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Abstract

Causal graph discovery and causal effect estimation are two fundamental tasks1

in causal inference. While many methods have been developed for each task2

individually, statistical challenges arise when applying these methods jointly:3

estimating causal effects after running causal discovery algorithms on the same data4

leads to “double dipping,” invalidating coverage guarantees of classical confidence5

intervals. To this end, we develop tools for valid post-causal-discovery inference.6

One key contribution is a randomized version of the greedy equivalence search7

(GES) algorithm, which permits a valid, distribution-free correction of classical8

confidence intervals. We show that a naive combination of causal discovery and9

subsequent inference algorithms typically leads to highly inflated miscoverage10

rates; at the same time, our noisy GES method provides reliable coverage control11

while achieving more accurate causal graph recovery than data splitting.12

1 Introduction13

Causal discovery and causal estimation are fundamental tasks in causal reasoning and decision-14

making. Causal discovery aims to identify the underlying structure of the causal problem, often in15

the form of a graphical representation which makes explicit which variables causally influence which16

other variables, while causal estimation aims to quantify the magnitude of the effect of one variable17

on another. These two goals frequently go hand in hand: computing valid causal effects requires18

adjustments that rely on either assuming or discovering the underlying graphical structure.19

Methodologies for causal discovery and causal estimation have mostly been developed separately, and20

the statistical challenges that arise when solving these problems jointly have largely been overlooked.21

Indeed, a naive combination of causal discovery and standard methods for computing causal effects22

suffers from “double dipping”: classical confidence intervals, such as those used for linear regression23

coefficients, need no longer cover the target estimand if the causal structure is not fixed a priori but24

is estimated on the same data used to compute the intervals. The key underlying problem is that25

asserting the existence of a causal relationship biases the estimated effect size toward significance.26

More formally, suppose we are given a fixed causal graph G. Let βG denote a causal parame-27

ter of interest within G, which will typically correspond to an effect of one variable on another.28

Standard statistical methods take a data set D and produce a confidence interval CIG(α;D) such29

that P{βG ̸∈ CIG(α;D)} ≤ α, where α ∈ (0, 1) is a pre-specified error level. However, if we30

estimate the causal graph Ĝ from D, this guarantee breaks down; that is, there is no guarantee that31

P
{
βĜ ̸∈ CIĜ(α;D)

}
≤ α. This issue arises due to the coupling between the estimand βĜ and the32

data used for inference, since Ĝ implicitly depends on D.33

To address this failure of naive inference, we develop tools for valid statistical inference after causal34

discovery. We build on concepts introduced in the literature on adaptive data analysis [Dwork et al.,35

2015a,b] and develop causal discovery algorithms that allow computing downstream confidence36

intervals with rigorous coverage guarantees. Our key observation is that randomizing causal discovery37

Submitted to the NeurIPS Causal ML for Real-World Impact Workshop (CML4Impact 2022). Do not distribute.



mitigates the bias due to data reuse. In particular, we show that, for a level α̃ ≤ α depending on38

the level of randomization, naive intervals satisfy P
{
βĜ ̸∈ CIĜ(α̃;D)

}
≤ α, where Ĝ is a causal39

structure estimated via a noisy causal discovery algorithm.40

Randomization leads to a quantifiable tradeoff between the quality of the discovered structure and41

the statistical power of downstream inferences: higher levels of randomization imply lower structure42

quality, but at the same time allow tighter confidence intervals; that is, α̃ is not much smaller than the43

target error level α. Moreover, we show empirically that the proposed randomization schemes are not44

vacuous: classical confidence intervals for causal effects indeed vastly undercover the target causal45

effect when computed after running standard, noiseless discovery algorithms.46

A key contribution of our work is NOISY-GES, a noisy version of the classical greedy equivalence47

search (GES) [Chickering, 2002]. We show that NOISY-GES inherits consistency of usual GES, but at48

the same time enables a valid correction of classical confidence intervals in the learned graph.49

2 Problem Formulation and Preliminaries50

Causal Graphs. We consider the problem of performing inference based on a causal graph. A causal51

graph is a directed acyclic graph (DAG) G = (V,E), where V = (X1, . . . , Xd) is the set of vertices52

and E is the set of edges. We denote by PaGj ⊆ [d] the set of parents of node Xj in graph G. In53

addition to capturing conditional independence relationships, a causal graph represents the causal54

relations in the data: the existence of an edge from Xi to Xj implies a possible causal effect from55

Xi to Xj . Our theory also applies to methods that return an equivalence class of DAGs, namely a56

completed partially directed acyclic graph (CPDAG). We will use the notation G, as well as the57

term “causal graph,” to refer to both DAGs and CPDAGs, given that our tools are largely agnostic to58

whether the causal discovery criterion is applied to a set of possible DAGs or CPDAGs.59

Targets of Inference in Causal Graphs. Suppose that the analyst works with a causal graph G and60

decides on a specific causal estimator to compute the effect of Xi on Xj within this graph. We will61

use β
(i→j)
G to denote the large-sample limit of this estimator, and that will be our target of inference62

in graph G. Analogously, when Ĝ is discovered from data, our target will be β
(i→j)

Ĝ
.63

It is natural ask whether inference—and specifically its resulting target—is meaningful if the discov-64

ered graph is not the exact generating truth, since then β
(i→j)

Ĝ
may not coincide with the “true” causal65

effect. The perspective we build upon is that different models provide different approximations to66

the truth, some better than others, and should not be thought of as true data-generating processes67

[Berk et al., 2013, Buja et al., 2019a,b]. Indeed, a causal graph is rarely a perfect representation of68

the truth, but it can nevertheless serve as a useful working model. For instance, given the complexity69

of any real-world system, some relevant factors will almost inevitably be missing from the graph70

used in the analysis. This is true when the graph is estimated algorithmically, but even when it is71

provided by a domain expert. Whether or not the graph is correct, there is a well-defined underlying72

population-level quantity that the estimator approximates. Naturally, if the discovered graph Ĝ is73

correct, then β
(i→j)

Ĝ
will be equivalent to the true causal effect. The goal of our confidence interval74

constructions is to appropriately measure the estimator’s fluctuations around the target.75

Statistical Validity. To perform a causal analysis, we work with a finite data set D = {X(k)}nk=1 ≡76

{(X(k)
1 , . . . , X

(k)
d )}nk=1 of n i.i.d. measurements from a distribution P , where X(k)

j denotes the j-th77

variable in data point k. With only finite data, valid inference is ensured by constructing confidence78

intervals around an estimator, often by relying on the estimator’s (asymptotic) normality. See Imbens79

[2004] for an overview of standard confidence interval constructions. We study settings in which the80

causal graph G is not given a priori but is learned from D via causal discovery algorithms. Denote81

by Ĝ the graph over X1, . . . , Xd obtained in a data-driven way. Our main technical result can be82

summarized as follows: whenever we have a way of constructing valid confidence intervals for a83

causal quantity of interest when the causal graph G is fixed, we can adapt the respective method to84

produce valid confidence intervals when the causal graph Ĝ is learned from data.85

What makes inferring the targets β
(i→j)

Ĝ
statistically challenging is the fact that we are using the86

data twice: once to estimate the causal structure Ĝ and another time to compute a causal estimate87
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β̂
(i→j)

Ĝ
. This double-dipping phenomenon creates a bias: β̂(i→j)

Ĝ
can be far further from β

(i→j)

Ĝ
than88

predicted by classical statistical theory. To correct this bias, we rely on quantifying the error increase89

of “naive” confidence intervals due to double dipping. In particular, consider a family of confidence90

intervals CI(i→j)
G (α;D) that satisfies91

P
{
∃(i, j) ∈ IG : β

(i→j)
G ̸∈ CI

(i→j)
G (α;D)

}
≤ α, (1)

for all G and α ∈ (0, 1). Importantly, note that, since G is fixed, the target estimand is trivially92

independent of the dataD. The guarantee (1) does not hold when Ĝ is estimated fromD. Throughout93

the paper we will use CI
(i→j)

Ĝ
(α) ≡ CI

(i→j)

Ĝ
(α;D) to denote “standard” intervals, which, if D is94

independent of Ĝ, satisfy the high-probability guarantee of Eq. (1).95

Correcting Inferences via Max-Information. We show that naive intervals at a corrected level96

α̃ ≤ α have error at most α. This construction is intrinsically tied to the degree of dependence97

between the data D and the learned graph Ĝ, as formalized via max-information.98

Definition 1 (Max-information [Dwork et al., 2015a]). Given γ ∈ (0, 1), the γ-approximate max-99

information between D and Ĝ is Iγ∞(Ĝ;D) := maxO log(P
{
(Ĝ,D) ∈ O

}
− γ)/P

{
(Ĝ, D̃) ∈ O

}
,100

where D̃ is an i.i.d. copy of D and O is maximized over all measurable sets.101

A bound on Iγ∞(Ĝ;D) provides a way of bounding the probability of miscoverage when Ĝ is102

estimated fromD, as long as we can control the same notion of error in fixed graphs G. One approach103

for bounding max-information extensively studied in the literature on adaptive data analysis is to104

make the causal discovery procedure differentially private [Dwork et al., 2006]. Roughly speaking,105

differential privacy requires that the output of a statistical analysis be randomized in a way that makes106

it insensitive to the replacement of a single data point.107

Definition 2 (Differential privacy [Dwork et al., 2006]). A randomized algorithmA is ϵ-differentially108

private for some ϵ ≥ 0 if for any two fixed data sets D and D′ differing in at most one entry and any109

measurable set O, we have P{A(D) ∈ O} ≤ eϵP{A(D′) ∈ O} , where the probabilities are taken110

over the randomness of the algorithm.111

To translate privacy into max-information, we apply the following key result.112

Proposition 1 (Dwork et al. [2015a]). Suppose that algorithm A is ϵ-differentially private, and fix113

any γ ∈ (0, 1). Then, we have Iγ∞(A(D);D) ≤ n
2 ϵ

2 + ϵ
√
n log(2/γ)/2.114

Putting everything together, we see that it suffices to perform causal discovery in a differentially115

private manner in order to perform valid statistical inference downstream. We thus reduce the problem116

of valid inference after causal discovery to one of developing algorithms for private causal discovery.117

3 Noisy Causal Discovery118

Exact Search. Our first step is to study a simple setting in which the set of candidate graphs is small119

enough that we can exhaustively enumerate and individually score all of them. The following section120

extends our theory to the more realistic setting of large numbers of candidate graphs.121

Suppose we have a candidate set G of causal graphs that captures our uncertainty about which122

data-generating model to choose. To select a graph from G, we specify a score function, S(G,D),123

which takes as input a graph G and data set D, and we select the graph with the maximum score,124

Ĝ∗ = argmaxG∈G S(G,D). The score function S(G,D) is typically formulated as some measure125

of compatibility between G and the relationships suggested by the data D, such as the Bayesian126

information criterion (BIC). Note that Ĝ∗ depends on the data D and is thus random.127

To enable valid inference after graph selection, we rely on a randomized selection rule. Under this128

rule, a simple correction to the target error level α suffices for rigorous downstream inference. The key129

step in designing the randomized graph selection is to compute the maximum score in the uncertainty130

set G in a differentially private manner. To accomplish this, one needs to consider the sensitivity of131

the score. The amount of necessary randomization is directly proportional to the sensitivity.132
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Algorithm 1 Noisy causal discovery
input :data set D, set of graphs G, privacy parameter ϵ, score function S with sensitivity τ

output: causal graph Ĝ

For all G ∈ G, sample ξG
i.i.d.∼ Lap

(
2τ
ϵ

)
Set Ĝ← argmaxG∈G S(G,D) + ξG
Return Ĝ

Definition 3 (Score sensitivity). A score function S(G,D) is τ -sensitive if for any graph G ∈ G and133

any two fixed data sets D and D′ differing in at most one entry, we have |S(G,D)− S(G,D′)| ≤ τ.134

Roughly speaking, score sensitivity bounds the influence that any single data point can have on the135

choice of the best-scoring graph within the uncertainty set. We present our noisy causal discovery136

algorithm formally in Algorithm 1, and state its privacy guarantee in the following proposition.137

Proposition 2. Noisy causal graph discovery (Algorithm 1) is ϵ-differentially private.138

Combined with Proposition 1, Proposition 2 implies a correction in the form of a discounted error139

level for confidence interval construction that ensures valid inference on effects estimated from Ĝ.140

Theorem 1. Suppose Ĝ is selected via Algorithm 1 and fix γ ∈ (0, α). Then, we have141

P
{
∃(i, j) ∈ IĜ : β

(i→j)

Ĝ
̸∈ CI

(i→j)

Ĝ
(α̃)

}
≤ α, for α̃ = (α− γ) exp{−nϵ2/2− ϵ

√
n log(2/γ)/2}.142

Greedy Search. To enable valid statistical inference after causal discovery via GES [Chickering,143

2002], we next develop a private variant of GES that relies on randomization. The GES algorithm144

requires the existence of a local score; that is, we can write the score of a graph as a sum of “subscores”145

obtained by regressing each variable Xi on its parents in G: S(G,D) =
∑d

i=1 s(Xi,PaGi ,D).146

Standard scoring criteria, such as the Bayesian information criterion, satisfy this condition. As before,147

we define an appropriate notion of sensitivity.148

Definition 4 (Local score sensitivity). A local score function s is τ -sensitive if ∀i ∈ [d], I ⊆ [d] and149

any two data setsD andD′ that differ in a single entry, we have |s(Xi, XI ,D)−s(Xi, XI ,D′)| ≤ τ .150

Below we formally state the NOISY-GES algorithm along with its privacy guarantees. We stress that151

this procedure is equally valid for greedy search over CPDAGs and greedy search over DAGs. We use152

the notation ∆S+(e,G,D) := S(G∪e,D)−S(G,D) and ∆S−(e,G,D) := S(G\e,D)−S(G,D).153

Proposition 3. Noisy GES (Algorithm 2) is (2ϵthresh + 2Emaxϵscore)-differentially private.154

With Proposition 3 in hand, we can now ensure valid statistical inference after causal discovery. We155

state an analogue of Theorem 1 for NOISY-GES which shows how to discount the target miscoverage156

level in order to preserve validity after graph discovery via greedy search.157

Theorem 2. Suppose that Ĝ is selected via Algorithm 2 and fix γ ∈ (0, α).158

Then, we have P
{
∃(i, j) ∈ IĜ : β

(i→j)

Ĝ
̸∈ CI

(i→j)

Ĝ
(α̃)

}
≤ α, for α̃ = (α −159

γ) exp
(
−2n(ϵthresh + Emaxϵscore)

2 − (ϵthresh + Emaxϵscore)
√
2n log(1/γ)

)
.160

Consistency of NOISY-GES. Additionally, we show that NOISY-GES inherits consistency of the161

standard GES algorithm. In other words, employing randomization for valid downstream inference162

Algorithm 2 Noisy greedy equivalence search
input :dataD, max. number of edges Emax, score S with local sensitivity τ , parameters ϵscore, ϵthresh
output: causal graph Ĝ

Initialize Ĝ to be an empty graph
Run forward pass Ĝ← GreedyPass(Ĝ,D, Emax, S, τ, ϵscore, ϵthresh,+)

Run backward pass Ĝ← GreedyPass(Ĝ,D, Emax, S, τ, ϵscore, ϵthresh,−)
Return Ĝ
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Algorithm 3 GreedyPass

input : initial graph Ĝ0, data D, max. number of edges Emax, score S with local sensitivity τ ,
parameters ϵscore, ϵthresh, pass indicator sgn ∈ {+,−}

output: estimated causal graph Ĝ

Initialize Ĝ← Ĝ0 and sample noisy threshold ν ∼ Lap
(

4τ
ϵthresh

)
for t = 1, 2, . . . , Emax do

Construct set Esgnt of valid (sgn)-operators
For all e ∈ Esgnt , compute ∆Ssgn(e, Ĝ,D) and sample ξt,e

i.i.d.∼ Lap
(

4τ
ϵscore

)
Set e∗t = argmaxe∈Esgn

t
∆Ssgn(e, Ĝ,D) + ξt,e

if ∆Ssgn(e∗t , Ĝ,D) + ηt > ν where ηt ∼ Lap
(

8τ
ϵthresh

)
then

Apply operator e∗t to Ĝ
else

break
end

end
Return Ĝ

incurs a negligible cost in large samples under suitable conditions. As for standard GES, the key163

condition for consistency is that an increase in score corresponds to an actual increase in the graph’s164

ability to capture the underlying structure, formalized via local consistency [Chickering, 2002].165

We make a minor assumption that P comes from an exponential family and that there exists a DAG166

G∗(P) that is a perfect map of P , meaning that every independence constraint in P is implied by the167

structure G∗(P) and every independence implied by the structure G∗(P) holds in P . If there exists a168

perfect map of P , we say that P is DAG-perfect.169

Proposition 4 (Consistency of NOISY-GES). Denote by ĜGES the output of standard GES on D.170

Moreover, suppose that the local score function is τ -sensitive. Assume τ
ϵscore

= o(1), and τ
ϵthresh

=171

o(1). Further, assume that for all DAGs G and for all edges e, ∆Ssgn(e,G,D)→p ∆ssgne,G and that172

∆ssgne,G ̸= ∆ssgne′,G′ unless e = e′ and G = G′, for sgn ∈ {+,−}. Then, if Emax ≥ |E(ĜGES)|,173

limn→∞ P
{
Ĝ = ĜGES

}
= 1. If, in addition, P is DAG-perfect, and the scoring criterion is locally174

consistent, we have limn→∞ P
{
Ĝ = G∗(P)

}
= 1, where G∗ is a perfect map of P .175

4 Empirical Studies176

We compare the standard, non-noisy GES method with our noisy GES (Algorithm 2). We focus177

on multivariate Gaussian observations normalized to have unit variance. The most commonly used178

scoring criterion for GES is the Bayesian information criterion (BIC). It satisfies the conditions179

required to guarantee consistency of GES, but has unbounded sensitivity in general. To justify the180

conditions in Proposition 4, we we use clipping to guarantee a bounded local score sensitivity.181

Definition 5 (Clipped BIC). The local clipped BIC score with clipping parameter C is defined as182

sCBIC(Xj , XPaG
j
,D) = −min

θ

1

n

n∑
k=1

min{(X(k)
j −

∑
s∈PaG

j

θsX
(k)
s )2, C} −

|PaGj |
n

log n. (2)

Proposition 5 (Clipped BIC properties). The clipped BIC score (2) satisfies: (i) C
n -sensitivity of the183

local score sCBIC; and (ii) local consistency, assuming C = ω (1).184

The two properties in Proposition 5 imply that the clipped BIC score can simultaneously achieve185

local consistency and τ -local sensitivity for any τ = ω( 1n ). Therefore, to satisfy the conditions of186

Proposition 4 that ensure consistent graph recovery—in particular τ
ϵscore

, τ
ϵthresh

= o(1)—we can use187

any ϵscore, ϵthresh = ω( 1n ) and achieve consistency by calibrating C appropriately.188
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Figure 1. Probability of error for varying n (x-axis) and d (y-axis) in empty (top) and sparse random
(bottom) graphs. Intervals are constructed with target error probability equal to 0.05. We observe that
the probability of error significantly exceeds the target when the number of variables go beyond 10,
even in large sample regimes.
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Figure 2. Comparison of NOISY-GES and data splitting in terms of structural Hamming distance to
true graph for varying n (x-axis) and d (y-axis). Left panel is the empty DAG setting; right panel is the
sparse random DAG setting.

Validity Experiments. We quantify the severity of uncorrected inference after causal discovery by189

evaluating the probability of miscoverage of an effect of interest. In particular, we use the same data190

to both estimate the causal graph Ĝ via GES and to compute a point estimate of the effect β̂(i→j)

Ĝ
,191

and then we use a standard t-interval around the point estimate to produce a confidence region for the192

effect β(i→j)

Ĝ
. We investigate two models for generating the true underlying graph: 1) an empty graph193

and 2) a sparse random graph. In either case, we first run GES to estimate a graph Ĝ. Then, we select194

an edge e = Xi → Xj uniformly over all edges in Ĝ and compute a 95% confidence interval. We195

repeat this procedure 1000 times to estimate the probability of miscoverage of the population-level196

estimate β
(i→j)

Ĝ
(which in the empty graph case is simply zero). In Figure 1 we plot the probability197

of error for varying sample size n and number of variables d.198

Graph Recovery. In Figure 2 we compare GES and data splitting in terms of the structural Hamming199

distance (SHD) of their output to the true underlying graph. To implement a fair comparison between200

the two approaches, for a given max-information bound of NOISY-GES, we derive a splitting fraction201

p that makes the resulting confidence intervals of the same size (see Appendix). The blue entries202

correspond to NOISY-GES incurring lower SHD error and the red entries correspond to data splitting203

incurring lower SHD error, with the shade indicating the size of the difference. As we increase the204

number of variables, our algorithm consistently outperforms data splitting. Data splitting outperforms205

NOISY-GES in the lowest-dimensional setting (d = 5), which, as shown in Figure 1, coincides with206

the settings where inference after causal discovery is itself less problematic.207
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A Technical Lemmas268

Lemma 1. Let {Xi}ni=1 be a sequence of i.i.d. random variables and {Cn}n a sequence of clipping269

thresholds such that Cn →∞. Then, 1
n

∑n
i=1 min{Xi, Cn} →p EX1.270

Proof. For any ϵ > 0, by Chebyshev’s inequality we have

P

{∣∣∣∣∣ 1n
n∑

i=1

min{Xi, Cn} − Emin{X1, Cn}

∣∣∣∣∣ ≥ ϵ

}
≤ Var(min{X1, Cn})

nϵ2
≤ EX2

1

nϵ2
,

which tends to 0 as n→∞. Moreover, Emin{X1, Cn} → EX1 by dominated convergence, hence271

we can conclude that 1
n

∑n
i=1 min{Xi, Cn} →p EX1.272

Lemma 2 (Closure under post-processing [Dwork et al., 2006]). LetA(·) be an ϵ-differentially private273

algorithm and let B be an arbitrary, possibly randomized map. Then, B ◦ A(·) is ϵ-differentially274

private.275

Lemma 3 (Adaptive composition [Dwork et al., 2006]). For t ∈ [k], let At(·, a1, a2, . . . , at−1)276

be ϵt-differentially private for all fixed a1, . . . , at−1. Then, the algorithm Acomp which executes277

A1, . . . ,Ak in sequence and outputs a1 = A1(D), a2 = A2(D, a1), . . . , ak = Ak(D, a1, . . . , ak−1)278

is (
∑k

t=1 ϵt)-differentially private.279

B Greedy Equivalence Search: Background280

In this section we provide the details behind the greedy pass subroutine (Algorithm 3) that is used in281

GES. In particular, we review the definitions of valid (sgn)-operators that appear in [Chickering,282

2002], clarify what it means to apply a given operator to the current CPDAG, and explain how the283

score gains ∆Ssgn(e, Ĝ,D) are computed. As before, we use Ĝ to denote the CPDAG maintained284

by GES.285

Before we define (sgn)-operators, we briefly review some graph-theoretic preliminaries. We say286

two nodes Xa, Xb are neighbors in a CPDAG Ĝ if they are connected by an undirected edge, and287

adjacent if they are connected by any edge (directed or undirected). We also call a path from Xa to288

Xb in a CPDAG semi-directed if each edge along it is either undirected or directed away from Xa.289
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Definition 6. For non-adjacent Xa and Xb in Ĝ, and a subset T of Xb’s neighbors that are not290

adjacent to Xa, the Insert(Xa, Xb,T) operator is defined as the procedure that modifies Ĝ by291

inserting edge Xa → Xb and for each T ∈ T, converting T −Xb to T → Xb.292

Definition 7. For Xa and Xb in Ĝ connected as Xa −Xb or Xa → Xb, and a subset T of Xb’s293

neighbors that are adjacent to X , the Delete(Xa, Xb,T) operator is defined as the procedure that294

modifies Ĝ by deleting the edge between Xa and Xb, and for each T ∈ T, converting Xb − T to295

Xb → T and Xa − T to Xa → T .296

We use “(+)-operator” (resp. “(−)-operator”) as a shorthand for the Insert operator (resp. the Delete297

operator).298

Now that we have a definition of (sgn)-operators, we need to define which operators are valid to299

apply to the current graph. For example, if we were greedily updating only a single DAG and not300

a CPDAG, we would only consider edge additions that maintain the DAG structure. We define301

an analogous form of validity for CPDAGs, which requires a bit more care. Let NAXb,Xa be the302

neighbors of Xb that are adjacent to Xa.303

Definition 8. We say that Insert(Xa, Xb,T) is valid if NAXb,Xa ∪T is a clique and every semi-304

directed path from Xb to Xa contains a node in NAXb,Xa
∪ T .305

Definition 9. We say that Delete(Xa, Xb,T) is valid if NAXb,Xa \T is a clique.306

For a valid (sgn)-operator, Chickering also defines how to properly score the gain due to307

applying it. In particular, the score gain due to executing Insert(Xa, Xb,T) is defined as308

∆S+((Xa, Xb,T), Ĝ,D) = s(Xa,NAXb,Xa ∪ T ∪ PaXb
∪ Xa,D) − s(Xb,NAXb,Xa ∪ T ∪309

PaXb
∪Xa,D).310

This expression is essentially an application of the formula decomposition of the score gain for a311

specific DAG G consistent with the CPDAG Ĝ and edge e = (Xa → Xb). Similarly, the score gain312

due to executing Delete(Xa, Xb,T) is defined as ∆S−((Xa, Xb,T), Ĝ,D) = s(Xb, {NAXb,Xa
\313

T} ∪ {PaXb
\Xa},D)− s(Xb, {NAXb,Xa \T} ∪PaXb

,D).314

Having laid out this preamble, we can now state more precisely the greedy pass subroutine (Algo-315

rithm 3) of noisy GES.316

Algorithm 4 GreedyPass

input : initial graph Ĝ0, data set D, maximum number of edges Emax, score S with local score
sensitivity τ , privacy parameters ϵscore, ϵthresh, pass indicator sgn ∈ {+,−}

output: estimated causal graph Ĝ

Initialize Ĝ← Ĝ0

Sample noisy threshold ν ∼ Lap
(

4τ
ϵthresh

)
for t = 1, 2, . . . , Emax do

if sgn = + then
Construct set E+t of all valid Insert(Xa, Xb,T) operators (Def. 8)

else if sgn = − then
Construct set E−t of all valid Delete(Xa, Xb,T) operators (Def. 9)

end
For all e ∈ Esgnt , compute ∆Ssgn(e, Ĝ,D) and sample ξt,e

i.i.d.∼ Lap
(

4τ
ϵscore

)
Set e∗t = argmaxe∈Esgn

t
∆Ssgn(e, Ĝ,D) + ξt,e

Sample ηt ∼ Lap
(

8τ
ϵthresh

)
if ∆Ssgn(e∗t , Ĝ,D) + ηt > ν then

Apply operator e∗t to Ĝ
else

break
end

end
Return Ĝ
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C Noisy Causal Graph Discovery: Proofs317

C.1 Proof of Proposition 2318

The proposition is an application of the privacy guarantees of the Report Noisy Max mechanism in319

differential privacy (see, for example, Chapter 3.3 in the book [Dwork and Roth, 2014]). In addition,320

the privacy analysis of Algorithm 2 strictly subsumes the privacy analysis of Algorithm 1.321

C.2 Proof of Theorem 1322

By Proposition 1, we can bound the max-information between Ĝ and D:

Iβ∞(Ĝ;D) ≤ n

2
ϵ2 + ϵ

√
n log(2/β)/2.

The definition of max-information, in turn, implies that323

P
{
∃(i, j) ∈ IG : β

(i→j)
G ̸∈ CI

(i→j)
G (α̃), Ĝ = G

}
≤ exp

(
Iβ∞(Ĝ;D)

)
P
{
∃(i, j) ∈ IG : β

(i→j)
G ̸∈ CI

(i→j)
G (α̃; D̃), Ĝ = G

}
≤ exp

(n
2
ϵ2 + ϵ

√
n log(2/β)/2

)
α̃

= α.

Marginalizing over all graphs G yields the final theorem statement.324

D Noisy Greedy Equivalence Search: Proofs325

D.1 Proof of Proposition 3326

As mentioned earlier, the proof relies on the analysis of two differentially private mechanisms: Report327

Noisy Max and AboveThreshold [Dwork and Roth, 2014]. To facilitate the proof, in Algorithm 5 we328

provide an equivalent reformulation of Algorithm 3 that allows decoupling the analyses of these two329

mechanisms.330

Algorithm 5 Decoupled GreedyPass

input : initial graph Ĝ0, data set D, maximum number of edges Emax, score S with local score
sensitivity τ , privacy parameters ϵscore, ϵthresh, pass indicator sgn ∈ {+,−}

output: estimated causal graph Ĝ

Initialize Ĝ← Ĝ0

Get potential operators E ← ProposeOperators(Ĝ,D, Emax, S, τ, ϵscore,sgn)

Get selected operator subset E∗ ← SelectOperators(Ĝ,D, S, τ, ϵthresh,sgn, E)
for t = 1, . . . , |E∗| do

Apply e∗t to Ĝ
end
Return Ĝ
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Algorithm 6 ProposeOperators

input : initial graph Ĝ0, data set D, maximum number of edges Emax, score S with local score
sensitivity τ , privacy parameter ϵscore, pass indicator sgn ∈ {+,−}

output: proposed set of operators E
Initialize Ĝ← Ĝ0

Initialize E ← ∅
for t = 1, 2, . . . , Emax do

Construct set Esgnt of valid (sgn)-operators
For all e ∈ Esgnt , compute ∆Ssgn(e, Ĝ,D) and sample ξt,e

i.i.d.∼ Lap
(

4τ
ϵscore

)
Set et = argmaxe∈Esgn

t
∆Ssgn(e, Ĝ,D) + ξt,e

Add operator et to E
Apply operator et to Ĝ

end
Return E = (e1, . . . , eEmax

)

Algorithm 7 SelectOperators

input : initial graph Ĝ0, data set D, score S with local score sensitivity τ , privacy parameter ϵthresh,
pass indicator sgn ∈ {+,−}, set of proposed operators E

output: set of operators E∗

Sample noisy threshold ν ∼ Lap
(

4τ
ϵthresh

)
Initialize E∗ ← ∅
Initialize Ĝ← Ĝ0

for t = 1, 2, . . . , |E| do
Sample ηt ∼ Lap

(
8τ

ϵthresh

)
if ∆Ssgn(et, Ĝ,D) + ηt ≥ ν then

Add e∗t to E∗
Apply e∗t to Ĝ

else
break

end
end
Return E∗ = (e∗1, e

∗
2, . . . )

We argue that the two subroutines composed in the greedy pass, namely ProposeOperators (Algo-331

rithm 6) and SelectOperators (Algorithm 7), are differentially private. By the closure of differential332

privacy under post-processing (Lemma 2), this will imply that Algorithm 5, which returns Ĝ, is also333

differentially private, since Ĝ is merely a post-processing of the selected operators E∗.334

The privacy guarantee of Algorithm 6 is implied by the usual privacy guarantee of Report Noisy335

Max and composition of differential privacy. Note that the construction of the set Esgnt at every time336

step is only a function of the current graph Ĝ and not of the data, i.e. it is independent of the data337

conditioned on Ĝ. Formally, the key component is the following lemma:338

Lemma 4. For any t ∈ [Emax], selecting et is ϵscore-differentially private; that is, for any operator
e0 ∈ Esgnt , it holds that

P

{
argmax
e∈Esgn

t

∆Ssgn(e, Ĝ,D) + ξt,e = e0

∣∣∣∣∣ Ĝ
}
≤ eϵscoreP

{
argmax
e∈Esgn

t

∆Ssgn(e, Ĝ,D′) + ξt,e = e0

∣∣∣∣∣ Ĝ
}
.

for any current graph Ĝ and any two neighboring data sets D,D′.339

Proof. Denote re
.
= ∆Ssgn(e, Ĝ,D) and r′e

.
= ∆Ssgn(e, Ĝ,D′). For a fixed e0 ∈ Esgnt , define

ξ⋆t,e0
.
= min{ξ : re0 + ξ > re′ + ξt,e′ ∀e′ ̸= e0}.
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For fixed {ξt,e′}e′ ̸=e0 , we have that e0 will be the selected operator on D if and only if ξt,e0 ≥ ξ⋆t,e0 .340

Further, by the bounded sensitivity of the local scores, we have that for all e′ ̸= e0:341

re0 + ξ⋆t,e0 > re′ + ξt,e′

⇒ r′e0 + 2τ + ξ⋆t,e0 > r′e′ − 2τ + ξt,e′

⇒ r′e0 +
(
4τ + ξ⋆t,e0

)
> re′ + ξt,e′ .

Therefore, as long as ξt,e0 ≥ 4τ + ξ⋆t,e0 , the selection on D will be e0 as well. Using the form of the342

density of ξt,e0 ∼ Lap
(

4τ
ϵscore

)
, we have that:343

P
{
argmax

e
r′e + ξt,e = e0 | {ξt,e′}e′ ̸=e0

∣∣∣∣ Ĝ}
≥ P

{
ξt,e0 ≥ 4τ + ξ⋆t,e0

}
≥ e−ϵscoreP

{
ξt,e0 ≥ ξ⋆t,e0

}
= P

{
argmax

e
re + ξt,e = e0 | {ξt,e′}e′ ̸=e0

∣∣∣∣ Ĝ}
By taking iterated expectations, overall we have

P

{
argmax
e∈Esgn

t

∆Ssgn(e, Ĝ,D) + ξt,e = e0

∣∣∣∣∣ Ĝ
}
≤ eϵscoreP

{
argmax
e∈Esgn

t

∆Ssgn(e, Ĝ,D′) + ξt,e = e0

∣∣∣∣∣ Ĝ
}

for all neighboring data sets D,D′, ensuring the desired privacy.344

This directly implies the following result:345

Lemma 5 (Privacy of ProposeOperators). Algorithm 6 is Emaxϵscore-differentially private.346

Proof. The result follows directly from Lemma 4, by applying the adaptive composition rule for347

differential privacy (Lemma 3) over Emax steps.348

Now we isolate the second component of the greedy pass: checking if the operator’s contribution is349

positive. To analyze this component independently of the selection of potential operators, we consider350

Algorithm 7 which receives a set of proposed operators E and outputs only the first E∗
max ≤ Emax of351

them which pass the noisy threshold test. Note that E∗
max is random and data-dependent.352

In what follows we use E∗(D) and E∗(D′) to denote the output of Algorithm 7 on two neighboring353

data sets D,D′.354

Lemma 6 (Privacy of SelectOperators). For any input set of proposed edges E = (e1, . . . , eEmax),
Algorithm 7 is ϵthresh-differentially private; that is, for any 1 ≤ k ≤ Emax + 1:

P{E∗(D) = (ej)j<k} ≤ eϵthreshP{E∗(D′) = (ej)j<k}
given any two neighboring data sets D,D′.355

Proof. Fix 1 ≤ k ≤ Emax + 1 and consider (e1, . . . , ek). Let G1, . . . , Gk be the graphs resulting
from the application of operators et in sequence, starting from the initial graph Ĝ0. Define rt =
∆Ssgn(et, Gt−1,D) and r′t = ∆Ssgn(et, Gt−1,D′). Condition on η1, . . . , ηk−1 and define the
following quantity that captures the minimal value of the noisy score gain up to time k − 1:

g(D) = min
i<k
{ri + ηi},

and analogously for D′:
g(D′) = min

i<k
{r′i + ηi}.

Using these quantities we can directly express the probability of outputting exactly the first k − 1356

proposed operators, i.e. breaking at the k-th step of the algorithm:357

P{E∗(D) = (ej)j<k} = P{ν ∈ (rk + ηk, g(D)]}

=

∫ ∞

−∞

∫ ∞

−∞
pηk

(q)pν(w)1{w ∈ (rk + q, g(D)]}dqdw.
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With the change of variables q′ = q − g(D) + g(D′) + rk − r′k, w′ = w + g(D′)− g(D), we have

1{w ∈ (rk+q, g(D)]} = 1{w′+g(D)−g(D′) ∈ (q′+g(D)−g(D′)+r′k, g(D)]} = 1{w′ ∈ (r′k+q′, g(D′)]}

and thus358

P{E∗(D) = (ej)j<k}

=

∫ ∞

−∞

∫ ∞

−∞
pηk

(q′ + g(D)− g(D′)− rk + r′k)pν(w
′ − g(D′) + g(D))1{w′ ∈ (r′k + q′, g(D′)]}dq′dw′.

Observe that rt is 2τ -sensitive since the local scores are τ -sensitive, and hence g(D) is 2τ -sensitive
as well. This implies that |q′ − q| ≤ 4τ , |w′ − w| ≤ 2τ , so by the form of the Laplace density we
have

pηk
(q′+ g(D)− g(D′)− rk+ r′k) ≤ eϵthresh/2pηk

(q′), pν(w
′− g(D′)+ g(D)) ≤ eϵthresh/2pν(w

′).

Putting everything together, we have:359

P{E∗(D) = (ej)j<k} ≤
∫ ∞

−∞

∫ ∞

−∞
eϵthresh/2pηk

(q′)pν(w
′)eϵthresh/21{w′ ∈ (r′k + q′, g(D′)]}dq′dw′

= eϵthreshP{E∗(D′) = (ej)j<k} ,

which is the desired guarantee.360

Finally, we combine the guarantees of Lemma 4 and Lemma 6 to infer the privacy parameter of361

Decoupled GreedyPass (Algorithm 5), which is equivalent to GreedyPass from Algorithm 2. The362

following statement follows from a direct application of privacy composition (i.e., Lemma 3).363

Lemma 7 (Privacy of Decoupled GreedyPass). Algorithm 5 is ϵthresh + Emaxϵscore-differentially364

private.365

Proof of Proposition 3. Since the GES algorithm (Algorithm 2) consists of two executions of Greedy-366

Pass, which is equivalent to the Decoupled GreedyPass, we can apply Lemma 7 and Lemma 3 to367

conclude that GES is (2ϵthresh + 2Emaxϵscore)-differentially private.368

D.2 Proof of Proposition 4369

We show that, in the large sample limit, private GES behaves identically to the standard GES370

method. Denote by e∗1, e
∗
2, . . . the insertion operators selected by non-private GES in the forward371

greedy pass and by Ĝt the CPDAG constructed at the end of step t of the forward pass. Further, let372

Gap = mint mine ̸=e∗t
∆S+(e∗t , Ĝt−1,D) −∆S+(e, Ĝt−1,D). In words, Gap is the gap in score373

improvement between the optimal edge at time t and the second best edge at time t, minimized over374

all steps t. Notice that by the existence of distinct ∆ssgne,G, we know that limn→∞ Gap > 0. Moreover,375
τ

ϵscore
, τ
ϵthresh

= o(1) implies that the noise level vanishes asymptotically. Putting all of this together376

implies that the limiting probability that noisy GES selects e∗1, e
∗
2, . . . is one. By a similar argument377

we conclude that noisy GES halts the forward phase at the same step as the non-noisy GES, and thus378

we have shown that the output of the forward pass of noisy GES is asymptotically the same as that379

of non-noisy GES. By an analogous argument it follows that the outputs of the backward pass are380

identical, which completes the proof of the first claim. The second claim follows directly by putting381

together the first claim and the classical consistency result for GES [Chickering, 2002].382

D.3 Proof of Proposition 5383

First we prove that the score is C
nσ2 -sensitive. The proof generalizes the proof of Claim ??. Let384

D = {X(k)}nk=1 and D′ = {X ′(k)}nk=1 denote two data sets that differ in one entry, and without loss385
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of generality assume they differ in the first entry. Let j index an arbitrary variable and denote386

θD = argmin
θ

Lj(θ,D) := argmin
θ

1

nσ2

n∑
k=1

min


X

(k)
j −

∑
s∈PaG

j

θsX
(k)
s

2

, C

 ,

θD′ = argmin
θ

Lj(θ,D′) := argmin
θ

1

nσ2

n∑
k=1

min


X

′(k)
j −

∑
s∈PaG

j

θsX
′(k)
s

2

, C

 .

We argue that |Lj(θD,D)−Lj(θD′ ,D′)| ≤ C
nσ2 . First, for all θ, |Lj(θ,D)−Lj(θ,D′)| ≤ C

nσ2 since
the corresponding sums only differ in one entry. Combining this fact with the optimality condition
for θD, we get

Lj(θD,D) ≤ Lj(θD′ ,D) ≤ Lj(θD′ ,D′) +
C

nσ2
.

Analogously we obtain that Lj(θD′ ,D′) ≤ Lj(θD,D) + C
nσ2 , which completes the proof of the first387

claim.388

The proof of local consistency directly relies on local consistency of the standard BIC score, in
combination with Lemma 1. In particular, Lemma 1 implies that

1

nσ2

n∑
k=1

min


X

(k)
j −

∑
s∈PaG

j

θsX
(k)
s

2

, C

→p
1

σ2
E

X
(1)
j −

∑
s∈PaG

j

θsX
(1)
s

2

,

since C = ω(1). In other words, the asymptotic behavior of the clipped BIC score is identical to the389

usual BIC score, whenever the clipping threshold diverges.390

Therefore, for any G and candidate edge Xi → Xj such that Xj ̸⊥ Xi|XPaG
j

we have391

lim
n→∞

sCBIC(Xj ,PaGj ∪Xi,D) = lim
n→∞

sBIC(Xj ,PaGj ∪Xi,D)

> lim
n→∞

sBIC(Xj ,PaGj ,D)

= lim
n→∞

sCBIC(Xj ,PaGj ,D),

where the second step follows by local consistency of the standard BIC score, and the first and final392

steps follow by the condition that C = ω(1). This proves the first condition of Definition ??.393

The proof of the second condition follows analogously; suppose Xj ⊥ Xi|XPaG
j

, then394

lim
n→∞

sCBIC(Xj ,PaGj ∪Xi,D) = lim
n→∞

sBIC(Xj ,PaGj ∪Xi,D)

< lim
n→∞

sBIC(Xj ,PaGj ,D)

= lim
n→∞

sCBIC(Xj ,PaGj ,D),

which completes the proof.395
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