
the number of refinement iteration increases.

Figure 4: Effect of Online Iterations. The overall
task success of VideoAgent increases as the number
of online iterations increases.

Table 3: Effect of Different Feedback used to
train the refinement model. Descriptive feedback
from the VLM leads to higher improvement in task
success.

Overall

AVDC 19.6%

VideoAgent 22.3%
VideoAgent-Binary 23.8%
VideoAgent-Suggestive 26.6%

In this section, we aim to understand the effect of dif-240
ferent components of VideoAgent. Specifically, we241
focus on the effect of (1) different types of feedback242
given to the refinement model, (2) the number of re-243
finement and online iterations, and (3) the quality of244
the VLM feedback.245

4.2.1 Effect of Different VLM Feedback246

In the previous section, we only used VLM during247
inference to determine when to stop refining a gen-248
erated video. However, it is natural to wonder if249
information-rich feedback from the VLM, such as language descriptions of which part of a generated250
video to improve, might lead to better refined videos. To answer this question, we propose a few251
variants of VideoAgent according to the feedback available when training the video refinement model252
as in Equation 10. Specifically, we use VideoAgent to denote training the video refinement model only253
conditioned on the original task description. VideoAgent-Binary denotes additionally conditioning254
on whether a generated video is determined to be successful by the VLM. VideoAgent-Suggestive255
denotes conditioning additionally on language feedback from the VLM on which part of the video256
needs improvement and how the video can be improved. We train these three versions of the video257
refinement model, and report the overall task success from Meta-World in Table 3. We see that258
VideoAgent-Binary improves upon the base VideoAgent, while training with descriptive feedback in259
VideoAgent-Suggestive leads to even better performance. This suggests that richer feedback from the260
VLM can facilitate better training of the video refinement model. Improvement for each individual261
task can be found in the Appendix 15.262

4.2.2 Effect of the Number of Iterations.263

Next, we want to understand whether more refinement iterations and online finetuning iterations lead264
to higher task success. We found that while different tasks require a different number of refinement265
and online iterations to achieve the best performance, VideoAgent does perform better as the number266
of refinement and online iterations increases, as shown in Figure 3 and Figure 4. During video267
refinement, specific tasks such as handle-press and faucet-close continue to show improvement even268
at the fifth refinement iteration. Faucet-close especially benefits from more refinement iterations,269
bringing success rate from 24.0% to 58.7% after five refinement iterations. The improved task success270
rates across refinement and online iterations suggests that self-conditioning consistency discussed in271
Section 3.1 and online interaction discussed in Section 3.3 can indeed effectively reduce hallucination272
and improve physical plausibility in the generated videos.273

4.2.3 Accuracy of VLM feedback274
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Table 4: VLM Performance measured according to
whether a VLM considers a generated video as acceptable
using human label as the ground truth.

Precision Recall F1-Score Accuracy

Unweighted 0.65 0.89 0.76 0.69
Weighted 0.92 0.58 0.71 0.75

Without Cam 3 0.91 0.71 0.80 0.79

Since VideoAgent heavily relies on a VLM275
to select video plans during inference, it is276
crucial to understand whether the VLM can277
in fact achieve a reasonable accuracy in pro-278
viding feedback for video generation. To279
quantify the performance of a VLM, we use280
human labels on whether a generated video281
is acceptable as the ground truth, and mea-282
sure precision, recall, F1-score, and accuracy based on whether GPT-4 Turbo thinks the generated283
video is acceptable according to trajectory smoothness (consistent across sequential frames), physical284
stability, and achieving the goal (See full prompt in Appendix 8). We report the average result across285
36 generated videos from the Meta-World dataset in Table 4. We see that the original prompt we286
used (Unweighted, meaning not emphasizing reduction of false positives) achieves 69% accuracy,287
suggesting that the VLM is able to somewhat judge generated videos but not always accurately. Since288
VideoAgent uses multiple refinement iterations, we want to avoid false positives where a bad video is289
accidentally accepted. We can achieve this by penalizing false positives through reweighing its cost290
in the prompt, which leads to the VLM rejecting videos when the VLM is uncertain about the video’s291
acceptability. This adjustment results in a significant increase in precision as shown in Table 4. This292
weighted version of the prompt is used in the experiments in Section 4.1.293

Partial Observability. In the AVDC experimental setup, center cropping the third camera (what is294
used in the pipeline) often results in most of the robot arm being outside of the frame. We found that295
the accuracy of the VLM is affected by such partial observability. As shown in Table 4, removing the296
third camera from the prompt leads to much higher accuracy.297

Descriptive Feedback. While VLM can provide binary feedback on whether a generated video is298
acceptable, we also measure the accuracy of the VLM in giving more descriptive feedback such as299
identifying the issue and providing suggestions on how to improve the video. We use three examples300
with human written language feedback as prompt for in-context learning. GPT-4 Turbo achieves301
73.5% accuracy on identification and 86.1% accuracy on suggestion, as evaluated by humans. This302
result is highly encouraging and opens up future directions of leveraging descriptive feedback from303
VLMs to improve video generation.304

4.3 Evaluating Self-Refinement on Real-World Robot Videos305

Table 5: BridgeData-V2 Results. Quantitative metrics comparing
AVDC and VideoAgent on generated Bridge data. VideoAgent
outperforms the baseline according to all except for one metric.

Metrics AVDC Video Agent

Clip Score 22.39 22.90
Flow Consistency 2.48 ± 0.00 2.59 ± 0.01

Visual Quality 1.97 ± 0.003 2.01 ± 0.003
Temporal Consistency 1.48 ± 0.01 1.55 ± 0.01
Dynamic Degree 3.08 ± 0.01 3.07 ± 0.02
Text to Video Alignment 2.26 ± 0.003 2.30 ± 0.03
Factual Consistency 2.02 ± 0.004 2.07 ± 0.01

Average Video Score 2.16 ± 0.01 2.20 ± 0.01

Qualitative Eval on Task Success 42.0% 64.0%

In this section, we evaluate VideoA-306
gent’s ability to refine real-world307
videos, which often contain higher308
variability, intricate details, nuanced309
behaviors, and complex interactions.310
We study the effect of video refine-311
ment using both quantitative metrics312
and qualitatively for holistic evalua-313
tion.314

We report the average across 2250315
videos generated from the AVDC316
baseline and from VideoAgent in Ta-317
ble 5. VideoAgent performs better318
according to all metrics except for319
Dynamic Degree from Video-Score320
(which shows similar performance between VideoAgent and AVDC). Notably, the gain is significant321
for metrics critical for instruction following and real-world videos, such as CLIP Score, Factual322
Consistency, and Text-to-Video Alignment. Improvement in Flow Consistency and Temporal Consis-323
tency suggests that VideoAgent produces smoother and more physically plausible videos that adhere324
better to the physical constraints of the real-world. This directly translates to better performance in325
real-world robotic tasks in Table 1.326
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Qualitative Evaluation. Next, we qualitatively evaluate generated videos from the AVDC baseline327
and from VideoAgent. We collect 50 generated videos from each model and conduct qualitative328
evaluation on whether a generated video looks realistic. Videos with refinement from VideoAgent329
improves the acceptance rate by 22% as shown in Table 5. We further show an example video with330
and without refinement in Figure 8 which we provide in Appendix 16, where the baseline (middle row)331
hallucinates (the bowl disappears) whereas VideoAgent produces the video that completes the task332
(bottom row). We also present a more fine-grained analysis of Visual Quality, Temporal Consistency,333
Dynamic Degree, Text to Video Alignment, and Factual Consistency evaluated qualitatively in the334
Appendix 14 with the metrics in Table 8, which further echos the results of qualitative evaluations335
presented in Table 5.336

Quantitative Evaluation. Following previous literature on video generation, we consider two337
reference-free metrics, CLIP Score (Hessel et al., 2021) and Flow Consistency (Teed & Deng, 2020),338
as well as a set of Video-Scores (He et al., 2024) for evaluation. CLIP Score measures the cosine339
similarity between frame feature and text prompt, whereas Flow Consistency measure the smoothness340
and coherence of motion in the videos calculated from the RAFT model. Video-Scores use five341
sub-metrics with a focus on correlation with qualitative evaluation and real-world videos.342

5 Related Work343

Feedback and Self-improvement in LLMs. Incorporating feedback and preference signals from344
feedback into the finetuning process of LLMs, has led to the enormous popularity and practical345
usability of the current versions of LLMs as chatbots (Casper et al., 2023). Preference feedback from346
humans or other AI systems (Ouyang et al., 2022a; Lee et al., 2023; Kaufmann et al., 2023) are first347
collected to train a reward model to guide the LLM’s generation or do implicit policy optimization348
(Schulman et al., 2017; Rafailov et al., 2024). Furthermore LLMs have shown the ability to further349
improve by iterative refinement during finetuning and inference (Zelikman et al., 2022; Yuan et al.,350
2024; Tian et al., 2024). We incorporate this reward driven improvement mechanism in our work,351
but unlike the LLM setting where the feedback came from a reward model or some proxy of this352
preference model, focus on improving video generation using feedback from action execution.353

Image and Video Generation and Editing. With the advent of large scale foundation models354
pretrained on internet scale data (Bommasani et al., 2021), generation of super realistic multimodal355
content has become easier. Text generation, image or video generation, and cross-modal generation356
(OpenAI et al., 2024; Reid et al., 2024; Wu et al., 2021; Ho et al., 2022; Singer et al., 2022; Yang357
et al., 2023a; Blattmann et al., 2023) has seen major advancements leveraging the autoregressive and358
diffusion based models architectures. And moving beyond simple generation, these models have359
been leveraged for guided text, image or video editing and enhancement (Huang et al., 2024) to360
improve textual and visual aesthetics applied mostly to generative media (Zhang et al., 2023). But361
none of these existing methods focus on grounding a generative simulator in the real world to perform362
more complex interactive multi-turn agentic and physical tasks needing both perception and control.363
To solve this bottleneck, we propose VideoAgent to self-improve or edit generated plan based on364
grounded feedback from real-world to execute robot manipulation tasks.365

Scaling Inference-Time Compute. Beyond pretraining, increasing inference-time compute offers a366
complementary path to improve model performance. In LLMs, this includes enhanced planning via367
multiple generations and verifier-guided decoding (Xie et al., 2024; Gandhi et al., 2024; Lightman368
et al., 2023; Snell et al., 2024). Similar strategies have extended to diffusion models, such as369
increasing denoising steps to boost generation quality (Karras et al., 2022; Song et al., 2020a;b). Our370
method combines these test-time refinements with further training the model to self-improve, enabling371
the model to learn to improvement through both gradient-based updates while also leveraging extra372
compute at inference to further refine video plans.373

Video Generation for Robot Learning. Video-based learning for robotics (Nair et al., 2022; Bahl374
et al., 2022; Shao et al., 2021; Chen et al., 2021; Pari et al., 2022) has enabled visual representation375
learning, goal extraction, planning (Finn & Levine, 2017; Kurutach et al., 2018), and imitation376
from expert actions (Fang et al., 2019; Wang et al., 2023; Mani et al., 2024). Recent works reframe377
decision-making as video generation, enabling policy learning from video predictions (Du et al.,378
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2024; Ko et al., 2023; Wen et al., 2023; Du et al., 2023; Ajay et al., 2024), and use generative models379
to simulate agent-environment interactions (Yang et al., 2023b). While some methods replan during380
test time (Bu et al., 2024), VideoAgent refines video plans during training incorporating feedback381
from failed executions grounded in real-world and further refines the mistakes during test time via382
self-iteration and replanning.383

6 Conclusion, Limitations and Future Work384

We have presented VideoAgent, where a video generation model acts as an agent by generating and385
refining video plans, converting video plans into actions, executing the actions in an environment,386
and collecting additional data for further self improvement. Through interaction with an external387
environment, VideoAgent provides a promising direction for grounding video generation in the real388
world, thereby reducing hallucination and unrealistic physics in the generated videos according to389
real-world feedback.390

Limitations and Future Work. VideoAgent needs to overcome a few limitations. In the online391
setting, it only considers filtering for successful trajectories for further finetuning, though exploring392
algorithms such as online reinforcement learning remains promising. VideoAgent currently utilizes393
optical flow for action extraction, but alternative approaches like inverse dynamics models or image-394
goal-conditioned diffusion policies may offer improved performance. While we measured end-to-end395
task success in simulated robotic settings, evaluating VideoAgent in real robotic systems is an396
important direction for future work. As additional data is collected online, not only the video397
prediction model but also the action extraction module (flow model) and the VLM feedback model398
can be finetuned using this data, which we defer to future exploration. Moreover, VideoAgent trades399
off inference-time compute for better performance by iteratively refining generated video plans under400
VLM guidance, and investigating alternative inference-time search strategies may further enhance401
video quality.402

Broader Impact Statement403

VideoAgent introduces a novel self-conditioning consistency mechanism that enables iterative refine-404
ment of generated video plans, significantly improving long-horizon task completion. By leveraging405
previously generated video segments for refinement, VideoAgent mitigates hallucinations and en-406
hances temporal consistency without requiring extensive interaction with the environment. This407
reduces the need for costly and time-consuming data collection while still achieving state-of-the-art408
success rates in simulated robotic environments. Furthermore, VideoAgent ’s ability to refine plans409
without relying on replanning makes it highly adaptable to real-world applications, including robotics,410
autonomous systems, and video-based reinforcement learning. Our work advances scalable and411
generalizable self-improving video policies, contributing to the broader goal of AI agents that can412
reason and act through visual understanding. There are potential societal consequences of our work,413
none which we feel must be specifically highlighted here.414
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7 Algorithms603

Algorithm 1: Training of Video Generation and Refinement Models with VLM Feedback
Input: Dataset D, learning rate γ, total training iterations N , initial model parameters θ, video

generation model fθ, video refinement model f̂θ, VLM R̂
for iteration = 1 to N do

Sample {(x(0), g)} ∼ D and t ∼ Uniform({0, 1, . . . , T});
Compute vanilla diffusion loss:
Lvideo-diffusion =

∥∥fθ(x(t), t)− x(0)
∥∥2;

Generate x̂ following Equation 11 and sample feedback ∼ R̂(·|x̂);
Compute consistency loss:

LSC-consistency =
∥∥∥f̂θ(x̂,x(t), t |feedback)− x(0)

∥∥∥2;
Update parameters:

θ ← θ − γ∇θ (Lvideo-diffusion + LSC-consistency);

604

Algorithm 2: VLM Guided Replan

Input: Initial frame x0, task description g, RewardR, Environment E , VLM R̂,
max_refine_iterations, max_replans

for replan_count = 1 to max_replans do
x̂← πθ(x0, g);
for i = 0 to max_refine_iterations do

response← R̂(x̂(i), g);
if response == ACCEPT then break;
x̂(i+1) ← πθ(x̂(i), x0, g);

success← R(ρ(x̂refined));
if success then break;
x0 ← E .get_state();

605

Algorithm 3: Online Finetuning of Video Generation and Refinement Models
Input: Dataset D, policy πθ, RewardR, Environment E
for iteration i = 1 to N do
Dnew ← ∅;
for each (·, g) in D do

x0 ← E .reset(g);
x̂refined ∼ πθ(x0, g);
ifR(ρ(x̂refined)) then
Dnew ← Dnew ∪ (x̂refined, g);

D ← D ∪Dnew;
Finetune θ using Algorithm 1 on D;

606
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8 Prompt Structure for VLM Feedback607

8.1 Binary Classification608

We employ a structured prompting strategy to provide feedback on video sequences for the zero-shot609
classification. The process consists of one Query-Evaluation Phase, each with distinct sub-goals.610

BINARY CLASSIFICATION

Task: You are a video reviewer evaluating a sequence of actions presented as seven consecutive
image uploads, which together represent a single video. You are going to accept the video if it
completes the task and the video is consistent without glitches.
Query-Evaluation Phase:
• Inputs Provided:

– Textual Prompt: Describes the task the video should accomplish.

– Conditioning Image: Sets the fixed aspects of the scene.

– Sequence of Images (7 Frames): Represents consecutive moments in the video to be
evaluated.

• Evaluation Process:

– View and Analyze Each Frame: Examine each image in sequence to understand the
progression and continuity of actions.

– Assess Overall Coherence: Determine if actions transition smoothly and logically from
one image to the next.

– Check for Physical Accuracy: Ensure adherence to the laws of physics, identifying any
discrepancies.

– Verify Task Completion: Confirm the sequence accomplishes the task described in the
textual prompt.

– Identify Inconsistencies: Detect inconsistencies in object movement or overlaps that do
not match the conditioning image.

• Evaluation Criteria:

– Accept the sequence if it is a coherent video that completes the task.

– Reject the sequence if any frame fails to meet the criteria, showing inconsistencies or not
achieving the task. Be very strict, rejecting even minor errors.

• Response Requirement:

– Provide a single-word answer: Accept or Reject. Do not give reasoning.

• Additional Notes:

– No further clarification can be requested.

– Elements from the conditioning image must match those in each frame of the sequence.
611

8.2 Identification and Suggestion:612

We employ a structured prompting strategy to provide descriptive feedback on video sequences via613
an in-context few-shot classification setup. The process consists of one Query-Evaluation Phase, each614
with distinct sub-goals.615
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IDENTIFICATION AND SUGGESTION

Task: You are a video reviewer tasked with evaluating a series of actions depicted through eight
consecutive image uploads. These images together simulate a video. This task is structured as a
few-shot learning exercise, where you will first review three examples and then apply learned
principles to new queries. Query-Evaluation Phase:
• Inputs Provided:

– Textual Prompt: Describes the intended outcome or task the video aims to accomplish.

– Conditioning Image: Establishes the fixed elements of the scene.

– Sequence of Images (7 Frames): Illustrates consecutive moments in the video, represent-
ing the action sequence.

• Evaluation Process:

– Frame-by-Frame Analysis: Carefully examine each of the seven images to understand
the progression and continuity of actions.

– Assess Overall Coherence: Evaluate the sequence as a whole to determine if the actions
transition smoothly from one frame to the next while maintaining logical progression.

– Check for Physical Accuracy: Ensure each frame complies with the laws of physics,
identifying any discrepancies in movement or positioning.

– Verify Task Completion: Confirm if the sequence as a whole accomplishes the task
described in the textual prompt.

– Identify Inconsistencies: Detect inconsistencies in object movement or overlaps that
contradict the fixed scene elements depicted in the conditioning image.

• Evaluation Criteria:

– Descriptive Feedback: Based on your evaluation, provide a concise, constructive sentence
suggesting specific improvements. Focus on enhancing physical accuracy and task fulfill-
ment based on identified inconsistencies or discrepancies.

• Response Requirement:

– Feedback must be derived from your observations during the evaluation and not exceed 20
words.

• Additional Notes:

– No further clarification can be requested.

– Elements from the conditioning image must match those in each frame of the sequence.
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9 Task Descriptions and In-Context Examples for VLM Feedback616

TASK DESCRIPTION AND SUCCESS CRITERIA

• door-open: The robot arm has to open the door by using the door handle.

• door-close: The robot arm has to close the door by pushing the door or the handle.

• basketball: The robot arm has to pick up the basketball and take it above the hoop.

• shelf-place: The robot arm has to pick up the blue cube and place it on the shelf.

• button-press: The robot arm has to press the red button from the side by pushing it inside.

• button-press-topdown: The robot arm has to press the red button from the top by pushing it
downward.

• faucet-close: The robot arm has to use the red faucet handle and turn it anti-clockwise.

• faucet-open: The robot arm has to use the red faucet handle and turn it clockwise.

• handle-press: The robot arm has to press the red handle downward.

• hammer: The robot arm has to grip and pick up the hammer with a red handle and hit the
peg on the box inside.

• assembly: The robot arm has to pick up the ring and place it into the red peg.
617

Figure 5: Few-Shot Examples given to VLM: We provide some examples to the VLM and corresponding
feedback to teach the VLM in-context how to critic the generated videos for task completion and success or
failure.

10 Dataset Descriptions in Detail618

10.1 Datasets and Environments.619

We follow the same evaluation setting as (Ko et al., 2023), which considers three datasets: Meta-620
World (Yu et al., 2020), iTHOR (Kolve et al., 2017), and BridgeData V2 (Walke et al., 2023).621
Meta-World consists of 11 robotic manipulation tasks performed by a simulated Sawyer arm, with622
video demonstrations captured from three distinct camera angles. iTHOR is a simulated 2D ob-623
ject navigation benchmark, where an agent searches for specified objects across four room types.624
BridgeData V2 is a real-world dataset of robotic manipulation.625
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Figure 6: Environments and Datasets that we work with: Meta-World, iThor, and BridgeData-V2

Meta-World (Yu et al., 2020) is a simulation benchmark that uses a Swayer robotic arm to perform a626
number of manipulation tasks. In our experiments, we make use of 11 tasks as shown in Table 1. We627
capture videos from three distinct camera angles for each task and use the same camera angles for628
both the training and testing phases. We gather five demonstration videos per task for each camera629
angle. During the evaluation, we tested on each of the three camera angles with 25 seeds per camera630
angle. The position of the robot arm and the object is randomized at the beginning of each seed to631
ensure variability. A trajectory is considered successful if the Video Agent reaches within a really632
close threshold of the goal state.633

iTHOR (Kolve et al., 2017) is another popular 2D simulated benchmark that focuses on embodied634
common sense reasoning. We evaluate the Video as Agent framework on the object navigation tasks,635
where an agent is randomly initialized in a scene and tasked with finding an object of a specified636
type (e.g., toaster, television). At each time step, the agent can take one of the four possible actions637
(MoveForward, RotateLeft, RotateRight, or Done), and observes a 2D scene to operate in. We638
selected 12 objects ((e.g. toaster, television) to be placed in 4 different room types (e.g. kitchen,639
living room, bedroom, and bathroom). Again, the starting position of the agent is randomized at the640
start of each episode. During evaluation, we test the agent across 12 object navigation tasks spread641
across all 4 room types, 3 tasks per room. A trajectory is successful if the agent views and reaches642
within 1.5 meters of the target object before reaching the maximum environment step or predicting643
Done.644

To test the usefulness of our framework across different videos types, we also use the BridgeData V2645
dataset (Walke et al., 2023), a large and diverse dataset of real world robotic manipulation behaviors646
designed to facilitate research in scalable robot learning. It contains 60,096 trajectories collected647
across 24 environments using a publicly available low-cost WidowX 250 6DOF robot arm. The648
dataset provides extensive task and environment variability, enabling skills learned from the data to649
generalize across environments and domains.650

10.2 Additional trajectories per iteration during online training651

We collect 15 successful trajectories for each task during every iteration. This standardization helps652
address task imbalance, as task success rates are higher for certain tasks compared to others. By653
ensuring a fixed number of successful trajectories per task, we prevent overfitting to easier tasks and654
maintain balanced model performance across the entire task set. The set of seeds used for training655
and collecting additional trajectories are different from the seeds used for evaluation.656

11 Baselines and VideoAgent Variants.657

We consider the following methods for comparison:658

• AVDC (baseline). This is the Actions from Video Dense Correspondences (Ko et al., 2023) baseline,659
which synthesizes a video and predicts optical flow to infer actions.660

• AVDC-Replan (baseline). When the movement stalls, AVDC-replan re-runs video generation and661
action extraction from the flow model to execute a new plan.662
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Table 6: Meta-World Results. The mean success rates of baselines and VideoAgent on 11 simulated robot
manipulation environments from Meta-World. VideoAgent consistently outperforms baselines across all tasks.

door-open door-close basketball shelf-place btn-press btn-press-top

BC-Scratch 21.3% 36.0% 0.0% 0.0% 34.7% 12.0%
BC-R3M 1.3% 58.7% 0.0% 0.0% 36.0% 4.0%
UniPi (with Replan) 0.0% 36.0% 0.0% 0.0% 6.7% 0.0%
AVDC 30.7% 28.0% 21.3% 8.0% 34.7% 17.3%
VLP 33.3% 28.0% 17.3% 8.0% 36.0% 18.7%
Diffusion Policy 45.3% 45.3% 8.0% 0.0% 40.0% 18.7%
AVDC-Replan 72.0% 89.3% 37.3% 18.7% 60.0% 24.0%
AVDC-IS-Replan 66.7% 93.3% 40.0% 21.3% 65.3% 29.3%

VideoAgent 40.0% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent (Iter2) 48.0% 40.0% 24.0% 12.0% 42.7% 36.0%
VideoAgent (Iter3) 58.7% 50.7% 28.0% 18.7% 53.3% 41.3%
VideoAgent-Replan 82.7% 97.3% 40.0% 26.7% 73.3% 44.0%

faucet-close faucet-open handle-press hammer assembly Overall

BC-Scratch 18.7% 22.7% 28.0% 0.0% 0.0% 15.4%
BC-R3M 18.7% 17.3% 37.3% 0.0% 1.3% 16.2%
UniPi (with Replan) 4.0% 9.3% 13.3% 4.0% 0.0% 6.1%
AVDC 12.0% 17.3% 41.3% 0.0% 5.3% 19.6%
VLP 30.7% 10.7% 33.3% 0.0% 1.3% 19.8%
Diffusion Policy 22.7% 58.7% 21.3% 4.0% 1.3% 24.1%
AVDC-Replan 53.3% 24.0% 81.3% 8.0% 6.7% 43.1%
AVDC-IS-Replan 48.0% 28.0% 78.7% 10.7% 0.0% 43.8%

VideoAgent 46.7% 12.0% 36.0% 0.0% 1.3% 22.3%
VideoAgent (Iter2) 53.3% 28.0% 52.0% 1.3% 5.3% 31.2%
VideoAgent (Iter3) 58.7% 36.0% 64.0% 1.3% 9.3% 38.2%
VideoAgent-Replan 74.7% 46.7% 86.7% 8.0% 10.7% 53.7%

• VideoAgent. Our proposed video refinement model through self-conditioning consistency as663
introduced in Section 3.1. VideoAgent generates video and iteratively refines a video plan. We use664
GPT-4 Turbo for selecting the best video plan during inference (Section 3.2).665

• VideoAgent-Online. As actions are executed in the online environment, successful trajectories are666
collected and used to continue training the video generation and refinement model, as described in667
Section 3.3.668

• VideoAgent-Replan. This variant incorporates online filtering of successful trajectories with the669
replanning mechanism, where replanning is conducted first, and more successful trajectories after670
replanning are added back to the training data.671

12 Extended Experiments672

12.1 Videos to action conversion673

We employ the GMFlow optical flow model to predict dense pixel movements across frames. These674
predicted flows serve as the foundation for reconstructing both object movements and robot motions675
depicted in the video. The flow predictions allow us to interpret the temporal evolution of the676
video in terms of actionable physical dynamics. The optical flow essentially provides a dense677
correspondence of pixel movements between consecutive frames, which is then used to infer the678
relative motion of objects and the robot. This mapping bridges the gap between the high-dimensional679
video representation and the low-level control commands required to execute the tasks in a simulated680
or real environment.681

This method ensures that the generated video plans are actionable and aligned with the task-specific682
dynamics, making the video generation process directly relevant to downstream policy learning and683
execution.684
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12.2 Baseline experiments on Metaworld685

We conduct experiments on additional baselines including, Behavioral Cloning (BC), UniPi (with686
replan), VLP, AVDC-IS-Replan and Diffusion policy. Table 6 consists of these results. VLP follows687
a training setup similar to ours, but does not incorporate the proposed self-consistency loss. AVDC-688
IS-Replan refers to the baseline AVDC model with replanning and a straightforward inference-time689
scaling strategy, wherein the number of denoising time-steps is increased from 100 to 500 during690
inference. Our method surpasses all the above baselines considered.691

12.3 Further Analysis of VideoAgent-Online692

We train VideoAgent-Online for multiple iterations and observe that after 2 iterations, the results start693
to stabilize. The extra results for iteration 3 are also shown in table 7.694
Table 7: Meta-World Result. The mean success rates of VideoAgent combined with successive rounds of data
collection via Online Iterations and Replan modules as compared to AVDC baseline.

door-open door-close basketball shelf-place btn-press btn-press-top

AVDC 30.7% 28.0% 21.3% 8.00% 34.7% 17.3%

VideoAgent 40.0% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent-Online (Iter1) 48.0% 40.0% 24.0% 12.0% 42.7% 36.0%
VideoAgent-Online (Iter2) 58.7% 50.7% 28.0% 18.7% 53.3% 41.3%
VideoAgent-Online (Iter3) 58.7% 52.0% 26.7% 17.3% 54.7% 40.0%

faucet-close faucet-open handle-press hammer assembly Overall

AVDC 12.0% 17.3% 41.3% 0.00% 5.30% 19.6%

VideoAgent 46.7% 12.0% 36.0% 0.0% 1.3% 22.3%
VideoAgent-Online (Iter1) 53.3% 28.0% 52.0% 1.3% 5.3% 31.2%
VideoAgent-Online (Iter2) 58.7% 36.0% 64.0% 1.3% 9.3% 38.2%
VideoAgent-Online (Iter3) 56.3% 36.0% 66.7% 1.3% 10.7% 38.22%

13 Architectural Details of VideoAgent695

13.1 Video Diffusion training details696

We use the same video diffusion architecture as the AVDC baseline. For all models, we use697
dropout=0, num head channels=32, train/inference timesteps=100, training objective=predict v,698
beta schedule=cosine, loss function=l2, min snr gamma=5, learning rate=1e-4, ema update steps=10,699
ema decay=0.999. All of our models and experiments were run on Nvidia A6000 GPUs.700

13.2 Inference time speed701

In our current setup, during inference, our video generation model produces a new video within 10702
seconds on a single A6000 GPU at a resolution of 128×128 for Meta-World. The process of mapping703
this generated video to an action takes, on average, an additional 25 seconds. This action-mapping704
stage involves calculating optical flow, receiving feedback from the vision-language model (VLM),705
and converting the video into an action sequence based on the computed flow.706

14 Details of Qualitative Evaluation on BridgeData V2707

Qualitative Evaluation. Next, we qualitatively evaluate video generation quality using the five708
Video-Score dimensions: Visual Quality (VQ) for clarity and resolution, Temporal Consistency709
(TC) for smooth frame transitions, Dynamic Degree (DD) for capturing accurate object/environment710
changes, Text-to-Video Alignment (TVA) for matching the video to the prompt, and Factual Con-711
sistency (FC) for adherence to physical laws and real-world facts. Videos are rated on a 4-point712
scale based on the metric in He et al. (2024): 1 (Bad), 2 (Average), 3 (Good), and 4 (Perfect). Our713
evaluation is based on 50 generated videos from a held-out set.714

In terms of VQ and TC, both the baseline AVDC and our VideoAgent generate average quality videos715
(graded 2), with AVDC hallucinating more and generating some choppy jumps in videos temporally716
(we grade such videos as 1) and Video Agent fixing some of these upon video conditioned iterative717
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Table 8: Task Success and Other Fine-grained Qualitative Evaluation Metrics on BridgeData-V2

Metrics AVDC Video Agent

Task Success via Qualitative Eval 42.0% 64.0%

Holistic Assessment via Qualitative Eval

Visual Quality 1.74 1.84
Temporal Consistency 1.58 1.76

Dynamic Degree 3.14 2.98
Text to Video Alignment 2.66 3.04

Factual Consistency 3.22 3.30

Qualitative Eval Average 2.47 2.98

refinement. The reason for AVDC baseline having higher DD is attributed to unruly movements718
that cause higher DD scores compared to VideoAgent, where movements are smoother. This also719
explains the result in fifth row of Table 5, and upon closer examination of the generated videos and720
their corresponding individual scores, we observed similar traits in videos having higher DD due to721
unnatural robot arm movements and object impermanence. TVA shows trends similar to ClipScore722
in Table 5 due to the better instruction following ability of VideoAgent leading to more controlled723
generation. FC is a very crucial metric for deployment of video generation agents as policy for724
task completion in robotics, scene navigation, and so on. Improved visual quality does not imply725
adherence to correct physical laws and real-world constraints, FC particularly checks for this aspect726
and due to video conditioned self-refinement, VideoAgent has better FC compared to AVDC.727

15 VLM Feedback for Correction728

Table 9: Meta-World: VideoAgent-Feedback Guided Results The mean success rates for various tasks,
comparing different VideoAgent-Feedback Guided variants and the AVDC baseline.

door-open door-close basketball shelf-place btn-press btn-press-top

AVDC 30.7% 28.0% 21.3% 8.00% 34.7% 17.3%

VideoAgent 40.0% 29.3% 13.3% 9.3% 38.7% 18.7%
VideoAgent-Binary 46.7% 32.0% 14.7% 6.7% 38.7% 21.3%
VideoAgent-Suggestive 46.7% 33.3% 18.7% 12.0% 41.3% 22.7%
VideoAgent-Online-Suggestive 52.0% 28.0% 21.3% 16.0% 46.7% 22.7%

faucet-close faucet-open handle-press hammer assembly Overall

AVDC 12.0% 17.3% 41.3% 0.00% 5.30% 19.6%

VideoAgent 46.7% 12.0% 36.0% 0.00% 1.3% 22.3%
VideoAgent-Binary 46.7% 17.3% 32% 0.00% 5.3% 23.8%
VideoAgent-Suggestive 48.7% 17.3% 46.7% 0.00% 5.3% 26.6%
VideoAgent-Online-Suggestive 45.3% 20.0% 48.0% 2.7% 5.3% 27.4%
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16 Examples729

Additional video examples are provided in the supplementary material.730

16.1 Zero-shot generalization on real-world scenes731

VideoAgent trained on Bridge dataset demonstrates strong performance on zero shot video generation732
for natural distribution shifts and longer language instructions. Some examples of the synthesized733
videos can be found in Fig. 7.734

Figure 7: Zero-shot generalization of VideoAgent: VideoAgent generalizes fairly well to natural distribution
shifts and is able to generate successful trajectories on data it has not been trained on.

16.2 Improvements on real-world scenes735

We show an example video with and without refinement in Figure 8, where the baseline (middle row)736
hallucinates (the bowl disappears) whereas VideoAgent produces the video that completes the task737
(bottom row).

Figure 8: Correcting Hallucinations in Video Generation: The AVDC model hallucinates after the second
frame, removing the colander and placing the banana on the table. In contrast, VideoAgent accurately retains the
colander’s position and correctly places the banana inside.

738
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16.3 Improvements in Meta-World739

Figure 9: Correcting Hallucinations in Video Generation: The goal prompt is “Assembly” as shown in the
Target Video. The AVDC model has problem of object permanence and action incomplete in last frame. In
contrast, our VideoAgent model accurately object permanence and correctly places the inside the peg properly.

16.4 Improvements in iThor740

Figure 10: Correcting Hallucinations in Video Generation: The goal prompt is “Television” as shown in the
Target Video, the goal is for the navigator to locate the object and reach near it. The AVDC model has difficulty
reconstructing and navigating in the livingroom to find the television. In contrast, our VideoAgent model solves
the initial frame hallucinations and accurately reaches near the television correctly.
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16.5 Identification and Suggestive Feedback Examples741

Figure 11: Detailed VLM Feedback: We show the efficacy of VLMs to provide useful feedback even in the
absence of access to a simulator or real-world execution environment. The VLM acts as a proxy reward model
to condition VideoAgent on useful corrective signals, leading to improved performance as described in Table 3.
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