

SceneDecorator: Towards Scene-Oriented Story Generation with Scene Planning and Scene Consistency

Quanjian Song^{1, *†}, Donghao Zhou^{2, ‡‡}, Jingyu Lin^{1, ‡‡}, Fei Shen³,
Jiaze Wang², Xiaowei Hu^{4, §}, Cunjian Chen^{1, §}, Pheng-Ann Heng²

¹Monash University ²The Chinese University of Hong Kong

³National University of Singapore ⁴South China University of Technology

Project Page: <https://lulupig12138.github.io/SceneDecorator>

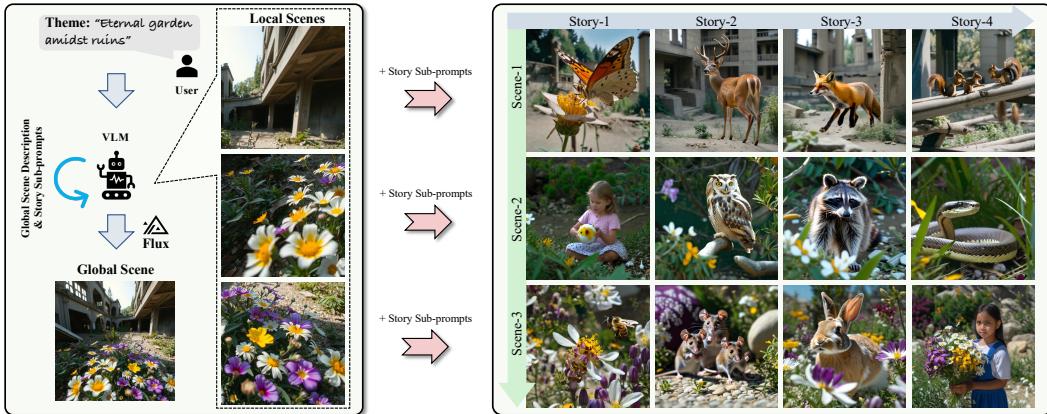


Figure 1: Overview of SceneDecorator. SceneDecorator manages to “decorate” the scenes of story images, ensuring narrative coherence across different scenes (green arrow) and scene consistency across different stories (blue arrow), all based on a concise user-provided theme.

Abstract

Recent text-to-image models have revolutionized image generation, but they still struggle with maintaining concept consistency across generated images. While existing works focus on character consistency, they often overlook the crucial role of scenes in storytelling, which restricts their creativity in practice. This paper introduces *scene-oriented story generation*, addressing two key challenges: (i) *scene planning*, where current methods fail to ensure scene-level narrative coherence by relying solely on text descriptions, and (ii) *scene consistency*, which remains largely unexplored in terms of maintaining scene consistency across multiple stories. We propose *SceneDecorator*, a training-free framework that employs *VLM-Guided Scene Planning* to ensure narrative coherence across different scenes in a “global-to-local” manner, and *Long-Term Scene-Sharing Attention* to maintain long-term scene consistency and subject diversity across generated stories. Extensive experiments demonstrate the superior performance of SceneDecorator, highlighting its potential to unleash creativity in the fields of arts, films, and games.

*Work done at Monash University.

†Equal contribution.

‡Project leaders. §Corresponding authors.

1 Introduction

Text-to-image (T2I) models [1, 2, 3, 4] have demonstrated impressive proficiency in generating high-quality images from text descriptions. However, they struggle to maintain concept consistency across generated images due to their stochastic nature [5]. Such consistency holds significant commercial value and application potential in education [6], art [7, 8], and entertainment [9], underscoring the need for the task of story generation that can create multiple images with consistent concepts [10, 11].

Considering the significance of story generation, numerous prior studies have been devoted to advancing this important task. Early studies such as PorotoSV [12] and FlintstonesSV [13] are typically trained on given datasets with consistent characters. These methods achieve decent performance in specific domains but are inherently limited in generalization. Leveraging the exceptional generation quality of diffusion models, subsequent works [5, 14, 15, 16, 17] have begun exploring open-domain characters. This advancement achieves a compelling balance between realism and aesthetics.

Although existing story generation methods have made significant progress in character consistency, they usually overly focus on preserving characters while neglecting scene depiction, which is equally crucial for conveying the narrative of stories [18]. In light of that, the motivation for this paper arises: *How can we achieve story generation from the perspective of scenes?* In this work, we formulate *scene-oriented story generation*, which presents two primary challenges: (i) *Scene planning*: Existing approaches generate the scenes of story images solely based on text descriptions, leading to a lack of scene-level narrative coherence. This coherence also plays a vital role in enhancing storytelling visual fluency. (ii) *Scene consistency*: In practical scenarios like film storyboarding [19], it is crucial to generate diverse story images with consistent scenes that align with different plots and characters. Maintaining long-term scene consistency across multiple stories remains underexplored.

This paper introduce **SceneDecorator**, a training-free framework for scene-oriented story generation (see Figure 1), aimed at addressing the above challenges. SceneDecorator contains two key techniques:

(i) To tackle *scene planning*, we develop a **VLM-Guided Scene Planning** strategy. It utilize the visual perception of Vision-Language-Model (VLM) to create scenes and story sub-prompts in a “global-to-local” manner. Specifically, this strategy begins with a VLM that interprets the user-provided theme to generate a corresponding global scene description. The description is then passed into an off-the-shelf image generator to create a meaningful global scene image. Finally, this image is further deconstructed by the VLM into multiple local scenes and story sub-prompts, serving as the basis for subsequent story generation. This scene planning strategy ensures scene-level narrative continuity, as the local scenes are derived from a global scene with shared scene semantics.

(ii) To maintain *scene consistency*, we design a novel **Long-Term Scene-Sharing Attention** mechanism. Specifically, it first employs a *Mask-Guided Scene Injection* module, which enhances the IP-Adapter [20] with cross-attention masks to guide fine-grained scene injection, thereby ensuring subject style diversity. Then, the latent representations interact across scenes through a *Scene-Sharing Attention* module during the denoising process, thereby preserving scene consistency across generated stories. Furthermore, this attention module is further extended by an *Extrapolable Noise Blending* scheme, thereby achieving long-term scene consistency across stories with low overhead.

Extensive qualitative and quantitative comparisons validate the effectiveness of our SceneDecorator, with ablation studies and diverse applications showcasing its robustness and versatility.

2 Related Works

Controllable Text-to-Image Generation. Given the ambiguity of textual descriptions in guiding image style [21, 8], content [22, 23], and layout [24], many works have been dedicated to enhancing control in text-to-image (T2I) generation. Prior works like ControlNet [25] and T2I-Adapter [26] tackle this challenge by employing trainable modules. These modules enhance control over visual style and spatial organization, making them more effective than naive T2I models [27, 28, 29, 30]. In addition, some studies have also explored several advanced techniques like prompt engineering [31] and cross-attention constraints [32, 33], enabling better generation regulation. Moreover, some approaches focus on visual content generation with diverse task paradigms [34, 35, 36, 37, 38], while others focus on more practical generation in real-world applications [39, 40, 41, 42, 43].

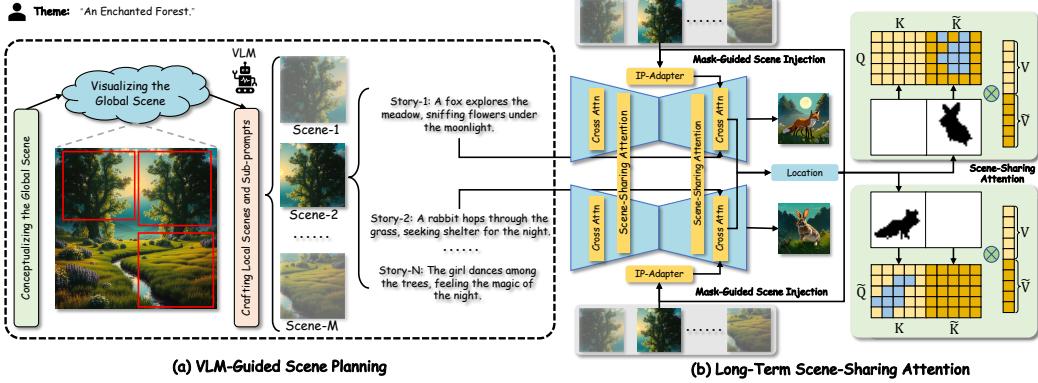


Figure 2: Overall framework of SceneDecorator. (a) VLM-Guided Scene Planning involves conceptualizing, visualizing, and crafting in a “global-to-local” manner. (b) Long-Term Scene-Sharing Attention maintains long-range scene consistency and subject diversity across generated stories.

Story Generation. Owing to the success of diffusion models, many recent works have applied them to story generation, showcasing significant value in real-world applications. Initially, AR-LDM [44] uses an auto-regressive paradigm for story generation, while Make-A-Story [45] integrates a visual memory module for aggregation. Subsequently, some researchers attempt to leverage large language models (LLMs) for coherent story generation. For example, StoryGPT-V [46] uses LLMs to resolve ambiguous references and maintain context, while SEED-Story [47] combines image-text data to generate coherent story images. Recently, some works [48, 49, 50] have begun to focus on character consistency in story generation, ensuring that their identity remains intact across diverse text descriptions. Building on this foundation, other studies [5, 14] manipulate attention maps to achieve training-free story generation while maintaining character consistency. However, these methods overlook the planning and consistency of scene contexts in story generation, which also play a fundamental role in visual storytelling. Our work seeks to resolve these problems systematically.

3 Methodology

3.1 Overall Pipeline

In this work, we design a training-free framework called **SceneDecorator**, to address two key challenges in story generation: *scene planning* and *scene consistency*. The overall framework of SceneDecorator is illustrated in Figure 2, which comprises two core techniques: (i) *VLM-Guided Scene Planning*. Leveraging a powerful Vision-Language Model (VLM) as a director, it decomposes user-provided themes into local scenes and story sub-prompts in a “global-to-local” manner. (ii) *Long-Term Scene-Sharing Attention*. By simultaneously integrating mask-guided scene injection, scene-sharing attention, and extrapolable noise blending, it maintains subject style diversity and long-term scene consistency in story generation. We elaborate on these in the following sections.

3.2 VLM-Guided Scene Planning

Relying solely on text descriptions to generate story images often lacks scene-level narrative coherence. In real-world applications like filmmaking, a global scene is first established, and then local scenes are derived to unfold different narratives. Inspired by this application, we propose VLM-Guided Scene Planning, which leverages the visual understanding of VLM to unfold scene shots and related narratives in a “global-to-local” manner. The overall process is decomposed into three core steps: (i) *Conceptualizing the Global Scene*, (ii) *Visualizing the Global Scene*, and (iii) *Crafting Local Scenes and Sub-prompts*. In the following, we elaborate on each stage in detail.

Conceptualizing the Global Scene. We first leverage a powerful VLM to provide a comprehensive global scene description. Specifically, when users provide a theme \mathcal{T} , we expect the VLM \mathcal{F}_θ to fully exploit its scene imagination capability and generate a global scene description $Q = \mathcal{F}_\theta(\mathcal{T})$ related to the given theme \mathcal{T} . Moreover, we further enhance VLM performance by leveraging its

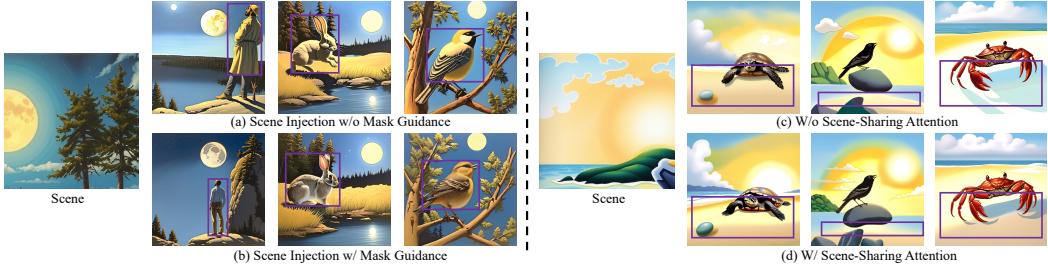


Figure 3: Comparison of different methods. In (a), subject styles align with the scene but at the expense of diversity, whereas (b) better showcases diversity. Compared to (c), (d) further emphasizes scene consistency. Note that *purple boxes* highlight distinctions. *Best viewed with zoom-in.*

in-context learning ability. Specifically, we provide illustrative examples to guide the model toward more accurate outputs, with the example details presented in the supplemental material.

Visualizing the Global Scene. Based on the global scene description Q produced by the VLM \mathcal{F}_θ above, we then employ a powerful off-the-shelf T2I model, like FLUX.1-dev [51], to generate a meaningful global scene image \mathcal{V} . In summary, using the complementary capabilities of the VLM and the T2I model, we transform the abstract theme \mathcal{T} into an immersive global scene image \mathcal{V} . This scene image establishes the global foundation for subsequent local storyline creation.

Crafting Local Scenes and Sub-prompts. Building upon the generated global scene image \mathcal{V} above, we further leverage the powerful perception capability of the VLM to intricately create local storylines, which contain relevant local scenes and story sub-prompts. Specifically, we expect the VLM \mathcal{F}_θ to act as an imaginative director: based on the user-provided theme \mathcal{T} , it determines the coordinates $\{\mathcal{L}^i\}_{i=1}^M$ for M storyboard scenes within the global scene image \mathcal{V} . Then, the global scene image is cropped accordingly to extract final local scenes $\{\mathcal{V}^i\}_{i=1}^M$. This procedure is formulated below:

$$\{\mathcal{V}^i\}_{i=1}^M = \text{Crop}(\mathcal{V}, \{\mathcal{L}^i\}_{i=1}^M), \quad \text{where } \{\mathcal{L}^i\}_{i=1}^M = \mathcal{F}_\theta(\mathcal{V}, \mathcal{T}). \quad (1)$$

Finally, for each cropped local scene \mathcal{V}^i and the corresponding theme \mathcal{T} , we employ the VLM \mathcal{F}_θ to generate N sequential story sub-prompts $\mathcal{P}^{1:N}$. This process can be formulated as follows:

$$\mathcal{P}^{1:N} = \mathcal{F}_\theta(\mathcal{V}^i, \mathcal{T}), \quad i = 1, \dots, M. \quad (2)$$

This scene planning framework transforms the user-provided abstract theme \mathcal{T} into multiple local scenes and corresponding story sub-prompts, creating a cohesive narrative that enhances storytelling. The detailed prompts used by the VLM in each step are provided in the supplemental material.

3.3 Long-Term Scene-Sharing Attention

Once each local scene $\{\mathcal{V}^i\}_{i=1}^M$ is established, it is typically combined with corresponding story sub-prompts $\mathcal{P}^{1:N}$ for subsequent story generation, which is similar to film storyboarding [19]. During generation, we propose Long-Term Scene-Sharing Attention to address the challenge of scene consistency that is overlooked in prior work. First, *Mask-Guided Scene Injection* is developed to preserve the diversity of subject style while achieving scene injection. Next, *Scene-Sharing Attention* is utilized to maintain scene consistency across multiple stories. Furthermore, this attention mechanism is further extended through *Extrapolable Noise Blending* to achieve long-term consistency with low memory overhead. The details of these components are described in the following paragraphs.

Mask-Guided Scene Injection. Achieving scene consistency first requires the effective injection of visual semantics from the given scene. One straightforward approach is IP-Adapter [20], which enhances representation by integrating visual and text prompt through a decoupled cross-attention mechanism. However, as shown in Figure 3(a), direct using IP-Adapter for scene injection preserves overall semantics but makes the subjects blend too tightly with the background, which reduces the style diversity across generated stories. To address this issue, we improve IP-Adapter with cross-attention masks to guide fine-grained scene injection, thereby ensuring subject style diversity.

During the cross-attention process, local scene \mathcal{V}^i and story sub-prompt P^j are first encoded into hidden features and then mapped to K'_c, V'_c and K_c, V_c via respective weight matrices. Next, the

Algorithm 1 Extrapolable Noise Blending

Input: T_1, T_2	The time interval of noise blending
Input: N	The numbers of generated stories
Input: $\mathcal{P}^{1:N}$	The text descriptions of different stories
Input: \mathcal{V}	The visual prompt of scene
Input: ε_θ , DDIMSchedule	Diffusion model, noise scheduling
Output: $\{I^i\}_{i=1}^N$	Different stories generated by the model
for $t = T, T-1, \dots, 3, 2$ do	
$\varepsilon_{tmp}^{1:N} \leftarrow 0$	
if $t \geq T_1$ and $t \leq T_2$ then	
$\mathcal{S} \leftarrow \{(i, j) i, j \in 1, \dots, N, i \neq j\}$	
$norm \leftarrow N - 1$	
for $(i, j) \in \mathcal{S}$ do	
$\varepsilon_1, \varepsilon_2 \leftarrow \varepsilon_\theta^{i,j}(Z_t^{i,j}, t, \mathcal{P}^{i,j}, \mathcal{V})$	# Mask-Guided Scene Injection and Scene-Sharing Attention
$\varepsilon_{tmp}^i \leftarrow \varepsilon_{tmp}^i + \varepsilon_1$	
$\varepsilon_{tmp}^j \leftarrow \varepsilon_{tmp}^j + \varepsilon_2$	
end for	
else	
$norm \leftarrow 1$	
for $k = 1, 2, \dots, N-1, N$ do	
$\varepsilon_{tmp}^k \leftarrow \varepsilon_{tmp}^k + \varepsilon_\theta^k(Z_t^k, t, \mathcal{P}^k, \mathcal{V})$	# General denoising
end for	
end if	
$Z_{t-1}^{1:N} \leftarrow \text{DDIMSchedule}(\varepsilon_{tmp}^{1:N}/norm, Z_t^{1:N}, t)$	# Blend the noises
end for	
$I^{1:N} \leftarrow \mathcal{D}(Z_1^{1:N})$	
Return: $\{I^i\}_{i=1}^N$	

latent representation is mapped to Q_c and multiplied by K_c and K'_c to generate two attention maps:

$$\mathcal{A}_c = \text{Softmax} \left(\frac{Q_c \cdot K_c^T}{\sqrt{d}} \right), \quad \mathcal{A}'_c = \text{Softmax} \left(\frac{Q_c \cdot K'_c^T}{\sqrt{d}} \right), \quad (3)$$

where d is the dimension of Q_c and K_c . $\mathcal{A}_c \in \mathbb{R}^{(hw) \times L}$ represents the cross-attention map between text and generated image, where hw denotes the number of image tokens and L indicates the number of text tokens. \mathcal{A}'_c denotes the cross-attention map between scene and generated image.

At each denoising step, the cross-attention map \mathcal{A}_c is averaged over all previous steps. The subject token of the sub-prompt P^j is then selected, and its activation region in \mathcal{A}'_c is used as the masks $\mathcal{M} \in \mathbb{R}^{h \times w}$. Finally, the cross-attention maps \mathcal{A}_c and \mathcal{A}'_c are multiplied by V_c and V'_c , respectively, and the results are combined through an element-wise weighted sum with the subject masks \mathcal{M} :

$$Z_c^{\text{new}} = \mathcal{A}_c \cdot V_c + \lambda \cdot (1 - \mathcal{M}) \cdot \mathcal{A}'_c \cdot V'_c, \quad (4)$$

where λ is a weighting factor that balances scene features and text features. As shown in Figure 3(b), this approach ensures effective scene injection while enhancing the diversity of subject styles.

Scene-Sharing Attention. The above cross-attention mechanism effectively injects scene semantics, achieving scene consistency across generated stories to some extent. However, as shown in Figure 3(c), there is an inherent conflict between story sub-prompts and scene consistency, which significantly weakens coherence across generated stories. To resolve this issue, we extend self-attention with scene-sharing attention to further enhance scene consistency between generated stories.

During the self-attention process, the latent representations from dual-branches are mapped to Q, K, V and $\tilde{Q}, \tilde{K}, \tilde{V}$ through their weight matrices. As depicted in Figure 2(b), each branch then attends to the \tilde{K} and \tilde{V} of the other branch for scene interaction, with the masks $\tilde{\mathcal{M}}$ applied to restrict attention to the background. The new key K' and new value V' are formulated as follows:

$$K' = [K, \tilde{K} \odot (1 - \tilde{\mathcal{M}})], \quad V' = [V, \tilde{V} \odot (1 - \tilde{\mathcal{M}})], \quad (5)$$

where $[*]$ represents the concatenation operation and \odot denotes element-wise product operation. It is noted that the subject masks \mathcal{M} for the other branch are derived using the same method outlined in *Mask-Guided Scene Injection* and are therefore omitted here for brevity.

Table 1: Quantitative comparison of automatic metrics and user study across other baselines. The best result is marked in **bold**, and the second-best is underlined.

Methods	Automatic Metrics				User Study	
	CLIP-T \uparrow	DreamSim-I \downarrow	DINO-F \uparrow	Text Align. \uparrow	Scene Align. \uparrow	Image Qual. \uparrow
CustomDiffusion [52]	0.306	0.752	0.373	7.9%	3.4%	6.0%
ConsiStory [5]	0.320	<u>0.723</u>	<u>0.475</u>	<u>21.3%</u>	<u>14.1%</u>	<u>24.7%</u>
StoryDiffusion [14]	0.311	0.735	0.340	14.3%	6.3%	11.8%
SceneDecorator (Ours)	<u>0.312</u>	0.605	0.571	56.5%	76.2%	57.5%

Finally, the Q and \tilde{Q} from each branch will perform attention with the new K' and V' respectively:

$$\text{Attention}(Q, K', V'), \quad \text{Attention}(\tilde{Q}, K', V'). \quad (6)$$

As shown in Figure 3(d), this mechanism allows different stories to attend each other’s scene information during the self-attention process, further enhancing scene consistency across stories.

Extrapolable Noise Blending. Although the above method ensures scene consistency across stories, it is limited to generating two stories. We propose an extrapolable noise blending scheme, achieving long-term scene consistency across multiple stories with low overhead, as shown in Algorithm 1.

To simultaneously generate N stories with consistent scenes, we extend the *Scene-Sharing Attention* module with noise blending during the denoising interval $t \in [T_1, T_2]$. Specifically, the latent representations $\{Z_t^i\}_{i=1}^N$ are dynamically partitioned into complementary pairs $\langle Z_t^i, Z_t^j \rangle$, with $i, j \in 1, \dots, N$, allowing each story to participate in $N - 1$ pairings per denoising step. The noise predicted for each story in different pairs is then averaged to further update the latent representations. This noise blending strategy enables scene interaction across multiple stories while requiring the GPU memory usage of only two stories, therefore ensuring significantly lower overhead.

4 Experiments

4.1 Experimental Setups

Implementation Details. We leverage Qwen2-VL [53] as the VLM to guide scene planning, FLUX.1-dev [51] as the off-the-shelf T2I model to generate global scenes, and SDXL [54] as the base model to collaborate with the proposed techniques for story generation. Additionally, we employ IP-Adapter-XL [20] to support extra scene input. The hyperparameters are set as follows: $M = 4$, $N = 5$, $T_1 = 0$, and $T_2 = 25$. SceneDecorator can run on a single RTX 3090 GPU without further training.

Baselines and Datasets. Since our work is the first to focus on scene-oriented story generation, there are no directly related comparison methods. Therefore, we select and adapt three baselines: CustomDiffusion [52], ConsiStory [5], and StoryDiffusion [14], due to their competitive performance on similar tasks. To validate the effectiveness of SceneDecorator, we use GPT-4o [55] to randomly generate 146 themes across different domains. Each theme is then decomposed into 4 distinct local scenes by the VLM, with each scene containing 5 story sub-prompts. In total, there are 2,920 scene-prompt pairs that serve as input for each method, ensuring a fair comparison.

4.2 Quantitative Comparisons

We validate the superiority of our SceneDecorator from two perspectives: *Automatic Metrics* that provide an objective assessment, and *User Study* that offers a subjective evaluation.

Automatic Metrics. We evaluate the quality of the generated stories from three dimensions: (i) *CLIP-T* [56], which assesses the alignment between the generated stories and the input prompt, (ii) *DreamSim-I* [57], which measures the alignment between the generated stories and the input scene, and (iii) *DINO-F* [58], which evaluates the scene consistency across generated stories. The detailed results are reported in Table 1. SceneDecorator outperforms all other methods in both the DreamSim-I and DINO-F metrics, with ConsiStory [5] ranking second. This indicates that our method achieves the best performance in scene alignment and consistency. In the CLIP-T metric, our SceneDecorator ranks

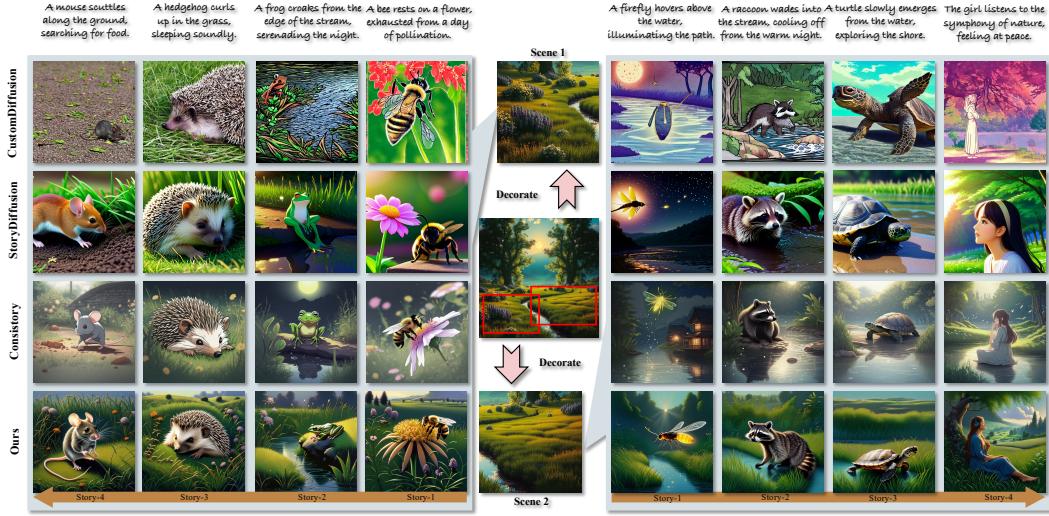


Figure 4: Qualitative comparison of our SceneDecorator with other baselines. SceneDecorator demonstrates superior scene consistency and alignment across different stories compared to other baselines, making it well-suited for creative applications in filmmaking. *Best viewed with zoom-in.*

second, slightly behind ConsiStory. Overall, SceneDecorator demonstrates superior performance across these metrics, showing its effectiveness in scene-oriented story generation.

User Study. We designed a questionnaire with 13 groups of generated results, where each group contains four different stories. Questionnaires are randomly distributed to participants from diverse countries, cultural backgrounds, genders, and age groups, inviting them to select the best result from each group based on three key aspects: *text alignment*, *scene alignment*, and *image quality*. Ultimately, we have received 61 valid responses, with the detailed results illustrated in Table 1. Our SceneDecorator achieves state-of-the-art performance across all three aspects, demonstrating particularly significant gaps in scene alignment. This success can be attributed to our innovative VLM-Guided Scene Planning strategy and the advanced Long-Term Scene-Sharing Attention mechanism.

4.3 Qualitative Comparisons

In addition, we conduct qualitative comparisons of the proposed SceneDecorator with three existing approaches, including CustomDiffusion [52], StoryDiffusion [14], and ConsiStory [5]. The visualization results are presented in Figure 4, and additional results can be found in the supplementary material. CustomDiffusion, which is designed for personalized characters, faces challenges in generating personalized scenes. Similarly, StoryDiffusion, which is focused on consistent character story generation, struggles to maintain scene consistency across different stories. On the other hand, Consistency demonstrates strong performance in preserving scene consistency but encounters difficulties in effectively capturing the full scope of scene information, limiting its versatility. In contrast, our SceneDecorator efficiently capture detailed semantics of the scene while ensuring scene consistency across generated stories, showcasing its superiority in scene-oriented story generation.

4.4 Ablation Studies

In this section, we explore the effectiveness of the three proposed components: *Mask-Guided Scene Injection*, *Scene-Sharing Attention*, and *Extrapolable Noise Blending*, individually.

Mask-Guided Scene Injection. We compare the generation results with and without the mask-guided scene injection module, with qualitative examples shown in Figure 5. Without mask-guided scene injection, textual descriptions alone fail to generate stories that contain specific scene semantics. In contrast, incorporating mask-guided scene injection provides fine-grained guidance, which not only facilitates the injection of scene semantics but also preserves diversity in subject styles.

Figure 5: Ablation study of the two components: *Mask-Guided Scene Injection* and *Scene-Sharing Attention*. “✓” and “✗” indicate whether each component is used. The synergy between these components ensures scene consistency and subject diversity across generated stories.

Figure 6: Comparison of long-term consistency with and without *Extrapolable Noise Blending*. Our approach ensures consistent scenes with low overhead, while effectively preserving subject diversity throughout the entire narrative. *Best viewed with zoom-in*.

Table 2: Efficiency analysis of *Extrapolable Noise Blending*. “OOM” represents out of memory.

Methods	Number of Generated Story Images						
	1	2	5	10	15	20	25
w/o Extrapol. Noise Blending	11.4G	12.7G	14.5G	17.5G	20.4G	23.5G	OOM
w/ Extrapol. Noise Blending	11.4G	12.7G	12.7G	12.7G	12.7G	12.7G	12.7G

Scene-Sharing Attention. Moreover, the effectiveness of the scene-sharing attention mechanism is also demonstrated in Figure 5, where its impact on maintaining narrative coherence is clearly illustrated. By leveraging this proposed attention mechanism, the model is able to enhance scene consistency across different generated stories, ensuring that key contextual elements remain fully aligned and logically connected throughout the narrative. When combined with the scene injection strategy, this synergy not only ensures that subject diversity is effectively integrated into the storytelling process but also reinforces scene consistency across different generated stories.

Extrapolable Noise Blending. Finally, we assess the effectiveness of extrapolable noise blending in generating stories that preserve long-term scene consistency, with the associated experiments performed on a single RTX 3090 GPU. The visualization result is illustrated in Figure 6 and the memory usage is reported in Table 2. Although scene consistency can be partially maintained without extrapolable noise blending, the associated memory usage scales with the number of story images and often causes out-of-memory (OOM) errors. In contrast, applying extrapolable noise blending fixes memory usage, effectively preventing “OOM” issues while ensuring long-term scene consistency.

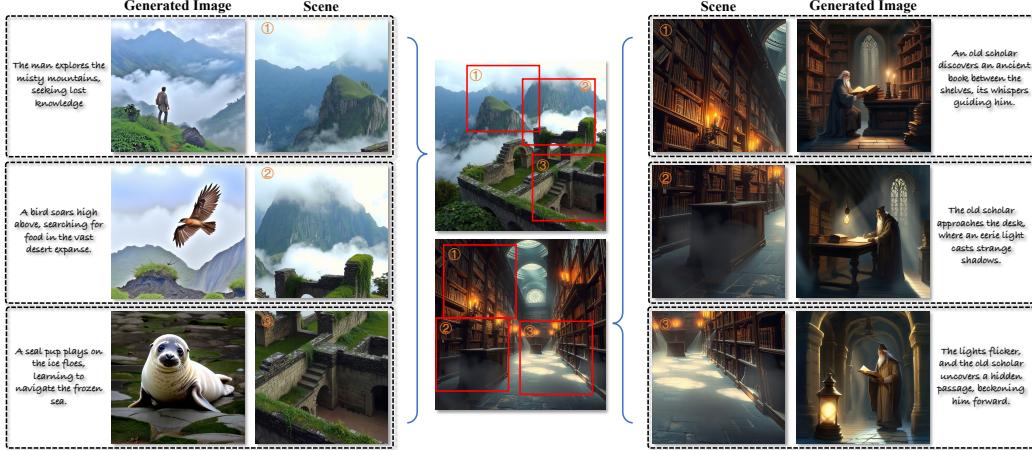


Figure 7: More applications of our SceneDecorator. It can support generation with manual scene input (left) and generation with consistent characters (right). *Best viewed with zoom-in.*

4.5 Rationality Analysis of VLM-Guided Scene Planning

We further analyze the local scenes partitioned by the VLM-Guided Scene Planning strategy from two perspectives: *Coordinate Rationality* and *Semantic Rationality*, as detailed below.

Coordinate Rationality. When partitioning the global scene image (Equation 1), the coordinates predicted by the VLM may occasionally fall slightly outside the defined image boundaries. To robustly address this issue, we apply a simple yet effective correction: invalid coordinates are automatically snapped to the nearest valid bounding box, thereby ensuring all generated coordinates remain usable.

Semantic Rationality. To assess the semantic rationality of the partitioned local scenes, we conducted a quantitative evaluation using GPT-4o [55]. For each sample, the story theme, the global scene, the derived local scenes, and the corresponding story sub-prompts are provided to GPT-4o, which is instructed to evaluate them along three key criteria: *Narrative Coherence*, *Theme Adherence*, and *Layout Reasonableness*. Each criterion was scored on a 10-level scale (0–100%), with the details illustrated in Table 3. The results show that VLM-Guided Scene Planning exhibits strong robustness across narrative coherence, theme adherence, and layout reasonableness.

5 More Applications

Generation with Manual Scene Input. In addition to automatic VLM-Guided Scene Planning, our SceneDecorator can also support manual scene input. Specifically, users can provide a global scene, manually divide it into local scenes, and use them for subsequent story generation. As illustrated in Figure 7, the impressive visual results further emphasize the scalability of SceneDecorator.

Generation with Consistent Character. Beyond generating stories with scene consistency, SceneDecorator can also generate stories that preserve character consistency under different scenes. Specifically, we modify the scene-sharing attention by inverting the mask to ensure character consistency, while keeping the mask-guided scene injection unchanged. In Figure 7, the same character experiences different stories across scenes, further showcasing the flexibility of SceneDecorator.

Generation with Other Tools. As a training-free framework, SceneDecorator can also seamlessly integrate with other generative tools to meet diverse user needs. Detailed examples are demonstrated in Figure 8. It can be combined with PhotoMaker [59] for customized character generation and with ControlNet [25] for precise conditional control. Furthermore, it can work effectively with stylized LoRAs [60] to achieve diverse style generation. In summary, by incorporating diverse generative tools, our proposed SceneDecorator highlights more creative and flexible workflows.

Figure 8: More applications of our SceneDecorator. It can also support generation with other tools: PhotoMaker, ControlNet, and stylized LoRAs. *Best viewed with zoom-in.*

Figure 9: More applications of our SceneDecorator. It can also support generation with evolving scenes, such as transitions from morning to dusk (*left*) as well as from summer to winter (*right*).

Generation with Evolving Scenes. In addition, SceneDecorator provides robust support for generating multiple stories with evolving scenes, such as changes in the time of day or shifts in seasons, which further showcases its flexibility and adaptability. As illustrated in Figure 9, the model is capable of dynamically adapting to a wide range of scene inputs, enabling the generation of diverse stories that evolve seamlessly across different contexts. SceneDecorator empowers users to flexibly craft immersive and dynamic stories that capture the essence of change across diverse settings.

6 Conclusion

This paper introduces **SceneDecorator**, a training-free framework for *scene-oriented story generation*. It emphasizes scene planning and scene consistency, in contrast to the character consistency focus of prior works. Our SceneDecorator comprises two core techniques: (i) *VLM-Guided Scene Planning*, which decomposes user-provided themes into local scenes and story sub-prompts in a “global-to-local” manner, and (ii) *Long-Term Scene-Sharing Attention*, which integrates mask-guided scene injection, scene-sharing attention, and extrapolable noise blending to maintain subject style diversity and long-term scene consistency during generation. Extensive experiments validate the effectiveness of SceneDecorator, showcasing its ability to enhance creativity across real-world applications.

Acknowledgments. This work was supported by the InnoHK initiative of the Innovation and Technology Commission of the Hong Kong Special Administrative Region Government via the Hong Kong Centre for Logistics Robotics, by the Faculty Initiatives Research of Monash University (Contract No. 2901912), by the NVIDIA Academic Hardware Grant Program, and by the Research Start-up Fund for Prof. Xiaowei Hu at the Guangzhou International Campus, South China University of Technology (Grant No. K3250310).

References

- [1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” *Communications of the ACM*, 2020.
- [2] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” in *International Conference on Machine Learning*, 2021.
- [3] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2022.
- [4] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and R. Rombach, “Sdxl: Improving latent diffusion models for high-resolution image synthesis,” *arXiv preprint arXiv:2307.01952*, 2023.
- [5] Y. Tewel, O. Kaduri, R. Gal, Y. Kasten, L. Wolf, G. Chechik, and Y. Atzmon, “Training-free consistent text-to-image generation,” in *ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques*, 2024.
- [6] D. Kostons and B. B. de Koning, “Does visualization affect monitoring accuracy, restudy choice, and comprehension scores of students in primary education?” *Contemporary Educational Psychology*, 2017.
- [7] Q. Song, M. Lin, W. Zhan, S. Yan, L. Cao, and R. Ji, “Univst: A unified framework for training-free localized video style transfer,” *arXiv preprint arXiv:2410.20084*, 2024.
- [8] Y. Yang, Q. Song, Z. Gao, G. Wang, S. Li, and X. Zhang, “Stydeco: Unsupervised style transfer with distilling priors and semantic decoupling,” *arXiv preprint arXiv:2508.01215*, 2025.
- [9] C. Klimmt, C. Roth, I. Vermeulen, P. Vorderer, and F. S. Roth, “Forecasting the experience of future entertainment technology: “interactive storytelling” and media enjoyment,” *Games and Culture*, 2012.
- [10] Q. Wang, X. Yang, F. Feng, J. Wang, and X. Geng, “Cluster-learngene: Inheriting adaptive clusters for vision transformers,” in *Conference on Neural Information Processing Systems*, 2024.
- [11] Q. Wang, X. Yang, H. Chen, and X. Geng, “Vision transformers as probabilistic expansion from learnngene,” in *International Conference on Machine Learning*, 2024.
- [12] Y. Li, Z. Gan, Y. Shen, J. Liu, Y. Cheng, Y. Wu, L. Carin, D. Carlson, and J. Gao, “Storygan: A sequential conditional gan for story visualization,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2019.
- [13] A. Maharana and M. Bansal, “Integrating visuospatial, linguistic and commonsense structure into story visualization,” *arXiv preprint arXiv:2110.10834*, 2021.
- [14] Y. Zhou, D. Zhou, M.-M. Cheng, J. Feng, and Q. Hou, “Storydiffusion: Consistent self-attention for long-range image and video generation,” *arXiv preprint arXiv:2405.01434*, 2024.
- [15] Y. Gong, Y. Pang, X. Cun, M. Xia, Y. He, H. Chen, L. Wang, Y. Zhang, X. Wang, Y. Shan *et al.*, “Talecrafter: Interactive story visualization with multiple characters,” *arXiv preprint arXiv:2305.18247*, 2023.
- [16] J. Mao, X. Huang, Y. Xie, Y. Chang, M. Hui, B. Xu, and Y. Zhou, “Story-adapter: A training-free iterative framework for long story visualization,” *arXiv preprint arXiv:2410.06244*, 2024.
- [17] C. Liu, H. Wu, Y. Zhong, X. Zhang, Y. Wang, and W. Xie, “Intelligent grimm-open-ended visual storytelling via latent diffusion models,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2024.
- [18] J. Rosenfeld, *Make a scene: Crafting a powerful story one scene at a time*. Penguin, 2007.
- [19] J. Hart, *The Art of the Storyboard: A filmmaker’s introduction*. Routledge, 2013.
- [20] H. Ye, J. Zhang, S. Liu, X. Han, and W. Yang, “Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models,” *arXiv preprint arXiv:2308.06721*, 2023.
- [21] M. N. Everaert, M. Bocchio, S. Arpa, S. Süsstrunk, and R. Achanta, “Diffusion in style,” in *International Conference on Computer Vision*, 2023.

[22] D. Zhou, J. Huang, J. Bai, J. Wang, H. Chen, G. Chen, X. Hu, and P.-A. Heng, “Magictailor: Component-controllable personalization in text-to-image diffusion models,” *arXiv preprint arXiv:2410.13370*, 2024.

[23] S. Zhang, B. Xie, Z. Yan, Y. Zhang, D. Zhou, X. Chen, S. Qiu, J. Liu, G. Xie, and Z. Lu, “Trade-offs in image generation: How do different dimensions interact?” *arXiv preprint arXiv:2507.22100*, 2025.

[24] Y. Li, H. Liu, Q. Wu, F. Mu, J. Yang, J. Gao, C. Li, and Y. J. Lee, “Gligen: Open-set grounded text-to-image generation,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2023.

[25] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion models,” in *International Conference on Computer Vision*, 2023.

[26] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, and Y. Shan, “T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models,” in *AAAI Conference on Artificial Intelligence*, 2024.

[27] R.-C. Tu, Y. Ji, J. Jiang, W. Kong, C. Cai, W. Zhao, H. Wang, Y. Yang, and W. Liu, “Global and local semantic completion learning for vision-language pre-training,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

[28] R.-C. Tu, X.-L. Mao, J.-Y. Liu, Z.-A. Ma, T. Lan, and H. Huang, “Prospective layout-guided multi-modal online hashing,” *IEEE Transactions on Image Processing*, 2025.

[29] J. Lin, G. Zhao, J. Xu, G. Wang, Z. Wang, A. Dantcheva, L. Du, and C. Chen, “Diffvt: Identity-preserved thermal-to-visible face translation via feature alignment and dual-stage conditions,” in *ACM International Conference on Multimedia*, 2024.

[30] J. Lin, Y. Wu, Z. Wang, X. Liu, and Y. Guo, “Pair-id: A dual modal framework for identity preserving image generation,” *IEEE Signal Processing Letters*, 2024.

[31] Z. Yang, J. Wang, Z. Gan, L. Li, K. Lin, C. Wu, N. Duan, Z. Liu, C. Liu, M. Zeng *et al.*, “Reco: Region-controlled text-to-image generation,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2023.

[32] J. Xie, Y. Li, Y. Huang, H. Liu, W. Zhang, Y. Zheng, and M. Z. Shou, “Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion,” in *International Conference on Computer Vision*, 2023.

[33] J. Huang, Y. Huang, J. Liu, D. Zhou, Y. Liu, and S. Chen, “Dual-schedule inversion: Training-and tuning-free inversion for real image editing,” in *Winter Conference on Applications of Computer Vision*, 2025.

[34] J. Huang, G. Zhang, Z. Jie, S. Jiao, Y. Qian, L. Chen, Y. Wei, and L. Ma, “M4v: Multi-modal mamba for text-to-video generation,” *arXiv preprint arXiv:2506.10915*, 2025.

[35] G. Meng, J. Huang, Y. Wang, Z. Fu, X. Ding, and Y. Huang, “Progressive high-frequency reconstruction for pan-sharpening with implicit neural representation,” in *AAAI Conference on Artificial Intelligence*, 2024.

[36] G. Meng, J. Huang, J. Tu, Y. Wang, Y. Lin, X. Tu, Y. Huang, and X. Ding, “Accelerated diffusion via high-low frequency decomposition for pan-sharpening,” in *AAAI Conference on Artificial Intelligence*, 2025.

[37] G. Meng, J. Tu, J. Huang, Y. Lin, Y. Wang, X. Tu, Y. Huang, and X. Ding, “Sp3ctralmamba: Physics-driven joint state space model for hyperspectral image reconstruction,” in *AAAI Conference on Artificial Intelligence*, 2025.

[38] S. Chen, J. Bai, Z. Zhao, T. Ye, Q. Shi, D. Zhou, W. Chai, X. Lin, J. Wu, C. Tang *et al.*, “An empirical study of gpt-4o image generation capabilities,” *arXiv preprint arXiv:2504.05979*, 2025.

[39] Q. Song, X. Wang, D. Zhou, J. Lin, C. Chen, Y. Ma, and X. Li, “Hero: Hierarchical extrapolation and refresh for efficient world models,” *arXiv preprint arXiv:2508.17588*, 2025.

[40] J. Huang, M. Yan, S. Chen, Y. Huang, and S. Chen, “Magicfight: Personalized martial arts combat video generation,” in *ACM International Conference on Multimedia*, 2024.

[41] Y. Lin, Z. Lin, K. Lin, J. Bai, P. Pan, C. Li, H. Chen, Z. Wang, X. Ding, W. Li *et al.*, “Jarvisart: Liberating human artistic creativity via an intelligent photo retouching agent,” *arXiv preprint arXiv:2506.17612*, 2025.

[42] Y. Lin, Z. Lin, H. Chen, P. Pan, C. Li, S. Chen, K. Wen, Y. Jin, W. Li, and X. Ding, “Jarvisir: Elevating autonomous driving perception with intelligent image restoration,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2025.

[43] C. Li, C. Zhang, W. Xu, J. Lin, J. Xie, W. Feng, B. Peng, C. Chen, and W. Xing, “Latentsync: Taming audio-conditioned latent diffusion models for lip sync with syncnet supervision,” *arXiv preprint arXiv:2412.09262*, 2024.

[44] X. Pan, P. Qin, Y. Li, H. Xue, and W. Chen, “Synthesizing coherent story with auto-regressive latent diffusion models,” in *Winter Conference on Applications of Computer Vision*, 2024.

[45] T. Rahman, H.-Y. Lee, J. Ren, S. Tulyakov, S. Mahajan, and L. Sigal, “Make-a-story: Visual memory conditioned consistent story generation,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2023.

[46] X. Shen and M. Elhoseiny, “Large language models as consistent story visualizers,” *arXiv preprint arXiv:2312.02252*, 2023.

[47] S. Yang, Y. Ge, Y. Li, Y. Chen, Y. Ge, Y. Shan, and Y. Chen, “Seed-story: Multimodal long story generation with large language model,” *arXiv preprint arXiv:2407.08683*, 2024.

[48] O. Avrahami, A. Hertz, Y. Vinker, M. Arar, S. Fruchter, O. Fried, D. Cohen-Or, and D. Lischinski, “The chosen one: Consistent characters in text-to-image diffusion models,” in *ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques*, 2024.

[49] J. Zhao, H. Zheng, C. Wang, L. Lan, W. Hunag, and Y. Tang, “Magicnaming: Consistent identity generation by finding a “name space” in t2i diffusion models,” *arXiv preprint arXiv:2412.14902*, 2024.

[50] Q. Wang, B. Li, X. Li, B. Cao, L. Ma, H. Lu, and X. Jia, “Characterfactory: Sampling consistent characters with gans for diffusion models,” *arXiv preprint arXiv:2404.15677*, 2024.

[51] Black Forest Labs, “Flux,” <https://github.com/black-forest-labs/flux>, 2023.

[52] N. Kumari, B. Zhang, R. Zhang, E. Shechtman, and J.-Y. Zhu, “Multi-concept customization of text-to-image diffusion,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2023.

[53] P. Wang, S. Bai, S. Tan, S. Wang, Z. Fan, J. Bai, K. Chen, X. Liu, J. Wang, W. Ge *et al.*, “Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution,” *arXiv preprint arXiv:2409.12191*, 2024.

[54] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2022.

[55] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat *et al.*, “Gpt-4 technical report,” *arXiv preprint arXiv:2303.08774*, 2023.

[56] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or, “An image is worth one word: Personalizing text-to-image generation using textual inversion,” *arXiv preprint arXiv:2208.01618*, 2022.

[57] S. Fu, N. Tamir, S. Sundaram, L. Chai, R. Zhang, T. Dekel, and P. Isola, “Dreamsim: Learning new dimensions of human visual similarity using synthetic data,” *arXiv preprint arXiv:2306.09344*, 2023.

[58] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby *et al.*, “Dinov2: Learning robust visual features without supervision,” *arXiv preprint arXiv:2304.07193*, 2023.

[59] Z. Li, M. Cao, X. Wang, Z. Qi, M.-M. Cheng, and Y. Shan, “Photomaker: Customizing realistic human photos via stacked id embedding,” in *IEEE Conference on Computer Vision and Pattern Recognition*, 2024.

[60] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” *arXiv preprint arXiv:2106.09685*, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The main claims stated in the *Abstract* and *Introduction* sections of the main paper accurately reflect the scope and contributions of our work, and are supported by the experimental results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The limitations of our approach are discussed in the *Limitations and Future Work* section of the Appendix, as space constraints prevented inclusion in the main paper.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: Our paper falls under the category of applied AI, specifically targeting scene-aware story generation. As such, it does not contain theoretical results that require formal assumptions or proofs.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the model configurations, baselines, and datasets in the *Experiments* section of the main paper, ensuring that the main experimental results can be reproduced based on the information in the paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[Yes]**

Justification: We have already open-sourced the relevant code, along with detailed comments and instructions to reproduce the main experimental results.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: Our method does not require any training. We provide all necessary testing details in the *Experiments* section of the main paper, including parameter settings, baseline methods, and dataset selection.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[No]**

Justification: Our method is deterministic and does not involve random factors such as initialization or sampling, so statistical significance tests were not applicable.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We provide detailed descriptions of the execution settings and computational resources used in the *Experiments* section of the main paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research fully complies with its guidelines.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: Our work focuses on creative story generation, and we have discussed potential negative impacts in the *Potential Negative Societal Impact* section of the Appendix.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve releasing models or datasets that carry a high risk of misuse, and thus safeguards are not applicable.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite all borrowed techniques in the paper and include proper attribution and license information in the code section.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This work does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [Yes]

Justification: We conducted a user study to evaluate our method against baselines and provided detailed descriptions in the *Experiments* section of the main paper.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [No]

Justification: Our user study involved anonymous preference ratings with minimal risk and did not require IRB approval under our institution's policy.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: An LLM was used as a component of our core method, and its role and implementation details are described in the *methodology* section of the main paper.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Implementation Details about Baselines

CustomDiffusion is a tuning-based method that requires fine-tuning to inject given visual concepts. Specifically, we fine-tune it using the local scene images obtained from our VLM-guided scene planning framework. During inference, we adopt the corresponding story sub-prompts together with the fine-tuned model to enable a fair comparison.

StoryDiffusion is a training-free method designed for subject-consistent story generation and naturally supports image conditioning. We directly use the local scene images and the associated story sub-prompts from the VLM-guided scene planning framework as input.

ConsiStory is also a training-free method for subject-consistent story generation. However, the official implementation does not support images as input. For a meaningful comparison, we make minimal modifications to adapt it to our task, prepending the local scene images to the input batch and leveraging it as a reference through self-attention and feature infusion mechanisms. Additionally, the same story sub-prompts are also adopted accordingly.

B Implementation Details about VLM-Guided Scene Planning

We propose VLM-Guided Scene Planning to guide the VLM in decomposing the user-provided theme into multiple local scenes and stories with specific instructions. The VLM is leveraged in two steps, including *conceptualizing the global scene* and *crafting local scenes and sub-prompts*.

Conceptualizing the Global Scene. The complete prompt for conceptualizing the global scene consists of two main components, which are also detailed in Table 4.

- *Instruction:* This specifies the task and defines the specific theme from the user prompt, helping the VLM perform effectively in global scene generation tasks. It provides a structured way to guide the model in synthesizing scenes and storylines.
- *Examples:* This is an example that shows how the VLM works. The user prompt is filled into the provided system instruction. The model then continues the conversation based on the user prompt and provides the scene description in the specified format.

Table 4: Complete prompt for conceptualizing the global scene.

Role	Content
Instruction	System: “You are now a scene planner tasked with using your rich imagination to design a global scene based on the theme provided by the user. Your job is to describe the environment and layout of the scene as thoroughly as possible and then output it into a concise description of no more than 50 words. This description will be used to generate the corresponding global scene, which can include various styles such as anime, realism, art, abstract, etc. Note: You only need to output the final summary result, and it must not include any theme or character information.” Theme: “{User Prompt}.” Please provide the corresponding output.”
Examples	User: “Snowy dreams and falling stars.” VLM: [A misty forest at dawn, bathed in soft golden light filtering through ancient trees. Delicate ferns and moss-covered rocks line winding paths, while a serene stream meanders through, reflecting the sky’s pale hues. Birdsong fills the air, and gentle breezes stir the leaves, creating a peaceful, dreamlike atmosphere.]

Crafting Local Scenes and Sub-prompts. Complete prompt for crafting local scenes also includes two main components, which are also detailed in Table 5.

- *Instruction:* The model is required to select four distinct local scenes (sub-scenes) from an image, ensuring minimal overlap, and providing the coordinates for each local scene. Subsequently, we mandate the creation of five unique stories for each local scene, focusing on a protagonist’s experience, summarized in one sentence. The protagonist can be an animal or a human with generic pronouns. The instruction emphasizes creativity and coherence,

ensuring captivating narratives while maintaining uniqueness. The output should include the coordinates of local scenes and the corresponding story sub-prompts for local scenes.

- *Examples:* There is also an example that shows how to craft local scenes. The user needs to provide the generated global image, the VLM then continues the conversation based on the user prompt and provides the sub-scene description as required.

Table 5: Complete prompt for crafting local scenes and stories.

Role	Content
Instruction	System: “ Now you are a story director. Please fully utilize this 1024x1024 image, unleash your imagination, and design suitable scenes from a spatial perspective for the theme “” while creating corresponding storylines for each scene from a temporal perspective. Spatial Design: Select 4 distinct sub-scenes with minimal overlap. Provide top-left and bottom-right coordinates in the format: [x1, y1, x2, y2]. Temporal Storytelling: Create 5 unique stories for each sub-scene (20 stories in total), focusing on a protagonist’s experience in each scene. Story Summary: Each story must reflect the protagonist’s action or experience and be summarized in one sentence (max 15 words). Protagonist Setup: The protagonist can be an animal or a generic human (e.g., “girl,” “man”). Creativity and Coherence: Ensure creativity and engagement while maintaining uniqueness and narrative coherence. Output Format: Provide coordinates in [x1, y1, x2, y2] format for each sub-scene, followed by the stories for each. ”
Examples	User: “[The global image presented in Figure 4 of the main paper.]” VLM: “[Location of a local scene]: [18, 8, 506, 499]. 1.A fox explores the meadow, sniffing flowers under the moonlight. 2.The girl dances among the trees, feeling the magic of the night. 3.An owl perches on a branch, watching over the serene landscape. 4.A rabbit hops through the grass, seeking shelter for the night. 5.A deer grazes quietly, enjoying the peaceful evening

C Limitations and Future Work

Our SceneDecorator is tailored for scene planning and ensuring consistency, showcasing notable advantages compared to existing methods. Nonetheless, several limitations remain: (i) As a training-free method, the story generation capability of SceneDecorator largely depends on the underlying foundation models, such as FLUX.1, SDXL, and Qwen2-VL. Consequently, any limitations inherent in these base models can constrain the overall performance of SceneDecorator. (ii) For scene injection, we adopt the IP-Adapter technique, which proves effective in general. However, it performs less reliably in out-of-distribution scenarios, such as depicting an elephant in the sky.

Regarding the first limitation, future work could explore more complex scene-oriented story generation tasks, such as scene transitions and multi-scene integration. As for the second limitation, developing more effective scene control mechanisms beyond the current reliance on IP-Adapter would be a promising direction.

D Potential Negative Societal Impact

Our work is primarily designed for scene-oriented story generation within the broader domains of visual content creation. However, we explicitly acknowledge that technologies capable of generating multi-image narratives may also pose significant societal risks if misused. In particular:

- **Disinformation and Propaganda.** The ability to generate visual narratives could be exploited to fabricate persuasive but false stories, amplifying the spread of disinformation.
- **Bias and Stereotypes.** Unintended biases present in the input story themes could potentially reinforce harmful cultural stereotypes or discriminatory visual representations.
- **Inappropriate or harmful content.** Without proper safeguards and regulatory oversight, the generated content might unintentionally include sensitive, violent, or inappropriate material, potentially causing psychological or emotional harm to diverse audiences.

We highlight these important concerns to encourage the responsible and ethical use of our method and emphasize the importance of developing safeguards against potential misuse.

E Additional Results

To further validate the effectiveness and versatility of SceneDecorator, we present additional qualitative comparisons in Figure 10 and Figure 11. These examples highlight the model’s ability to generate coherent and contextually appropriate scenes across diverse prompts and settings.

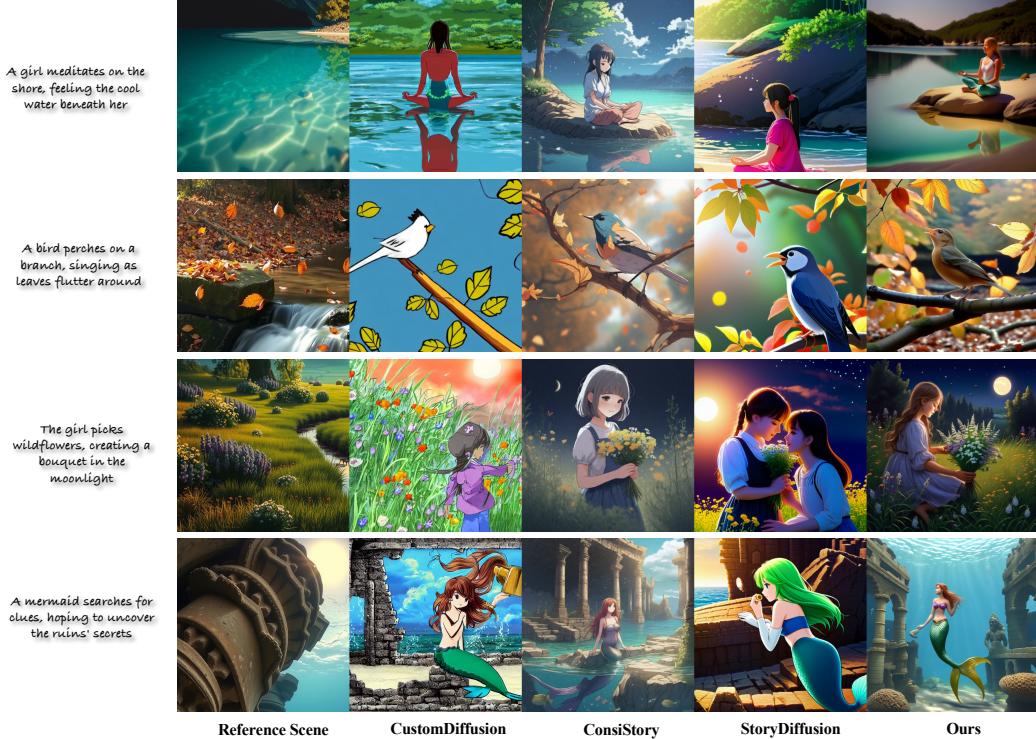


Figure 10: Additional qualitative comparisons. Our method effectively follows the text prompt while maintaining scene alignment.

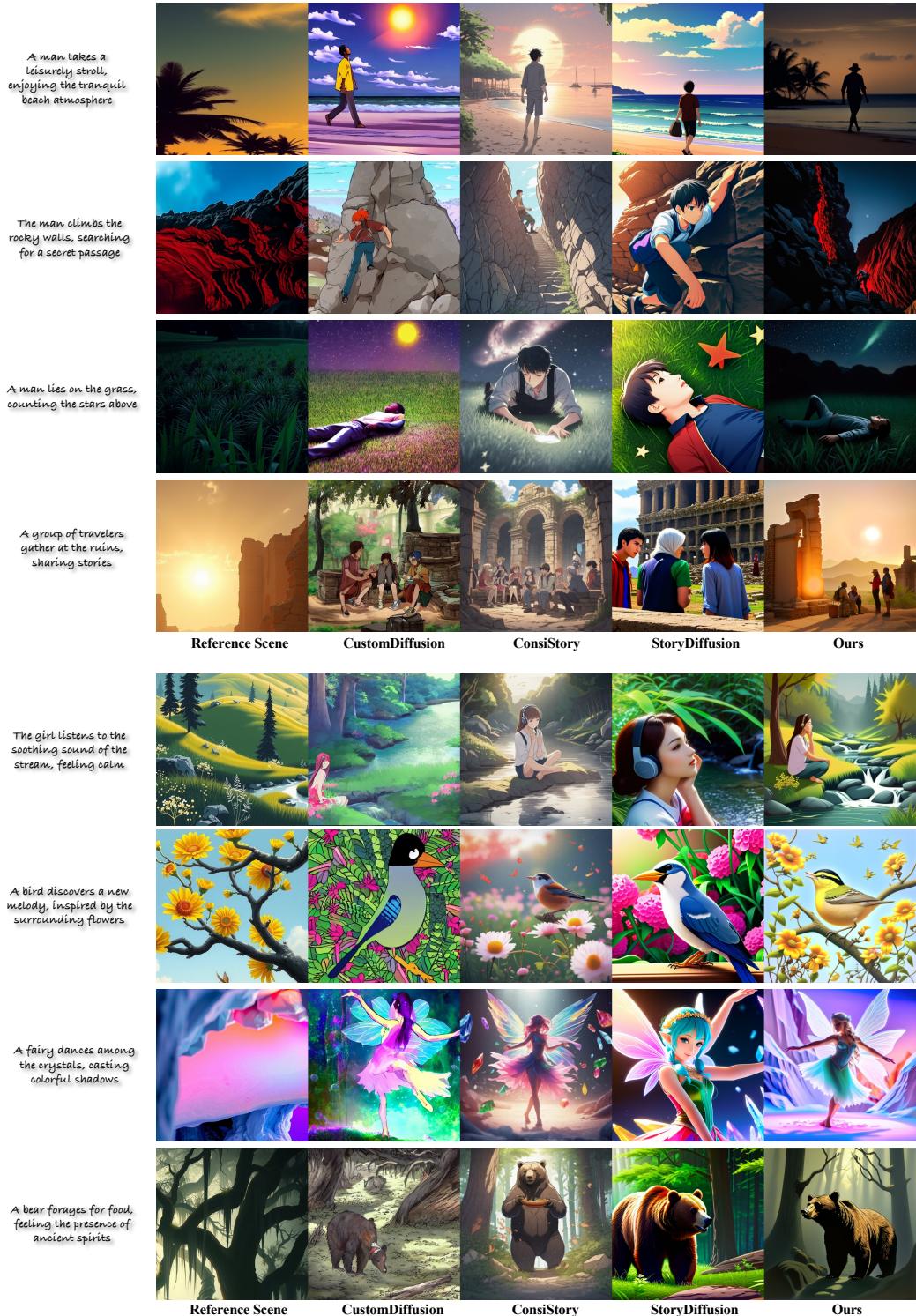


Figure 11: Additional qualitative comparisons. Our method successfully follows the prompt while maintaining scene alignment.