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Abstract

Vision-Language Models (VLMs) have shown
strong generalization across multimodal tasks,
but their capacity to handle sign Ilan-
guage translation (SLT)—which requires fine-
grained spatiotemporal reasoning and linguis-
tic understanding—remains unclear. In this
study, we evaluate whether small-scale VLM
(<3B parameters) can perform SLT effectively.
We conduct supervised fine-tuning using mul-
tilingual sign language datasets—DGS, ASL,
and ISL—adopting parameter-efficient LORA
tuning applied to the language decoder, while
keeping the vision encoder frozen and allow-
ing the connector to be trainable. To evalu-
ate translation quality, we propose entity- and
semantics-aware metrics tailored for SLT. We
highlight the data imbalance issues present
in the above widely used SLT datasets. Our
analysis highlights the limitations in applying
general-purpose VLMs to SLT, unlike their ap-
plicability in other tasks, and provides insights
to inform future development of VLMs for SLP,
which is essential for building inclusive Al ap-
plications.

1 Introduction

Sign language serves as a vital mode of commu-
nication for the Deaf and Hard of Hearing (DHH)
community, encompassing both manual compo-
nents (e.g., hand gestures) and non-manual cues
such as facial expressions, body posture, and eye
gaze (Boyes Braem and Sutton-Spence, 2001). Ac-
cording to the World Health Organization', over
700 million people are expected to experience dis-
abling hearing loss by 2050. To bridge the commu-
nication gap between DHH individuals and hear-
ing populations, Sign Language Translation (SLT)
aims to translate sign language videos into spo-
ken or written text. However, the diversity of
sign languages, each with unique grammar and

1https://www.who.int/news—room/fact—sheets/
detail/deafness-and-hearing-1loss

regional variations, alongside their rich spatio-
temporal structure, poses substantial challenges
and is, therefore, attracting increasing attention
from the deep learning community. Indeed, re-
searchers have strongly advocated the development
of NLP tools for sign language understanding (Yin
et al., 2021).

Unlike Sign Language Recognition (SLR),
which predicts glosses or isolated labels, SLT re-
quires models to capture the semantic, temporal,
and syntactic intricacies of continuous signing.
SLT methods typically fall into two categories:
gloss-based and gloss-free. The former follows
a two-step pipeline that first predicts glosses and
then translates them into natural language (Cam-
goz et al., 2018, 2020; Zhou et al., 2021; Chen
et al., 2022a; Zhou et al., 2022; Chen et al., 2022b),
whereas the latter directly generates the translation
bypassing the direct involvement of gloss annota-
tion (Lin et al., 2023; Gong et al., 2024; Wong
et al., 2024). Recent progress has been driven
by transformer-based architectures (Vaswani et al.,
2017) that take a visual sequence as input into a
spatio-temporal encoder and generate a context-
aware translation with a decoder which is essen-
tially a large language model (LLM) (Gong et al.,
2024; Jang et al., 2025; Wong et al., 2024).

Recent advancements in LLMs such as GPT-3
(Brown et al., 2020) and LLaMA (Touvron et al.,
2023) demonstrated strong language understanding,
reasoning, and multilingual translation by leverag-
ing large-scale web corpora. Building on these
capabilities, vision-language models (VLMs) like
CLIP (Radford et al., 2021), BLIP (Li et al., 2022),
LLaVA (Liu et al., 2023), and Qwen2.5-VL (Bai
et al., 2025) aligned visual content with textual se-
mantics and achieved state-of-the-art results across
several multimodal tasks, demonstrating strong
temporal and visual reasoning — skills also essen-
tial for SLT. Although scaling model size has led to
performance gains across many domains (Chowd-
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hery et al., 2023; Alayrac et al., 2022; Liu et al.,
2023), these large models often require consider-
able computational resources and are difficult to
deploy in real-world or low-resource settings. This
led the research interest in more efficient and scal-
able architectures.

Motivated by the advancement in both fields, we
aim to investigate whether the multimodal or vi-
sual language models (Yin et al., 2024; Caffagni
et al., 2024) can perform SLT effectively. In par-
ticular, we conduct supervised fine-tuning of off-
the-shelf small-scale VLMs with a frozen visual
model, trainable connector (modality aligner), and
a LoRA tunable language model. Note that this
fine-tuning methodology has shown a promising
performance in several challenging tasks like ra-
diology report generation (Chen et al., 2025; Ka-
padnis et al., 2024; He et al., 2025) and science
question-answering (Kim et al., 2023). We also
note that full fine-tuning of the VLM is compu-
tationally very expensive and infeasible with our
infrastructure. Thus, our central research question
is, Can small-scale vision-language models, origi-
nally trained for generic video-language tasks, be
effectively adapted for the specialized task of sign
language translation? This question is particularly
challenging because SLT is significantly different
from usual video understanding tasks like caption-
ing and question-answering.

In this work, we present the first systematic eval-
uation of general-purpose small VLMs for SLT,
revealing that these models fall severely short of
specialized SLT systems. Our key contributions
are: (i) We conducted comprehensive experiments
with four sign language datasets and two small
VLM:s across model sizes and fine-tuning types un-
der resource-constrained settings where the vision
encoder is frozen; (ii) Our experiments demonstrate
consistent underperformance of VLMs in SLT;
(iii)) We uncover vocabulary biases in benchmark
datasets that influence model outputs; and (iv) We
introduce two targeted evaluation metrics, transla-
tion soft-recall and psuedo-gloss entity-recall, to
better capture the semantic fidelity in SLT outputs.
We will publicly release our code (upon acceptance
of our manuscript).

2 Related Work

2.1 Sign Language Translation

Recent advances in SLT have transitioned from
early RNN-based architectures to Transformer-

based models (Vaswani et al., 2017), to better cap-
ture long-range dependencies in video sequences
(Camgoz et al., 2018, 2020). Early approaches typ-
ically followed a gloss-based pipeline, first trans-
lating videos into intermediate glosses and then
generating natural language text. These methods
were enhanced through spatial-temporal model-
ing (Zhou et al., 2022), hierarchical representa-
tions (LI et al., 2020), two-stream architectures
(Chen et al., 2022b), and hand-aware representa-
tion learning (Hu et al., 2021, 2023). However,
the reliance on annotated glosses limited scalabil-
ity, prompting a shift toward gloss-free approaches
that directly map videos to text. These include
attention-based encoders (Lin et al., 2023; Yin
et al., 2023), contrastive learning (Gan et al., 2023),
dense representation modeling (Ye et al., 2024),
and keypoint-driven models (Chen et al., 2022a).
Recent works have developed customized VLMs
for direct gloss-free translation by aligning visual
features with frozen language models (Gong et al.,
2024; Wong et al., 2024; Hwang et al., 2025), sup-
ported by factorized adaptation (Chen et al., 2024),
contextual reasoning (Jang et al., 2025), and video-
language alignment pretraining (Jiao et al., 2025).
Several studies also explored multilingual and con-
tinual learning settings (Yazdani et al., 2025; Zhang
et al., 2024). Common datasets include PHOENIX-
2014T (German) (Camgoz et al., 2018), How2Sign
(American Sign Language) (Duarte et al., 2021),
and OpenASL (ASL) (Shi et al., 2022).

2.2 Vision-Language Models

Following the success of LLMs like GPT-3 and
LLaMA, researchers have attempted to incorporate
multiple modalities beyond text into the founda-
tion models. Multimodal large language models
(MLLMs) and VLMs have emerged as their natural
successor (Caffagni et al., 2024), and they sup-
port downstream tasks such as video captioning
(Nadeem et al., 2024), video question answering
(Zou et al., 2024; Xiao et al., 2024; Wang et al.,
2025), and long video understanding (Ranasinghe
et al., 2025), where cross-modal and temporal align-
ment is essential. These tasks can be achieved by
zero or few-shot prompting. Fine-tuning, if neces-
sary, is generally done on the LLM and the con-
nector between the visual encoder and text decoder
(Lietal., 2023; Yin et al., 2024). Recent research
has also focused on developing smaller VLMs like
SmolVLM?2 (Marafioti et al., 2025), BLIP-2 (Li
et al., 2023), TinyLLaVA (Zhou et al., 2024), and



Qwen-2.5B-VL (Bai et al., 2025), which contain
fewer than 3B parameters, which are attractive for
resource-constrained and real-time deployments.
However, it is unclear whether these models are
suitable for SLT, and the papers that introduce these
models do not mention if they have been trained
or evaluated for sign language processing tasks
despite their importance in creating inclusive Al
systems. This paper aims to address that gap.

3 Method

3.1 Overview

Given a sign language video V' = [f1, fo, -, fr]
with a sequence of T' frames, the goal of SLT
is to generate a spoken language sentence ¥ =
[wy, wa, -+ ,wg], where S < T. Unlike recent
works that design specialized transformer-based
models to convert V' to Y, we explore whether
off-the-shelf VLMs, supporting video inputs, are
suitable for this purpose since they are already pre-
trained on large visual-text corpora. We choose
small VLMs as they are more resource-friendly.
Our model, shown in Figure 1, consists of a frozen
vision encoder, a trainable connector which is a
multi-layered perceptron, and a language model
(LM). While the vision model extracts frame-level
features from V/, the connector projects them into
the language embedding space, and the LM gener-
ates the final spoken language text. The connector
is trained and the LM is fine-tuned.

3.2 VLM Selection.

We have selected two recent VLMs that strike a
balance between efficiency and performance. The
first is SmolVLM2 (Marafioti et al., 2025), a 2.2B
parameter model designed for edge deployment,
known for its lightweight architecture and strong
multimodal capabilities. SmolVLM?2 is built on
Idefics3 (Laurencon et al., 2024), comprising a 27-
layer SigLL.IP-SO400M (Zhai et al., 2023) vision en-
coder and a 24-layer LLaMA 3.1 (Grattafiori et al.,
2024) language model, connected via an MLP-
based modality bridge. SmolVLM2 2.2B model
achieves state-of-the-art performance on many im-
age and video understanding tasks among open-
weights models of similar scale, while being more
resource-efficient (Marafioti et al., 2025). The sec-
ond model we choose is Qwen2.5-VL (Bai et al.,
2025), a 3B parameter architecture that integrates
a 32-layer Vision Transformer (ViT) with efficient
windowed attention and a 36-layer Qwen2.5 lan-

guage model. Like SmolVLM?2, it employs an
MLP-based connector to merge visual and linguis-
tic representations effectively.

3.3 Frame Sampling Strategy

Sign language videos vary widely in duration, with
sequences ranging from a few frames to several
hundred. However, the VLMs used in this study,
namely, SmolVLM2 and Qwen2.5-VL, have a
short context size (e.g., 8K tokens for SmolVLM?2)
which constrains the number of video frames to,
say, Tinaz, depending on the size of the input im-
age patches and the model’s internal architecture
(e.g., 64 for SmolVLM?2 with default settings). The
model features are shown in Table 1.

To ensure that each video is processed efficiently
within this limit, we judiciously select a frame
count Ty, based on the model’s capacity and the
video length distribution. In particular, given a
video with T total frames, where T' > T}ax, We di-
vide the sequence into 71, equal-length intervals
and select one representative frame per interval.
The representative frame f; in each interval is se-
lected deterministically using:

fi = frames H(Z—;I)TJ - 1] ,

i=0,1,...,Thax — 1.

where frames|-] denotes frames whose indices ap-
pear in [-]. This ensures a uniform spread of se-
lected frames across the entire video duration. If
T < Tinax, we retain all frames without modifica-
tion.

Note that we do not use random skipping as it
may drop critical frames, disrupting semantic con-
tinuity. The final output is a list of T}, or fewer
frames, sampled in a way that balances global cov-
erage and local coherence. Our design choice en-
sures fair and consistent evaluation across variable-
length sign language videos while adhering to the
strict frame limits imposed by our chosen VLMs.

3.4 Finetuning VLMs

The language models were tuned using the
parameter-efficient Low-Rank Adaptation (LoRA)
method (Hu et al., 2022), which allowed us to
update only a small subset of parameters while
maintaining the general linguistic capabilities of
the models. We observed consistent performance
improvements with the use of LoRA over full
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Figure 1: Overview of our vision-language model archi-
tecture for sign language translation.

fine-tuning (see Table 8), particularly in resource-
constrained settings. Note that the encoder was
kept frozen while the connector was trained along
with the LM.

- Input
No. of Vision Model  Language Model
Model Parameters (No. of layers)  (No. of layers) Context
Length
SmolVLM2 2.2B SigLIP (27) LL“g?f' ! 8K
Qwen2.5-VL 3B ViT (32) Qwen2.5LM 32K

(36)

Table 1: Overview of Selected VLM Architectures

4 Experiments

4.1 Datasets

We evaluated our approach on four publicly avail-
able sign language translation datasets spanning
German, American, and Indian sign languages.
While some of these datasets included intermedi-
ate gloss annotations (e.g., PHOENIX-2014T), our
training does not rely on gloss supervision. Instead,
we focus on learning a direct mapping from sign
language videos to natural language text.
German Sign Language (DGS): The RWTH-
PHOENIX-Weather 2014T dataset (Camgoz et al.,
2018) serves as a standard benchmark for DGS
translation. It consists of 7,096 training, 519 vali-
dation, and 642 test samples aligned with German
sentences. With a vocabulary of 2,887 words, it
captures weather forecast scenarios performed by
professional interpreters on television.

American Sign Language (ASL): OpenASL (Shi
et al., 2022) is a large-scale ASL dataset collected
from online videos across a wide range of topics.
It includes 98,417 video-sentence pairs, featuring

over 200 signers, of which 966 samples are re-
served for validation and 975 for testing. We also
use the How2Sign (Duarte et al., 2021) dataset,
which provides around 120 hours of ASL con-
tent derived from instructional videos, with 31,128
training, 1,741 validation, and 2,322 test samples.
It includes multi-view videos and additional modal-
ities such as speech, keypoints, and depth maps.

Indian Sign Language (ISL): iSign (Joshi et al.,
2024) is a recently introduced large-scale dataset
for Indian Sign Language, offering over 127K
sentence-aligned signing videos from diverse, real-
world contexts. Due to its scale, we carefully select
a subset of 50K examples: 43K for training and
3.5K each for validation and test, preserving lin-
guistic diversity while ensuring that the sample size
is not too large to train our models. More details of
the selection process are provided in Appendix A.

4.2 Evaluation Metrics

Standard Metrics. To evaluate the translation
quality of sign language outputs, we have used
standard metrics widely adopted in the machine
translation literature: BLEU (Papineni et al., 2002)
and ROUGE-L (Lin and Och, 2004). BLEU cap-
tures n-gram precision by comparing predicted
translations to ground-truth references, and we re-
ported scores from BLEU-1 through BLEU-4 using
the SacreBLEU? implementation. ROUGE-L mea-
sures the longest common subsequence between
the prediction and reference; it captures how well
the predicted sentence preserves the sequence of
the target, without requiring a predefined n-gram
length.

Semantic Fidelity in SLT. Given the generative
properties of LMs, it is possible that the LM’s
output does not match the ground-truth translation
but is still semantically correct. To capture this
aspect, we introduce two metrics: Translation
Soft Recall (TSR) and Pseudo-Gloss Entity
Recall (PGER), which are adaptations of Heading
Soft Recall (Frianti and Mariescu-Istodor, 2023)
and Heading Entity Recall (Shao et al., 2024),
respectively. The former computes semantic
similarity between predicted and reference
sentences using cosine similarity of embeddings
from the multilingual Sentence Transformer model
paraphrase-multilingual-MinilLM-L12-v23.

Zhttps://github.com/mjpost/sacrebleu
3https: //huggingface.co/sentence-transformers/
paraphrase-multilingual-MinilLM-L12-v2
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This captures meaning beyond exact wording
and can better handle paraphrase variations. The
PGER metric is motivated by the observation
that signers often emphasize key content words
such as nouns, verbs, and adjectives. We extract
these entities using FLAIR (Akbik et al., 2019)
part-of-speech tagging and compute their overlap
between prediction and reference, treating them as
proxies for underlying glosses.

12

1
c(7) = (1)
iz:; Z';Z:|1 Sim(Z;, Z;)

C(Y)4+C(Y)-C(YUY)

TSR(Y,Y) = T3 )
o |Ent(Y) N Ent(Y)]
PGER(Y,Y) = Ene(V)] (3)

Here, Y and Y represent the ground truth and
predicted translations, respectively. Ent(-) denotes
the set of entities extracted from a translation. C(Z)
refers to the soft cardinality of the set Z (Frénti and
Mariescu-Istodor, 2023). The function Sim(-, )
computes the cosine similarity between the embed-
dings of word Z; and Z; within the same transla-
tion. These metrics quantify how well a model pre-
serves meaning while using words different from
those in the golden output. To our knowledge, this
is the first application of such entity- and semantics-
aware metrics in SLT, providing deeper insights
into translation faithfulness.

4.3 Implementation Details

Our implementation has been done on the PyTorch
framework, and experiments were conducted us-
ing a single NVIDIA A100 GPU. A more detailed
system specification is provided in the Appendix
F.

Network Details. We fine-tuned two open-
source VLMS from Hugging Face repository:
SmolVLM2-2.2B-Instruct* and Qwen2.5-VL-3B-
Instruct’. Both models were trained for 10 epochs,
using sampled video inputs of length Ti,.x = 64
frames. Frame statistics for all datasets are de-
tailed in Table 2. We froze the vision encoder in
both cases and kept a lightweight connector module

4https://huggingface.co/HuggingFaceTB/
SmolVLM2-2.2B-Instruct

5https://huggingface.co/Qwen/QwenZ.
5-VL-3B-Instruct

fully trainable. We applied LoRA-based parameter-
efficient fine-tuning to the language model, specif-
ically targeting the attention and MLP projection
layers. Following the default settings in each case,
(1) for SmolVLM?2, we used a LoRA rank of
r = 064, scaling factor « = 64, and a dropout
of 0.1; (2) For Qwen2.5-VL-3B, we used the same
LoRA rank and scaling factor but a dropout of 0.05.

Dataset Total Avg. Frame count
videos  frame count > 300
PHOENIX-2014T 7,096 116.59 23
How2Sign 31,047 162.76 3,772
OpenASL 97,233 205.25 24,752
iSign 127,237 209.08 23,767

Table 2: Video-level statistics across different datasets
used in our experiments. We report the total number of
videos, the average number of frames per video, and the
number of videos with more than 300 frames.

Training and Inference Details. We trained the
models using the Hugging Face Trainer, with
FlashAttention-2 enabled and all computations per-
formed in bfloat16 precision. For SmolVLM2,
we used the AdamW optimizer with a learning rate
of 1 x 1074, a per-device batch size of 1, and gradi-
ent accumulation steps of 4. For Qwen2.5-VL-3B,
we adopted a cosine learning rate schedule with a
base learning rate of 1 x 10~°, also applied to the
connector; the batch size and gradient accumula-
tion settings remained unchanged. For both models,
during inference, we set the maximum generation
length to 128 tokens and applied greedy decoding
to preserve alignment between video semantics and
textual output. The prompt used for fine-tuning and
inference is presented in Appendix E.

4.4 Results

Table 3 reports the evaluation results using BLEU
(1-4) and ROUGE-L scores on the validation
(val or dev) and test sets for the four selected
datasets and the two selected models. SmolVLM?2
consistently outperformed Qwen2.5-VL across
all datasets. On PHOENIX-2014T, SmolVLM2
achieved a BLEU-4 score of 8.43 on the test set,
significantly higher than Qwen2.5-VL’s 2.78. Sim-
ilar improvements were observed on How2Sign,
OpenASL, and iSign, with SmolVLM?2 producing
consistently higher BLEU and ROUGE scores.

To assess translation quality at a deeper semantic
level, we adopted Pseudo-Gloss Entity Recall and
Translation Soft Recall. Results in Table 4 and Ta-
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RWTH-PHOENIX-Weather 2014T (German Sign Language)

Model Dev Set Test Set
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L | BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

SmolVLM2 25.53 15.51 10.11 7.80 2591 24.15 14.89 10.16 8.44 24.51

Qwen2.5-VL 7.62 3.25 2.98 2.56 9.98 7.87 3.43 3.09 2.78 9.79
How2Sign (American Sign Language)

SmolVLM2 6.83 1.46 0.23 0.04 8.38 6.84 1.56 0.28 0.06 8.38

Qwen2.5-VL 2.45 0.74 0.21 0.01 4.83 2.80 0.75 0.18 0.02 5.05
OpenASL (American Sign Language)

SmolVLM2 7.64 1.91 1.05 0.79 8.47 7.06 1.20 0.60 0.41 7.78

Qwen2.5-VL 3.24 0.30 0.11 0.01 4.31 3.52 0.29 0.08 0.07 4.46

iSign (Indian Sign Language)
SmolVLM2 7.47 1.27 0.60 0.39 8.09 7.59 1.37 0.65 0.44 8.21
Qwen2.5-VL 2.48 0.27 0.15 0.13 3.85 2.51 0.33 0.22 0.18 3.87

Table 3: Sign language translation results across four datasets in German (RWTH-PHOENIX-Weather 2014T),
American (How2Sign, OpenASL), and Indian (iSign) sign languages. We report BLEU (1-4) and ROUGE-L scores
for both validation (Dev) and test sets using SmolVLM2 and Qwen2.5-VL.

ble 5 show that SmolVLM?2 produces higher scores
in all cases.

Thus, SmolVLM2 consistently outperformed
Qwen2.5-VL across all datasets on both lexical
and semantic-level metrics. It can be observed
the BLEU and ROUGE-L scores for all datasets,
except PHOENIX-14T, are very low. Therefore, for
ASL and ISL datasets, the generated translations
are of extremely poor quality. Hence, we peform
further analysis only on PHOENIX-14T.

PHOENIX . s
Model 2014T How2Sign OpenASL  iSign
SmolVLM2 0.1372 0.0678 0.0318  0.0190
Qwen2.5-VL 0.0221 0.0428 0.0128  0.0143

Table 4: Pseudo-Gloss Entity Recall (PGER) based on
key content words (noun, verb, adjective) on test sets.
Higher is better.

PHOENIX

Model 2014T How2Sign OpenASL  iSign
SmolVLM2 0.7422 0.3102 0.2538  0.2611
Qwen2.5-VL 0.4857 0.3091 0.179 0.1195

Table 5: Translation Soft Recall (TSR) scores on test
sets across datasets. Higher is better.

4.4.1 Qualitative Analysis of Translation
Results

We examine a few cases from PHOENIX-2014T

test set to understand the types of errors commit-

ted by SmolVLM2. The cases displayed in Table

7 reveals two recurring types of translation errors.
First, the model frequently failed at entity ground-
ing, for example, misidentifying specific dates or
days (e.g., predicting May 30th instead of the cor-
rect October 15th). Second, it often hallucinated
semantically plausible but incorrect content—such
as adding weather details like “rain in the north,”
that were absent in the reference. These patterns in-
dicate that translation of the SmolVLM2 frequently
lacked precise alignment between the visual input
and the target linguistic output. Additional results
on various datasets are provided in Appendix B
while a more detailed breakdown focused on noun-
phrase-level performance and qualitative examples
appear in Appendix C.

4.4.2 Vocabulary Bias and Overfitting
Tendencies

We have observed that some words are very fre-
quently present in the generated translation, and
they often appear in place of the right word in the
output. So we ask: Does the training set have a spe-
cific bias towards some set of words? To investigate
it, we select the PHOENIX-2014T dataset and pick
the top ten most frequent words and noun phrases
in the predicted translations from the SmolVLM2
model. While we notice several high-frequency
tokens (e.g., und, es, im) appeared consistently
across all sets, words such as stiden and norden
were notably overrepresented in predictions despite
being much less frequent in the test set, and they
were also high frequency words in the training set.
This reflects a tendency of the model to overgener-



ate words that were more prominent in the training
distribution. Similar trends were also observed in
the noun phrase results. A more detailed compari-
son of vocabulary distributions across the predicted,
test, and training sets is provided in Appendix D.
These tendencies of biasness motivated us to
carry out a vocabulary analysis across the training
set of all four datasets and the frequency of each
unique word; details of the analysis are presented in
Table 2. All datasets demonstrated a highly skewed
distribution, with the majority of tokens occurring
fewer than ten times. In particular, over 70% of
the vocabulary in OpenASL and iSign fell into this
low-frequency range. This long-tailed nature of the
data likely contributed to the model’s generation
of high-frequency terms, impacting its ability to
produce rare or diverse words during inference.

Dataset No. of No. of Token Token
Tokens  Unique Token Freq.<10 Freq>100
PHOENIX-2014T 99,081 2,887 2,083 182
How2Sign 41,421 3,577 3,105 65
OpenASL 13,71,021 29,197 21,335 1,561
iSign 13,20,855 33,498 25,304 1,517

Table 6: Vocabulary statistics of different sign language
datasets, including total token counts, number of unique
tokens, and the distribution of rare (frequency < 10) and
frequent (frequency > 100) tokens.

5 How do these results compare to SOTA?

Our findings show that small-scale VLMs, even
with their LMs fine-tuned on sign language data,
fail to achieve competitive performance on stan-
dard sign language translation benchmarks. The
SOTA methods show a BLEU-4 score of 24.32 in
the test set of the PHOENIX-2014T dataset, and
10.11 BLEU-4 on the test set of the How2Sign
dataset (Hwang et al., 2025). While OpenASL is
less explored due to its scale, the BLEU-4 score
on its test set is 7.06 (Lin et al., 2023). iSign is
a more recent dataset that has a SOTA BLEU-4
of 1.47 (Joshi et al., 2024). These numbers are
substantially higher than the scores we obtained.
We observe that the SOTA models employ very
specialized architectures, though mostly based on
transformers, that usually rely on training the vision
encoder using pseudo-gloss (Lin et al., 2023; Gong
et al., 2024) or visual-language pretraining to adapt
the visual encoder to the complexities of sign lan-
guage (Zhou et al., 2023) or designing modules to
precisely capture spatial configurations and motion

dynamics present in sign language (Hwang et al.,
2025). Clearly, general-purpose vision-language
foundation models lack the inductive biases and
task-specific training necessary to capture the spa-
tiotemporal complexities of sign language, and this
cannot be addressed simply by training the LM.
This is likely because the models are exposed to
little or no sign language data during pretraining,
and is also not instruction-tuned on sign language
processing tasks.

6 Ablation Study

Model Parameter Selection and Fine-tuning
Strategy: We investigated three scales of the
SmolVLM?2 model (Marafioti et al., 2025)—256M,
500M, and 2.2B parameters—across various fine-
tuning strategies. Full fine-tuning of the 256M
model yielded poor performance and was therefore
not pursued further. Due to resource constraints,
full fine-tuning of the 500M model was impractical,
so we explored partial strategies: i) tuning only the
vision or language models, ii) sequentially tuning
both, with the connector being trained with the lan-
guage model (LM) and iii) applying LoRA to only
LM while keeping the vision encoder frozen and
fully training the connector.

Model  Fine-tuning

X BLEUI BLEU2 BLEU3 BLEU4 ROUGE-L

Size Strategy

256M Full 112801  3.1971  1.3475 09809  11.5488

500M  LMonly  21.1849 113004 7.0104 57513  20.8966

500M Vision 200229 9.8091 6.1418 4.9888  20.6542
model only

500M V'S"L’;/I‘he" 223600 120529 7.8071 60799  21.9553

500M LoRA forLM 231022 127053 7.8365 6.1264  23.4076

22B LoRAforLM 222051 127622 82799 65134  22.5206

Table 8:  Ablation study comparing different

SmolVLM2 model sizes and fine-tuning strategies on
the PHOENIX-2014T test set (after 5 epochs). We
report BLEU-1 to BLEU-4 and ROUGE-L scores.

The nature of the experimental results in the
third category of experiments of 5S00M, we also
scaled up to a 2.2B model with a similar strategy.
This setup yielded the best overall results (Table 8),
demonstrating that targeted fine-tuning of larger
models led to significant performance gains with-
out incurring the cost of full training.

Effect of Frame Length on Translation Quality:
To maintain compatibility with SmolVLM?2’s ar-
chitectural constraints—specifically, a maximum



Ground Truth: und nun die wettervorhersage fiir morgen freitag den fiinfzehnten oktober
Engligh Translation And now the weather forecast for tomorrow, Friday, October 15th.
SmolVLM?2: und nun die wettervorhersage fiir morgen freitag den dreifigsten mai
English Translation And now the weather forecast for tomorrow, Friday, May 30th.
Qwen2.5-VL: und nun die neue richtung
English Translation And now the new direction.
Ground Truth: und nun die wettervorhersage fiir morgen donnerstag den fiinfzehnten oktober
Engligh Translation And now the weather forecast for tomorrow, Thursday, October 15th.
SmolVLM2: und nun die wettervorhersage fiir morgen montag den achtundzwanzigsten oktober
English Translation And now the weather forecast for tomorrow, Monday, October 28th.
Qwen2.5-VL: und nun die wettervorhersage fiir morgen montag den neunzehnten oktober
English Translation and now the weather forecast for tomorrow, Monday, October 19th.
Ground Truth: am freitag ist es in der nédhe der kiisten und ganz im siiden teilweise stark bewolkt
Engligh Translation On Friday, it will be partly cloudy near the coast and in the far south.
SmolVLM2: am freitag ist es im siiden und osten weiter freundlich im norden regnet es gebietsweise
English Translation ~ On Friday, it will remain pleasant in the south and east, with rain in some areas in the north.
Qwen2.5-VL: und jetzt wiinsche ich ihnen noch einen schonen abend

English Translation

and now I wish you a nice evening.

Table 7: Translation examples from test set of PHOENIX-2014T dataset for the two models. We highlight the errors
in translation in red and the corresponding ground-truth in blue.

of 64 frames at 384p resolution®—we standard-
ized all experiments to 64-frame video inputs. To
assess whether longer sequences improved transla-
tion quality, we fine-tuned Qwen2.5-VL (Bai et al.,
2025) with a context length of 256 frames on the
Phoenix-2014T dataset.

Max BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L
Frames

64 7.8711 3.4272 3.0888 2.784 9.7947

256 6.4473 22679 2.0075 1.7449 7.4508

Table 9: Impact of Input Frame Length on Trans-
lation Performance for Qwen2.5-VL Fine-Tuned on
PHOENIX-2014T

Results in Table 9 show that increasing the frame
count from 64 to 256 consistently reduced perfor-
mance, suggesting that the model is not capable
of accurately processing longer videos. Based on
these findings, we adopted 64-frame inputs for all
models to balance translation quality with compu-
tational efficiency.

7 Conclusion

In this work, we analyse the relevance of off-the-

shelf VLMs in SLT task. Our findings show that

the direct integration of VLM with fine-tuning only
®https://huggingface.co/HuggingFaceTB/

SmolVLM2-2.2B-Instruct/blob/main/preprocessor_
config. json

the language model (and not the vision encoder),
which shows promising results in other domains,
fails to produce satisfactory performance in the
SLT task. This highlights a significant limitation
of foundation models when it comes to the devel-
opment of inclusive Al tools and frameworks. In
particular, it is necessary to incorporate sign lan-
guage understanding objectives in the pretraining
and instruction-tuning phases of these models so
that they can be used with zero or few-shot prompt-
ing for sign language translation and other related
tasks for the more common sign languages, and can
be easily adapted to various other sign languages
with limited fine-tuning.
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Limitations

In this work, we made our architectural choices
and set the video context length based on the re-
source constraints of our computational facility. To
reduce the high computational demand, we kept the
vision model frozen. Although end-to-end training
was not feasible under our current constraints, we
plan to train the vision model separately in future
work and examine whether this leads to improved
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performance. Additionally, we studied the severe
data imbalance present in popular sign language
datasets but did not provide a solution for this issue
in the current work. Our experiments were limited
to two small VLMs and four sign language trans-
lation datasets, which could be expanded in future
work.
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Appendix

This appendix provides additional details and anal-
yses that support our main findings. It includes in-
sights into dataset preparation, translation behavior,
grounding errors, vocabulary analysis, and resource
usage.

Appendix Table of Contents
* A Dataset Selection and Splitting Strategy

B Qualitative Analysis of Translation Results
C Error Patterns in Noun Phrase Grounding

D Vocabulary Bias and Distributional Influ-
ence

E Prompt Used during Training and Testing
F Computational Resources

A Dataset Selection and Splitting
Strategy for iSign

The iSign dataset contains noise at various places.
For example, some videos do not have any human
presence as illustrated in Figure 2, while some have
no valid translation texts. To improve the dataset
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Figure 2: Frames sampled from a video with id
aTB_lu2Im8Y-129 showing no human presence from
1Sign dataset.

quality, we first applied two basic cleanup steps:
removing samples without valid textual translations
and filtering out videos with no visually detectable
human presence using pose estimation.

To efficiently fine-tune a small VLM, we reduced
our dataset from 126,000 to 50,000 video-text pairs.
Rather than applying random sampling, we fol-
lowed a vocabulary-aware strategy as follows. A
vocabulary frequency analysis revealed that over
75% of the words in the dataset occurred fewer
than 10 times. These rare words are essential for
balancing the overall vocabulary spectrum, yet they
also pose a challenge for model generalization. To
strike a balance, we first selected up to 30,000 sam-
ples that contained at least one rare word. We then
sampled an additional 20,000 examples from the
rest of the dataset, which ensures both rare and fre-
quent expressions are present in the data subset we
used.

This method ensures that the model is trained
on a wide vocabulary, especially low-frequency
tokens, while the validation and test sets remain
challenging but not overly skewed toward rare or
unseen words. The result is a dataset that better
supports robust and generalizable model training.

B Qualitative Analysis of Translation
Results.

As shown in Tables 10 and 11, we provide a few
representative translation outputs from the Ope-
nASL and iSign datasets. While the overall trans-
lation quality across both models is poor, we in-
clude a mix of relatively better and worse exam-
ples to highlight common trends. In many cases,
outputs fail to preserve critical entities or seman-
tic meaning, underscoring the challenges of sign
language translation in current settings. Although
SmolVLM?2 tends to generate slightly better trans-
lation in some cases, the overall performance of
both models shows poor quality translation.



Ground Truth: T am Ed Bosson, and I am 67 years old and now retired.

learning challenge: SmolVLM2 generates fluent

SmolVLM2: Hello, my name is E. Simmons and I am a retired school administrator.
Quen2.5-VL: U'm Ez Sussy. text but struggles to produce the correct entities
. We are also supporting efforts of DeafBlind people to develop hospital access . . . .
Ground Truth: because their needs are different from other deaf and hard of hearing people. m many cases. GIOSS ldentlﬁcatlon by the InOdel
. The IDEA has been in place since 1975, and with the passing of the EHDI Act . . .
SmolVLM2: in 2007, all deaf and hard of hearing children have a birth stage in education. ShOUId be lmproved tO reduce SUCh halll’IClnatlonS‘
Qwen2.5-VL: I will show you how to do it.
Ground Truth: Thank you! Noun Phrase PHOENIX-2014T
SmolVLM2: Congratulations!
Qwen2.5-VL: Congrats and Congratulations! Ground Truth "skandinavien", "wolken"
Ground Truth: I'm Crystal Cousineau (English Translation) ("Scandinavia", "clouds")
SmolVLM?2: I'm Crystal Cousineau Predicted (SmolVLM2) "alpen", "norden", "nacht", "schnee"
Qwen2.5-VL: CRY. (English Translation) ("alps", "north", "night", "snow")
Ground Truth: The gunman is behind bars being held without bail Ground Truth "westen", "sonne"
SmolVLM2: It took about that same lir?e for his m:fl?er to ge.t down on one knee and say (English Translation) ("west", "sun")
VTlove you\" in Spanish. Predicted (SmolVLM2) "westen", "einzelne schauer", "nordwesten"
Qwen2.5-VL: The suspect was arrested and is 17 years old (English Translation) ("west", "isolated showers", "northwest")
Ground Truth: I’m Candace Jones. .
SmolVLM2: Thank you for watching Sign1News. G_r(vlundl'l'rvl.!'th. ”HEUI?LdeWar-lZIgSleI‘I OktoPef", 'jWetlervor?evriage”
Qwen2.5-VL: I'm Crystal Cousineau. (English Translation) ("twenty-ninth October", "weather forecast")

Table 10: Translation examples from test set of Ope-
nASL dataset, where we highlight the partial matches
in blue.

Ground Truth: What is the RAT test?
SmolVLM2: The cost of the surgery is around Rs 2 lakhs.
Qwen2.5-VL: and now there is an update
Ground Truth: Have a look at images.
SmolVLM?2: Have a look at images.
Qwen2.5-VL: She is a 30 year old woman
Ground Truth:  The priest sanctified the church with a special ceremony.
SmolVLM2:  The priest sanctified the church with a special ceremony.
Qwen2.5-VL: The priest sanctified the church with a
he i i hould onl h
Ground Truth: and the mgredl‘ent.s shou 'd only be added when
the fire is burning properly
SmolVLM2: so that you can get all your essential nutrients
ISH NEWS has already made a video on this,
2.5-VL: .
Qwen2.5 you can watch it on our YouTube channel.
Ground Truth: People can not step out for frivolous matters.
SmolVLM2: on flights to and from the UK said that,
Qwen2.5-VL: People can not step out for frivolous matters.
Ground Truth: the process of getting something
SmolVLM2: the process of getting something that you want
Qwen2.5-VL: acquisition noun

Table 11: Translation examples from test set of iSign
dataset, where we highlight the partial matches in blue.

C Error Patterns in Noun Phrase

The qualitative examples in Tables 12 and 13 high-
light a limitation in SmolVLM2’s ability to reli-
ably identify and preserve key noun phrases dur-
ing translation. We present a few examples in the
PHOENIX-2014T and OpenASL datasets, which
show that the model often substituted critical en-
tities with semantically plausible but incorrect al-
ternatives (e.g., "rehabilitation act" — "education
program”, "Scandinavia" — "alps"). In some cases,
like for “july” and “freitag”, the entities are cor-
rectly identified, yet the model frequently misses
domain-relevant constructs (e.g., legal terms, geo-
graphic regions) that are essential for meaningful
interpretation. These patterns point to a broader

Predicted (SmolVLM?2)
(English Translation)

"fiinften dezember", "wettervorhersage"
("fifth of December", "weather forecast'")

Ground Truth "nordwesten deutschlands”, "ostsee"
(English Translation) ("northwest Germany", "Baltic Sea")

Predicted (SmolVLM2) "westen", "kurzen wetterberuhigung", "neuer tiefauslaufer"
(English Translation) ("west", "brief weather calm", "new low pressure system")
Ground Truth "norden", "alpen", "freitag", "siden", "einzelne schauer”
(English Translation) ("north", "alps", "friday", "south", "isolated showers")
Predicted (SmolVLM?2) "freitag", "einzelne schauer", "sonne", "lingere zeit"
(English Translation) ("Friday", "isolated showers", "sun", "longer period")

Table 12: Comparison of extracted noun phrases
from ground truth and SmolVLM?2 predictions in the
PHOENIX-2014T dataset. Matching entities are high-
lighted in blue.

Noun Phrase

Ground Truth
Predicted (SmolVLM2) "chi
Ground Truth
Predicted (SmolVLM2)

"issues", "demands", "city"
"conference", "hartford", "ndec", "deaf education conference"

Ground Truth "employers", "state laws", "employees"
Predicted (SmolVLM2) "license", "driver", "people”
Ground Truth "soil"

Predicted (SmolVLM2)

Ground Truth
Predicted (SmolVLM2)

"everything", "earth”, "flowers", "thing", "mindset", "trees", "nature", "plants"

"july", "wednesday", "plan”, "board"

Table 13: Examples from the OpenASL test set illus-
trating matches and mismatches between ground-truth
and predicted noun phrases. Matched entities are high-
lighted in blue. SmolVLM2 rarely aligns correctly (e.g.,
“july”); frequently it hallucinates incorrect content.

D Vocabulary Bias and Distributional
Influence

Tables 14 shows some of the most frequent noun
phrases in the predicted text (for the test set), and
their actual frequency in the ground-truth transla-
tions (for the same test set) and in the training
set. We observe that many top-predicted noun
phrases, such as siiden, norden, and tag, have
higher frequencies in the predicted set than in the
ground-truth test set, and they also have relatively
higher frequency in the training set. Similarly, Ta-
ble 15 shows the most frequent noun phrases in the
ground-truth translations (in the test set), and their
frequencies in the model’s output, the ground-truth



test set, and in the training set. We observe the
same pattern that the more frequent words in the
training data were over-represented in the model’s
output. This is a classic example of data imbal-
ance, which makes model training very challenging.
These biases in the dataset should be addressed so
that model training can be done effectively.

Noun Phrase Predicted Freq Test Freq Train Freq

es 191 110 1419

siiden 106 50 653
norden 67 54 628

tag 62 31 422

uns 48 37 331
wettervorhersage 43 42 354
osten 41 30 418

sich 40 70 822
montag 32 17 194
westen 31 35 520

Table 14: Top 10 noun phrases from the predicted out-
puts with their frequencies in the predicted, test, and
training sets.

Noun Phrase Predicted Freq Test Freq Train Freq

es 191 110 1419

sich 40 70 822
norden 67 54 628
siiden 106 50 653
wettervorhersage 43 42 354
uns 48 37 331
westen 31 35 520

tag 62 31 422

osten 41 30 418
samstag 28 28 242

Table 15: Top 10 noun phrases from the test set along
with their frequency in the predicted and training sets.

Overall, these analyses indicate that training-
induced vocabulary bias significantly influenced
generation quality. The model often preferred fre-
quent but potentially irrelevant tokens, leading to
degraded semantic precision. These findings under-
line the need for frequency-aware modeling strate-
gies, particularly for low-resource and long-tailed
sign language datasets.
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E Prompt Used

The prompts used to fine-tune both of our models,

and also during inference, are present in the Table
16.

Dataset Prompt

Ubersetzen Sie das Video in deutscher
Gebirdensprache in deutschen Text (gesprochene Sprache).
Translate the German Sign Language
video into German text (spoken language).

DGS (PHOENIX-2014T)

English Translation

ASL (How2Sign and OpenASL) Translate the English sign language video into spoken text.
ISL (iSign)

Translate the Indian sign language video into spoken text.

Table 16: The prompt used across different datasets, for
fine-tuning and inference.

F Computational Resources

We conducted our experiments on a workstation
with Intel® Xeon® Processor ICX 6326 @ 2.9
GHz, 16 Cores, 32 Threads, 256.0 GB RAM,
NVIDIA A100 GPU, CUDA Version: 12.6, and
Ubuntu 22.04 operating system.
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