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Abstract

While high-performing language models are001
typically trained on hundreds of billions of002
words, human children become fluent language003
users with a much smaller amount of data.004
What are the features of the data they receive,005
and how do these features support language006
modeling objectives? To investigate this ques-007
tion, we train GPT-2 models on 29M words008
of English-language child-directed speech and009
a new matched, synthetic dataset (TinyDia-010
logues), comparing to a heterogeneous blend011
of datasets from the BabyLM challenge. We012
evaluate both the syntactic and semantic knowl-013
edge of these models using developmentally-014
inspired evaluations. Through pretraining ex-015
periments, we test whether the global develop-016
mental ordering or the local discourse order-017
ing of children’s training data support high per-018
formance relative to other datasets. The local019
properties of the data affect model results, but020
somewhat surprisingly, global properties do not.021
Further, child language input is not uniquely022
valuable for training language models. These023
findings support the hypothesis that, rather than024
proceeding from better data, children’s learn-025
ing is instead substantially more efficient than026
current language modeling techniques.027

1 Introduction028

Transformer-based language models (LM) show029

very strong performance on a wide variety of down-030

stream tasks, but typically only after pretraining on031

hundreds of billions to trillions of words (Brown032

et al., 2020). In contrast, human learners use033

language fluently after far less training data – in034

the 10s to 100s of millions of words. This “data035

gap” (Frank, 2023a) of several orders of magnitude036

poses a substantial challenge for machine learning.037

Is the source of human children’s efficient learn-038

ing a function of their data or their learning algo-039

rithms? While children receive rich multi-modal040

input from their exploration of the world, here we041

focus primarily on their language input, which has 042

been a major focus of study in developmental psy- 043

chology (MacWhinney, 2014). One hypothesis is 044

that the language data that children receive is a 045

uniquely rich learning signal – conversational inter- 046

action with their caregivers – that is curricularized 047

optimally to support learning (Eaves Jr et al., 2016; 048

You et al., 2021; Newport, 1990). Indeed, interven- 049

tions to increase the quality of caregiver language 050

do produce improvements in children’s language 051

learning (Ferjan Ramírez et al., 2020), and inter- 052

ventions to simplify model training data also result 053

in stronger performance (Muckatira et al., 2024; 054

Eldan and Li, 2023). 055

Language model pretraining experiments pro- 056

vide a targeted method for investigating dataset 057

quality (Kallini et al., 2024): we can manipulate 058

the training data available to models to create “con- 059

trolled rearing” experiments. We take advantage of 060

this method to investigate the properties of child- 061

directed speech for learning the syntactic and se- 062

mantic structure of language. We use GPT-2 as 063

our simulated learner, and pretrain on natural and 064

synthetic child-language data. For each of these, 065

we conduct two experiments. First, we investigate 066

whether the natural curricularization of children’s 067

input – from simpler utterances to more complex 068

conversations – affects language model learning. 069

Second, we test whether the local discourse coher- 070

ence structure of dialogue results in better learning. 071

Finally, we compare to learning on a more hetero- 072

geneous blend of data from various sources. 073

We find that the curricularization of child lan- 074

guage does not provide a uniquely valuable signal 075

for language models, supporting the hypothesis that 076

other aspects of children’s learning (not simply the 077

data) – perhaps interactions with their training data 078

– are responsible for their efficiency relative to lan- 079

guage models. On the other hand, the source, com- 080

position, and local properties of the training data 081

have measurable effects on model performance. 082
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2 Related Work083

The efficiency of children’s learning has been an084

important focal point for recent NLP efforts (Hueb-085

ner et al., 2021; Zhang et al., 2021). For example,086

last year’s BabyLM challenge held the training087

data for models constant, while encouraging en-088

trants to investigate alternative learning architec-089

tures (Warstadt et al., 2023). Smaller models of090

this type must be evaluated using targeted bench-091

marks more appropriate to their performance levels,092

including evaluations of semantic (Zhuang et al.,093

2023) and grammatical abilities (Huebner et al.,094

2021; Warstadt et al., 2020). These evaluations095

have even been used to benchmark performance096

based on data from a single child (Qin et al., 2024).097

The method of “controlled rearing” (manipulat-098

ing data while holding the model constant) for099

language models (Frank, 2023b) has a long his-100

tory in cognitive science, e.g. Christiansen and101

Chater (1999), but has recently become prominent102

for testing learnability claims (Warstadt and Bow-103

man, 2024; Kallini et al., 2024; Misra and Ma-104

howald, 2024). Often, models trained on naturally-105

occurring corpora are contrasted with counterfac-106

tual corpora constructed via targeted experimental107

manipulations – for example, shuffling sentence or-108

dering (Kallini et al., 2024) or removing particular109

constructions (Misra and Mahowald, 2024).110

Curricularization of training data is widely inves-111

tigated in machine learning (Bengio et al., 2009),112

with the guiding idea being that an appropriate or-113

dering of training examples can lead to a smoother114

path to the desired objective. Children’s develop-115

ment is argued to create a curriculum to facilitate116

their learning (Smith et al., 2018; Cusack et al.,117

2024). In one study from the visual domain, Shey-118

bani et al. (2024) trained self-supervised models on119

data from infants and found that a developmental120

ordering leads to stronger eventual performance121

compared with a reversed ordering. Our study tests122

this hypothesis in the language domain.123

3 Methods124

3.1 Datasets125

CHILDES The Child Language Data Exchange126

System (CHILDES) is a repository of human-127

transcribed corpora of children and caregivers’ talk128

(MacWhinney, 2014), with children ranging from129

birth to age 13. We take the English subset, which130

consists of approximately 29M total words (includ-131

ing speaker labels and other metadata) across ≈11k132

conversations. CHILDES is heavily skewed to- 133

wards younger ages; ≈90% of the data is for chil- 134

dren ages 2-5 (see Figure 1 in Appendix C). 135

TinyDialogues Inspired by TinyStories (Eldan 136

and Li, 2023), we collect a synthetic dataset con- 137

sisting of approximately 29M words called TinyDi- 138

alogues (TD). Using GPT-4, we prompted the gen- 139

eration of realistic conversations involving children 140

of ages 2, 5, 10, and 15 years as the central partici- 141

pant, along with a list of other potential participants 142

(e.g. mom, teacher, babysitter). To diversify, we 143

seeded each conversation based on a list of words 144

known by children at the relevant age and varied 145

the conversation type and length (see Appendix A). 146

BabyLM We further compare to the dataset dis- 147

tributed by the BabyLM challenge (Warstadt et al., 148

2023), a 100M word dataset that is a mixture of 149

several sources including transcribed speech, child- 150

directed speech (e.g. CHILDES), children’s sto- 151

rybooks, and simple Wikipedia. It is designed to 152

approximate the language data that a 10-year-old 153

child could receive. We sub-sampled ≈29M words 154

from BabyLM to match the size of this dataset to 155

our CHILDES and TinyDialogues data. 156

Preprocessing Training data for CHILDES and 157

TD was set up so that each line corresponded to a 158

single conversation. Training data for BabyLM 159

was set up using the pre-existing format in the 160

BabyLM challenge, which varied depending on the 161

sub-dataset. Each dataset was then split into 85/15 162

train/val splits, of approximately 24.5M training 163

words and 4.5M validation words. During train- 164

ing, GPT-2 breaks up the data into chunks of 1024 165

consecutive tokens which are fed into the model. 166

3.2 Evaluation 167

Zorro (Huebner et al., 2021) is designed for 168

child-directed language and aims to quantify the 169

syntactic and grammatical knowledge of language 170

models. It does so by assessing their capability to 171

distinguish between minimal pairs of sentences that 172

exhibit various grammatical contrasts. We report 173

final averages (of accuracy, higher is better) across 174

individual Zorro tasks in Section 4. 175

Word Similarity To assess the semantic knowl- 176

edge of our models, we employ a word similarity 177

(WS) metric (Zhuang et al., 2023), which mea- 178

sures the ability of models to capture semantic 179

similarities between pairs of words. Many assess- 180

ments of children’s language learning are multi- 181
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modal and involve visual stimuli; in contrast, word182

similarity is a language-only measurement that can183

be adapted for assessing LMs. We extract word184

embedding representations from hidden layers of185

each model, compute pairwise cosine similarities186

between these embeddings, and report Spearman187

correlations between human and model similarity188

judgments (higher is better). The best layer of each189

model is chosen. We average results across sev-190

eral word similarity benchmarks including RG-65191

(Rubenstein and Goodenough, 1965), WordSim-192

353 (Finkelstein et al., 2001), SimLex-999 (Hill193

et al., 2015), SimVerb-3500 (Gerz et al., 2016), and194

MEN (MTest-3000) (Bruni et al., 2012).195

3.3 Experiments196

Global Ordering To test whether the natural or-197

dering of speech to children presents an effective198

curriculum for model learning, we ordered our199

CHILDES and TD conversations (training exam-200

ples) in three ways: 1) age order (from younger201

to older), 2) reverse order (from older to younger),202

and 3) random order (equivalent to default LM203

training practices of randomly shuffling the training204

data). CHILDES includes fine-grained age infor-205

mation of the target (main) child involved in each206

conversation, down to fractions of months (essen-207

tially days), and we ordered conversations based208

on this information. TD was ordered based on the209

conversation seed ages of 2, 5, 10, and 15 years old.210

For the random order experiments, we randomly211

shuffled the conversations and kept this shuffled212

order for all experiments for consistency purposes.213

Local Ordering To investigate the effects of lo-214

cal conversation and discourse coherence on learn-215

ing, we ordered utterances within each CHILDES216

and TD conversation in two ways: 1) normal (orig-217

inal) order, and 2) random order. The latter breaks218

the local discourse coherence, by randomly shuf-219

fling utterances within each conversation.220

3.4 Model Training221

We use GPT-2 (Radford et al., 2019) with 124M222

parameters (small version), following prior “con-223

trolled rearing” work (Kallini et al., 2024; Misra224

and Mahowald, 2024; Qin et al., 2024). We trained225

a separate tokenizer on each of our datasets, and226

pretrained GPT-2 from scratch using a learning227

rate (LR) of 1e− 04, linear LR scheduler with no228

warmup steps, varying batch sizes (e.g. 4, 8, 16)229

per GPU, training seed of 42, and Adam optimizer230

Model Zorro WS

CHILDES 77.77% 0.24
TD 79.42% 0.41
BabyLM 81.75% 0.42

Table 1: Evaluation results of our GPT-2 models across
datasets, using standard iterative training for 20 epochs
(used to train BabyLM) and random global ordering.

Model Zorro WS

CHILDES 74.24% 0.18
TD 77.05% 0.32

Table 2: Evaluation results of our GPT-2 models, com-
paring natural (CHILDES) vs. synthetic (TD) conversa-
tion data. These results are averaged across all relevant
experiments: different global and local ordering meth-
ods and curricularization strategies.

with β = (0.9, 0.999) and ϵ = 1e− 08. 231

For our global ordering experiments, we split 232

each dataset into b approximately equal sections 233

(buckets), and trained on each repeatedly (n times) 234

before moving to the next bucket or section of the 235

dataset. This technique was intended as a compro- 236

mise between standard techniques for model train- 237

ing – which require iterated training on a dataset – 238

and human learning – which operates via a single 239

pass through ordered training data. In Section 4, 240

we report results averaging across n = 3, 5, 10, 20. 241

For TD, we used the data corresponding to the four 242

seed ages as the four buckets. For CHILDES, we 243

experimented with different numbers of buckets 244

(b) and settled on b = 5 for most experiments. To 245

compare to BabyLM (which cannot be bucketed), 246

we also trained iteratively on each dataset for 20 247

epochs, selecting the epoch that performed best on 248

the respective validation split (lowest val loss). 249

4 Results and Analysis 250

Major results of our experiments can be found in 251

Tables 1, 2, 3, and 4. More detailed results of the 252

curricularization experiments (i.e. broken down 253

by different values of b and n) can be found in 254

Appendix G. 255

As seen in Tables 1 and 2, training on BabyLM 256

yields noticeably better results than CHILDES and 257

TD on Zorro (syntax), and substantially better re- 258

sults than CHILDES on WS (semantics). Overall, 259

these results are surprising: a mixture of different 260

data sources may be more effective for training 261
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Model Order Zorro WS

CHILDES Age 73.54% 0.19
CHILDES Reverse 74.18% 0.18
CHILDES Random 74.76% 0.18

TD Age 77.24% 0.31
TD Reverse 75.77% 0.31
TD Random 77.54% 0.32

Table 3: Evaluation results of our GPT-2 models, com-
paring global ordering methods, broken down by dataset.
These results are averaged across relevant experiments
(different training and curricularization methods).

Model Order Zorro WS

CHILDES Normal 77.65% 0.21
CHILDES Random 77.23% 0.16

TD Normal 80.67% 0.37
TD Random 79.03% 0.37

Table 4: Evaluation results of our GPT-2 models, com-
paring local ordering methods, broken down by dataset.
These results are averaged across two experiments
each: standard 20-epoch training and repeated buck-
ets (b = 5, n = 10) using random global ordering.

smaller models on a limited amount of data, and262

even synthetic conversation data appears to be more263

effective than natural conversation data for training264

small-scale models on limited data.265

Some potential explanations include fundamen-266

tal differences in the data itself. CHILDES is heav-267

ily skewed towards younger ages (see Figure 1 in268

Appendix C), whereas TD is a more uniform distri-269

bution across ages with more sophisticated conver-270

sations intended to simulate speech to older chil-271

dren. As such, it contains a higher fraction of more272

grammatical utterances and text. While collecting273

TD, we ensured that TD was also diverse in the type274

of conversation, participants, and content. This fea-275

ture likely leads to a more comprehensive coverage276

of the distribution of potential conversations. Both277

these factors may lead to more effective learning278

of syntax and semantics. Lastly, high-quality syn-279

thetic data – in contrast to naturalistic data, which280

contains disfluencies and occasional garbled tokens281

due to transcription issues – may simply be better282

suited for training LMs, especially when data is283

limited (and quality is likely even more important).284

As seen in Table 3, the effects of global ordering285

seem to have negligible effects on model perfor-286

mance. Zorro and WS values remain relatively 287

stable despite changes to global order. This result 288

is also surprising, as one would expect that, simi- 289

lar to humans, curricularization based on difficulty 290

would affect model learning and performance, i.e. 291

it would be easier to learn from simpler utterances 292

and conversations before moving to more difficult 293

ones. Aligning with this, model convergence be- 294

havior, especially training loss, differed on a local 295

level (e.g. per epoch or bucket) depending on the 296

ordering method, but general high-level behavior 297

(especially of the validation loss) was relatively 298

stable (see Appendix I). Language models, unlike 299

humans, may be less affected by curricularization, 300

especially when the amount of data is limited. 301

From Table 4, we see that local ordering affects 302

model performance. Breaking local discourse co- 303

herence negatively impacts both Zorro and WS 304

evaluations, even though Zorro consists of single 305

sentence evaluations. Effects on WS are more ev- 306

ident for CHILDES training than TD, where WS 307

remains the same. A potential explanation is that 308

CHILDES contains noticeably shorter utterances, 309

on average, than TD (≈ 4 words vs. 13). Hence, re- 310

ordering CHILDES utterances likely has a greater 311

effect on the model’s ability to learn semantics from 312

similarity across a larger set of short utterances. 313

5 Conclusion & Future Work 314

Why do children require so much less training 315

data than language models to become fluent lan- 316

guage users? We ran experiments using GPT-2 on 317

CHILDES, BabyLM, and a new synthetic conversa- 318

tion dataset that we collected called TinyDialogues. 319

A heterogeneous mixture of different data sources 320

performed better than homogeneous conversation 321

data – further, high-quality synthetic conversation 322

data yielded better performance than natural conver- 323

sation data. Additionally, we found that global de- 324

velopmental ordering and curricularization did not 325

have noticeable effects on performance, whereas 326

local discourse coherence structure did. In sum, it 327

seems that the curricularization of child language 328

does not provide a uniquely valuable signal for 329

language models. However, the source, composi- 330

tion, and local properties of the training data affect 331

model learning. We hope that future work builds 332

on our work here to expand upon the available eval- 333

uation benchmarks and data mixtures for compari- 334

son between models and children, and extends this 335

comparison to multi-modal datasets and models. 336

4



Limitations337

Some limitations of our work include our current338

suite of evaluation benchmarks and models. We339

can expand our benchmarks to include more theory340

of mind and developmental psychology-inspired341

benchmarks, and ones for longer coherency evalua-342

tion. We can also experiment with larger language343

models such as LLama-3. Furthermore, we lim-344

ited our investigations to conversation data and345

the BabyLM mixture. We could explore more346

types and sources of data, and different varieties347

and proportions of data mixtures. Additionally,348

the CHILDES dataset is heavily skewed towards349

younger ages. Unfortunately, to the best of our350

knowledge, a more balanced and uniform dataset of351

high-quality textual transcriptions of child-directed352

conversations is not currently available, but we353

could consider collecting one in the future. Over-354

all, these are directions to potentially improve and355

expand upon our work in the future. We feel that,356

despite these limitations, our current work is an357

insightful and focused contribution.358

Ethical Considerations359

The majority of our datasets and evaluation bench-360

marks are already existing, publicly available361

datasets and benchmarks, intended for public use.362

We collected TinyDialogues using GPT-4, fol-363

lowing all intended use purposes and OpenAI’s364

policies. Further, the dataset is entirely synthetic,365

and does not include personal or private informa-366

tion. As a safe and controlled language model,367

there is an incredibly low risk of offensive content,368

especially as it involves conversations with younger369

children. We also manually examined a large sub-370

set of the data and ensured there were no ethical371

issues. This includes profanities, racism, bias, of-372

fensive words, and other malicious language.373

We acknowledge the potential weaknesses of our374

trained models, which are small in scale and limited375

in performance. We will never use or encourage376

their use for real-world purposes. Our initial ex-377

periments are conducted purely for investigation378

purposes to test our hypotheses. We feel that our379

work is an important contribution to the ML, NLP,380

cognitive science, and psychology communities,381

and we encourage researchers to expand upon it.382

Our models, TinyDialogue dataset, and accom-383

panying publication are intended only for research384

purposes and to assess the effectiveness of child-385

directed speech for training language models. We386

do not foresee any explicit way that malicious ac- 387

tors could specifically misuse our trained models 388

or models that could be trained on our dataset. 389
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1GPT-4 had a tendency to generate longer conversations,
around 10 and 20 turns instead, respectively.
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et al., 2012) (ages 10 & 15), cut off by the seeded544

age, that must be included in the conversation for545

content diversity. The list of potential participants546

and content words varied by age, e.g. a 15-year-547

old teenager would likely not talk regularly with a548

babysitter. We also collect some additional meta-549

data: a list and description of all participants in550

the conversation, and a brief description of the con-551

text/setting. We only use the dialogue portions for552

our experiments. The GPT-4 prompt is below.553

GPT-4 Prompt: Please construct a realistic,554

approximately {5, 10}-turn dialogue directly in-555

volving a {2, 5, 10, 15}-year-old {toddler, child,556

teenager}2 as a participant. The {toddler, child,557

teenager} is the central participant in the dialogue,558

with most/all speech directed towards them. Hence,559

for this dialogue, please limit the vocabulary to that560

of which a typical {2, 5, 10, 15}-year-old {toddler,561

child, teenager} would understand. The dialogue562

should be {type}.3 The dialogue should use the verb563

‘{verb}’, the noun ‘{noun}’, and the adjective ‘{ad-564

jective}’. Please include the following participants565

along with the child: {participants}.4 Participant566

labels should be surrounded by double asterisks, i.e.567

‘**participant**’. If there are several of the same568

type of participant (e.g. multiple friends or class-569

mates), please label them distinctly, e.g. ‘**Friend570

1**’ and ‘**Friend 2**’. Please list and describe571

the participants after ‘PARTICIPANTS:’, briefly572

describe the context/setting of the dialogue after573

‘SETTING:’, and present the dialogue itself after574

‘DIALOGUE:’. The turns of the dialogue should575

be separated by ‘\n\n’. Remember, please ensure576

the dialogue is realistic, and one that would likely577

occur in the real world directly involving a {2, 5,578

10, 15}-year-old {toddler, child, teenager}."579

B Data Format & Preprocessing580

CHILDES & TD: We noticed some duplicate ut-581

terances in CHILDES conversations and removed582

these to the best of our ability. See below for an583

example of part of a single training example for584

CHILDES. Double asterisks surround speaker la-585

bels, double newline tokens separate utterances,586

and an end-of-text token marks the end of the con-587

2toddler is used for age 2, child for ages 5 and 10, and
teenager for age 15.

3A random conversation type along with its explanation is
sampled each time from the ones in Table 6.

4If turn = 5, we randomly sample one additional partici-
pant from the corresponding list in Table 7. For turn = 10,
we randomly sample two additional participants.

versation. This format was consistent across all 588

conversations in both CHILDES and TD datasets. 589

**CHI**: Are those your stars? \n\n 590

**MOT**: Can you say star? \n\n **CHI**: Star. 591

\n\n **CHI**: Look. \n\n **CHI**: Stars. \n\n 592

**MOT**: Stars. See? Look, look at the yellow 593

star, a golden star. <|endoftext|> 594

BabyLM: We concatenated the data across 595

the BabyLM sub-datasets, then sampled approx- 596

imately 29M words to match the amount of data 597

in CHILDES and TD, while keeping the original 598

distribution among its sub-datasets intact. We sam- 599

pled in order (i.e. starting from the beginning of 600

each sub-dataset), as several BabyLM examples 601

(e.g. for Wikipedia) span multiple lines, and ran- 602

dom sampling would have broken up individual 603

examples and eliminated coherence. We do no fur- 604

ther preprocessing to the BabyLM data and keep 605

the format of the original sub-datasets. In partic- 606

ular, we do not add an <|endoftext|> token to the 607

end of each example (like we do with CHILDES 608

and TD) as it is unclear where each example ends. 609

The Python NLTK package’s word_tokenize 610

function was used as part of our statistics calcu- 611

lations (discussed in Appendix C). The parameters 612

for this function are: language is ‘english’ (default) 613

and preserve_line is ‘False’ (default) so line breaks 614

are ignored. Specifically, it was used for calculat- 615

ing the number of unique words in Appendix C. 616

For consistency purposes, data processing and sam- 617

pling, and other word-related statistics (e.g. total 618

word count, avg. words per utterance) were done 619

by simply splitting the text by space. 620

C Dataset Statistics 621

CHILDES consists of ≈11k conversations over 622

≈29M words. The mean length of utterances is low, 623

at only 3.85 words (minus speaker label), which is 624

likely partially due to the skew in age, where ≈90% 625

of the data is for children ages 2-5 (see Figure 626

1). CHILDES contains ≈74.5k unique words and 627

≈448 utterances (on avg.) per conversation. 628

BabyLM consists of ≈443k unique words in 629

the ≈29M word subsample we take for our ex- 630

periments. Individual example statistics are not 631

available as some examples (e.g. Wikipedia) span 632

multiple lines, and no end of example markers were 633

given. More specific details and statistics about the 634

dataset (including its sub-datasets) can be found in 635

Warstadt et al. (2023), e.g. Table 1 in their paper. 636

TinyDialogues consists of ≈130k conversations 637
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Age Example

2 **Babysitter**: Look, the pool is all empty. All gone! \n\n **Toddler**: Water all gone? \n\n **Babysitter**:
Yes, all gone. We let the water out. It went down, down, down. \n\n **Toddler**: Why? \n\n **Babysitter**:
So the pool can dry. We don’t want it to get yucky. \n\n **Toddler**: Pool fall? \n\n **Babysitter**: No, the
pool didn’t fall. The water fell out when we opened the plug. \n\n **Toddler**: Plug? \n\n **Babysitter**: Yes,
the plug is like a little stopper that keeps the water in. When we pull it, water comes out. \n\n **Toddler**: More
water? \n\n **Babysitter**: Not now. We’ll fill the pool again another day, okay? \n\n **Toddler**: Okay. Play
ball? \n\n **Babysitter**: Sure, let’s play ball now. The pool will be here when we’re ready to fill it up again.

5 **Teacher**: "Alright, everyone, it’s time to clean up! **Child**, can you please help me by putting the crayons
back in the box?" \n\n **Child**: "Yes! I can do that. The box is empty so I’ll fill it up!" \n\n **Teacher**:
"Thank you, that’s very helpful. Make sure the lids are on tight so they don’t dry out." \n\n **Child**: "I did it!
Look, they’re all inside now." \n\n **Teacher**: "Great job! Now, **Classmate**, can you and **Child** go and
put the books back on the shelf, please?" \n\n **Classmate**: "Can we go to play after?" \n\n **Teacher**: "Yes,
as soon as our classroom is tidy, we can all go outside and play." \n\n **Child**: "Come on, let’s put the books
away fast so we can go play!" \n\n **Classmate**: "Okay, let’s do it! Race you to the shelf!" \n\n **Teacher**:
"Be careful running, but I love the enthusiasm! Thank you both for helping."

10 **Dad**: "Once upon a time, in a faraway kingdom, there lived an earless rabbit who loved to make pancakes."
\n\n **Child**: "An earless rabbit? How could he hear if he wanted to flip the batter?" \n\n **Dad**: "Well, you
see, this rabbit had a special talent. He could feel the vibrations of the batter sizzling on the pan. When it was time to
flip, he’d give it a perfect toss." \n\n **Child**: "That’s so cool! Did the rabbit have any friends?" \n\n **Dad**:
"Yes! His best friend was a turtle who loved to swim. One day, they decided to have a pancake picnic by the lake."
\n\n **Child**: "Did they swim in the lake after eating pancakes?" \n\n **Dad**: "They sure did. The turtle
taught the rabbit how to swim, and they had the best day splashing around until the sun set."

15 **Girlfriend**: Hey, so what’s the plan for this history project video? \n\n **Teenager**: We need to make a
mini-documentary about the industrial revolution. I was thinking we could start by showing how machines changed
production, like how they used to churn butter by hand before. \n\n **Girlfriend**: Oh, cool idea! We could use
that old butter churn in your grandma’s attic for a visual. What role do you want me to play in the video? \n\n
**Teenager**: Could you narrate the parts about the technological advancements? You’re really good at explaining
stuff. \n\n **Younger Sibling**: Can I help too? I want to be in the video! \n\n **Teenager**: Sure, you can
help us set up the scenes. But no forcible taking over, okay? We need to work together as a team. \n\n **Younger
Sibling**: I promise I’ll be good! Can I churn the butter for the scene? \n\n **Teenager**: That’s perfect! It’ll look
more authentic with you doing it. Let’s get everything ready and start filming. Thanks for helping out, both of you.

Table 5: Examples of collected TinyDialogues conversations by seed age.

Conversation Type Explanation

Explanatory It should involve explaining something(s) and potentially answering question(s).
Functional It should involve attempting to get something(s) done or accomplishing particular goal(s).
Narrative It should involve telling a story (real or fictional) or sharing/recounting an experience.

Argumentative It should involve conflict(s) or disagreement(s) that lead to an argument.
In most cases, the argument should be resolved, resulting in the {child, toddler, teenager} learning.

Table 6: The four TinyDialogues conversation types along with their explanations.

across ≈29M words. There are ≈14 utterances (on638

avg.) per conversation, ≈96k unique words, and639

13.42 words (on avg.) per utterance (minus speaker640

label). Since TD contains a uniform distribution641

across ages (including older ages), it is not surpris-642

ing that the word diversity and average length of643

utterance are higher than CHILDES. Further, the644

average TD conversation is shorter than CHILDES,645

resulting in a higher number of individual conver-646

sations. More detailed statistics for TD (broken647

down by age) are in Table 8. As expected, the648

vocabulary (unique words) and average length of649

utterance increase with age. Conversely, the total650

number of conversations and average utterances651

per conversation decrease with age. 652

D Further Training & Compute Details 653

We searched through different values of the learn- 654

ing rate (LR) for GPT-2 training. Specifically, 655

LR = {1e − 06, 5e − 06, 1e − 05, 5e − 05, 1e − 656

04, 5e−04, 1e−03}. Through initial experiments, 657

we found that LR = 1e−04 seemed to result in the 658

best convergence behavior across the board, and 659

used that for all our training experiments. 660

Our experiments were run on varying GPUs. 661

This included a single RTX 3090TI (24GB 662

VRAM), up to eight A40s (48GB VRAM each), up 663

to eight A100s (80GB VRAM each), and up to four 664
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TD Seed Age Potential Participants

2 {mom, dad, older sibling, babysitter}

5 {mom, dad, older sibling, younger sibling, teacher,
friend, classmate, grandparent, babysitter, neighbor}

10 {mom, dad, older sibling, younger sibling, teacher,
friend, classmate, grandparent, babysitter, neighbor}

15 {mom, dad, older sibling, younger sibling, teacher, friend, classmate,
grandparent, neighbor, coach, tutor, boyfriend, girlfriend}

Table 7: The list of other potential participants in each TinyDialogues conversation by seed age.

Age Conversations Total Words Unique Words Avg. Utterances per Convo Avg. Words per Utterance

2 43,697 7,183,704 16,269 15.75 8.32
5 33,248 7,194,902 15,534 14.01 13.36

10 27,198 7,196,356 42,508 13.61 17.35
15 25,589 7,199,752 73,484 12.88 19.77

Total 129,732 28,774,714 95,868 14.29 13.42

Table 8: TinyDialogues dataset statistics broken down by seed age.
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CHILDES: Total # of Words vs. Age (Years)

Figure 1: Total CHILDES word counts (utterances only,
no metadata) by age.

H100s (80GB VRAM each). Training time varied665

by the type and number of GPUs and the particular666

experiment (e.g. number of repeated buckets).667

E Zorro Evaluation Details668

Zorro was inspired by BLiMP (Warstadt et al.,669

2020) and is a modification for child-directed lan-670

guage (e.g. lower vocabulary). However, it was671

designed specifically for masked language models672

such as RoBERTa. To adapt it to GPT-2, we refor-673

matted the Zorro data to match the BLiMP format674

and used the BLiMP evaluation in the BabyLM675

evaluation suite5 since the difference is mainly just676

the data. Further, we use the full Zorro test suite677

and do not filter examples by vocabulary. Hence,678

our results are not comparable to Qin et al. (2024)679

5https://github.com/babylm/
evaluation-pipeline-2023

who filter Zorro examples by training vocabulary. 680

To better match the training data format and 681

assess the effects of speaker labels, we came up 682

with three variations of Zorro: 1) the original 683

Zorro sentences (used to assess BabyLM), 2) the 684

sentences with a common CHILDES speaker la- 685

bel prepended (used to assess CHILDES), and 3) 686

the sentences with a common TD speaker label 687

prepended (used to assess TD). To further match 688

the training data as shown in Appendix B, the 689

speaker labels were surrounded by double aster- 690

isks, and sentences included double newline tokens 691

(before and after). We used the mother speaker 692

label (MOT) for CHILDES, and the child speaker 693

label (Child) for TD (see paragraph below), as these 694

were some of the most frequent speaker labels for 695

each dataset respectively (see Table 9). Further, pre- 696

liminary experiments showed that these particular 697

labels worked best for assessing each model. 698

One inconsistency in the collected TD data was 699

that the speaker label for the target child varied 700

across conversations and ages. For 2-year-olds, 701

GPT-4 labeled the child toddler, and 15-year-olds 702

were labeled teenager. This is likely due to our 703

prompt as discussed in Appendix A. Further, within 704

the same age, sometimes the label also differed 705

(e.g. Child, 5-year-old child, 5-year-old). To align 706

with CHILDES, which only used the speaker label 707

CHI for every target child, and make Zorro eval- 708

uation consistent across the board, we converted 709

most plausible target child speaker labels in our TD 710

dataset (based on manual examination) to Child. 711
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Dataset Speaker Label Frequency Proportion

CHILDES MOT 1,905,187 45.7%
CHILDES CHI 1,593,073 38.2%
CHILDES INV 188,712 4.5%
CHILDES FAT 164,248 3.9%

TD Child 735,176 46.6%
TD Mom 132,746 8.4%
TD Dad 129,568 8.2%
TD Older Sibling 120,468 7.6%

Table 9: List of the top speaker labels for CHILDES
and TD training splits along with their frequencies and
proportions. This is after converting all target child
labels for TD to Child, as described in Appendix E. For
CHILDES: MOT stands for mother, CHI for child, INV
for investigator, and FAT for father.

F Further Experimental Motivation712

If a dataset can be described as a concatenation713

of equal-sized buckets A, B, and C, the repeated714

bucket approach can be described as An Bn Cn.715

The inspiration for this approach is due to several716

reasons, other than being a compromise between717

standard iterated training and human learning (as718

discussed in Section 3.4). Firstly, the iterative ap-719

proach (training across the entire dataset several720

times) can potentially wash away global ordering721

effects (especially when the epoch count is high) as722

global order differences mainly exist within each723

individual epoch. When trained across several724

epochs, its effects may be less noticeable. The725

repeated buckets approach maintains the global or-726

der across training as a whole. The model can learn727

more from each bucket before moving to the next.728

G Further Experimental Results729

In addition to the experiments discussed in Section730

4, we tried different values of n (number of times to731

repeat each bucket) for CHILDES and TD repeated732

buckets experiments. In particular, n = 3, 5, 10, 20.733

The chosen models for the repeated bucket exper-734

iments are the final models at the end of training.735

For CHILDES, we also tried different values of b736

(number of buckets, or approximately equal sec-737

tions to divide the dataset into) using the global738

age order. In particular, b = 3, 5, 10. We report739

average results for different values of n and b in740

Tables 10 and 11, respectively. We also compare741

the typical iterative training approach (20 epochs)742

to repeated buckets using n = 20 (analogous to 20743

epochs). Results are in Table 12.744

Model n Zorro WS

CHILDES 3 68.89% 0.10
CHILDES 5 72.02% 0.14
CHILDES 10 77.01% 0.19
CHILDES 20 75.75% 0.23

TD 3 71.51% 0.18
TD 5 74.48% 0.23
TD 10 79.21% 0.32
TD 20 79.65% 0.41

Table 10: Evaluation results of our GPT-2 models, com-
paring different values of n, broken down by dataset.
These results are averaged across three different global
ordering methods: age order, reverse order, and random
order. For CHILDES, we use b = 5.

Model b Zorro WS

CHILDES 3 73.36% 0.35
CHILDES 5 72.12% 0.35
CHILDES 10 70.06% 0.35

Table 11: Evaluation results of our CHILDES GPT-2
models, comparing different values of b. These results
are averaged across three experiments each: global age
order with n = 3, 5, 10.

H Importance of Speaker Labels 745

As an additional experiment, we also assess the 746

importance of having speaker labels for each utter- 747

ance. We train some versions of our models after re- 748

moving all speaker labels (including their surround- 749

ing double asterisks). The results are reported in 750

Table 13. As seen, removing speaker labels greatly 751

detriments syntax and grammar learning (Zorro), 752

but semantics (WS) appears unaffected. 753

I Convergence Behavior of Models 754

We plot the convergence graphs (train and vali- 755

dation losses vs. epoch) for several sets of our 756

experiments in Figures 2 to 8. For the repeated 757

buckets experiments, we treat the entire training 758

run as a single epoch. We can notice interesting pat- 759

terns/trends in the convergence behavior of models 760

depending on several factors including the global 761

ordering and curricularization method. 762

From Figure 2, we see that BabyLM converges 763

to higher losses than CHILDES and TD, although it 764

seems to perform better at test-time for syntax and 765

semantics (as discussed in Section 4). Losses dur- 766

ing training could simply be higher as the dataset is 767

more complicated and varied since it is a mixture. 768

From Figure 3, we can see that when we train us- 769

ing the typical iterative epochs approach, the train- 770
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Model Approach Zorro WS

CHILDES 20-epochs 77.13% 0.52
CHILDES b = 5, n = 20 75.75% 0.48

TD 20-epochs 79.41% 0.54
TD n = 20 79.65% 0.54

Table 12: Evaluation results of our GPT-2 models, com-
paring typical iterative training (20 epochs) vs. repeated
buckets with n = 20 (and b = 5 for CHILDES), broken
down by dataset. These results are averaged across three
experiments each: the three different global ordering
methods (age order, reverse order, random order).

Model Speaker Label? Zorro WS

CHILDES Yes 77.65% 0.21
CHILDES No 71.84% 0.22

TD Yes 80.67% 0.37
TD No 76.53% 0.37

Table 13: Evaluation results of our GPT-2 models, com-
paring speaker label vs. no speaker label for conver-
sation utterances, broken down by dataset. These re-
sults are averaged across two experiments each: global
random order with the typical iterative approach (20
epochs) and n = 10 (with b = 5 for CHILDES).

ing loss has a cyclical pattern using global age or-771

der and reverse order, while it converges smoothly772

for random order. From Figures 4 and 5, we see773

that when using the repeated buckets approach for774

both CHILDES and TD, global age order leads to a775

slowly cyclical increase in the training loss, while776

it generally decreases for reverse and random order.777

Throughout these experiments, while the training778

loss differs and individual buckets exhibit differing779

patterns, the high-level behavior of the validation780

loss and hence overall learning is similar. This781

aligns with the results we saw in Section 4.782

From Figures 6 and 7, we see that varying b and783

n result in minor changes in behavior for the train-784

ing loss. Specifically, by increasing n, the training785

loss has a more clearly defined cyclical pattern,786

and the losses converge to lower values. This is ex-787

pected, since increasing n is analogous to training788

on more epochs. From Figure 8, we see that local789

interventions – randomly shuffling utterances and790

removing speaker labels (see Appendix H) – have791

minor effects on convergence behavior.792

J Licenses and Intended Use793

We used all existing datasets and models for their794

intended use. GPT-2 is licensed under the Mod-795

ified MIT License. CHILDES is made available796

Figure 2: Convergence graphs (train and val loss) by
dataset, using iterative training for 20 epochs. From top
to bottom: CHILDES, TinyDialogues, BabyLM.

under TalkBank which is governed by the Creative 797

Commons CC BY-NC-SA 3.0 copyright license 798

(see https://talkbank.org/share/rules.html). We 799

plan to release the TinyDialogues dataset under 800

the standard MIT license. Information about the 801

BabyLM challenge and its dataset (which is a col- 802

lection of portions of several sub-datasets) is at 803

https://babylm.github.io/index.html. 804

K Code & Data 805

We plan to publicly release all our code and data. 806

Some of the code was written with the assistance 807

of ChatGPT (specifically, GPT-4 and GPT-4o). 808
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Figure 3: Convergence graphs (train and val loss) of
TinyDialogues using the typical iterative training ap-
proach for 20 epochs, for different global orders. From
top to bottom: age order, reverse order, random order.

Figure 4: Convergence graphs (train and val loss) of
CHILDES using the repeated buckets training approach
with b = 5, n = 10, for different global orders. From
top to bottom: age order, reverse order, random order.

12



Figure 5: Convergence graphs (train and val loss) of
TinyDialogues using the repeated buckets training ap-
proach with n = 10, for different global orders. From
top to bottom: age order, reverse order, random order.

Figure 6: Convergence graphs (train and val loss) of
CHILDES using the repeated buckets training approach
with b = 5, for different values of n. From top to
bottom: n = 3, 5, 10, 20.
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Figure 7: Convergence graphs (train and val loss) of
CHILDES using the repeated buckets training approach
with n = 5, for different values of b. From top to
bottom: b = 3, 5, 10.

Figure 8: Convergence graphs (train and val loss) of
CHILDES, looking at the effects of local interventions –
shuffling utterances and removing speaker labels – using
the repeated buckets approach with b = 5, n = 10.
From top to bottom: original data (no changes), random
shuffling of utterances, no speaker labels.
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