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ABSTRACT

Deep reinforcement learning algorithms have recently achieved significant success
in learning high-performing policies from purely visual observations. The ability
to perform end-to-end learning from raw high dimensional input alone has led to
deep reinforcement learning algorithms being deployed in a variety of fields. Thus,
understanding and improving the ability of deep reinforcement learning agents
to generalize to unseen data distributions is of critical importance. Much recent
work has focused on assessing the generalization of deep reinforcement learning
agents by introducing specifically crafted adversarial perturbations to their inputs.
In this paper, we propose another approach that we call daylight: a framework
to assess the generalization skills of trained deep reinforcement learning agents.
Rather than focusing on worst-case analysis of distribution shift, our approach
is based on black-box perturbations that correspond to semantically meaningful
changes to the environment or the agent’s visual observation system ranging from
brightness to compression artifacts. We demonstrate that even the smallest changes
in the environment cause the performance of the agents to degrade significantly
in various games from the Atari environment despite having orders of magnitude
lower perceptual similarity distance compared to state-of-the-art adversarial attacks.
We show that our framework captures a diverse set of bands in the Fourier spectrum,
giving a better overall understanding of the agent’s generalization capabilities. We
believe our work can be crucial towards building resilient and generalizable deep
reinforcement learning agents.

1 INTRODUCTION

Following the initial work of Mnih et al. (2015), the use of DNNs as function approximators in
reinforcement learning has led to a dramatic increase in the capabilities of RL agents Schulman et al.
(2017); Lillicrap et al. (2015). In particular, these developments allow for the direct learning of strong
policies from raw, high-dimensional inputs such as visual observations. With the successes of these
new methods come new challenges regarding the robustness and generalization capabilities of deep
RL agents.

One line of research has focused on the high sensitivity of deep neural networks to imperceptible,
adversarial perturbations to visual inputs, first in the setting of image classification Szegedy et al.
(2014); Goodfellow et al. (2015) and more recently for deep reinforcement learning Huang et al.
(2017); Kos & Song (2017). Since one of the main reasons for the success and popularity of deep
RL is the ability to learn directly from visual observations alone, this non-robustness to small
adversarial perturbations is a serious concern Chokshi (2020); Vlasic & Boudette (2016); Kunkle
(2018). However, existing adversarial formulations for deep reinforcement learning require high
computational effort to produce the perturbations, knowledge of the network used to train the agent,
knowledge of the environment, real-time access to and manipulation of the agent’s state observations.

In this paper, we propose a more realistic scenario where we do not have access to any of the above,
and the adversary essentially consists of realistic changes in the natural environment or in the agent’s
observation system. For instance, if our deep reinforcement learning agent is operating a self-driving
car one could plausibly expect changes in daylight levels, shifts in angle due to terrain, fog on the
camera lens, or compression artifacts from the camera processor. We believe that our proposed
framework is semantically more meaningful than arbitrary `p-norm bounded pixel perturbations.
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Prior work on image classification Dodge & Karam (2016) showed that image quality distortions
can reduce the accuracy of DNN classfiers. Moreover, recent work by Ford et al. (2019) showed
that while adversarial training for image classifiers reduced their vulnerability towards perturbations
corresponding to high frequency in the Fourier domain, it actually made the models more vulnerable
to low frequency perturbations including fog and contrast changes. Therefore, it is important to
investigate model robustness and generalization throughout different bands in the frequency domain.
We believe that being able to accurately assess the generalization capabilities of deep reinforcement
learning agents is an initial step towards building robust and reliable agents. For these reasons, in
this work we investigate the robustness of trained deep reinforcement learning agents and make the
following contributions:

• We propose a realistic threat model called daylight and a generalization framework for
deep reinforcement learning agents that aims to assess the robustness of the agents to basic
environmental and observational changes.

• We run multiple experiments in the Atari environment in various games to demonstrate the
degradation in performance of deep reinforcement learning agents.

• We compare our threat model with the state-of-the-art adversarial method based on `p-norm
changes, and we show that our daylight framework results in competitive, and almost always
larger impact, with lower perceptual similarity distance.

• We evaluate the daylight framework in the time domain and show that several works based
on the timing perspective of adversarial formulations can be revisited within our daylight
framework.

• Finally, we investigate the frequency domain of our framework and state-of-the-art targeted
attacks. We show that our framework captures different bands of the frequency spectrum,
thus yielding a better estimate of the model robustness.

2 RELATED WORK

2.1 PRELEMINARIES

In this paper we consider Markov Decision Processes (MDPs) given by a tuple (S,A, P, r, γ, s0).
The reinforcement learning agent interacts with the MDP by observing states s ∈ S, and then taking
actions a ∈ A. The probability of transitioning to state s′ when the agent takes action a in state s is
determined by the transition probability P : S×A× S→ R. The reward received by the agent when
taking action a in state s is given by the reward function r : S × A → R. The goal of the agent is
to learn a policy πθ : S× A→ R which takes an action a in state s that maximizes the cumulative
discounted reward

∑T−1
t=0 γtr(st, at). Here s0 is the initial state of the agent, and γ is the discount

factor. For deep Q networks (DQN) the optimal policy is determined by learning the state-action
value function Q(s, a). For a state s we use F(s) to denote the 2D discrete Fourier transform.

2.2 CRAFTING ADVERSARIAL PERTURBATIONS

Szegedy et al. (2014) proposed to minimize the distance between the original image and adversarially
produced image to create adversarial perturbations. The authors used box-constrained L-BFGS to
solve this optimization problem. Goodfellow et al. (2015) introduced the fast gradient method (FGM)

xadv = x+ ε · ∇xJ(x, y)
||∇xJ(x, y)||p

, (1)

for crafting adversarial examples in image classification by taking the gradient of the cost function
J(x, y) used to train the neural network in the direction of the input, where x is the input, y is the
output label, and J(x, y) is the cost function for image classification. Carlini & Wagner (2017)
introduced targeted attacks in the image classification domain based on distance minimization
between the adversarial image and the original image while targeting a particular label. In the deep
reinforcement learning domain the Carlini & Wagner (2017) formulation is
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min
sadv∈S

‖sadv − s‖p

subject to a∗(s) 6= a∗(sadv),

where s is the unperturbed input, sadv is the adversarially perturbed input, a∗(s) is the action taken
in the unperturbed state, and a∗(sadv) is the action taken in the adversarial state. This formulation
attempts to minimize the distance to the original state, constrained to states leading to sub-optimal
actions as determined by the Q-network. In contrast to adversarial attacks, in our proposed threat
model we will not need any information on the cost function used to train the network, Q-network of
the trained agent or the visited states themselves.

2.3 ADVERSARIAL APPROACH IN DEEP REINFORCEMENT LEARNING

The first adversarial attacks on deep reinforcement learning introduced by Huang et al. (2017) and
Kos & Song (2017) adapted FGSM from image classification to the deep RL setting. Subsequently,
Mandlekar et al. (2017) used FGSM perturbations for adversarial training of deep RL agents. Pinto
et al. (2017); Gleave et al. (2020) focused on modeling the interaction between adversary and the
agent, while Lin et al. (2017); Sun et al. (2020) focused on strategically timing when (i.e. in which
state) to attack an agent using perturbations computed with the Carlini & Wagner (2017) adversarial
formulation.

2.4 PERCEPTUAL SIMILARITY

Zhang et al. (2018) found that internal activations of networks trained for high-level tasks corre-
spond to human perceptual judgements across different network architectures Iandola et al. (2016),
Krizhevsky et al. (2012), Simonyan & Zisserman (2015) without calibration. Furthermore, the
authors propose a method to measure the perceptual distance between two images with the Learned
Perceptual Image Patch Similarity (LPIPS) metric. We compare the distance between adversarial
states sadv and the original states s with the LPIPS metric. We refer to the LPIPS metric as Psimilarity
throughout the paper. Psimilarity(s, sadv) returns the distance between s and sadv based on network
activations. Zhang et al. (2018) show that Psimilarity results in a reliable approximation of human
perception.

2.5 IMPACT

We define the normalized impact of an adversary on the agent as,

I =
Scoremax − Scoreadv

Scoremax − Scoremin
. (2)

Scoremax is the score at the end of the episode achieved by the agent who takes the action that
maximizes its Q(s, a) function in every state visited, and Scoremin is the score at the end of the
episode achieved by the agent who takes the action that minimizes its Q(s, a) function in every state
visited. Scoreadv is the score at the end of the episode achieved by the agent who takes the action that
maximizes Q(sadv, a) under the influence of the adversary in every state visited. We report the results
in a normalized scale, because we observed the agent can collect stochastic rewards even though it
chooses the action that minimizes its Q(s, a) function in every state visited.

3 DAYLIGHT: A GENERALIZATION TESTING FRAMEWORK

In our generalization framework1 we propose a baseline to test the robustness of trained deep
reinforcement learning agents with respect to several realistic failures of the agent’s observations.
This is in contrast to prior work that focused on the presence of a strong adversary with prior access to
training details of the agent’s neural network, real time access to agent’s perception system, and highly
computationally demanding adversarial formulations used to compute simultaneous perturbations. In
our model we consider the environment itself as an adversary and we examine several environmental

1https://daylightframework.github.io

3



Under review as a conference paper at ICLR 2021

changes such as: changes in the brightness of the environment, blurring of the observation, rotation
of the observation, perspective transformation, shifting, and compression artifacts. These changes
from our model can be easily linked to naturally occurring changes in the environment. For instance,
for a self driving car a brightness change can be linked to the time of day, or the appearance of
reflective objects or shadows. Rotation, perspective transformation, and shifting can be linked to
driving on a road with varied terrain. Blurring can be linked to a rainy day, foggy weather or a fogged
up camera lens utilized by the agent. In the remainder of this section we compare the impact values
and perceptual similarities of the daylight framework with the state-of-the-art targeted adversarial
attack proposed by Carlini & Wagner (2017).

3.1 BRIGHTNESS AND CONTRAST

The first component of our framework focusing on testing the trained agents in different brightness
and contrast levels using a linear brightness and contrast transformation,

sadv(i, j) = s(i, j) · α+ β, (3)

where s(i, j) is the ijth pixel of state s, and α and β are the linear brightness parameters. In Table 1
we show the impacts and perceptual similarity distances with corresponding α, β values. In all of
the games except BankHeist brightness and contrast change results in higher impact. The perceptual
similarity distance of brightness and contrast is lower in every game. In Figure 3 we show the
corresponding states s and sadv for all of the daylight framework.

Table 1: Impacts of Carlini & Wagner (2017) and brightness & contrast (B&C) with corresponding
perceptual similarity Psimilarity, and the [α, β].

Games C&W Impact B&C Impact C&W Psimilarity B&C Psimilarity [α, β]

BankHeist 0.986±0.009 0.971± 0.030 0.171 0.127 [1.2,40]
JamesBond 0.516±0.231 0.896±0.047 0.326 0.015 [0.9,20]
Pong 0.995±0.014 0.996±0.009 0.608 0.245 [1.7,40]
RiverRaid 0.9498±0.030 0.973±0.016 0.255 0.168 [2.4,-275]
TimePilot 0.774±0.159 0.906±0.239 0.279 0.070 [2.4,-260]

3.2 BLURRING

The second component in our daylight framework is blurring. Median bluring is a nonlinear noise
removal technique that replaces the original pixel value with the median pixel value of its neighbouring
pixels. A kernel size k means that the median is computed over a k × k neighborhood of the original
pixel. In Table 2 we show the impact values and perceptual similarity distance with corresponding
kernel size. Only in BankHeist do we observe that the impacts and perceptual similarity distance are
comparable. For the rest of the games impact is higher and perceptual similarity distance is lower for
blurring.

Table 2: Impacts of Carlini & Wagner (2017) and blurring with corresponding perceptual similarity
Psimilarity, and kernel size.

Games C&W Impact Blurring Impact C&W Psimilarity Blurring Psimilarity Kernel Size

BankHeist 0.986±0.009 0.983±0.009 0.171 0.168 5
JamesBond 0.516±0.231 0.634±0.200 0.326 0.048 3
Pong 0.995±0.014 1.0±0.000 0.245 0.098 3
RiverRaid 0.9498±0.030 0.968±0.015 0.255 0.134 5
TimePilot 0.774±0.159 0.805±0.150 0.279 0.124 5
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3.3 ROTATION

The next component in our daylight framework is rotation. In Table 3 we show impact values and
perceptual similarity distance with corresponding rotation angle. In all of the games except Pong
rotation results in higher impact and orders of magnitude lower perceptual similarity distance. In
Pong the impact is comparable and the perceptual similarity distance is lower by a factor of 2.

Table 3: Impacts of Carlini & Wagner (2017) and rotation with corresponding perceptual similarity
Psimilarity, and the rotation angle (RD denotes rotation degree).

Games C&W Impact Rotation Impact C&W Psimilarity Rotation Psimilarity RD

BankHeist 0.986±0.009 1.0±0.004 0.171 0.064 1.4
JamesBond 0.516±0.231 0.725±0.189 0.326 0.029 1.6
Pong 0.995±0.014 0.99±0.015 0.245 0.112 3
RiverRaid 0.9498±0.030 0.965±0.042 0.255 0.059 1.8
TimePilot 0.774±0.159 0.910±0.158 0.279 0.068 5

3.4 SHIFTING

The next component in our daylight framework is shifting. Shifting an image moves the elements of
the image matrix along any dimension by any number of elements. In this subsection we will shift
the inputs in the x or y direction with as few pixels shifted as possible. We use [ti, tj] to denote the
distance shifted, where ti is in the direction of x and tj is in the direction of y. In Table 4 we show
the impact values and perceptual similarity distances for both Carlini & Wagner (2017) and shifting.
For all of the games shifting yields higher impact and lower perceptual similarity distance.

Table 4: Impacts of Carlini & Wagner (2017) and shifting with corresponding perceptual similarity
Psimilarity, and the shifting [ti, tj].

Games C&W Impact Shifting Impact C&W Psimilarity Shifting Psimilarity [ti, tj]

BankHeist 0.986±0.009 0.989±0.005 0.171 0.060 [1,1]
JamesBond 0.516±0.231 0.989±0.140 0.326 0.048 [0,1]
Pong 0.995±0.014 1.0±0.00 0.608 0.217 [2,1]
RiverRaid 0.9498±0.030 0.9568±0.023 0.255 0.095 [1,2]
TimePilot 0.774±0.159 0.851±0.199 0.279 0.120 [2,2]

3.5 COMPRESSION ARTIFACTS

In this section we look at jpeg compression artifacts caused by the discrete cosine transform (DCT)
resulting in the loss of high frequency components (ringing and blocking). In Table 5 we show the
impact values and perceptual similarities of Carlini & Wagner (2017) and compression artifacts (CA).

Table 5: Impacts of Carlini & Wagner (2017) and compression artifacts (CA) with corresponding
perceptual similarity Psimilarity.

Games C&W Impact CA Impact C&W Psimilarity CA Psimilarity

BankHeist 0.986±0.009 0.984±0.013 0.171 0.067
JamesBond 0.516±0.231 1.0±0.128 0.326 0.035
Pong 0.995±0.014 0.962±0.032 0.608 0.029
RiverRaid 0.9498±0.030 0.8218±0.051 0.255 0.057
TimePilot 0.774±0.159 0.790±0.271 0.279 0.067

Only in Pong and Riverraid do we observe a lower impact than Carlini & Wagner (2017) while
the perceptual similarity distance was orders of magnitude smaller for compression artifacts. In
BankHeist the impact is comparable, and in the rest of the games compression artifacts result in
higher impact and lower perceptual similarity distance compared to Carlini & Wagner (2017).
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3.6 PERSPECTIVE TRANSFORMATION

The final component of our daylight framework is perspective transformation. Given four points in
the plane defining a convex quadrangle, there is a unique perspective transformation mapping the
corners of the square to these four points (see Equation 5 and Equation 6). We define the norm of
a perspective transformation as the maximum distance that one of the corners of the square moves
under this mapping. In Table 6 we show impact values and perceptual similarity distance with respect
to perspective norms. For all the games we observe perspective transformation yields higher impact
and lower perceptual similarity distance.

Table 6: Impacts of Carlini & Wagner (2017) and perspective transformation (PT) with corresponding
perceptual similarity Psimilarity, and the perspective norm.

Games C&W Impact PT Impact C&W Psimilarity PT Psimilarity Perspective Norm

BankHeist 0.986±0.009 1.0±0.003 0.171 0.022 1
JamesBond 0.516±0.231 0.978±0.087 0.326 0.007 1
Pong 0.995±0.014 0.996±0.009 0.608 0.029 3
RiverRaid 0.9498±0.030 0.99±0.006 0.255 0.046 2
TimePilot 0.774±0.159 0.852±0.198 0.279 0.029 3

4 FOURIER DOMAIN

Ford et al. (2019) showed DNN models are robust to certain bands of perturbations in the frequency
domain. Furthermore, they showed that adversarial training shifts the vulnerability from high
frequency noise towards low frequency noise. Moreover, Yin et al. (2019) claim that a framework
that aims to measure robustness and generalization needs to firmly encapsulate different directions of
the spectrum in the frequency domain. In this section we show that the daylight framework indeed
captures a broader set of directions in the frequency domain.

Figure 1: Riverraid power spectrum change with various perturbations: Carlini & Wagner, compres-
sion artifacts, brightness and contrast, perspective transformation, shifting, rotation.

In Figure 2 we show the Fourier spectrum of the original state s and the perturbed states sadv from the
daylight framework and Carlini & Wagner (2017). In Figure 1 we show the power spectral density
of the original state compared to several perturbations from our proposed daylight framework and
Carlini & Wagner (2017). In Figure 1 we observe that while Carlini & Wagner (2017) increases
the higher frequencies, compression artifacts decrease the magnitude of the higher frequency band.
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Figure 2: Rows: F(s) for BankHeist, F(s) Riverraid. Columns: original state, Carlini & Wagner,
brightness and contrast, blurring, rotation, shifting, perspective tansformation, compression artifacts.

On the other hand, brightness and contrast decreases the magnitude of the low frequency band, and
shifting increases the midband. Blurring decreases the midband and high frequencies together, and
perspective transformation decreases the low frequecies and high frequencies while increasing the
midband. We believe capturing the susceptibilities towards perturbations in different bands of the
frequency domain is a key step towards building robust agents.

5 TIMING PERSPECTIVE

In the previous sections we tested our agents generalization capabilities in modified environments
with our initial thread model. This modification to the environment was applied to every state that
the agent visited for both Carlini & Wagner (2017) and our daylight framework. In this section we
will examine the effect of both adversarial models when the perturbations are applied to only a small
fraction of states. For this purpose we introduce the adversarial states sadv in randomly sampled states
where the observation sadv is observed by the agent with probability p, and the original states s is
observed observed by the agent with probability 1− p. We use nsadv to denote the number of states
where the agent observed sadv instead of the original state s, and we use ns to denote the total number
of states visited by the agent in the given episode. We use eadv to denote the fraction nsadv/ns of
adversarial perturbations per episode.

Table 7: Impact comparison with the fraction of adversarial observation probability p.

RiverRaid TimePilot BankHeist Pong JamesBond

C&W Impact 0.359 0.148 0.249 0.077 0.021
Shifting Impact 0.513 0.374 0.326 0.114 0.165
Perspective Transformation Impact 0.391 0.315 0.338 0.108 0.121
Blurring Impact 0.501 0.155 0.304 0.12 0.319
Brightness & Contrast Impact 0.517 0.188 0.313 0.098 0.154
Rotation Impact 0.417 0.192 0.260 0.079 0.044
Compression Artifacts Impact 0.184 0.262 0.267 0.017 0.198
sadv observation probability p 0.1 0.02 0.02 0.06 0.08

In Table 7 we show the attack impacts of Carlini & Wagner (2017) and daylight framework with
corresponding adversarial observation probability p averaged over 10 random episodes. See Appendix
A.4 for more details. Even for low p values our proposed daylight framework obtains higher impact.
Thus, to capture a broader view on the robustness of the agent, the prior work on the timing perspective
by Sun et al. (2020); Lin et al. (2017) based on worst-case distributional shift, can be revisited with
our daylight framework.

6 EXPERIMENTS

In our experiments we trained our agents with DDQN Wang et al. (2016) in the OpenAI Gym
Brockman et al. (2016) Atari environment Bellemare et al. (2013). We test trained agents from
several Atari environments averaged over 10 episodes. In Figure 3 we show the original states
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Figure 3: Original frame and environmental modifications. Columns: original frame, shifting,
rotation, perspective transformation, blurring, compression artifacts. brightness and contrast. Rows:
Bankheist, Timepilot, Pong, JamesBond, Riverraid.

and the environmental modifications. Interestingly, we found that a majority of the games have
high robustness against rotation. On the other hand, shifting and perspective transformation can
reach a higher impact level than the state-of-the-art targeted attack while not being recognizable by
human perception. We observed that in some games, such as Pong and Riverraid, brightness and
contrast requires radical changes to cause the agent to fail, while for others the change required is
imperceptible. Another thing we observed is that for games like Pong, which is relatively trivial
compared to other games in the Atari environment, the threshold values for the environmental
modification are higher. When the complexity in the game increases the environment modification
thresholds decrease drastically. We think that this issue could become more important as deep
reinforcement learning agents are deployed in more complex and realistic scenarios.

7 CONCLUSION

In this paper we studied a realistic threat model based on basic environmental changes and proposed
a framework called daylight to asses the generalization capabilities of deep reinforcement learning
agents. We compared our daylight framework with the state-of-the-art adversarial attacks in the Atari
environment. We demonstrated that our framework achieves higher impact on agent performance with
lower perceptual similarity distance without having access to agents training details, real time access
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to agents memory and perception system, and computationally demanding adversarial formulations
to compute simultaneous perturbations. We investigated perturbations in the time domain and showed
that the studies based on imperceptible perturbations can be revisited within the daylight framework.
Finally, we show that each component of our framework contains distinct bands in the frequency
domain, resulting in a better estimate of the generalization capabilities of trained agents. We believe
our framework can be instrumental towards generalization and robustification of deep reinforcement
learning algorithms.
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A APPENDIX

A.1 RAW SCORE RESULTS

In this section we provide the raw scores of the agents under the observation modifications from both
the state-of-the-art adversarial attack and the Daylight framework with components: Brightness &
Contrast, Blurring, Rotation, Shifting, Compression Artifacts, and Perspective Transform .

Table 8: Raw Scores of Carlini & Wagner (2017) (C&W) and brightness & contrast (B&C) with
corresponding perceptual similarity Psimilarity, and the [α, β].

Games C&W Raw Scores B&C Raw Scores C&W Psimilarity B&C Psimilarity [α, β]

BankHeist 15.0 17.0 0.171 0.127 [1.2,40]
JamesBond 285.0 45.0 0.326 0.015 [0.9,20]
Pong -20.8 -21.0 0.608 0.245 [1.7,40]
RiverRaid 1168.0 744.0 0.255 0.168 [2.4,-275]
TimePilot 4090.0 3180.0 0.279 0.070 [2.4,-260]

Table 9: Raw Scores of Carlini & Wagner (2017) (C&W) and blurring with corresponding perceptual
similarity Psimilarity, and kernel size.

Games C&W Raw Scores Blurring Raw Scores C&W Psimilarity Blurring Psimilarity Kernel Size

BankHeist 15.0 18.0 0.171 0.168 5
JamesBond 285.0 190.0 0.326 0.048 3
Pong -20.8 -21.0 0.245 0.098 3
RiverRaid 1168.0 820.0 0.255 0.134 5
TimePilot 4090.0 3880.0 0.279 0.124 5

Table 10: Raw Scores of Carlini & Wagner (2017) (C&W) and rotation with corresponding perceptual
similarity Psimilarity, and the rotation angle (RD denotes rotation degree).

Games C&W Raw Scores Rotation Raw Scores C&W Psimilarity Rotation Psimilarity RD

BankHeist 15.0 2.0 0.171 0.064 1.4
JamesBond 285.0 190.0 0.326 0.029 1.6
Pong -20.8 -20.6 0.245 0.112 3
RiverRaid 1168.0 873.0 0.255 0.059 1.8
TimePilot 4000.0 3150.0 0.279 0.068 5

Table 11: Raw Scores of Carlini & Wagner (2017) (C&W) and shifting with corresponding perceptual
similarity Psimilarity, and the shifting [ti, tj].

Games C&W Raw Scores Shifting Raw Scores C&W Psimilarity Shifting Psimilarity [ti, tj]

BankHeist 15.0 13.0 0.171 0.060 [1,1]
JamesBond 285.0 70.0 0.326 0.048 [0,1]
Pong -20.8 -21.0 0.608 0.217 [2,1]
RiverRaid 1168.0 988.0 0.255 0.095 [1,2]
TimePilot 4000.0 3560.0 0.279 0.120 [2,2]
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Table 12: Raw Scores of Carlini & Wagner (2017) (C&W) and compression artifacts (CA) with
corresponding perceptual similarity Psimilarity.

Games C&W Raw Scores CA Raw Scores C&W Psimilarity CA Psimilarity

BankHeist 15.0 17.0 0.171 0.067
JamesBond 250.0 60.0 0.326 0.035
Pong -20.8 -19.4 0.608 0.029
RiverRaid 1168.0 2589.0 0.255 0.057
TimePilot 4090.0 3980.0 0.279 0.067

Table 13: Raw Scores of Carlini & Wagner (2017) (C&W) and perspective transformation (PT) with
corresponding perceptual similarity Psimilarity, and the perspective norm.

Games C&W Raw Scores PT Raw Scores C&W Psimilarity PT Psimilarity Perspective Norm

BankHeist 15.0 1.0 0.171 0.022 1
JamesBond 285.0 75.0 0.326 0.007 1
Pong -20.8 -20.9 0.608 0.029 3
RiverRaid 1168.0 486.0 0.255 0.046 2
TimePilot 4000.0 3550.0 0.279 0.029 3

A.2 IMPACTS WITH FIXED SCORES

For the scope of the paper we used the Impact definition in Equation 2 when we compare our proposed
Daylight framework to the state-of-the-art targeted attacks. For more generalized comparison between
different algorithms and different games one can use Scoreclean as the score of the agent without
any modification to agent’s observations system at the end of the episode and Scorefixed

min as the fixed
minimum score for a given game. Thus, we define the generalized impact as,

Igeneral =
Scoreclean − Scoreadv

Scoreclean − Scorefixed
min

. (4)

From Table 14 through Table 19 we set Scorefixed
min for Bankheist 0, JamesBond 0, Pong -21, Riverraid

0, and TimePilot 0.

Table 14: Generalized Impacts of Carlini & Wagner (2017) (C&W) and brightness & contrast (B&C)
with corresponding perceptual similarity Psimilarity, and the [α, β].

Games C&W Igeneral B&C Igeneral C&W Psimilarity B&C Psimilarity [α, β]

BankHeist 0.982 0.966 0.171 0.127 [1.2,40]
JamesBond 0.451 0.913 0.326 0.015 [0.9,20]
Pong 0.995 1.0 0.608 0.245 [1.7,40]
RiverRaid 0.928 0.951 0.255 0.168 [2.4,-275]
TimePilot 0.567 0.663 0.279 0.070 [2.4,-260]

Table 15: Generalized Impacts of Carlini & Wagner (2017) (C&W) and blurring with corresponding
perceptual similarity Psimilarity, and kernel size.

Games C&W Igeneral Blurring Igeneral C&W Psimilarity Blurring Psimilarity Kernel Size

BankHeist 0.982 0.979 0.171 0.168 5
JamesBond 0.451 0.635 0.326 0.048 3
Pong 0.995 1.0 0.245 0.098 3
RiverRaid 0.928 0.946 0.255 0.134 5
TimePilot 0.567 0.589 0.279 0.124 5
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Table 16: Generalized Impacts of Carlini & Wagner (2017) (C&W) and rotation with corresponding
perceptual similarity Psimilarity, and the rotation angle (RD denotes rotation degree).

Games C&W Igeneral Rotation Igeneral C&W Psimilarity Rotation Psimilarity RD

BankHeist 0.982 0.997 0.171 0.064 1.4
JamesBond 0.451 0.635 0.326 0.029 1.6
Pong 0.995 0.99 0.245 0.112 3
RiverRaid 0.928 0.942 0.255 0.059 1.8
TimePilot 0.567 0.581 0.279 0.068 5

Table 17: Generalized Impacts of Carlini & Wagner (2017) (C&W) and shifting with corresponding
perceptual similarity Psimilarity, and the shifting [ti, tj].

Games C&W Igeneral Shifting Igeneral C&W Psimilarity Shifting Psimilarity [ti, tj]

BankHeist 0.982 0.985 0.171 0.060 [1,1]
JamesBond 0.451 0.865 0.326 0.048 [0,1]
Pong 0.995 1.0 0.608 0.217 [2,1]
RiverRaid 0.928 0.935 0.255 0.095 [1,2]
TimePilot 0.567 0.623 0.279 0.120 [2,2]

Table 18: Generalized Impacts of Carlini & Wagner (2017) (C&W) and compression artifacts (CA)
with corresponding perceptual similarity Psimilarity.

Games C&W Igeneral CA Igeneral C&W Psimilarity CA Psimilarity

BankHeist 0.982 0.980 0.171 0.067
JamesBond 0.451 0.884 0.326 0.035
Pong 0.995 0.962 0.608 0.029
RiverRaid 0.923 0.803 0.255 0.057
TimePilot 0.567 0.578 0.279 0.067

Table 19: Generalized Impacts of Carlini & Wagner (2017) (C&W) and perspective transformation
(PT) with corresponding perceptual similarity Psimilarity, and the perspective norm.

Games C&W Igeneral PT Igeneral C&W Psimilarity PT Psimilarity Perspective Norm

BankHeist 0.982 0.998 0.171 0.022 1
JamesBond 0.451 0.865 0.326 0.007 1
Pong 0.995 0.996 0.608 0.029 3
RiverRaid 0.928 0.968 0.255 0.046 2
TimePilot 0.567 0.624 0.279 0.029 3

A.3 POLICY GRADIENT METHODS UNDER DAYLIGHT FRAMEWORK

In this section we investigate policy gradient methods. In particular, Table 20 shows the raw scores,
and generalized impacts Igeneral of the agent trained with A3C under the Daylight framework with
following observation modifications: brightness & constrast, blurring, rotation, shifting, compression
artifacts and perspective transform. In Table 20the exact same hyperparameters have been used as
stated in Table 1 through Table 6 for the Daylight framework. Note that Daylight hyperparameters
refers for brightnes and contrast to [α, β], for blurring to the kernel size, for rotation to rotation
degree, for shifting to [ti, tj ], and for perspective transformation to perspective norm. Shifting and
compression artifacts have nearly maximal impact on the performance of the agent trained with A3C,
while the other perturbations all have impact at least 0.9. Note that we did not change the Daylight
hyperparameters for a direct comparison between the A3C agent and the DDQN agent. Therefore,
although impact is slightly lower for brightness & contrast for A3C than for DDQN, it is possible
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that choosing different values of α and β while minimizing the perceptual similarity Psimilarity can
still result in a higher impact for an agent trained with A3C.

Table 20: Raw Scores and generalized impacts of the agent trained with A3C algorithm in Pong
environment and evaluated with Daylight frame work: brightness &contrast, blurring, rotation,
shifting, compression artifacts (CA) and perspective transform (PT).

Pong Bright&Contrast Blurring Rotation Shifting CA PT

Raw Scores -17 -20.35 -19.96 -20.71 -20.89 -19.11
Generalized Impacts Igeneral 0.904 0.984 0.974 0.993 0.997 0.954
Daylight hyperparameters [1.7,40] 3 3 [2,1] - 3

A.4 TIMING PERSPECTIVE

Note that the fraction eadv can differ slightly from p due to random fluctuations, therefore we also
report these values in Table 7. Note that eadv varies between games. This was done because each
game has a different minimum threshold for eadv to achieve stable impact across episodes.

Table 21: Impact comparison with the fraction of adversarial observations per episode eadv.

RiverRaid TimePilot BankHeist Pong JamesBond

C&W Impact 0.359 0.148 0.249 0.077 0.021
Shifting Impact 0.513 0.374 0.326 0.114 0.165
Perspective Transformation Impact 0.391 0.315 0.338 0.108 0.121
Blurring Impact 0.501 0.155 0.304 0.12 0.319
Brightness & Contrast Impact 0.517 0.188 0.313 0.098 0.154
Rotation Impact 0.417 0.192 0.260 0.079 0.044
Compression Artifacts Impact 0.184 0.262 0.267 0.017 0.198

C&W eadv 0.096 0.020 0.021 0.062 0.081
Shifting eadv 0.100 0.019 0.020 0.062 0.084
Perspective Transform eadv 0.098 0.020 0.020 0.060 0.082
Blurring eadv 0.099 0.019 0.020 0.061 0.083
Brightness eadv 0.101 0.020 0.018 0.062 0.082
Rotation eadv 0.099 0.021 0.020 0.061 0.083
Compression Artifacts eadv 0.097 0.020 0.020 0.056 0.080
sadv observation probability p 0.1 0.02 0.02 0.06 0.08

A.5 FORMULAS FOR PERSPECTIVE TRANSFORMATION

tk

sdstk
i

sdstk
j

1

 =M ·

ssrck
i
ssrck
j

1

 (5)

sadv(i, j) = s

(
M11si +M12sj +M13

M31si +M32sj +M33
,
M21si +M22sj +M23

M31si +M32sj +M33

)
(6)
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