
Joint Relational Database Generation via
Graph-Conditional Diffusion Models

Mohamed Amine Ketata, David Lüdke, Leo Schwinn, Stephan Günnemann

School of Computation, Information and Technology & Munich Data Science Institute
Technical University of Munich, Germany
Correspondence to: a.ketata@tum.de

Abstract

Building generative models for relational databases (RDBs) is important for many
applications, such as privacy-preserving data release and augmenting real datasets.
However, most prior works either focus on single-table generation or adapt single-
table models to the multi-table setting by relying on autoregressive factorizations
and sequential generation. These approaches limit parallelism, restrict flexibility in
downstream applications, and compound errors due to commonly made conditional
independence assumptions. In this paper, we propose a fundamentally different ap-
proach: jointly modeling all tables in an RDB without imposing any table order. By
using a natural graph representation of RDBs, we propose the Graph-Conditional
Relational Diffusion Model (GRDM), which leverages a graph neural network
to jointly denoise row attributes and capture complex inter-table dependencies.
Extensive experiments on six real-world RDBs demonstrate that our approach sub-
stantially outperforms autoregressive baselines in modeling multi-hop inter-table
correlations and achieves state-of-the-art performance on single-table fidelity met-
rics. Our code is available at https://github.com/ketatam/rdb-diffusion.

1 Introduction

Table A

Table B

Table C

Step 1

Table A

Table B

Table C

Autoregressive Joint (Ours)

Limiting table order
 Sequential generation
 Simplifying assumptions

No table order
 Parallel generation
 Joint modeling of all rows

Step 2

Step 3

Table A
Table B

Table C

Figure 1: Comparison of autoregressive
and joint relational database generation.

Relational databases (RDBs), which organize data into
multiple interlinked tables, are the most widely used
data management system, estimated to store over 70%
of the world’s structured data [1]. RDBs are used in var-
ious domains, including healthcare, finance, education,
and e-commerce [2, 3]. However, increasing legal and
ethical concerns around data privacy have led to strict
regulations that limit access to data containing personal
or sensitive information. While these safeguards protect
individuals and organizations, they can hinder the de-
velopment of data-driven technologies that benefit from
rich, structured data, thereby slowing scientific progress.

Synthetic data generation has emerged as a promising
approach to mitigate this problem by training genera-
tive models on private datasets and releasing synthetic
samples that preserve key statistical properties without
disclosing sensitive information [4, 5]. In addition, syn-
thetic data can enhance fairness, facilitate data augmen-
tation, and support robust downstream analysis [6, 7].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:a.ketata@tum.de
https://github.com/ketatam/rdb-diffusion

Despite recent advances in synthetic data generation for single-table settings [8–12], multi-table
relational database generation remains relatively underexplored. Notably, current approaches share
a common limitation: they impose a fixed order on the tables and model their distribution autore-
gressively [13–16] (cf. Figure 1 left). This sequential generation procedure introduces several
key limitations. It constrains downstream tasks, such as missing data imputation, prevents parallel
sampling, and often struggles with capturing complex long-range dependencies between tables. In
addition, prior methods often adopt strong conditional independence assumptions that facilitate
learning but sacrifice fidelity or generality [15]. We discuss further related work in Appendix B.

In this paper, we propose a fundamentally different approach: we jointly model all tables in a
relational database without relying on a specific table ordering (cf. Figure 1 right) and propose
the first non-autoregressive generative model for RDBs. To achieve this, we adopt a graph-based
representation of RDBs [17], where nodes correspond to individual rows, and edges encode primary-
foreign key relationships. By framing RDB generation as a graph generation problem, we leverage
random graph generation methods to first sample a graph that preserves node degree distributions of
the real graph, then jointly generate all node features using our novel Graph-Conditional Relational
Diffusion Model (GRDM). Our main contributions are the following:

• We introduce a new framework that models the joint distribution over all tables in an RDB,
removing the need for a predefined table ordering or autoregressive factorization.

• We propose GRDM, the first non-autoregressive generative model for RDBs. It uses a
graph-based representation and jointly generates all row attributes.

• We demonstrate that GRDM significantly outperforms autoregressive baselines across six
real-world RDBs, especially in capturing long-range dependencies between tables.

2 Background

Relational Databases. A Relational Database (RDB) [18] (R,L) (cf. Figure 2 top) is defined
by a set of m interconnected tables, called relations,R = {R(1), . . . , R(m)} and a database schema
L ⊆ R × R that specifies the connections between them. Specifically, a tuple (Rchild, Rparent)
belongs to L if rows from Rchild contain references to rows from Rparent, forming a parent-child
relationship. Each table R(i) represents one entity type and consists of ni rows {r(i)1 , . . . , r

(i)
ni }, where

each row r is an instance of this entity and consists of three components [17]:

• Primary key pr: a unique identifier for each row within a table.
• Foreign keys Kr ⊆ {pr′ | r′ ∈ R′ and (R,R′) ∈ L}: a set of primary keys of rows in other

tables, that row r points to. We refer to these rows as r’s parents.
• Attributes xr: a set of columns (features) describing this specific instance. In this work, we

focus on databases with categorical and numerical attributes, which include ordinal, date,
time, discrete, and continuous data.

Synthetic Relational Database Generation. The goal of synthetic RDB generation is to learn a
parameterized distribution pθ ≈ p(R) to sample a synthetic database R̃ that adheres to the schema L
and preserves the statistical properties ofR. The challenges of this learning problem are twofold:

(i) the complex distributions of columns with heterogeneous multi-modal features (column shapes),

(ii) the complex correlations between columns from the same table (intra-table trends), as well
as columns from different tables (inter-table trends) which can be directly (one-hop) or indirectly
(multi-hop) connected by primary-foreign key links.

Autoregressive Models for RDB Generation. To learn these distributions and capture their
correlations, existing generative models for RDBs rely on a specific table order, often the topological
order induced by the schema L, to autoregressively factorize the joint distribution [13, 16, 15, 19, 14]:

p(R) = p(R(1), . . . , R(m)) =

m∏
i=1

p(R(i)
∣∣ {R(i′) | i′ < i}).1

1Some works [16, 19] generate all primary and foreign keys in a first step, then apply a similar autoregressive
factorization on the attributes (non-key columns).

2

While this factorization can, in principle, model the true joint distribution, its inherent sequential
nature introduces two key limitations. First, fixing the table order limits downstream applications,
e.g., missing value imputation, because each table is conditioned only on its predecessors and cannot
incorporate information from tables later in the order. Second, the factorization forces the generation
runtime to scale linearly with the number of tables and prevents parallelization across tables.

Moreover, learning the required conditional probability distributions is practically challenging,
particularly for large RDBs with high-dimensional attributes and complex multi-hop inter-table
dependencies. To make the problem tractable, prior work focused on RDBs with only two tables [16]
or resorted to simplifying assumptions such as Markov-like conditional independence assumptions of
tables or individual rows given their parents [13–15]. Such assumptions are particularly problematic
in this autoregressive setting, where small errors can accumulate across generation steps, causing
compounding errors and loss of coherence.

3 Joint Modeling of All Tables with Graph-Conditional Diffusion Models

In this work, we introduce the first non-autoregressive generative model for RDBs by directly
modeling the joint distribution of tables in R. Specifically, by avoiding any table ordering and
leveraging the relational structure of the database to jointly model its rows, our approach imposes
fewer assumptions and enables models that are more expressive, flexible, and parallelizable. We
structure this section as follows: we introduce how to faithfully model RDBs as graphs in Section 3.1,
motivate our two-step graph generation procedure in Section 3.2, describe how we generate the graph
structure in Section 3.3, and finally present our novel diffusion model, which is the main contribution
of this paper, in Section 3.4.

3.1 Relational Databases as Attributed Heterogeneous Directed Graphs

The relational structure of an RDB is naturally represented as a directed heterogeneous graph that
elegantly models its different components. A key advantage of adopting this graph-based view is that
we can leverage the vast literature on graph theory and graph machine learning to process relational
data. This idea has gained traction in recent representation learning work [20, 17, 21], and has also
been explored in generative modeling [16, 19], though existing approaches remain autoregressive.
While there are several ways to represent an RDB as a graph [21], we adopt the simple and intuitive
formulation from Fey et al. [17], modeling an RDB (R,L) as a heterogeneous graph in which each
row is a node and edges are defined by primary–foreign key links (cf. Figure 2 bottom).

ID Age Income City

1 27 33K A

2 56 60K C

3 32 40K B

ID Brand Category

1 X Food

2 Y Clothing

Customers Products

Transactions

Graph

Tabular

Re
la

tio
na

l D
at

ab
as

e

ID CustomerID ProductID Price Time

1 1 2 30.0 09:35

2 2 1 15.7 12:45

3 2 2 35.4 15:34

4 3 2 17.5 19:03

Figure 2: Tabular and graph representations
of relational databases. We use different
colours and different arrow shapes to depict
different node and edge types, respectively.

Formally, we define the graph as G = (V, E ,X),
with node set V representing the rows, edge set E
representing the primary–foreign key connections,
and feature set X representing the attributes. First,
we map each row r ∈ R(i) to a node v of type i,
resulting in a heterogeneous graph. The full node
set is given by V =

⋃m
i=1 V(i), where each V(i) =

{v(r) | r ∈ R(i)} contains all nodes of type i and
v(r) denotes the node corresponding to row r, and
r(v) its inverse. Second, we define the edge set as

E = {(v1, v2) ∈ V × V | pv2 ∈ Kv1},
where pv = pr(v) and Kv = Kr(v) are shorthand for
accessing a node’s primary and foreign keys.

Each edge represents a primary-foreign key relation-
ship between two rows. We assign each edge a
type (i, j), based on the types of its endpoints v1
and v2. Since edges are ordered pairs, the result-
ing graph is directed—a property that is essential
for reconstructing the original RDB from its graph
representation. Finally, the feature set is defined as
X = {xv | v ∈ V}, where xv = xr(v) contains the
non-key attributes of the corresponding row. Thus,

3

X captures all columns inR that are not primary or foreign keys, while the primary and foreign keys
are fully encoded in the (featureless) graph structure (V, E).
Importantly, this graph construction is a faithful representation of the original RDB in the sense
that one can reconstruct the original RDBR from the graph G – up to permutations of the primary
keys (thus also of foreign keys). One concrete procedure for this reconstruction is provided in
Appendix D.1. In the following, we use G and R interchangeably to refer to the graph and RDB
representation of the same object. With this, our target data distribution becomes:

p(R) = p(G) = p(V, E ,X). (1)

3.2 On the Factorization of p(V, E ,X)

To find an efficient and scalable parametrization for p(V, E ,X), we examine its possible factorizations.
First, note that V is implicitly defined by either X or E . Hence, we can reduce the problem to three
viable factorizations: (A) one-shot; p(V, E ,X), (B) features-then-edges; p(V,X)p(E|V,X), or (C)
edges-then-features; p(V, E)p(X|V, E).
To illustrate the scalability trade-offs among these factorizations, consider an RDB with two tables
containing n and m rows, respectively. Note that for factorizations (A) and (B), the edges are
generated along with or after the features identifying each node. Thus, they need to consider all
n ×m possible edges, which is computationally prohibitive for large n and m, and increasingly
so for databases with multiple tables. In contrast, factorization (C) generates the edges before the
features, which allows us to sidestep this combinatorial explosion by exploiting the exchangeability
of nodes and simply parameterizing the number of nodes and their per edge-type degree for efficient
random graph generation similar to Xu et al. [16]. Specifically, factorizing the distribution as

p(R) = p(G) = p(V, E)p(X|V, E) (2)

corresponds to a two-step process. First, p(V, E) defines the structure of the attribute-free graph,
equivalent to generating the primary and foreign key columns of the RDB. Second, p(X|V, E)
generates the node features of the graph, or equivalently, the row attributes of the RDB. Note that this
can be attained by jointly modeling each node with its neighborhood defined by the graph structure,
allowing us to scale to very large databases. In the following, we build up on this factorization:
Section 3.3 presents a simple and effective algorithm for modeling p(V, E), followed by our main
contribution, a graph-conditional diffusion framework for modeling p(X|V, E), in Section 3.4.

3.3 Node Degree-Preserving Random Graph Generation

The featureless graph (V, E) is a directed, heterogeneous, and m-partite graph—edges exist only
between nodes of different types, corresponding to rows from different tables. We model p(V, E)
using a simple random graph generation algorithm that preserves the node degree distributions
observed in the real graph [22]. We define a node’s indegree and outdegree for a given edge type as
the number of incoming and outgoing edges of that type, respectively. Outdegrees are constant per
edge type, since each table has a fixed number of foreign key columns. Thus, our goal is to preserve
the indegree distribution for each edge type.

The learning phase computes the empirical indegree distributions per edge type from the real graph.
Sampling begins with root nodes—those with no outgoing edges. We set the number of root nodes to
match the real graph, ensuring a similar overall graph size, but the graph size can also be scaled by a
multiplier. For each root node, we sample its children according to the learned indegree distributions
and recursively repeat this process for the sampled child nodes. When a node has multiple parents,
this procedure initially produces multiple copies for it. To correct this while preserving the overall
indegree distribution, we perform a random matching to merge duplicate nodes across these sets,
before sampling their indegree sequence.

3.4 Graph-Conditional Relational Diffusion Model (GRDM)

Given the graph structure (V, E), we are now interested in generating the features X . Since this is now
a feature generation task for a fixed graph structure, an interesting analogy to keep in mind is image
generation. An image can be viewed as a graph with a simple 2D grid structure, where each pixel
represents a node with a 3-dimensional feature vector of color channels. In our case, we can think

4

about p(X|V, E) as generating a very large image, with a more complex structure and heterogeneous
node features. Inspired by the success of diffusion models in image generation and other domains
[23–26], and given their unprecedented capacity to model joint distributions, we propose to model
p(X|V, E) using diffusion models. Our model can be viewed as a generalization of image diffusion
models to graphs with arbitrary structures and node features. In this section, we use X (0) to denote
the original data X , as is common in the diffusion models literature [23].

3.4.1 Forward Process

Diffusion models [27, 23] are latent variable models that define a sequence of latent variables
X (1), . . . ,X (T) of the same dimensionality as X (0) through a fixed Markov chain, called the forward
process or diffusion process, that gradually adds noise to data:

q(X (1:T)|X (0),V, E) =
T∏

t=1

q(X (t)|X (t−1),V, E). (3)

While this formulation is very general and allows defining complex forward processes, we choose to
add noise independently to all nodes at each timestep t (analogous to how pixels are independently
noised in image diffusion models), which will enable efficient training of our model:

q(X (t)|X (t−1),V, E) =
∏
v∈V

q(x(t)
v |x(t−1)

v), (4)

where x
(t)
v is the feature vector of node v at diffusion timestep t. In this work, we assume that

xv consists of numerical and categorical features. A common way to model categorical tabular
data is multinomial diffusion [28, 8], however, it suffers significant performance overheads and
we found it unstable for high-cardinality categorical variables. Therefore, we follow Pang et al.
[15] and map categorical variables to continuous space through label encoding (See Appendix D.2
for details) and apply Gaussian diffusion (DDPM [23]) on the unified space: q(x

(t)
v |x(t−1)

v) =

N (x
(t)
v ;
√
1− βtx

(t−1)
v , βtI), where β1, . . . , βT define the variance schedule.

An important consequence of this choice of the forward process, i.e., adding Gaussian noise inde-
pendently to all nodes, is that we can sample x

(t)
v of an individual node at any timestep t directly

from the clean data at time 0, which is key for efficient training of the model. Let αt = 1− βt and
ᾱt =

∏t
i=1 αi, then q(x

(t)
v |X (0),V, E) = q(x

(t)
v |x(0)

v) = N (x
(t)
v ;
√
ᾱtx

(0)
v , (1− ᾱt)I).

3.4.2 Reverse Process

The generative model is defined as another Markov chain with learned transitions; the reverse process,

pθ(X (0:T)|V, E) = p(X (T)|V, E)
T∏

t=1

pθ(X (t−1)|X (t),V, E). (5)

This formulation of the reverse process also offers significant modeling flexibility; to predict the less
noisy state x(t−1)

v of node v, the model can leverage the graph structure (V, E) and the features of all
other nodes X (t). However, doing so is not scalable for large graphs, but also not necessary because
most of the nodes will be irrelevant. Therefore, we propose to condition the denoising of node v
at each timestep on the local neighborhood encoding the relations of the database, which achieves
our goal of jointly modeling the nodes faithfully to the RDB structure. This is analogous to how
convolutional neural network-based image diffusion models condition the denoising of a pixel on its
neighboring pixels [23].

To allow a node to interact not only with its parents, but also with its children, for the diffusion model,
we treat the graph G as undirected by adding reverse edges to all existing edges in G. Formally,
let G(t)v,K = (Vv,K , Ev,K ,X (t)

v,K) denote the subgraph from G (now undirected), centered at node v,
containing all nodes in the K-hop neighborhood around v, with features at diffusion time t. For
instance, for K = 1, the nodes in G(t)v,1 correspond to all rows in the database that are referenced
by r(v) and those that reference it. Note that we can also bound the worst-case space and time

5

complexity by sampling a fixed-size set of neighbors as proposed by Hamilton et al. [29]. Formally,
we model the following factorization of the reverse process (Equation 5):

p(X (T)|V, E) =
∏
v∈V

p(x(T)
v) and pθ(X (t−1)|X (t),V, E) =

∏
v∈V

pθ(x
(t−1)
v |G(t)v,K). (6)

A crucial property of our reverse process formulation is the following: due to the multi-step nature
of diffusion models, the denoising of node v is not restricted to only conditioning on its K-hop
neighborhood, but can extend to further away nodes. To see this, let us consider two consecutive
timesteps and identify which nodes in X (t+1) influence x

(t−1)
v . From Equation 6, we see that from

t→ t− 1, only nodes in X (t)
v,K influence x

(t−1)
v . However, from t+ 1→ t, all nodes in X (t)

v,K are in
turn influenced by nodes in their respective K-hop neighborhood at time t+ 1, which will indirectly
influence x(t−1)

v . These nodes form the subgraph G(t+1)
v,2K , and by induction on the number of diffusion

steps, we can show that x(t)
v is influenced by G(t+N)

v,NK at time t+N , meaning that our model can in
principle model interactions between node pairs that are O(TK) hops away in the graph during the
whole reverse diffusion process. Empirically, this is shown by the model using K = 1 and is able to
capture higher-order correlations well (See Section 4 for detailed experiments).

In the case of Gaussian diffusion, the reverse process is also Gaussian: p(x(T)
v) = N (x

(T)
v ;0, I)

and pθ(x
(t−1)
v |G(t)v,K) = N (x

(t−1)
v ;µθ(G(t)v,K , t), σ2

t I), where µθ is a neural network that learns to
approximate the less noisy state of node v given its neighborhood at time t, and σt is a hyperparameter.

3.4.3 Training and Sampling

Training. Recall that our end goal is to learn a parametrized model pθ for the distribution
p(X (0)|V, E). pθ can be learned by minimizing the model’s negative log-likelihood (NLL) of
the data, − log pθ(X (0)|V, E). However, the NLL is intractable to compute; we therefore optimize its
variational bound [27]:

− log pθ(X (0)|V, E) ≤ Eq

[
− log

pθ(X (0:T)|V, E)
q(X (1:T)|X (0),V, E)

]
=: L(θ). (7)

L(θ) can be equivalently expressed in terms of conditional forward process posteriors, which are
tractable to compute (see Appendix C for a detailed derivation). Furthermore, we follow Ho et al.
[23] in parametrizing µθ as µθ(G(t)v,K , t) = 1√

αt

(
x
(t)
v − βt√

1−ᾱt
ϵθ(G(t)v,K , t)

)
, where ϵθ predicts the

noise added at time t, and using a simplified training objective (details are provided in Appendix C),
leading to the following objective that we use to train our model:

Lsimple(θ) = Ev∼U(V),t∼U({1,...,T}),{ϵv′∼N (0,I) | v′∈Vv,K}

[∥∥∥ϵv − ϵθ

(
G(t)v,K , t

)∥∥∥2] , (8)

where U samples an element from its input set uniformly at random. Our model, ϵθ, is trained by
minimizing Lsimple(θ) using stochastic gradient descent, where each iteration works as follows: a
node v is sampled uniformly at random and is noised along with its K-hop neighborhood to the same
time step t, which is also sampled uniformly at random. Given the noisy subgraph G(t)v,K , ϵθ learns to
predict the noise vector ϵv that was added to v. Algorithm 1 shows the detailed training procedure.

Sampling. To sample from our model, we initialize all node features in the graph with Gaussian
noise, x(T)

v ∼ N (0, I) ∀ v ∈ V . Then, at each time step t = T, . . . , 1, all nodes are jointly denoised
before moving to the next step as follows:

x(t−1)
v =

1
√
αt

(
x(t)
v −

βt√
1− ᾱt

ϵθ

(
G(t)v,K , t

))
+ σtzv ∀ v ∈ V, (9)

where zv ∼ N (0, I) if t > 1 else zv = 0. The full sampling procedure is shown in Algorithm 2.

A nice property of our sampling procedure is that at each time step, the denoising step (Equation 9)
can be run fully in parallel across all nodes in the graph, allowing us to scale to very large graphs.
This is in contrast to prior works [15, 19] that specify an order on the tables and can only start with
generating one table, once all its predecessors have been generated.

6

3.4.4 Model architecture

ϵθ is a learnable function that maps a graph G centered at node v and a timestep t to a vector of the
same dimension as xv, denoted as d. Formally, ϵθ : G× R→ Rd, where G is the set of graphs. In
this work, we use heterogeneous Message-Passing Graph Neural Networks (MP-GNNs) [30, 31]
to parameterize ϵθ. Let (G, t) ∈ G × R denote the input to ϵθ with G = (V, E ,X). We define
initial node embeddings as h0

v = (xv, t) ∀ v ∈ V . One iteration of heterogeneous message passing
consists of updating each node’s embedding at iteration l, hl

v , based on its neighbors, to get updated
embeddings hl+1

v , where nodes and edges of different types are treated differently. In Appendix D.4,
we present a general formulation of heterogeneous MP-GNNs. In this work, we use the heterogeneous
version of the GraphSAGE model [29, 32] with sum-based neighbor aggregation. After L iterations
of message passing, we obtain a set of deep node embeddings {hL

v }v∈V . We set L to be the same
as the number of hops K used to select Gv,K . Finally, to predict the noise vector ϵ̂v for the target
node v, we further pass the final embedding of node v through a multi-layer perceptron (MLP) [33]:
ϵ̂v = MLP(hL

v), which is the final output of ϵθ.

4 Experiments

We evaluate our model’s performance in synthetic relational database generation, using single-table
and multi-table fidelity metrics, including long-range dependency metrics introduced in [15]. We
present a comparison of GRDM to different state-of-the-art baselines on six real-world databases,
followed by a detailed analysis and an ablation study for our model. In Appendix F, we evaluate other
aspects, including privacy preservation, missing value imputation, and database size extrapolation.

4.1 Experimental Setup

Real-world Databases. We use six real-world relational databases in our experiments. Five were
used in the evaluation setup in [15]: Berka [34], Instacart 05 [35], Movie Lens [36, 37], CCS [36],
and California [38]. In addition, we use the RelBench-F1 database [39] from RelBench [40], a
recently introduced benchmark for relational deep learning [17]. We chose F1 because it contains
nine tables—more than any of the previous five RDBs—and includes a relatively high number of
numerical and categorical columns, compared to other databases in RelBench. The used databases
vary in the number of tables, size, maximum depth, number of inter-table connections, and feature
complexity. We provide more details on these databases in Appendix E.1. Note that Berka, Instacart
05, and RelBench-F1 exhibit the most complex inter-table correlations with up to 3-hop interactions.

Baselines. We compare our model to four relational database generation methods from the literature.
SDV [13] is a statistical method tailored for RDB synthesis based on Gaussian Copulas. ClavaDDPM
[15] is a state-of-the-art diffusion-based model that leverages cluster labels and classifier-guided
diffusion models to generate a child table conditioned on its parent. In addition, we adopt two
synthesis pipelines used by Pang et al. [15] to provide additional insights: SingleTable and Denorm.
SingleTable generates foreign keys based on the real group size distribution, i.e., the distribution
of row counts that have the same foreign key, similarly to our random graph generation algorithm.
However, it learns and generates each table individually and independently of all other tables. It
can be seen as a version of our model with the number of hops K set to 0. Denorm is based on the
idea of joining tables first, so it learns and generates the joined table of every connected pair, and
then splits it. For both these baselines, we use the same DDPM-based tabular diffusion backbone
as our model [23, 8]. For all DDPM-based baselines, we use the exact same hyperparameters for
model architecture and training as our model for a fair comparison. For SDV, we used the default
hyperparameters as in [15]. More implementation details are provided in Appendix E.2.

Evaluation Metrics. To evaluate the quality of the synthetic data in terms of fidelity, we follow
[15] and report the following metrics implemented in the SDMetrics package [41]. 1) Cardinality
compares the distribution of the number of children rows that each parent row has, between the real
and synthetic data. We compute this metric for each parent-child pair and report the average across
all pairs. 2) Column Shapes compares the marginal distributions of individual columns between
the real and synthetic data. We compute this metric for every column of each table and report its
average. 3) Intra-Table Trends measures the correlation between a pair of columns in the same table

7

Table 1: Comparison of the fidelity metrics described in Section 4.1. The best method in each metric
is highlighted, and we report the relative improvement of GRDM compared to the closest baseline.
Databases are ordered by complexity. SDV does not support RDBs with more than 5 tables.

SDV SingleTable Denorm ClavaDDPM GRDM (Ours) Improvement (%)

Berka
CARDINALITY

> 5 tables

97.06 ± 0.80 96.06 ± 1.15 96.75 ± 0.26 99.70 ± 0.07 +2.72
COLUMN SHAPES 94.58 ± 0.01 83.28 ± 0.97 94.60 ± 0.41 96.90 ± 0.07 +2.43

INTRA-TABLE TRENDS 91.72 ± 0.23 72.12 ± 0.73 90.53 ± 1.93 98.21 ± 0.05 +7.08
INTER-TABLE TRENDS (1-HOP) 81.77 ± 1.19 55.77 ± 2.80 83.79 ± 4.21 92.94 ± 0.06 +10.92
INTER-TABLE TRENDS (2-HOP) 78.09 ± 0.53 57.68 ± 1.67 85.87 ± 2.72 96.04 ± 0.20 +11.84
INTER-TABLE TRENDS (3-HOP) 75.56 ± 0.34 55.59 ± 1.48 80.98 ± 3.12 93.13 ± 0.47 +15.00

Instacart 05
CARDINALITY

> 5 tables

94.73 ± 0.14 94.98 ± 0.84 94.91 ± 1.50 99.96 ± 0.01 +5.24
COLUMN SHAPES 89.30 ± 0.00 71.83 ± 0.32 90.18 ± 0.43 98.87 ± 0.06 +9.64

INTRA-TABLE TRENDS 99.70 ± 0.00 88.74 ± 0.00 99.68 ± 0.02 98.33 ± 0.04 -1.37
INTER-TABLE TRENDS (1-HOP) 66.93 ± 0.07 62.58 ± 0.05 75.84 ± 0.36 92.03 ± 0.30 +21.35
INTER-TABLE TRENDS (2-HOP) 16.22 ± 13.41 0.00 ± 0.00 14.40 ± 20.37 96.17 ± 0.15 +492.91

RelBench-F1
CARDINALITY

> 5 tables

94.94 ± 1.06 93.39 ± 1.56 94.04 ± 2.33 98.26 ± 0.12 +3.50
COLUMN SHAPES 95.93 ± 0.16 89.25 ± 0.28 95.19 ± 0.75 97.28 ± 0.29 +1.41

INTRA-TABLE TRENDS 95.80 ± 0.29 90.30 ± 0.56 94.71 ± 0.63 96.74 ± 0.36 +0.98
INTER-TABLE TRENDS (1-HOP) 79.61 ± 0.65 65.60 ± 0.45 88.19 ± 0.27 93.74 ± 0.50 +6.29
INTER-TABLE TRENDS (2-HOP) 74.10 ± 2.71 62.21 ± 0.38 83.17 ± 1.39 96.81 ± 0.28 +16.40

Movie Lens
CARDINALITY

> 5 tables

98.99 ± 0.16 98.87 ± 0.26 98.79 ± 0.13 98.80 ± 0.36 -0.19
COLUMN SHAPES 99.19 ± 0.00 78.03 ± 0.17 99.11 ± 0.09 98.22 ± 0.05 -0.98

INTRA-TABLE TRENDS 98.56 ± 0.01 57.33 ± 0.10 98.52 ± 0.05 96.24 ± 0.24 -2.35
INTER-TABLE TRENDS (1-HOP) 92.72 ± 0.09 77.45 ± 1.93 92.11 ± 2.12 95.60 ± 0.17 +3.11

CCS
CARDINALITY 74.36 ± 8.40 99.37 ± 0.16 26.70 ± 0.20 98.96 ± 0.79 99.79 ± 0.03 +0.42

COLUMN SHAPES 69.04 ± 4.38 95.20 ± 0.00 79.29 ± 0.13 92.64 ± 3.93 97.03 ± 0.37 +1.92
INTRA-TABLE TRENDS 94.84 ± 1.00 98.96 ± 0.00 86.60 ± 0.14 97.75 ± 1.70 93.60 ± 2.61 -5.42

INTER-TABLE TRENDS (1-HOP) 21.74 ± 9.62 51.62 ± 0.22 57.77 ± 0.69 72.65 ± 8.10 85.54 ± 2.91 +17.74

California
CARDINALITY 71.45 ± 0.00 99.89 ± 0.04 99.87 ± 0.02 98.99 ± 0.69 99.96 ± 0.01 +0.07

COLUMN SHAPES 72.32 ± 0.00 99.51 ± 0.04 94.99 ± 0.02 98.76 ± 0.27 99.15 ± 0.02 -0.36
INTRA-TABLE TRENDS 50.23 ± 0.00 98.69 ± 0.08 94.17 ± 0.01 97.65 ± 0.39 98.00 ± 0.01 -0.70

INTER-TABLE TRENDS (1-HOP) 54.89 ± 0.00 92.96 ± 0.05 87.24 ± 0.10 95.34 ± 0.48 97.68 ± 0.01 +2.45

and computes the similarity in correlation between the real and synthetic data. We report the average
across all column pairs of each table. 4) Inter-Table Trends (k-hop) is similar to the previous metric
but measures the correlation between column pairs from tables at distance k, e.g., 1-hop for columns
from parent-child pairs. For each possible k ≥ 1, we report the average across all column pairs that
are k hops away from each other. This is the most challenging and most interesting metric because it
considers interactions between different tables.

For each of these metrics, we use the Kolmogorov-Smirnov (KS) statistic and the Total Variation
(TV) distance to compare distributions of numerical and categorical values, respectively. To compare
correlations of column pairs, we use the Pearson correlation coefficient for numerical values and the
contingency table for categorical values. All metrics are normalized to lie between 0 (least fidelity)
and 100 (highest fidelity). Detailed descriptions of these metric computations are in Appendix E.3.

4.2 Evaluation Results

Table 1 reports the fidelity metrics described in Section 4.1 across six databases for all methods,
including standard deviations over three random seeds. GRDM consistently outperforms all base-
lines on Inter-Table Trends across all databases, particularly in capturing multi-hop correlations
for the most complex RDBs. On Berka, which has the most complex schema with up to 3-hop
dependencies, GRDM surpasses the best baseline by 15% on 3-hop correlations and 11.84% on
2-hop correlations. On Instacart 05 and RelBench-F1, GRDM improves over the best baseline by
more than 5 times and 16.4% on 2-hop correlations, respectively. For 1-hop correlations, GRDM
achieves an average gain of 10.31% over all databases. These improvements highlight the effective-
ness of our joint modeling approach over the autoregressive methods used by other baselines (with
the exception of SingleTable, which treats tables independently). On single-table metrics, GRDM
performs comparably to the best methods and even outperforms them on certain databases.

8

4.3 Ablation Study

Table 2: Comparison of our default setting from Table 1 with
K = 1 and with a sequential version of our model.

K = 2 (Default) K = 1 K = 1, Sequential

Berka
CARDINALITY 99.70 ± 0.07 99.70 ± 0.07 99.70 ± 0.07

COLUMN SHAPES 96.90 ± 0.07 97.18 ± 0.03 38.97 ± 3.65

INTRA-TABLE TRENDS 98.21 ± 0.05 98.47 ± 0.07 52.10 ± 2.98

INTER-TABLE TRENDS (1-HOP) 92.94 ± 0.06 93.21 ± 0.04 28.53 ± 3.84

INTER-TABLE TRENDS (2-HOP) 96.04 ± 0.20 95.69 ± 0.19 52.01 ± 2.55

INTER-TABLE TRENDS (3-HOP) 93.13 ± 0.47 92.84 ± 0.14 49.45 ± 4.14

Instacart 05
CARDINALITY 99.96 ± 0.01 99.96 ± 0.01 99.96 ± 0.01

COLUMN SHAPES 98.87 ± 0.06 98.40 ± 0.01 67.51 ± 3.93

INTRA-TABLE TRENDS 98.33 ± 0.04 97.53 ± 0.06 89.33 ± 2.27

INTER-TABLE TRENDS (1-HOP) 92.03 ± 0.30 88.83 ± 0.70 63.32 ± 2.01

INTER-TABLE TRENDS (2-HOP) 96.17 ± 0.15 93.30 ± 0.08 13.41 ± 3.64

RelBench-F1
CARDINALITY 98.26 ± 0.12 98.26 ± 0.12 98.26 ± 0.12

COLUMN SHAPES 97.28 ± 0.29 96.76 ± 0.06 94.83 ± 0.09

INTRA-TABLE TRENDS 96.74 ± 0.36 95.92 ± 0.04 95.01 ± 0.75

INTER-TABLE TRENDS (1-HOP) 93.74 ± 0.50 93.33 ± 0.17 90.82 ± 0.37

INTER-TABLE TRENDS (2-HOP) 96.81 ± 0.28 96.33 ± 0.08 87.73 ± 0.86

Our experiments are designed to as-
sess the impact of jointly modeling
all tables in an RDB versus learn-
ing an autoregressive factorization.
To ensure a fair comparison, we use
the same hyperparameters across all
datasets and all diffusion-based meth-
ods, including the diffusion backbone
and training settings. The GNN com-
ponent is unique to our model; we
adopted its configuration from [17],
which uses fewer parameters than the
diffusion guidance classifiers in [15].
We conduct an ablation study to un-
derstand the impact of major design
decisions, focusing on two core com-
ponents: the number of hops K, and
the joint modeling aspect (see Table 2). We report results on the three databases with the most
complex schema, Berka, Instacart 05, and RelBench-F1, in Table 2.

Effect of the number of hops K. The first two columns in Table 2 compare the metrics of K = 2
with K = 1. While K = 2 yields slightly better results, the K = 1 variant still outperforms all base-
lines on multi-hop correlation metrics (cf. Table 1), which highlights that long-range dependencies
can be effectively captured through diffusion, as a node’s receptive field increases with each diffusion
step (see Section 3.4.2 for a detailed discussion). Note that K = 1 offers better computational
efficiency than K = 2; on Berka, K = 1 was 25% faster than K = 2 in generating the RDB.

Effect of joint modeling. To isolate the impact of our joint modeling approach, we implemented
an autoregressive variant of our model that retains all other components (e.g., graph representa-
tion, GNN architecture). Instead of modeling p(X|V, E) directly, it factorizes the distribution as∏m

i=1 p(X (i)
∣∣ {X (i′) | i′ < i}), where X (i) denotes features of node type i. As shown in Table 2,

this version performs significantly worse, not only on inter-table correlations, but also on single-table
metrics. This aligns with observations from [15], who introduced latent cluster variables to mitigate
the difficulty of learning conditional distributions with noisy and high-dimensional conditing space.
Note that the sequential generation is significantly slower than the joint model. Concretely, on Berka,
the autoregressive model was more than 2.5 times slower than its joint counterpart (both with K = 1).

5 Conclusion

We introduced GRDM, the first non-autoregressive generative model for RDBs. GRDM represents
RDBs as graphs by mapping rows to nodes and primary–foreign key links to edges. It first generates
a graph structure using a degree-preserving random graph model, then jointly generates all node
features–i.e., row attributes–via a novel diffusion model that conditions each node’s denoising on its
K-hop neighborhood. This enables modeling long-range dependencies due to the iterative nature of
diffusion models. GRDM consistently outperformed baselines on six real-world RDBs, particularly
in capturing long-range correlations. We discuss our work’s broader impact in Appendix A

Limitations and Future Work. This work lays the foundation for scalable and expressive gen-
erative models for RDBs, and opens several avenues for future research. First, while our graph
generation method is simple and effective, more tailored approaches could better capture the structure
of relational data. Second, although we use a straightforward graph representation, alternatives–such
as modeling certain tables (e.g., transactions or reviews) as attributed edges–may be more appropriate
for specific tasks. Third, while this work focuses on unconditional generation, GRDM can be
extended to support downstream tasks and serve as a foundational model for relational data. Finally,
equipping GRDM with differential privacy guarantees could further increase its practical adoption,
especially in sensitive domains.

9

Acknowledgments

This project was funded by SAP SE. It is also supported by the DAAD programme Konrad Zuse
Schools of Excellence in Artificial Intelligence, sponsored by the Federal Ministry of Education and
Research. We thank Pedro Henrique Martins, Maximilian Schambach, Sirine Ayadi, and Tim Beyer
for their valuable feedback.

References
[1] DB-Engines. DBMS popularity broken down by database model, 2023. Available: https:

//db-engines.com/en/ranking_categories.

[2] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

[3] PubMed. National Center for Biotechnology Information, U.S. National Library of Medicine,
1996. Available: https://www.ncbi.nlm.nih.gov/pubmed/.

[4] Aldren Gonzales, Guruprabha Guruswamy, and Scott R Smith. Synthetic data in health care: A
narrative review. PLOS Digital Health, 2(1):e0000082, 2023.

[5] Vamsi K Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Eliza-
beth Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, et al.
Synthetic data applications in finance. arXiv preprint arXiv:2401.00081, 2023.

[6] Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a
literature review. Journal of Big Data, 10(1):115, 2023.

[7] Boris Van Breugel and Mihaela Van der Schaar. Beyond privacy: Navigating the opportunities
and challenges of synthetic data. arXiv preprint arXiv:2304.03722, 2023.

[8] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Mod-
elling tabular data with diffusion models. In International Conference on Machine Learning,
pages 17564–17579. PMLR, 2023.

[9] Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. Goggle: Generative
modelling for tabular data by learning relational structure. In The Eleventh International
Conference on Learning Representations, 2023.

[10] Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. arXiv preprint arXiv:2310.09656, 2023.

[11] Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabd-
iff: a multi-modal diffusion model for tabular data generation. arXiv preprint arXiv:2410.20626,
2024.

[12] Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach,
Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models
(llms) on tabular data: Prediction, generation, and understanding–a survey. arXiv preprint
arXiv:2402.17944, 2024.

[13] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
international conference on data science and advanced analytics (DSAA), pages 399–410. IEEE,
2016.

[14] Kuntai Cai, Xiaokui Xiao, and Graham Cormode. Privlava: synthesizing relational data with
foreign keys under differential privacy. Proceedings of the ACM on Management of Data, 1(2):
1–25, 2023.

[15] Wei Pang, Masoumeh Shafieinejad, Lucy Liu, Stephanie Hazlewood, and Xi He. Clavaddpm:
Multi-relational data synthesis with cluster-guided diffusion models. Advances in Neural
Information Processing Systems, 37:83521–83547, 2024.

10

https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories
https://www.ncbi.nlm.nih.gov/pubmed/

[16] Kai Xu, Georgi Ganev, Emile Joubert, Rees Davison, Olivier Van Acker, and Luke Robinson.
Synthetic data generation of many-to-many datasets via random graph generation. In The
Eleventh International Conference on Learning Representations, 2022.

[17] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation
learning on relational databases. arXiv preprint arXiv:2312.04615, 2023.

[18] Edgar F Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, 1970.

[19] Valter Hudovernik. Relational data generation with graph neural networks and latent diffusion
models. In NeurIPS 2024 Third Table Representation Learning Workshop, 2024.

[20] Lukáš Zahradník, Jan Neumann, and Gustav Šír. A deep learning blueprint for relational
databases. In NeurIPS 2023 Second Table Representation Learning Workshop, 2023.

[21] Minjie Wang, Quan Gan, David Wipf, Zhenkun Cai, Ning Li, Jianheng Tang, Yanlin Zhang,
Zizhao Zhang, Zunyao Mao, Yakun Song, et al. 4dbinfer: A 4d benchmarking toolbox for
graph-centric predictive modeling on relational dbs. arXiv preprint arXiv:2404.18209, 2024.

[22] Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree
sequence. Random structures & algorithms, 6(2-3):161–180, 1995.

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[24] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[25] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
neural information processing systems, 35:36479–36494, 2022.

[26] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

[27] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. pmlr, 2015.

[28] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. Advances in neural
information processing systems, 34:12454–12465, 2021.

[29] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[30] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[31] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The semantic
web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018,
proceedings 15, pages 593–607. Springer, 2018.

[32] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[33] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in neural information processing systems, 34:
18932–18943, 2021.

11

[34] Petr Berka et al. Guide to the financial data set. PKDD2000 discovery challenge, 2000.

[35] jeremy stanley, Meg Risdal, sharathrao, and Will Cukierski. Instacart mar-
ket basket analysis, 2017. URL https://kaggle.com/competitions/
instacart-market-basket-analysis.

[36] Jan Motl and Oliver Schulte. The ctu prague relational learning repository. arXiv preprint
arXiv:1511.03086, 2015.

[37] Oliver Schulte, Zhensong Qian, Arthur E Kirkpatrick, Xiaoqian Yin, and Yan Sun. Fast learning
of relational dependency networks. Machine Learning, 103:377–406, 2016.

[38] MP Center. Integrated public use microdata series, international: Version 7.3 [data set].
minneapolis, mn: Ipums, 2020.

[39] Open source formula 1 database. URL https://github.com/f1db/f1db.

[40] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark
for deep learning on relational databases. Advances in Neural Information Processing Systems,
37:21330–21341, 2024.

[41] Synthetic Data Metrics. DataCebo, Inc., 12 2024. URL https://docs.sdv.dev/
sdmetrics/. Version 0.18.0.

[42] Jim Young, Patrick Graham, and Richard Penny. Using bayesian networks to create synthetic
data. Journal of Official Statistics, 25(4):549–567, 2009.

[43] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling
tabular data using conditional gan. Advances in neural information processing systems, 32,
2019.

[44] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[45] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[46] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan:
Generating graphs via random walks. In International conference on machine learning, pages
610–619. PMLR, 2018.

[47] Mufei Li, Eleonora Kreačić, Vamsi K Potluru, and Pan Li. Graphmaker: Can diffusion models
generate large attributed graphs? arXiv preprint arXiv:2310.13833, 2023.

[48] Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data
synthesizing. In Asian conference on machine learning, pages 97–112. PMLR, 2021.

[49] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 11461–11471,
2022.

12

https://kaggle.com/competitions/instacart-market-basket-analysis
https://kaggle.com/competitions/instacart-market-basket-analysis
https://github.com/f1db/f1db
https://docs.sdv.dev/sdmetrics/
https://docs.sdv.dev/sdmetrics/

A Broader Impact

This paper introduces a new approach for generating synthetic relational databases. Some positive
impacts of our work include enabling more accurate and powerful synthetic data generation, which
promises to tackle issues with privacy-preserving data sharing and advancing scientific research.
However, such models can be used to generate fake content that can be misused. However, we
strongly believe that the benefits significantly outweigh the small chance of misuse.

B Related Work

Tabular data generation. Prior work on tabular data generation can be split into two lines of
work: single-table generation and multi-table generation. For single-table generation, early work
[42] applied Bayesian networks to model the distribution of tabular data with graphical models.
CTGAN [43] is a seminal work that applied Generative Adversarial Networks (GANs) [44] to
tabular data generation. Recently, with the rise of diffusion models, more diffusion-based models
have been proposed to model tabular data. Notably, TabDDPM [8] was the first to apply denoising
diffusion probabilistic models to the tabular data domain. TabSyn [10] adopts the powerful idea of
latent diffusion using a transformer-based variational autoencoder. TabDiff [11] proposes to learn
feature-specific node schedules and apply masked diffusion to model categorical variables.

Relational Database Generation. The Synthetic Data Vault (SDV) [13] laid the foundation of this
field. It uses the Gaussian copula process to model every parent-child relationship. However, SDV is
limited to 5 tables and a maximum depth of 2. PrivLava [14] applies the framework of differential
privacy to generate RDBs. It uses graphical models with latent variables to capture the inter-table
correlations. ClavaDDPM [15] is a recent diffusion-based model that introduced cluster-based latent
variables and uses classifier-guided diffusion models to generate the rows of a child table conditioned
on its parent. Xu et al. [16] and Hudovernik [19] adopt a graph view of the RDB and model the
autoregressive factorization of the tables’ distribution. Note that all prior methods for RDB generation
also follow a similar autoregressive factorization.

Graph machine learning for RDBs. Recently, the idea of representing RDBs as graphs and
applying graph machine learning methods to process them has gained traction by the introduction
of Relational Deep Learning (RDL) [17] and the release of a benchmark of real-world databases
(RelBench) [40]. While we use a similar graph representation, the sole focus of these works is on
predictive tasks on RDBs, e.g., to predict user churn or future purchases. In contrast, we are interested
in generative modeling of RDBs, which is a more general and challenging problem.

Graph generation. By framing RDB generation as a graph generation problem, our work touches
on a large literature on graph generation. Early work in this direction builds on the classic problem
of finding graphs with a given degree sequence [22]. Closest to our setup is the setting of large
graph generation, typically applied to social networks or citation networks. GAE and VGAE [45]
extend autoencoders and variational autoencoders the the graph setting. NetGAN [46] applies GANs
for graph structure generation by sequentially generating random walks. Li et al. [47] introduce
a diffusion model for large graph generation. However, all these works focus on general graphs
like social networks, which typically have a complex graph structure but rather simple features.
In contrast, in our case, the graphs induced by relational databases exhibit a rather simple graph
structure with specific properties (like m-partite) but very complex attributes with heterogeneous
and multi-modal features. This distinguishes our work from all these prior works and presents new
challenges.

13

C Detailed Loss Derivation

We provide a detailed derivation for the NLL loss following [27, 23]. For notation brevity, we drop
the conditioning on V, E in the following:

− log pθ(X (0))

≤ Eq

[
− log

pθ(X (0:T))

q(X (1:T)|X (0))

]
= Eq

[
− log p(X (T))−

T∑
t=1

log
pθ(X (t−1)|X (t))

q(X (t)|X (t−1))

]

= Eq

[
−
∑
v∈V

log p(x(T)
v)−

T∑
t=1

∑
v∈V

log
pθ(x

(t−1)
v |G(t)v,K)

q(x
(t)
v |x(t−1)

v)

]

= Eq

[
−
∑
v∈V

log p(x(T)
v)−

T∑
t=2

∑
v∈V

log
pθ(x

(t−1)
v |G(t)v,K)

q(x
(t)
v |x(t−1)

v)
−

∑
v∈V

log
pθ(x

(0)
v |G(1)v,K)

q(x
(1)
v |x(0)

v)

]

= Eq

[
−
∑
v∈V

log p(x(T)
v)−

T∑
t=2

∑
v∈V

log
pθ(x

(t−1)
v |G(t)v,K)

q(x
(t−1)
v |x(t)

v ,x
(0)
v)
· q(x

(t−1)
v |x(0)

v)

q(x
(t)
v |x(0)

v)

−
∑
v∈V

log
pθ(x

(0)
v |G(1)v,K)

q(x
(1)
v |x(0)

v)

]

= Eq

[
−
∑
v∈V

log
p(x

(T)
v)

q(x
(T)
v |x(0)

v)
−

T∑
t=2

∑
v∈V

log
pθ(x

(t−1)
v |G(t)v,K)

q(x
(t−1)
v |x(t)

v ,x
(0)
v)
−

∑
v∈V

log pθ(x
(0)
v |G

(1)
v,K)

]

= Eq

∑
v∈V

DKL

(
q(x(T)

v |x(0)
v)∥p(x(T)

v)
)

︸ ︷︷ ︸
L

(T)
v

+

T∑
t=2

∑
v∈V

DKL

(
q(x(t−1)

v |x(t)
v ,x(0)

v)∥pθ(x(t−1)
v |G(t)v,K)

)
︸ ︷︷ ︸

L
(t−1)
v

−
∑
v∈V

log pθ(x
(0)
v |G

(1)
v,K)︸ ︷︷ ︸

L
(0)
v



= const.+ Eq


T∑

t=2

∑
v∈V

DKL

(
q(x(t−1)

v |x(t)
v ,x(0)

v)∥pθ(x(t−1)
v |G(t)v,K)

)
︸ ︷︷ ︸

L
(t−1)
v

−
∑
v∈V

log pθ(x
(0)
v |G

(1)
v,K)︸ ︷︷ ︸

L
(0)
v


=: L(θ)

The advantage of this reformulation is that the forward process posteriors needed to compute the loss
are tractable when conditioned on x

(0)
v :

q(x(t−1)
v |x(t)

v ,x(0)
v) = N (x(t−1)

v ; µ̃t(x
(t)
v ,x(0)

v), β̃tI), (10)

with

µ̃t(x
(t)
v ,x(0)

v) =
1
√
αt

(
x(t)
v (x(0)

v , ϵ)− βt√
1− ᾱt

ϵ

)
, ϵ ∼ N (0, I) (11)

and

β̃t =
1− ᾱt−1

1− ᾱt
βt (12)

14

The term L
(t−1)
v , which is a KL divergence between two Gaussians, can now be written as:

L(t−1)
v = Eq

[
1

2σ2
t

∥∥∥µ̃t(x
(t)
v ,x(0)

v)− µθ(G(t)v,K , t)
∥∥∥2]+ const.

= Eq

[
1

2σ2
t

∥∥∥∥ 1
√
αt

(
x(t)
v (x(0)

v , ϵv)−
βt√
1− ᾱt

ϵv

)
− µθ(G(t)v,K , t)

∥∥∥∥2
]
+ const.

(13)

This suggests a new parametrization of µθ, which predicts the noise instead:

µθ(G(t)v,K , t) =
1
√
αt

(
x(t)
v −

βt√
1− ᾱt

ϵθ(G(t)v,K , t)

)
(14)

With this, L(t−1)
v is as follows:

L(t−1)
v = Eq

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥∥ϵv − ϵθ(G(t)v,K , t)
∥∥∥2] (15)

Ho et al. [23] found that training works even better with a simplified objective that ignores the
weighting term in L

(t−1)
v and treats L(0)

v similarly to all L(t−1)
v

Lsimple(θ) = Et∼U({1,...,T}),v∼U(V),q

[∥∥∥ϵv − ϵθ

(
G(t)v,K , t

)∥∥∥2] (16)

Sampling from q requires sampling a set of noise vectors, one for each node in v’s neighborhood:
{ϵv′ ∼ N (0, I) | v′ ∈ Vv,K}, and computing the noisy features in G(t)v,K . The final loss can be
written as:

Lsimple(θ) = Et∼U({1,...,T}),v∼U(V),{ϵv′∼N (0,I) | v′∈Vv,K}

[∥∥∥ϵv − ϵθ

(
G(t)v,K , t

)∥∥∥2] (17)

D Additional Method Details

D.1 Database Reconstruction from its Graph Representation

In Section 3.1, we presented the graph representation of the RDB that we use for generation. An
important property of this representation is that it is invertible, i.e., one can reconstruct the RDB
from its graph representation after generating the graph. One way to perform this reconstruction is as
follows:

1. For each node type i, assign a unique primary key pv ∈ {1, . . . , ni} to each node v of type
i. Nodes of the same type should have different primary keys.

2. For each edge (v1, v2) ∈ E , add primary key pv2 to the set of foreign keys Kv1 .

3. For each node type i, construct table R(i) by stacking rows of the form (pv,Kv,xv) for
every node v ∈ V(i).

D.2 Gaussian Diffusion for Categorical Variables

In Section 3.4.1, we discussed that our diffusion model applies Gaussian diffusion both to categorical
and numerical features by first mapping categorical variables to continuous space through label
encoding. Specifically, given a categorical feature with n distinct values {c1, . . . , cn}, we apply a
label encoindg scheme E : {c1, . . . , cn} → {0, . . . , n− 1} that maps each unique category ci to a
unique integer value. Note that this process is invertible, allowing us to map generated values back to
the categorical space.

15

D.3 Training and Sampling Algorithms

Algorithm 1 Training
1: repeat
2: Sample v ∼ Uniform(V)
3: (Vv,K , Ev,K ,X (0)

v,K)← SELECTK(v;V, E ,X (0)) ▷ K-hop neighborhood around node v

4: Sample t ∼ Uniform({1, . . . , T})
5: Sample {ϵv′ ∼ N (0, I) | v′ ∈ Vv,K}
6: X (t)

v,K ← {
√
ᾱtx

(0)
v′ +

√
1− ᾱtϵv′ | v′ ∈ Vv,K}

7: ϵ̂v ← ϵθ((Vv,K , Ev,K ,X (t)
v,K)︸ ︷︷ ︸

G(t)
v,K

, t)

8: Take gradient descent step on∇θ∥ϵv − ϵ̂v∥2
9: until converged

Algorithm 2 Sampling

1: X (T) ← {x(T)
v ∼ N (0, I) | v ∈ V}

2: for t = T, . . . , 1 do
3: Z ← {zv ∼ N (0, I) if t > 1, else zv = 0 | v ∈ V}
4: X (t−1) ←

{
1√
αt

(
x
(t)
v − βt√

1−ᾱt
ϵθ

(
G(t)v,K , t

))
+ σtzv

∣∣ v ∈ V}
5: end for
6: return X (0)

D.4 Heterogeneous Message-Passing Graph Neural Networks

A common way to process graph-structured data with deep learning models is using Message-Passing
Graph Neural Networks (MP-GNNs). Since we are dealing with heterogeneous graphs, we leverage
a heterogeneous message passing formulation, which supports a wide range of GNN architectures.
Let (G, t) ∈ G× R denote the input to ϵθ with G = (V, E ,X). We define initial node embeddings
as h0

v = (xv, t) ∀ v ∈ V . One iteration of message passing consists of computing updated node
embeddings {hl+1

v }v∈V from the embeddings at the previous iteration {hl
v}v∈V .

Given a node v, let ϕ(v) denote its type in the graph and let Ev denote the set of distinct edge types
adjacent to v. One iteration (or layer) of heterogeneous message passing updates v’s embedding hl

v
as follows. First, a distinct message is computed for each edge type:

∀e ∈ Ev, m
l+1
v,e =

{{
ge(h

l
w) | w ∈ Ne(v)

}}
,

where Ne(v) is the e-specific neighborhood of node v. Then, these messages are combined into a
single unified message:

ml+1
v =

{{
fe(m

l+1
v,e) | e ∈ Ev

}}
,

which is used to update the node embedding:

hl+1
v = fϕ(v)(h

l
v,m

l+1
v).

ge, fe and fϕ(v) are arbitrary differentiable functions with learnable parameters and {{·}} is a
permutation-invariant set aggregator such as mean, max, etc.. Different GNN architectures can
be obtained through specific choices of these functions.

16

E Experimental Details

E.1 Datasets

TABLES # FOREIGN KEY PAIRS DEPTH TOTAL # ATTRIBUTES # ROWS IN LARGEST TABLE

Berka 8 8 4 41 1, 056, 320
Intacart 05 6 6 3 12 1, 616, 315

RelBench-F1 9 13 3 21 28, 115
Movie Lens 7 6 2 14 996, 159

CCS 5 4 2 11 383, 282
California 2 1 2 15 1, 690, 642

Table 3: Dataset Specifics

E.2 Implementation Details

E.2.1 GRDM hyperparameters and training

Architecture. For the GNN, we use the heterogeneous version of the GraphSAGE model [29] with
the number of layers set to the number of hops K from the diffusion model. In our experiments, we
set K = 2 for the more complex databases with depth more than 3, which are Berka, Instacart 05,
and RelBench-F1, and K = 1 for the simpler ones, which are California, MovieLens, and CCS. We
use sum-base aggregation and a hidden dimension of 128 for the GNN.

For the MLP, we follow [15] and use the same architecture to ensure a fair comparison. The MLP
has layer sizes 512, 1024, 1024, 1024, 1024, 512 and follows the TabDDPM implementation [8].
All input and output dimensions of the GNN and MLP are adapted to the data dimensions. We also
incorporate timestep information by encoding timesteps into sinusoidal embeddings, which are then
added to the data.

Diffusion hyperparameters. We also follow [15] and set the diffusion timesteps T = 2000 and
use cosine scheduler for the noise schedule.

Training hyperparemters. We also follow [15] and use the AdamW optimizer with learning rate
6e-4 and weight decay 1e-5. We use 100,000 training steps for California and 200,000 on all other
databases. For our model, we use a smaller batch size of 1024 compared to all baselines, which use
4096, which effectively means our model does 4x fewer passes on the data.

E.2.2 Baselines

For all diffusion baselines, we use exactly the same set of hyperparameters, including diffusion
timesteps, MLP architecture, and training. However, we train all baselines with a larger batch size for
the same number of steps, which gives them an advantage over our model.

For SDV, we use the default setting of their HMASynthesizer, which by default uses a Gaussian
Copula synthesizer.

E.2.3 Hardware

All experiments are run using a single NVIDIA GPU GeForce RTX 2080 Ti.

E.3 Detailed Metrics Computation

First, we define the distribution similarity measures that are used across the different metrics in this
work.

For numerical variables, we use the complement of the Kolmogorov-Smirnov (KS) statistic. The KS
statistic between two numerical distributions is defined as the maximum difference between their
respective cumulative density functions (CDFs).

KS = sup
x

∣∣Freal(x)− Fsyn(x)
∣∣,

17

where Freal and Fsyn denote the CDFs of the real and synthetic variables, respectively. We always
report the scaled complement (1− KS) ∗ 100 such that a higher score means better quality.

For categorical variables, we use the complement of the Total Variation (TV) distance. The TV
distance between two categorical distributions compares their probabilities as follows:

TV =
1

2

∑
ω∈Ω

∣∣Rω − Sω

∣∣,
where Ω is the set of all categories, Rω and Sω are the real and synthetic probabilities for a category
ω ∈ Ω. We always report the scaled complement (1 − TV) ∗ 100 such that a higher score means
better quality.

We now present how each metric is computed in detail.

Cardinality. For each parent-child pair in the database, we compute the cardinality of each parent
row, i.e., the number of children that each parent row has. This defines a numerical distribution for
the real and synthetic data, for which we compute the complement of the KS statistic. The cardinality
score is then the average across all parent-child pairs in the database.

Column Shapes. For each column in every table of the database, we measure the similarity between
the column’s marginal distribution in the real and synthetic databases. For numerical values, we use
the complement of the KS statistic, while for categorical values, we use the complement of the TV
distance. The Column Shapes metric is the average across all columns in the database.

Intra-Table Trends. For each pair of columns within the same table, we compute different correla-
tion metrics depending on whether the columns are numerical or categorical (for a pair of numerical
and categorical columns, we first discretize the numerical column into bins, then treat both columns
as categorical). The Intra-Table Trends is the average of the correlation scores across all column pairs
from the same table in the database.

For a pair of numerical columns, A and B, we compute the Pearson correlation coefficient defined as

ρA,B =
Cov(A,B)

σAσB
,

where Cov is the covariance, σA and σB are the standard deviations of A and B, respectively. We
compute this metric for both the real and synthetic pair, yielding RA,B and SA,B , respectively. We

report the normalized score
(
1−

∣∣SA,B−RA,B

∣∣
2

)
∗ 100

For a pair of categorical columns, A and B, we compute the normalized contingency table, which
consists of the proportion of rows that have each combination of categories in A and B, i.e., how
often each pair of categories co-occur in the same row. We compute this matrix on both the real and
synthetic pairs, yielding RA,B and SA,B , respectively. We then compute the difference between them
using the TV distance as follows:

score =
1

2

∑
α∈ΩA

∑
β∈ΩB

∣∣SA,B(α, β)−RA,B(α, β)
∣∣,

where ΩA and ΩB are the set of possible categories of columns A and B, respectively. We again
report the normalized score (1− score) ∗ 100.

Inter-Table Trends (k-hop). This metric is similar to the Column Pair Trends, but instead of
computing the correlation on column pairs from the same table, it computes it on column pairs from
tables that are within k hops from each other. For example, 1-hop considers all parent-child pairs,
2-hop considers a column in some table and its correlation with columns from its parent’s parent
or child’s child, etc. For every possible hop k, we report the average across all possible pairs. In
practice, this is implemented by denormalizing the pair of tables into a single one and then computing
the Column Pair Trends metric.

18

F Additional Experiments

F.1 Privacy Sanity Check

In order to evaluate the privacy preservation of our model and to test if any memorization is happening,
we follow prior work [8, 15] and compute the distance to closest record (DCR) [48] between the
generated and the training database. Specifically, for each synthetic sample, we get the minimum L1
distance to the real records. We report the mean DCR, i.e., the average of these distances over all
generated samples. Since different tables can have different feature scales and ranges, we also report
the DCR values from the holdout set to the training set, which serve as "ground-truth generalizations".

We use four tables from different databases that contain sensitive information (but have been
anonymized for these public benchmarks), such as census data containing household and indi-
vidual information, sensitive financial information from a bank, and order information from an
e-commerce platform. The results, provided in Table 4, show that our model yields higher DCR
values than the baseline ClavaDDPM (i.e., our model is more private) across all tables and it even
yields higher DCR values than the holdout set on 3 out of 4 tables, while being close on the 4th one.
These results suggest that our model is able to generate new records from the underlying distribution
and is not simply memorizing the training database. Note that DCR values need to be considered
along with fidelity metrics (see Table 1), since, e.g., random noise can yield high DCR values.

Table 4: Mean DCR values on selected tables.

California
(Household)

California
(Individual)

Berka
(Transaction)

Instacart 05
(Order)

MEAN DCR - HOLDOUT SET 0.094 0.206 0.012 0.012
MEAN DCR - CLAVADDPM 0.104 0.177 0.019 0.007

MEAN DCR - GRDM (OURS) 0.119 0.259 0.028 0.009

F.2 Missing Value Imputation

To assess the performance of GRDM in the task of missing value imputation, we design a new
experiment on the California database, which consists of two tables: a parent table and a child table.
First, we split the database into a training set and a holdout set based on the parent table, and use
the training set to train the diffusion model in the same way as presented in the main text. Next, we
perform experiments on the holdout set by conditioning the generation on specific sections and using
the same pre-trained model to inpaint the missing sections without any modification to the pre-trained
model nor to the sampling procedure [49]. We report the metrics comparing the generated database
with the holdout set in Table 5. We use three different strategies to select the missing parts of the
database:

1. Masking entire tables (parent or child table).

2. Masking entire rows from both tables with different rates.

3. Masking single cells (individual attributes of rows) from both tables with different rates.

The results show that GRDM consistently maintains good performance across the different masking
settings, which again highlights the effectiveness of our proposed joint modeling approach in capturing
the complex distributions of RDBs.

Table 5: Results of missing value imputation experiments on the California dataset.

Unconditional Parent Table
Missing

Child Table
Missing

50% Rows
Missing

75% Rows
Missing

50% Cells
Missing

75% Cells
Missing

CARDINALITY 99.78 100.0 100.0 100.0 100.0 100.0 100.0
COLUMN SHAPES 99.03 99.26 99.37 99.22 99.05 98.70 98.10

INTRA-TABLE TRENDS 97.75 98.65 98.56 98.36 97.91 96.34 94.44
1-HOP 97.34 96.48 97.16 97.66 97.17 97.20 95.96

19

Table 6: Comparison between sampling the graph structure (Default) and using the original graph
structure of the RDB across three databases.

Sampled Graph (Default) Original Graph

Berka
CARDINALITY 99.70 ± 0.07 100.0 ± 0.00

COLUMN SHAPES 96.90 ± 0.07 97.00 ± 0.14

INTRA-TABLE TRENDS 98.21 ± 0.05 98.24 ± 0.06

1-HOP 92.94 ± 0.06 93.16 ± 0.02

2-HOP 96.04 ± 0.20 96.67 ± 0.14

3-HOP 93.13 ± 0.47 94.47 ± 0.94

Movie Lens
CARDINALITY 98.80 ± 0.36 100.0 ± 0.00

COLUMN SHAPES 98.22 ± 0.05 98.25 ± 0.10

INTRA-TABLE TRENDS 96.24 ± 0.24 96.31 ± 0.15

1-HOP 95.60 ± 0.17 94.19 ± 2.12

California
CARDINALITY 99.96 ± 0.01 100.0 ± 0.00

COLUMN SHAPES 99.15 ± 0.02 99.15 ± 0.01

INTRA-TABLE TRENDS 98.00 ± 0.01 98.02 ± 0.02

1-HOP 97.68 ± 0.01 97.68 ± 0.02

F.3 Detailed Evaluation of the Random Graph Generation Procedure

To better understand the modeling capacity of our graph generation algorithm described in Section
3.3, we perform an ablation study by replacing the graph sampled using this algorithm with the
ground-truth graph from the RDB and using the same diffusion model from the previous experiments
to generate the attributes. The results are shown in Table 6. The ground-truth graph achieves a perfect
relational structure fidelity (cf. Cardinality metric) and provides an upper-bound on the performance
achievable by graph generative models. The results show that our model achieves very similar
performance to the ground-truth graph setting, confirming that our graph generation procedure can
effectively capture the relational structure of the RDBs.

Table 7: Higher-order structural properties. Car-
dinality compares first-order node indegrees, Cor-
relations compares the correlation between node
indegrees from different edge types, and 1-Hop,
2-Hop compare inter-table indegree correlations.

ClavaDDPM GRDM (Ours)

Berka
CARDINALITY 96.75 ± 0.26 99.70 ± 0.07

CORRELATIONS 93.07 ± 2.67 93.64 ± 0.18

1-HOP 98.35 ± 0.08 98.57 ± 0.13

2-HOP 97.87 ± 0.46 99.17 ± 0.51

Instacart 05
CARDINALITY 94.91 ± 1.50 99.96 ± 0.01

CORRELATIONS 76.51 ± 0.34 95.06 ± 0.09

1-HOP 97.99 ± 0.16 100.0 ± 0.00

Movie Lens
CARDINALITY 98.79 ± 0.13 98.80 ± 0.36

CORRELATIONS 97.02 ± 0.37 94.56 ± 0.31

CCS
CARDINALITY 98.96 ± 0.79 99.79 ± 0.03

CORRELATIONS 98.00 ± 0.25 95.73 ± 0.18

Additionally, we compare the graphs gener-
ated using this algorithm with the ground-truth
graphs from the original RDBs beyond the Car-
dinality metric reported in the main text. The
cardinality metric compares the node indegree
distributions between the real and synthetic
databases. In this experiment, we also compute
metrics for higher-order structural properties,
such as the correlation between node indegrees
from different edge types (Correlations), e.g.,
the correlation between the number of actors in
a movie and the number of ratings it received.
In addition, we report inter-table indegree cor-
relations (1-Hop, 2-Hop), e.g., the correlation
between the number of stores in a specific region
and the number of purchases these stores get.

The results, presented in Table 7, show that,
even though our graph generation algorithm
only models first-order indegree distributions,
it achieves good higher-order performance. This
suggests that the used databases do not exhibit
strong correlations between different types of
relationships and that these relationships are, to a large extent, independent, which our approach
can capture very well (which was the main motivation behind our choice in the early stages of this
project). However, more complex approaches may be required for more complex databases, which is
an interesting research direction, albeit orthogonal to the main focus of this work, namely the joint
modeling of tables in RDBs.

20

F.4 Database Size Extrapolation

Our graph generation algorithm, presented in Section 3.3, enables the generation of graphs of arbitrary
sizes. We leverage this property to evaluate the performance of GRDM when increasing the database
size. We use different multipliers of the original database size and generate databases with up to more
than 20 million rows (10x multiplier) using the same diffusion model. The results, shown in Tables 8
and 9 for two databases (California and MovieLens, respectively), highlight that the performance
does not drop when increasing the database size. This can be explained by the use of the GNN in the
denoising model, which operates on local subgraphs that are roughly invariant to the overall size of
the RDB. Note that all RDBs were generated within less than 2 hours on a single GPU.

Table 8: Performance of GRDM on the California database when increasing its size by different
multipliers.

Size multiplier
(total number of rows)

0.5x
(1.037M)

1x
(2.076M)

2x
(4.154M)

5x
(10.381M)

10x
(20.755M)

California
CARDINALITY 99.89 99.96 99.96 99.99 99.97

COLUMN SHAPES 97.67 97.67 97.69 97.68 97.67
INTRA-TABLE TRENDS 95.12 95.12 95.15 95.14 95.14

1-HOP 94.67 94.64 94.64 94.63 94.64

Table 9: Performance of GRDM on the MovieLens database when increasing its size by different
multipliers.

Size multiplier
(total number of rows)

0.5x
(0.588M)

1x
(1.221M)

2x
(2.501M)

5x
(6.270M)

10x
(12.414M)

Movie Lens
CARDINALITY 98.69 98.87 99.10 99.63 99.65

COLUMN SHAPES 97.67 97.56 97.86 97.72 97.83
INTRA-TABLE TRENDS 95.38 94.99 95.58 95.34 95.42

1-HOP 95.17 95.35 95.57 95.62 95.63

21

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are supported by the different
sections across the paper. In Section 2, we discuss and highlight limitations of prior works
on RDB generation. Throughout Section 3, we motivate our design choices, explain our
approach and describe our model. In Section 4, we describe the experimental setup and
discuss the results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5, where we also propose promising
ideas for future research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

22

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We derive the formula for our loss in Appendix C while stating all made
assumptions and simplifications.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental setup is described in Section 4 and we discuss the implementation
details further in Appendix E.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

23

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our codebase as supplementary material. All datasets used in this
work are freely accessible. We intend to make the code public on GitHub under the MIT
license upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are clearly described in Section 4 and E.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The empirical results, reported in Tables 1 and 2 report numbers and averages
across three random seeds with standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix E.2, we provide information on the hardware type and constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the impact of our work in Appendix A and also in Section 1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

25

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not require safeguards to be put in place to avoid misuse of the
presented method.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All authors and owners of code and datasets are appropriately cited and
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

26

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The codebase submitted alongside this work contains documentation and
instructions to reproduce the paper’s main results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work did not conduct crowdsourcing experiments or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper did not conduct studies that include human participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this work does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Joint Modeling of All Tables with Graph-Conditional Diffusion Models
	Relational Databases as Attributed Heterogeneous Directed Graphs
	On the Factorization of p(V, E, X)
	Node Degree-Preserving Random Graph Generation
	Graph-Conditional Relational Diffusion Model (GRDM)
	Forward Process
	Reverse Process
	Training and Sampling
	Model architecture

	Experiments
	Experimental Setup
	Evaluation Results
	Ablation Study

	Conclusion
	Broader Impact
	Related Work
	Detailed Loss Derivation
	Additional Method Details
	Database Reconstruction from its Graph Representation
	Gaussian Diffusion for Categorical Variables
	Training and Sampling Algorithms
	Heterogeneous Message-Passing Graph Neural Networks

	Experimental Details
	Datasets
	Implementation Details
	GRDM hyperparameters and training
	Baselines
	Hardware

	Detailed Metrics Computation

	Additional Experiments
	Privacy Sanity Check
	Missing Value Imputation
	Detailed Evaluation of the Random Graph Generation Procedure
	Database Size Extrapolation

