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Abstract

While high-performing language models are
typically trained on hundreds of billions of
words, human children become fluent language
users with a much smaller amount of data.
What are the features of the data they receive,
and how do these features support language
modeling objectives? To investigate this ques-
tion, we train GPT-2 models on 29M words
of English-language child-directed speech and
a new matched, synthetic dataset (TinyDia-
logues), comparing to a heterogeneous blend
of datasets from the BabyLLM challenge. We
evaluate both the syntactic and semantic knowl-
edge of these models using developmentally-
inspired evaluations. Through pretraining ex-
periments, we test whether the global develop-
mental ordering or the local discourse order-
ing of children’s training data support high per-
formance relative to other datasets. The local
properties of the data affect model results, but
somewhat surprisingly, global properties do not.
Further, child language input is not uniquely
valuable for training language models. These
findings support the hypothesis that, rather than
proceeding from better data, children’s learn-
ing is instead substantially more efficient than
current language modeling techniques.

1 Introduction

Transformer-based language models (LM) show
very strong performance on a wide variety of down-
stream tasks, but typically only after pretraining on
hundreds of billions to trillions of words (Brown
et al., 2020). In contrast, human learners use
language fluently after far less training data — in
the 10s to 100s of millions of words. This “data
gap” (Frank, 2023a) of several orders of magnitude
poses a substantial challenge for machine learning.

Is the source of human children’s efficient learn-
ing a function of their data or their learning algo-
rithms? While children receive rich multi-modal
input from their exploration of the world, here we

focus primarily on their language input, which has
been a major focus of study in developmental psy-
chology (MacWhinney, 2014). One hypothesis is
that the language data that children receive is a
uniquely rich learning signal — conversational inter-
action with their caregivers — that is curricularized
optimally to support learning (Eaves Jr et al., 2016;
You et al., 2021; Newport, 1990). Indeed, interven-
tions to increase the quality of caregiver language
do produce improvements in children’s language
learning (Ferjan Ramirez et al., 2020), and inter-
ventions to simplify model training data also result
in stronger performance (Muckatira et al., 2024;
Eldan and Li, 2023).

Language model pretraining experiments pro-
vide a targeted method for investigating dataset
quality (Kallini et al., 2024): we can manipulate
the training data available to models to create “con-
trolled rearing” experiments. We take advantage of
this method to investigate the properties of child-
directed speech for learning the syntactic and se-
mantic structure of language. We use GPT-2 as
our simulated learner, and pretrain on natural and
synthetic child-language data. For each of these,
we conduct two experiments. First, we investigate
whether the natural curricularization of children’s
input — from simpler utterances to more complex
conversations — affects language model learning.
Second, we test whether the local discourse coher-
ence structure of dialogue results in better learning.
Finally, we compare to learning on a more hetero-
geneous blend of data from various sources.

We find that the curricularization of child lan-
guage does not provide a uniquely valuable signal
for language models, supporting the hypothesis that
other aspects of children’s learning (not simply the
data) — perhaps interactions with their training data
— are responsible for their efficiency relative to lan-
guage models. On the other hand, the source, com-
position, and local properties of the training data
have measurable effects on model performance.



2 Related Work

The efficiency of children’s learning has been an
important focal point for recent NLP efforts (Hueb-
ner et al., 2021; Zhang et al., 2021). For example,
last year’s BabyLM challenge held the training
data for models constant, while encouraging en-
trants to investigate alternative learning architec-
tures (Warstadt et al., 2023). Smaller models of
this type must be evaluated using targeted bench-
marks more appropriate to their performance levels,
including evaluations of semantic (Zhuang et al.,
2023) and grammatical abilities (Huebner et al.,
2021; Warstadt et al., 2020). These evaluations
have even been used to benchmark performance
based on data from a single child (Qin et al., 2024).

The method of “controlled rearing” (manipulat-
ing data while holding the model constant) for
language models (Frank, 2023b) has a long his-
tory in cognitive science, e.g. Christiansen and
Chater (1999), but has recently become prominent
for testing learnability claims (Warstadt and Bow-
man, 2024; Kallini et al., 2024; Misra and Ma-
howald, 2024). Often, models trained on naturally-
occurring corpora are contrasted with counterfac-
tual corpora constructed via targeted experimental
manipulations — for example, shuffling sentence or-
dering (Kallini et al., 2024) or removing particular
constructions (Misra and Mahowald, 2024).

Curricularization of training data is widely inves-
tigated in machine learning (Bengio et al., 2009),
with the guiding idea being that an appropriate or-
dering of training examples can lead to a smoother
path to the desired objective. Children’s develop-
ment is argued to create a curriculum to facilitate
their learning (Smith et al., 2018; Cusack et al.,
2024). In one study from the visual domain, Shey-
bani et al. (2024) trained self-supervised models on
data from infants and found that a developmental
ordering leads to stronger eventual performance
compared with a reversed ordering. Our study tests
this hypothesis in the language domain.

3 Methods

3.1 Datasets

CHILDES The Child Language Data Exchange
System (CHILDES) is a repository of human-
transcribed corpora of children and caregivers’ talk
(MacWhinney, 2014), with children ranging from
birth to age 13. We take the English subset, which
consists of approximately 29M total words (includ-
ing speaker labels and other metadata) across ~11k

conversations. CHILDES is heavily skewed to-
wards younger ages; ~90% of the data is for chil-
dren ages 2-5 (see Figure 1 in Appendix C).

TinyDialogues Inspired by TinyStories (Eldan
and Li, 2023), we collect a synthetic dataset con-
sisting of approximately 29M words called TinyDi-
alogues (TD). Using GPT-4, we prompted the gen-
eration of realistic conversations involving children
of ages 2, 5, 10, and 15 years as the central partici-
pant, along with a list of other potential participants
(e.g. mom, teacher, babysitter). To diversify, we
seeded each conversation based on a list of words
known by children at the relevant age and varied
the conversation type and length (see Appendix A).

BabyLM We further compare to the dataset dis-
tributed by the BabyLLM challenge (Warstadt et al.,
2023), a 100M word dataset that is a mixture of
several sources including transcribed speech, child-
directed speech (e.g. CHILDES), children’s sto-
rybooks, and simple Wikipedia. It is designed to
approximate the language data that a 10-year-old
child could receive. We sub-sampled ~29M words
from BabyLLM to match the size of this dataset to
our CHILDES and TinyDialogues data.

Preprocessing Training data for CHILDES and
TD was set up so that each line corresponded to a
single conversation. Training data for BabyLM
was set up using the pre-existing format in the
BabyLM challenge, which varied depending on the
sub-dataset. Each dataset was then split into 85/15
train/val splits, of approximately 24.5M training
words and 4.5M validation words. During train-
ing, GPT-2 breaks up the data into chunks of 1024
consecutive tokens which are fed into the model.

3.2 Evaluation

Zorro (Huebner et al., 2021) is designed for
child-directed language and aims to quantify the
syntactic and grammatical knowledge of language
models. It does so by assessing their capability to
distinguish between minimal pairs of sentences that
exhibit various grammatical contrasts. We report
final averages (of accuracy, higher is better) across
individual Zorro tasks in Section 4.

Word Similarity To assess the semantic knowl-
edge of our models, we employ a word similarity
(WS) metric (Zhuang et al., 2023), which mea-
sures the ability of models to capture semantic
similarities between pairs of words. Many assess-
ments of children’s language learning are multi-



modal and involve visual stimuli; in contrast, word
similarity is a language-only measurement that can
be adapted for assessing LMs. We extract word
embedding representations from hidden layers of
each model, compute pairwise cosine similarities
between these embeddings, and report Spearman
correlations between human and model similarity
judgments (higher is better). The best layer of each
model is chosen. We average results across sev-
eral word similarity benchmarks including RG-65
(Rubenstein and Goodenough, 1965), WordSim-
353 (Finkelstein et al., 2001), SimLex-999 (Hill
et al., 2015), SimVerb-3500 (Gerz et al., 2016), and
MEN (MTest-3000) (Bruni et al., 2012).

3.3 Experiments

Global Ordering To test whether the natural or-
dering of speech to children presents an effective
curriculum for model learning, we ordered our
CHILDES and TD conversations (training exam-
ples) in three ways: 1) age order (from younger
to older), 2) reverse order (from older to younger),
and 3) random order (equivalent to default LM
training practices of randomly shuffling the training
data). CHILDES includes fine-grained age infor-
mation of the target (main) child involved in each
conversation, down to fractions of months (essen-
tially days), and we ordered conversations based
on this information. TD was ordered based on the
conversation seed ages of 2, 5, 10, and 15 years old.
For the random order experiments, we randomly
shuffled the conversations and kept this shuffled
order for all experiments for consistency purposes.

Local Ordering To investigate the effects of lo-
cal conversation and discourse coherence on learn-
ing, we ordered utterances within each CHILDES
and TD conversation in two ways: 1) normal (orig-
inal) order, and 2) random order. The latter breaks
the local discourse coherence, by randomly shuf-
fling utterances within each conversation.

3.4 Model Training

We use GPT-2 (Radford et al., 2019) with 124M
parameters (small version), following prior “con-
trolled rearing” work (Kallini et al., 2024; Misra
and Mahowald, 2024; Qin et al., 2024). We trained
a separate tokenizer on each of our datasets, and
pretrained GPT-2 from scratch using a learning
rate (LR) of 1e — 04, linear LR scheduler with no
warmup steps, varying batch sizes (e.g. 4, 8, 16)
per GPU, training seed of 42, and Adam optimizer

Model Zorro WS
CHILDES 77.77% 0.24
TD 79.42% 0.41
BabyLM 81.75% 0.42

Table 1: Evaluation results of our GPT-2 models across
datasets, using standard iterative training for 20 epochs
(used to train BabyLM) and random global ordering.

Model Zorro WS
CHILDES 74.24% 0.18
TD 77.05% 0.32

Table 2: Evaluation results of our GPT-2 models, com-
paring natural (CHILDES) vs. synthetic (TD) conversa-
tion data. These results are averaged across all relevant
experiments: different global and local ordering meth-
ods and curricularization strategies.

with 8 = (0.9,0.999) and € = 1le — 08.

For our global ordering experiments, we split
each dataset into b approximately equal sections
(buckets), and trained on each repeatedly (n times)
before moving to the next bucket or section of the
dataset. This technique was intended as a compro-
mise between standard techniques for model train-
ing — which require iterated training on a dataset —
and human learning — which operates via a single
pass through ordered training data. In Section 4,
we report results averaging across n = 3, 5, 10, 20.
For TD, we used the data corresponding to the four
seed ages as the four buckets. For CHILDES, we
experimented with different numbers of buckets
(b) and settled on b = 5 for most experiments. To
compare to BabyLM (which cannot be bucketed),
we also trained iteratively on each dataset for 20
epochs, selecting the epoch that performed best on
the respective validation split (lowest val loss).

4 Results and Analysis

Major results of our experiments can be found in
Tables 1, 2, 3, and 4. More detailed results of the
curricularization experiments (i.e. broken down
by different values of b and n) can be found in
Appendix G.

As seen in Tables 1 and 2, training on BabyLM
yields noticeably better results than CHILDES and
TD on Zorro (syntax), and substantially better re-
sults than CHILDES on WS (semantics). Overall,
these results are surprising: a mixture of different
data sources may be more effective for training



Model Order Zorro WS
CHILDES Age 73.54% 0.19
CHILDES Reverse 74.18% 0.18
CHILDES Random 74.76% 0.18
TD Age 77.24% 0.31
TD Reverse 75.77% 0.31
TD Random 77.54% 0.32

Table 3: Evaluation results of our GPT-2 models, com-
paring global ordering methods, broken down by dataset.
These results are averaged across relevant experiments
(different training and curricularization methods).

Model Order Zorro WS
CHILDES Normal 77.65% 0.21
CHILDES Random 77.23% 0.16
TD Normal 80.67% 0.37
TD Random 79.03% 0.37

Table 4: Evaluation results of our GPT-2 models, com-
paring local ordering methods, broken down by dataset.
These results are averaged across two experiments
each: standard 20-epoch training and repeated buck-
ets (b = 5,n = 10) using random global ordering.

smaller models on a limited amount of data, and
even synthetic conversation data appears to be more
effective than natural conversation data for training
small-scale models on limited data.

Some potential explanations include fundamen-
tal differences in the data itself. CHILDES is heav-
ily skewed towards younger ages (see Figure 1 in
Appendix C), whereas TD is a more uniform distri-
bution across ages with more sophisticated conver-
sations intended to simulate speech to older chil-
dren. As such, it contains a higher fraction of more
grammatical utterances and text. While collecting
TD, we ensured that TD was also diverse in the type
of conversation, participants, and content. This fea-
ture likely leads to a more comprehensive coverage
of the distribution of potential conversations. Both
these factors may lead to more effective learning
of syntax and semantics. Lastly, high-quality syn-
thetic data — in contrast to naturalistic data, which
contains disfluencies and occasional garbled tokens
due to transcription issues — may simply be better
suited for training LMs, especially when data is
limited (and quality is likely even more important).

As seen in Table 3, the effects of global ordering
seem to have negligible effects on model perfor-

mance. Zorro and WS values remain relatively
stable despite changes to global order. This result
is also surprising, as one would expect that, simi-
lar to humans, curricularization based on difficulty
would affect model learning and performance, i.e.
it would be easier to learn from simpler utterances
and conversations before moving to more difficult
ones. Aligning with this, model convergence be-
havior, especially training loss, differed on a local
level (e.g. per epoch or bucket) depending on the
ordering method, but general high-level behavior
(especially of the validation loss) was relatively
stable (see Appendix I). Language models, unlike
humans, may be less affected by curricularization,
especially when the amount of data is limited.
From Table 4, we see that local ordering affects
model performance. Breaking local discourse co-
herence negatively impacts both Zorro and WS
evaluations, even though Zorro consists of single
sentence evaluations. Effects on WS are more ev-
ident for CHILDES training than TD, where WS
remains the same. A potential explanation is that
CHILDES contains noticeably shorter utterances,
on average, than TD (= 4 words vs. 13). Hence, re-
ordering CHILDES utterances likely has a greater
effect on the model’s ability to learn semantics from
similarity across a larger set of short utterances.

5 Conclusion & Future Work

Why do children require so much less training
data than language models to become fluent lan-
guage users? We ran experiments using GPT-2 on
CHILDES, BabyLLM, and a new synthetic conversa-
tion dataset that we collected called TinyDialogues.
A heterogeneous mixture of different data sources
performed better than homogeneous conversation
data — further, high-quality synthetic conversation
data yielded better performance than natural conver-
sation data. Additionally, we found that global de-
velopmental ordering and curricularization did not
have noticeable effects on performance, whereas
local discourse coherence structure did. In sum, it
seems that the curricularization of child language
does not provide a uniquely valuable signal for
language models. However, the source, composi-
tion, and local properties of the training data affect
model learning. We hope that future work builds
on our work here to expand upon the available eval-
uation benchmarks and data mixtures for compari-
son between models and children, and extends this
comparison to multi-modal datasets and models.



Limitations

Some limitations of our work include our current
suite of evaluation benchmarks and models. We
can expand our benchmarks to include more theory
of mind and developmental psychology-inspired
benchmarks, and ones for longer coherency evalua-
tion. We can also experiment with larger language
models such as LLama-3. Furthermore, we lim-
ited our investigations to conversation data and
the BabyLM mixture. We could explore more
types and sources of data, and different varieties
and proportions of data mixtures. Additionally,
the CHILDES dataset is heavily skewed towards
younger ages. Unfortunately, to the best of our
knowledge, a more balanced and uniform dataset of
high-quality textual transcriptions of child-directed
conversations is not currently available, but we
could consider collecting one in the future. Over-
all, these are directions to potentially improve and
expand upon our work in the future. We feel that,
despite these limitations, our current work is an
insightful and focused contribution.

Ethical Considerations

The majority of our datasets and evaluation bench-
marks are already existing, publicly available
datasets and benchmarks, intended for public use.

We collected TinyDialogues using GPT-4, fol-
lowing all intended use purposes and OpenAl’s
policies. Further, the dataset is entirely synthetic,
and does not include personal or private informa-
tion. As a safe and controlled language model,
there is an incredibly low risk of offensive content,
especially as it involves conversations with younger
children. We also manually examined a large sub-
set of the data and ensured there were no ethical
issues. This includes profanities, racism, bias, of-
fensive words, and other malicious language.

We acknowledge the potential weaknesses of our
trained models, which are small in scale and limited
in performance. We will never use or encourage
their use for real-world purposes. Our initial ex-
periments are conducted purely for investigation
purposes to test our hypotheses. We feel that our
work is an important contribution to the ML, NLP,
cognitive science, and psychology communities,
and we encourage researchers to expand upon it.

Our models, TinyDialogue dataset, and accom-
panying publication are intended only for research
purposes and to assess the effectiveness of child-
directed speech for training language models. We

do not foresee any explicit way that malicious ac-
tors could specifically misuse our trained models
or models that could be trained on our dataset.
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A TinyDialogues: Dataset Collection
Details & Examples

Here we discuss some further dataset collection
details for TinyDialogues (TD), with examples of
TD conversations in Table 5.

The specific GPT-4 model we use for collecting
our entire dataset is gpt-4-1106-preview, which is
GPT-4 Turbo with training data up to Apr 2023.
To increase the diversity of the generated conver-
sations, when prompting GPT-4, we also specify
the particular type of conversation (Table 6), the
approximate length or number of turns (5 or 10),!
other potential participants in the conversation (Ta-
ble 7), and certain words (one noun, one verb, and
one adjective) sampled from Wordbank CDI (Frank
et al., 2021) (ages 2 & 5) and AoA (Kuperman

'GPT-4 had a tendency to generate longer conversations,
around 10 and 20 turns instead, respectively.
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et al., 2012) (ages 10 & 15), cut off by the seeded
age, that must be included in the conversation for
content diversity. The list of potential participants
and content words varied by age, e.g. a 15-year-
old teenager would likely not talk regularly with a
babysitter. We also collect some additional meta-
data: a list and description of all participants in
the conversation, and a brief description of the con-
text/setting. We only use the dialogue portions for
our experiments. The GPT-4 prompt is below.

GPT-4 Prompt: Please construct a realistic,
approximately {5, 10}-turn dialogue directly in-
volving a {2, 5, 10, 15}-year-old {toddler, child,
teenager)? as a participant. The {toddler, child,
teenager) is the central participant in the dialogue,
with most/all speech directed towards them. Hence,
for this dialogue, please limit the vocabulary to that
of which a typical {2, 5, 10, 15}-year-old {toddler,
child, teenager} would understand. The dialogue
should be {type}.> The dialogue should use the verb
‘fverb}’, the noun ‘{noun}’, and the adjective ‘{ad-
jective}’. Please include the following participants
along with the child: {participants).* Participant
labels should be surrounded by double asterisks, i.e.
“¥participant**’. If there are several of the same
type of participant (e.g. multiple friends or class-
mates), please label them distinctly, e.g. ‘**Friend
1** and “**Friend 2**’. Please list and describe
the participants after ‘PARTICIPANTS:’, briefly
describe the context/setting of the dialogue after
‘SETTING:’, and present the dialogue itself after
‘DIALOGUE:’. The turns of the dialogue should
be separated by ‘\n\n’. Remember, please ensure
the dialogue is realistic, and one that would likely
occur in the real world directly involving a {2, 5,
10, 15}-year-old {toddler, child, teenager}.”

B Data Format & Preprocessing

CHILDES & TD: We noticed some duplicate ut-
terances in CHILDES conversations and removed
these to the best of our ability. See below for an
example of part of a single training example for
CHILDES. Double asterisks surround speaker la-
bels, double newline tokens separate utterances,
and an end-of-text token marks the end of the con-

2toddler is used for age 2, child for ages 5 and 10, and
teenager for age 15.

3A random conversation type along with its explanation is
sampled each time from the ones in Table 6.

*If turn = 5, we randomly sample one additional partici-
pant from the corresponding list in Table 7. For turn = 10,
we randomly sample two additional participants.

versation. This format was consistent across all
conversations in both CHILDES and TD datasets.

**CHI**:  Are those your stars?  \n\n
**MOT**: Can you say star? \n\n **CHI**: Star.
\n\n **CHI**: Look. \n\n **CHI**: Stars. \n\n
**MOT**: Stars. See? Look, look at the yellow
star, a golden star. <lendoftext!>

BabyLM: We concatenated the data across
the BabyLLM sub-datasets, then sampled approx-
imately 29M words to match the amount of data
in CHILDES and TD, while keeping the original
distribution among its sub-datasets intact. We sam-
pled in order (i.e. starting from the beginning of
each sub-dataset), as several BabyLM examples
(e.g. for Wikipedia) span multiple lines, and ran-
dom sampling would have broken up individual
examples and eliminated coherence. We do no fur-
ther preprocessing to the BabyLM data and keep
the format of the original sub-datasets. In partic-
ular, we do not add an <lendoftext|> token to the
end of each example (like we do with CHILDES
and TD) as it is unclear where each example ends.

The Python NLTK package’s word_tokenize
function was used as part of our statistics calcu-
lations (discussed in Appendix C). The parameters
for this function are: language is ‘english’ (default)
and preserve_line is ‘False’ (default) so line breaks
are ignored. Specifically, it was used for calculat-
ing the number of unique words in Appendix C.
For consistency purposes, data processing and sam-
pling, and other word-related statistics (e.g. total
word count, avg. words per utterance) were done
by simply splitting the text by space.

C Dataset Statistics

CHILDES consists of ~11k conversations over
~29M words. The mean length of utterances is low,
at only 3.85 words (minus speaker label), which is
likely partially due to the skew in age, where ~90%
of the data is for children ages 2-5 (see Figure
1). CHILDES contains /~74.5k unique words and
~2448 utterances (on avg.) per conversation.
BabyLLM consists of ~443k unique words in
the ~29M word subsample we take for our ex-
periments. Individual example statistics are not
available as some examples (e.g. Wikipedia) span
multiple lines, and no end of example markers were
given. More specific details and statistics about the
dataset (including its sub-datasets) can be found in
Warstadt et al. (2023), e.g. Table 1 in their paper.
TinyDialogues consists of ~130k conversations



Age | Example

2

**Babysitter**: Look, the pool is all empty. All gone! \n\n **Toddler**: Water all gone? \n\n **Babysitter**:
Yes, all gone. We let the water out. It went down, down, down. \n\n **Toddler**: Why? \n\n **Babysitter**:
So the pool can dry. We don’t want it to get yucky. \n\n **Toddler**: Pool fall? \n\n **Babysitter**: No, the
pool didn’t fall. The water fell out when we opened the plug. \n\n **Toddler**: Plug? \n\n **Babysitter**: Yes,
the plug is like a little stopper that keeps the water in. When we pull it, water comes out. \n\n **Toddler**: More
water? \n\n **Babysitter**: Not now. We’ll fill the pool again another day, okay? \n\n **Toddler**: Okay. Play
ball? \n\n **Babysitter**: Sure, let’s play ball now. The pool will be here when we’re ready to fill it up again.

**Teacher**: "Alright, everyone, it’s time to clean up! **Child**, can you please help me by putting the crayons
back in the box?" \n\n **Child**: "Yes! I can do that. The box is empty so I’ll fill it up!" \n\n **Teacher**:
"Thank you, that’s very helpful. Make sure the lids are on tight so they don’t dry out." \n\n **Child**: "I did it!
Look, they’re all inside now." \n\n **Teacher**: "Great job! Now, **Classmate**, can you and **Child** go and
put the books back on the shelf, please?" \n\n **Classmate**: "Can we go to play after?" \n\n **Teacher**: "Yes,
as soon as our classroom is tidy, we can all go outside and play.” \n\n **Child**: "Come on, let’s put the books
away fast so we can go play!" \n\n **Classmate**: "Okay, let’s do it! Race you to the shelf!" \n\n **Teacher**:
"Be careful running, but I love the enthusiasm! Thank you both for helping."

10

**Dad**: "Once upon a time, in a faraway kingdom, there lived an earless rabbit who loved to make pancakes."
\n\n **Child**: "An earless rabbit? How could he hear if he wanted to flip the batter?" \n\n **Dad**: "Well, you
see, this rabbit had a special talent. He could feel the vibrations of the batter sizzling on the pan. When it was time to
flip, he’d give it a perfect toss." \n\n **Child**: "That’s so cool! Did the rabbit have any friends?" \n\n **Dad**:
"Yes! His best friend was a turtle who loved to swim. One day, they decided to have a pancake picnic by the lake."
\n\n **Child**: "Did they swim in the lake after eating pancakes?" \n\n **Dad**: "They sure did. The turtle
taught the rabbit how to swim, and they had the best day splashing around until the sun set."

15

**Girlfriend**: Hey, so what’s the plan for this history project video? \n\n **Teenager**: We need to make a
mini-documentary about the industrial revolution. I was thinking we could start by showing how machines changed
production, like how they used to churn butter by hand before. \n\n **Girlfriend**: Oh, cool idea! We could use
that old butter churn in your grandma’s attic for a visual. What role do you want me to play in the video? \n\n
**Teenager**: Could you narrate the parts about the technological advancements? You’re really good at explaining
stuff. \n\n **Younger Sibling**: Can I help too? I want to be in the video! \n\n **Teenager**: Sure, you can
help us set up the scenes. But no forcible taking over, okay? We need to work together as a team. \n\n **Younger
Sibling**: I promise I'll be good! Can I churn the butter for the scene? \n\n **Teenager**: That’s perfect! It’ll look
more authentic with you doing it. Let’s get everything ready and start filming. Thanks for helping out, both of you.

Table 5: Examples of collected TinyDialogues conversations by seed age.

Conversation Type |

Explanation

Explanatory It should involve explaining something(s) and potentially answering question(s).
Functional It should involve attempting to get something(s) done or accomplishing particular goal(s).
Narrative It should involve telling a story (real or fictional) or sharing/recounting an experience.
Argumentative It should involve conflict(s) or disagreement(s) that lead to an argument.

In most cases, the argument should be resolved, resulting in the {child, toddler, teenager} learning.

Table 6: The four TinyDialogues conversation types along with their explanations.

across ~29M words. There are ~~14 utterances (on
avg.) per conversation, ~96k unique words, and
13.42 words (on avg.) per utterance (minus speaker
label). Since TD contains a uniform distribution
across ages (including older ages), it is not surpris-
ing that the word diversity and average length of
utterance are higher than CHILDES. Further, the
average TD conversation is shorter than CHILDES,
resulting in a higher number of individual conver-
sations. More detailed statistics for TD (broken
down by age) are in Table 8. As expected, the
vocabulary (unique words) and average length of
utterance increase with age. Conversely, the total
number of conversations and average utterances

per conversation decrease with age.

D Further Training & Compute Details

We searched through different values of the learn-
ing rate (LR) for GPT-2 training. Specifically,
LR = {le — 06,5e — 06, le — 05, 5¢ — 05, le —
04, 5e — 04, 1e — 03}. Through initial experiments,
we found that LR = 1e—04 seemed to result in the
best convergence behavior across the board, and
used that for all our training experiments.

Our experiments were run on varying GPUs.
This included a single RTX 3090TI (24GB
VRAM), up to eight A40s (48GB VRAM each), up
to eight A100s (80GB VRAM each), and up to four



TD Seed Age

Potential Participants

2 | {mom, dad, older sibling, babysitter}
5 {mom, dad, older sibling, younger sibling, teacher,
friend, classmate, grandparent, babysitter, neighbor }
10 {mom, dad, older sibling, younger sibling, teacher,
friend, classmate, grandparent, babysitter, neighbor}
15 ‘ {mom, dad, older sibling, younger sibling, teacher, friend, classmate,

grandparent, neighbor, coach, tutor, boyfriend, girlfriend}

Table 7: The list of other potential participants in each TinyDialogues conversation by seed age.

Age Conversations Total Words Unique Words Avg. Utterances per Convo  Avg. Words per Utterance
2 43,697 7,183,704 16,269 15.75 8.32
5 33,248 7,194,902 15,534 14.01 13.36
10 27,198 7,196,356 42,508 13.61 17.35
15 25,589 7,199,752 73,484 12.88 19.77
Total 129,732 28,774,714 95,868 14.29 13.42

Table 8: TinyDialogues dataset statistics broken down by seed age.

CHILDES: Total # of Words vs. Age (Years)

10,000,000

7,500,000

5,000,000

Total # of Words

2,500,000

2 4 6 8 10 12

Age (Years)

Figure 1: Total CHILDES word counts (utterances only,
no metadata) by age.

H100s (80GB VRAM each). Training time varied
by the type and number of GPUs and the particular
experiment (e.g. number of repeated buckets).

E Zorro Evaluation Details

Zorro was inspired by BLiMP (Warstadt et al.,
2020) and is a modification for child-directed lan-
guage (e.g. lower vocabulary). However, it was
designed specifically for masked language models
such as RoBERTa. To adapt it to GPT-2, we refor-
matted the Zorro data to match the BLiMP format
and used the BLiMP evaluation in the BabyLM
evaluation suite’ since the difference is mainly just
the data. Further, we use the full Zorro test suite
and do not filter examples by vocabulary. Hence,
our results are not comparable to Qin et al. (2024)

Shttps://github.com/babylm/
evaluation-pipeline-2023

who filter Zorro examples by training vocabulary.

To better match the training data format and
assess the effects of speaker labels, we came up
with three variations of Zorro: 1) the original
Zorro sentences (used to assess BabyLM), 2) the
sentences with a common CHILDES speaker la-
bel prepended (used to assess CHILDES), and 3)
the sentences with a common TD speaker label
prepended (used to assess TD). To further match
the training data as shown in Appendix B, the
speaker labels were surrounded by double aster-
isks, and sentences included double newline tokens
(before and after). We used the mother speaker
label (MOT) for CHILDES, and the child speaker
label (Child) for TD (see paragraph below), as these
were some of the most frequent speaker labels for
each dataset respectively (see Table 9). Further, pre-
liminary experiments showed that these particular
labels worked best for assessing each model.

One inconsistency in the collected TD data was
that the speaker label for the target child varied
across conversations and ages. For 2-year-olds,
GPT-4 labeled the child toddler, and 15-year-olds
were labeled teenager. This is likely due to our
prompt as discussed in Appendix A. Further, within
the same age, sometimes the label also differed
(e.g. Child, 5-year-old child, 5-year-old). To align
with CHILDES, which only used the speaker label
CHI for every target child, and make Zorro eval-
uation consistent across the board, we converted
most plausible target child speaker labels in our TD
dataset (based on manual examination) to Child.


https://github.com/babylm/evaluation-pipeline-2023
https://github.com/babylm/evaluation-pipeline-2023

Dataset Speaker Label Frequency Proportion
CHILDES MOT 1,905,187 45.7%
CHILDES CHI 1,593,073 38.2%
CHILDES INV 188,712 4.5%
CHILDES FAT 164,248 3.9%
TD Child 735,176 46.6%
TD Mom 132,746 8.4%
TD Dad 129,568 8.2%
TD Older Sibling 120,468 7.6%

Table 9: List of the top speaker labels for CHILDES
and TD training splits along with their frequencies and
proportions. This is after converting all target child
labels for TD to Child, as described in Appendix E. For
CHILDES: MOT stands for mother, CHI for child, INV
for investigator, and FAT for father.

F Further Experimental Motivation

If a dataset can be described as a concatenation
of equal-sized buckets A, B, and C, the repeated
bucket approach can be described as An Bn Cn.
The inspiration for this approach is due to several
reasons, other than being a compromise between
standard iterated training and human learning (as
discussed in Section 3.4). Firstly, the iterative ap-
proach (training across the entire dataset several
times) can potentially wash away global ordering
effects (especially when the epoch count is high) as
global order differences mainly exist within each
individual epoch. When trained across several
epochs, its effects may be less noticeable. The
repeated buckets approach maintains the global or-
der across training as a whole. The model can learn
more from each bucket before moving to the next.

G Further Experimental Results

In addition to the experiments discussed in Section
4, we tried different values of n (number of times to
repeat each bucket) for CHILDES and TD repeated
buckets experiments. In particular, n = 3,5, 10, 20.
The chosen models for the repeated bucket exper-
iments are the final models at the end of training.
For CHILDES, we also tried different values of b
(number of buckets, or approximately equal sec-
tions to divide the dataset into) using the global
age order. In particular, b = 3,5,10. We report
average results for different values of n and b in
Tables 10 and 11, respectively. We also compare
the typical iterative training approach (20 epochs)
to repeated buckets using n = 20 (analogous to 20
epochs). Results are in Table 12.
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Model n Zorro WS
CHILDES 3 68.89% 0.10
CHILDES 5 72.02% 0.14
CHILDES 10 77.01% 0.19
CHILDES 20 75.75% 0.23
TD 3 7151% 0.18
TD 5 74.48% 0.23
TD 10 79.21% 0.32
TD 20 79.65% 041

Table 10: Evaluation results of our GPT-2 models, com-
paring different values of n, broken down by dataset.
These results are averaged across three different global
ordering methods: age order, reverse order, and random
order. For CHILDES, we use b = 5.

Model b Zorro WS
CHILDES 3 7336% 0.35
CHILDES 5 72.12% 0.35
CHILDES 10 70.06% 0.35

Table 11: Evaluation results of our CHILDES GPT-2
models, comparing different values of b. These results
are averaged across three experiments each: global age
order with n = 3,5, 10.

H Importance of Speaker Labels

As an additional experiment, we also assess the
importance of having speaker labels for each utter-
ance. We train some versions of our models after re-
moving all speaker labels (including their surround-
ing double asterisks). The results are reported in
Table 13. As seen, removing speaker labels greatly
detriments syntax and grammar learning (Zorro),
but semantics (WS) appears unaffected.

I Convergence Behavior of Models

We plot the convergence graphs (train and vali-
dation losses vs. epoch) for several sets of our
experiments in Figures 2 to 8. For the repeated
buckets experiments, we treat the entire training
run as a single epoch. We can notice interesting pat-
terns/trends in the convergence behavior of models
depending on several factors including the global
ordering and curricularization method.

From Figure 2, we see that BabyLM converges
to higher losses than CHILDES and TD, although it
seems to perform better at test-time for syntax and
semantics (as discussed in Section 4). Losses dur-
ing training could simply be higher as the dataset is
more complicated and varied since it is a mixture.

From Figure 3, we can see that when we train us-
ing the typical iterative epochs approach, the train-



Model Approach Zorro WS
CHILDES 20-epochs 7713% 0.52
CHILDES b=5n=20 7575% 048
TD 20-epochs 79.41% 0.54
TD n =20 79.65% 0.54

Table 12: Evaluation results of our GPT-2 models, com-
paring typical iterative training (20 epochs) vs. repeated
buckets with n = 20 (and b = 5 for CHILDES), broken
down by dataset. These results are averaged across three
experiments each: the three different global ordering
methods (age order, reverse order, random order).

Model Speaker Label? Zorro WS
CHILDES Yes 77.65% 0.21
CHILDES No 71.84% 0.22
TD Yes 80.67% 0.37
TD No 76.53%  0.37

Table 13: Evaluation results of our GPT-2 models, com-
paring speaker label vs. no speaker label for conver-
sation utterances, broken down by dataset. These re-
sults are averaged across two experiments each: global
random order with the typical iterative approach (20
epochs) and n = 10 (with b = 5 for CHILDES).

ing loss has a cyclical pattern using global age or-
der and reverse order, while it converges smoothly
for random order. From Figures 4 and 5, we see
that when using the repeated buckets approach for
both CHILDES and TD, global age order leads to a
slowly cyclical increase in the training loss, while
it generally decreases for reverse and random order.
Throughout these experiments, while the training
loss differs and individual buckets exhibit differing
patterns, the high-level behavior of the validation
loss and hence overall learning is similar. This
aligns with the results we saw in Section 4.

From Figures 6 and 7, we see that varying b and
n result in minor changes in behavior for the train-
ing loss. Specifically, by increasing n, the training
loss has a more clearly defined cyclical pattern,
and the losses converge to lower values. This is ex-
pected, since increasing n is analogous to training
on more epochs. From Figure 8, we see that local
interventions — randomly shuffling utterances and
removing speaker labels (see Appendix H) — have
minor effects on convergence behavior.

J Licenses and Intended Use

We used all existing datasets and models for their
intended use. GPT-2 is licensed under the Mod-
ified MIT License. CHILDES is made available
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Figure 2: Convergence graphs (train and val loss) by
dataset, using iterative training for 20 epochs. From top
to bottom: CHILDES, TinyDialogues, BabyLM.

under TalkBank which is governed by the Creative
Commons CC BY-NC-SA 3.0 copyright license
(see https://talkbank.org/share/rules.html). We
plan to release the TinyDialogues dataset under
the standard MIT license. Information about the
BabyLM challenge and its dataset (which is a col-
lection of portions of several sub-datasets) is at
https://babylm.github.io/index.html.

K Code & Data

We plan to publicly release all our code and data.
Some of the code was written with the assistance
of ChatGPT (specifically, GPT-4 and GPT-40).
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