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Abstract001

Vision-Language Models (VLMs) have shown002
strong generalization across multimodal tasks,003
but their capacity to handle sign lan-004
guage translation (SLT)—which requires fine-005
grained spatiotemporal reasoning and linguis-006
tic understanding—remains unclear. In this007
study, we evaluate whether small-scale VLMs008
(≤3B parameters) can perform SLT effectively.009
We conduct supervised fine-tuning using mul-010
tilingual sign language datasets—DGS, ASL,011
and ISL—adopting parameter-efficient LoRA012
tuning applied to the language decoder, while013
keeping the vision encoder frozen and allow-014
ing the connector to be trainable. To evalu-015
ate translation quality, we propose entity- and016
semantics-aware metrics tailored for SLT. We017
highlight the data imbalance issues present018
in the above widely used SLT datasets. Our019
analysis highlights the limitations in applying020
general-purpose VLMs to SLT, unlike their ap-021
plicability in other tasks, and provides insights022
to inform future development of VLMs for SLP,023
which is essential for building inclusive AI ap-024
plications.025

1 Introduction026

Sign language serves as a vital mode of commu-027

nication for the Deaf and Hard of Hearing (DHH)028

community, encompassing both manual compo-029

nents (e.g., hand gestures) and non-manual cues030

such as facial expressions, body posture, and eye031

gaze (Boyes Braem and Sutton-Spence, 2001). Ac-032

cording to the World Health Organization1, over033

700 million people are expected to experience dis-034

abling hearing loss by 2050. To bridge the commu-035

nication gap between DHH individuals and hear-036

ing populations, Sign Language Translation (SLT)037

aims to translate sign language videos into spo-038

ken or written text. However, the diversity of039

sign languages, each with unique grammar and040

1https://www.who.int/news-room/fact-sheets/
detail/deafness-and-hearing-loss

regional variations, alongside their rich spatio- 041

temporal structure, poses substantial challenges 042

and is, therefore, attracting increasing attention 043

from the deep learning community. Indeed, re- 044

searchers have strongly advocated the development 045

of NLP tools for sign language understanding (Yin 046

et al., 2021). 047

Unlike Sign Language Recognition (SLR), 048

which predicts glosses or isolated labels, SLT re- 049

quires models to capture the semantic, temporal, 050

and syntactic intricacies of continuous signing. 051

SLT methods typically fall into two categories: 052

gloss-based and gloss-free. The former follows 053

a two-step pipeline that first predicts glosses and 054

then translates them into natural language (Cam- 055

goz et al., 2018, 2020; Zhou et al., 2021; Chen 056

et al., 2022a; Zhou et al., 2022; Chen et al., 2022b), 057

whereas the latter directly generates the translation 058

bypassing the direct involvement of gloss annota- 059

tion (Lin et al., 2023; Gong et al., 2024; Wong 060

et al., 2024). Recent progress has been driven 061

by transformer-based architectures (Vaswani et al., 062

2017) that take a visual sequence as input into a 063

spatio-temporal encoder and generate a context- 064

aware translation with a decoder which is essen- 065

tially a large language model (LLM) (Gong et al., 066

2024; Jang et al., 2025; Wong et al., 2024). 067

Recent advancements in LLMs such as GPT-3 068

(Brown et al., 2020) and LLaMA (Touvron et al., 069

2023) demonstrated strong language understanding, 070

reasoning, and multilingual translation by leverag- 071

ing large-scale web corpora. Building on these 072

capabilities, vision-language models (VLMs) like 073

CLIP (Radford et al., 2021), BLIP (Li et al., 2022), 074

LLaVA (Liu et al., 2023), and Qwen2.5-VL (Bai 075

et al., 2025) aligned visual content with textual se- 076

mantics and achieved state-of-the-art results across 077

several multimodal tasks, demonstrating strong 078

temporal and visual reasoning – skills also essen- 079

tial for SLT. Although scaling model size has led to 080

performance gains across many domains (Chowd- 081
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hery et al., 2023; Alayrac et al., 2022; Liu et al.,082

2023), these large models often require consider-083

able computational resources and are difficult to084

deploy in real-world or low-resource settings. This085

led the research interest in more efficient and scal-086

able architectures.087

Motivated by the advancement in both fields, we088

aim to investigate whether the multimodal or vi-089

sual language models (Yin et al., 2024; Caffagni090

et al., 2024) can perform SLT effectively. In par-091

ticular, we conduct supervised fine-tuning of off-092

the-shelf small-scale VLMs with a frozen visual093

model, trainable connector (modality aligner), and094

a LoRA tunable language model. Note that this095

fine-tuning methodology has shown a promising096

performance in several challenging tasks like ra-097

diology report generation (Chen et al., 2025; Ka-098

padnis et al., 2024; He et al., 2025) and science099

question-answering (Kim et al., 2023). We also100

note that full fine-tuning of the VLM is compu-101

tationally very expensive and infeasible with our102

infrastructure. Thus, our central research question103

is, Can small-scale vision-language models, origi-104

nally trained for generic video-language tasks, be105

effectively adapted for the specialized task of sign106

language translation? This question is particularly107

challenging because SLT is significantly different108

from usual video understanding tasks like caption-109

ing and question-answering.110

In this work, we present the first systematic eval-111

uation of general-purpose small VLMs for SLT,112

revealing that these models fall severely short of113

specialized SLT systems. Our key contributions114

are: (i) We conducted comprehensive experiments115

with four sign language datasets and two small116

VLMs across model sizes and fine-tuning types un-117

der resource-constrained settings where the vision118

encoder is frozen; (ii) Our experiments demonstrate119

consistent underperformance of VLMs in SLT;120

(iii) We uncover vocabulary biases in benchmark121

datasets that influence model outputs; and (iv) We122

introduce two targeted evaluation metrics, transla-123

tion soft-recall and psuedo-gloss entity-recall, to124

better capture the semantic fidelity in SLT outputs.125

We will publicly release our code (upon acceptance126

of our manuscript).127

2 Related Work128

2.1 Sign Language Translation129

Recent advances in SLT have transitioned from130

early RNN-based architectures to Transformer-131

based models (Vaswani et al., 2017), to better cap- 132

ture long-range dependencies in video sequences 133

(Camgoz et al., 2018, 2020). Early approaches typ- 134

ically followed a gloss-based pipeline, first trans- 135

lating videos into intermediate glosses and then 136

generating natural language text. These methods 137

were enhanced through spatial-temporal model- 138

ing (Zhou et al., 2022), hierarchical representa- 139

tions (LI et al., 2020), two-stream architectures 140

(Chen et al., 2022b), and hand-aware representa- 141

tion learning (Hu et al., 2021, 2023). However, 142

the reliance on annotated glosses limited scalabil- 143

ity, prompting a shift toward gloss-free approaches 144

that directly map videos to text. These include 145

attention-based encoders (Lin et al., 2023; Yin 146

et al., 2023), contrastive learning (Gan et al., 2023), 147

dense representation modeling (Ye et al., 2024), 148

and keypoint-driven models (Chen et al., 2022a). 149

Recent works have developed customized VLMs 150

for direct gloss-free translation by aligning visual 151

features with frozen language models (Gong et al., 152

2024; Wong et al., 2024; Hwang et al., 2025), sup- 153

ported by factorized adaptation (Chen et al., 2024), 154

contextual reasoning (Jang et al., 2025), and video- 155

language alignment pretraining (Jiao et al., 2025). 156

Several studies also explored multilingual and con- 157

tinual learning settings (Yazdani et al., 2025; Zhang 158

et al., 2024). Common datasets include PHOENIX- 159

2014T (German) (Camgoz et al., 2018), How2Sign 160

(American Sign Language) (Duarte et al., 2021), 161

and OpenASL (ASL) (Shi et al., 2022). 162

2.2 Vision-Language Models 163

Following the success of LLMs like GPT-3 and 164

LLaMA, researchers have attempted to incorporate 165

multiple modalities beyond text into the founda- 166

tion models. Multimodal large language models 167

(MLLMs) and VLMs have emerged as their natural 168

successor (Caffagni et al., 2024), and they sup- 169

port downstream tasks such as video captioning 170

(Nadeem et al., 2024), video question answering 171

(Zou et al., 2024; Xiao et al., 2024; Wang et al., 172

2025), and long video understanding (Ranasinghe 173

et al., 2025), where cross-modal and temporal align- 174

ment is essential. These tasks can be achieved by 175

zero or few-shot prompting. Fine-tuning, if neces- 176

sary, is generally done on the LLM and the con- 177

nector between the visual encoder and text decoder 178

(Li et al., 2023; Yin et al., 2024). Recent research 179

has also focused on developing smaller VLMs like 180

SmolVLM2 (Marafioti et al., 2025), BLIP-2 (Li 181

et al., 2023), TinyLLaVA (Zhou et al., 2024), and 182
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Qwen-2.5B-VL (Bai et al., 2025), which contain183

fewer than 3B parameters, which are attractive for184

resource-constrained and real-time deployments.185

However, it is unclear whether these models are186

suitable for SLT, and the papers that introduce these187

models do not mention if they have been trained188

or evaluated for sign language processing tasks189

despite their importance in creating inclusive AI190

systems. This paper aims to address that gap.191

3 Method192

3.1 Overview193

Given a sign language video V = [f1, f2, · · · , fT ]194

with a sequence of T frames, the goal of SLT195

is to generate a spoken language sentence Y =196

[w1, w2, · · · , wS ], where S ≪ T . Unlike recent197

works that design specialized transformer-based198

models to convert V to Y , we explore whether199

off-the-shelf VLMs, supporting video inputs, are200

suitable for this purpose since they are already pre-201

trained on large visual-text corpora. We choose202

small VLMs as they are more resource-friendly.203

Our model, shown in Figure 1, consists of a frozen204

vision encoder, a trainable connector which is a205

multi-layered perceptron, and a language model206

(LM). While the vision model extracts frame-level207

features from V , the connector projects them into208

the language embedding space, and the LM gener-209

ates the final spoken language text. The connector210

is trained and the LM is fine-tuned.211

3.2 VLM Selection.212

We have selected two recent VLMs that strike a213

balance between efficiency and performance. The214

first is SmolVLM2 (Marafioti et al., 2025), a 2.2B215

parameter model designed for edge deployment,216

known for its lightweight architecture and strong217

multimodal capabilities. SmolVLM2 is built on218

Idefics3 (Laurençon et al., 2024), comprising a 27-219

layer SigLIP-SO400M (Zhai et al., 2023) vision en-220

coder and a 24-layer LLaMA 3.1 (Grattafiori et al.,221

2024) language model, connected via an MLP-222

based modality bridge. SmolVLM2 2.2B model223

achieves state-of-the-art performance on many im-224

age and video understanding tasks among open-225

weights models of similar scale, while being more226

resource-efficient (Marafioti et al., 2025). The sec-227

ond model we choose is Qwen2.5-VL (Bai et al.,228

2025), a 3B parameter architecture that integrates229

a 32-layer Vision Transformer (ViT) with efficient230

windowed attention and a 36-layer Qwen2.5 lan-231

guage model. Like SmolVLM2, it employs an 232

MLP-based connector to merge visual and linguis- 233

tic representations effectively. 234

3.3 Frame Sampling Strategy 235

Sign language videos vary widely in duration, with 236

sequences ranging from a few frames to several 237

hundred. However, the VLMs used in this study, 238

namely, SmolVLM2 and Qwen2.5-VL, have a 239

short context size (e.g., 8K tokens for SmolVLM2) 240

which constrains the number of video frames to, 241

say, Tmax, depending on the size of the input im- 242

age patches and the model’s internal architecture 243

(e.g., 64 for SmolVLM2 with default settings). The 244

model features are shown in Table 1. 245

To ensure that each video is processed efficiently 246

within this limit, we judiciously select a frame 247

count Tmax based on the model’s capacity and the 248

video length distribution. In particular, given a 249

video with T total frames, where T > Tmax, we di- 250

vide the sequence into Tmax equal-length intervals 251

and select one representative frame per interval. 252

The representative frame fi in each interval is se- 253

lected deterministically using: 254

fi = frames

[⌊
(i+ 1) · T

Tmax

⌋
− 1

]
, 255

i = 0, 1, . . . , Tmax − 1. 256

where frames[·] denotes frames whose indices ap- 257

pear in [·]. This ensures a uniform spread of se- 258

lected frames across the entire video duration. If 259

T ≤ Tmax, we retain all frames without modifica- 260

tion. 261

Note that we do not use random skipping as it 262

may drop critical frames, disrupting semantic con- 263

tinuity. The final output is a list of Tmax or fewer 264

frames, sampled in a way that balances global cov- 265

erage and local coherence. Our design choice en- 266

sures fair and consistent evaluation across variable- 267

length sign language videos while adhering to the 268

strict frame limits imposed by our chosen VLMs. 269

3.4 Finetuning VLMs 270

The language models were tuned using the 271

parameter-efficient Low-Rank Adaptation (LoRA) 272

method (Hu et al., 2022), which allowed us to 273

update only a small subset of parameters while 274

maintaining the general linguistic capabilities of 275

the models. We observed consistent performance 276

improvements with the use of LoRA over full 277
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Figure 1: Overview of our vision-language model archi-
tecture for sign language translation.

fine-tuning (see Table 8), particularly in resource-278

constrained settings. Note that the encoder was279

kept frozen while the connector was trained along280

with the LM.281

Model
No. of

Parameters
Vision Model
(No. of layers)

Language Model
(No. of layers)

Input
Context
Length

SmolVLM2 2.2B SigLIP (27)
LLaMA-3.1

(3.1)
8K

Qwen2.5-VL 3B ViT (32)
Qwen2.5LM

(36)
32K

Table 1: Overview of Selected VLM Architectures

4 Experiments282

4.1 Datasets283

We evaluated our approach on four publicly avail-284

able sign language translation datasets spanning285

German, American, and Indian sign languages.286

While some of these datasets included intermedi-287

ate gloss annotations (e.g., PHOENIX-2014T), our288

training does not rely on gloss supervision. Instead,289

we focus on learning a direct mapping from sign290

language videos to natural language text.291

German Sign Language (DGS): The RWTH-292

PHOENIX-Weather 2014T dataset (Camgoz et al.,293

2018) serves as a standard benchmark for DGS294

translation. It consists of 7,096 training, 519 vali-295

dation, and 642 test samples aligned with German296

sentences. With a vocabulary of 2,887 words, it297

captures weather forecast scenarios performed by298

professional interpreters on television.299

American Sign Language (ASL): OpenASL (Shi300

et al., 2022) is a large-scale ASL dataset collected301

from online videos across a wide range of topics.302

It includes 98,417 video-sentence pairs, featuring303

over 200 signers, of which 966 samples are re- 304

served for validation and 975 for testing. We also 305

use the How2Sign (Duarte et al., 2021) dataset, 306

which provides around 120 hours of ASL con- 307

tent derived from instructional videos, with 31,128 308

training, 1,741 validation, and 2,322 test samples. 309

It includes multi-view videos and additional modal- 310

ities such as speech, keypoints, and depth maps. 311

Indian Sign Language (ISL): iSign (Joshi et al., 312

2024) is a recently introduced large-scale dataset 313

for Indian Sign Language, offering over 127K 314

sentence-aligned signing videos from diverse, real- 315

world contexts. Due to its scale, we carefully select 316

a subset of 50K examples: 43K for training and 317

3.5K each for validation and test, preserving lin- 318

guistic diversity while ensuring that the sample size 319

is not too large to train our models. More details of 320

the selection process are provided in Appendix A. 321

4.2 Evaluation Metrics 322

Standard Metrics. To evaluate the translation 323

quality of sign language outputs, we have used 324

standard metrics widely adopted in the machine 325

translation literature: BLEU (Papineni et al., 2002) 326

and ROUGE-L (Lin and Och, 2004). BLEU cap- 327

tures n-gram precision by comparing predicted 328

translations to ground-truth references, and we re- 329

ported scores from BLEU-1 through BLEU-4 using 330

the SacreBLEU2 implementation. ROUGE-L mea- 331

sures the longest common subsequence between 332

the prediction and reference; it captures how well 333

the predicted sentence preserves the sequence of 334

the target, without requiring a predefined n-gram 335

length. 336

Semantic Fidelity in SLT. Given the generative 337

properties of LMs, it is possible that the LM’s 338

output does not match the ground-truth translation 339

but is still semantically correct. To capture this 340

aspect, we introduce two metrics: Translation 341

Soft Recall (TSR) and Pseudo-Gloss Entity 342

Recall (PGER), which are adaptations of Heading 343

Soft Recall (Fränti and Mariescu-Istodor, 2023) 344

and Heading Entity Recall (Shao et al., 2024), 345

respectively. The former computes semantic 346

similarity between predicted and reference 347

sentences using cosine similarity of embeddings 348

from the multilingual Sentence Transformer model 349

paraphrase-multilingual-MiniLM-L12-v23. 350

2https://github.com/mjpost/sacrebleu
3https://huggingface.co/sentence-transformers/

paraphrase-multilingual-MiniLM-L12-v2
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This captures meaning beyond exact wording351

and can better handle paraphrase variations. The352

PGER metric is motivated by the observation353

that signers often emphasize key content words354

such as nouns, verbs, and adjectives. We extract355

these entities using FLAIR (Akbik et al., 2019)356

part-of-speech tagging and compute their overlap357

between prediction and reference, treating them as358

proxies for underlying glosses.359

C(Z) =

|Z|∑
i=1

1∑|Z|
j=1 Sim(Zi, Zj)

(1)360

TSR(Y, Ŷ ) =
C(Y ) + C(Ŷ )− C(Y ∪ Ŷ )

C(Ŷ )
(2)361

PGER(Y, Ŷ ) =
|Ent(Y ) ∩ Ent(Ŷ )|

|Ent(Y )|
(3)362

Here, Y and Ŷ represent the ground truth and363

predicted translations, respectively. Ent(·) denotes364

the set of entities extracted from a translation. C(Z)365

refers to the soft cardinality of the set Z (Fränti and366

Mariescu-Istodor, 2023). The function Sim(·, ·)367

computes the cosine similarity between the embed-368

dings of word Zi and Zj within the same transla-369

tion. These metrics quantify how well a model pre-370

serves meaning while using words different from371

those in the golden output. To our knowledge, this372

is the first application of such entity- and semantics-373

aware metrics in SLT, providing deeper insights374

into translation faithfulness.375

4.3 Implementation Details376

Our implementation has been done on the PyTorch377

framework, and experiments were conducted us-378

ing a single NVIDIA A100 GPU. A more detailed379

system specification is provided in the Appendix380

F.381

Network Details. We fine-tuned two open-382

source VLMS from Hugging Face repository:383

SmolVLM2-2.2B-Instruct4 and Qwen2.5-VL-3B-384

Instruct5. Both models were trained for 10 epochs,385

using sampled video inputs of length Tmax = 64386

frames. Frame statistics for all datasets are de-387

tailed in Table 2. We froze the vision encoder in388

both cases and kept a lightweight connector module389

4https://huggingface.co/HuggingFaceTB/
SmolVLM2-2.2B-Instruct

5https://huggingface.co/Qwen/Qwen2.
5-VL-3B-Instruct

fully trainable. We applied LoRA-based parameter- 390

efficient fine-tuning to the language model, specif- 391

ically targeting the attention and MLP projection 392

layers. Following the default settings in each case, 393

(1) for SmolVLM2, we used a LoRA rank of 394

r = 64, scaling factor α = 64, and a dropout 395

of 0.1; (2) For Qwen2.5-VL-3B, we used the same 396

LoRA rank and scaling factor but a dropout of 0.05. 397

Dataset
Total
videos

Avg.
frame count

Frame count
> 300

PHOENIX-2014T 7,096 116.59 23
How2Sign 31,047 162.76 3,772
OpenASL 97,233 205.25 24,752

iSign 127,237 209.08 23,767

Table 2: Video-level statistics across different datasets
used in our experiments. We report the total number of
videos, the average number of frames per video, and the
number of videos with more than 300 frames.

Training and Inference Details. We trained the 398

models using the Hugging Face Trainer, with 399

FlashAttention-2 enabled and all computations per- 400

formed in bfloat16 precision. For SmolVLM2, 401

we used the AdamW optimizer with a learning rate 402

of 1×10−4, a per-device batch size of 1, and gradi- 403

ent accumulation steps of 4. For Qwen2.5-VL-3B, 404

we adopted a cosine learning rate schedule with a 405

base learning rate of 1× 10−5, also applied to the 406

connector; the batch size and gradient accumula- 407

tion settings remained unchanged. For both models, 408

during inference, we set the maximum generation 409

length to 128 tokens and applied greedy decoding 410

to preserve alignment between video semantics and 411

textual output. The prompt used for fine-tuning and 412

inference is presented in Appendix E. 413

4.4 Results 414

Table 3 reports the evaluation results using BLEU 415

(1–4) and ROUGE-L scores on the validation 416

(val or dev) and test sets for the four selected 417

datasets and the two selected models. SmolVLM2 418

consistently outperformed Qwen2.5-VL across 419

all datasets. On PHOENIX-2014T, SmolVLM2 420

achieved a BLEU-4 score of 8.43 on the test set, 421

significantly higher than Qwen2.5-VL’s 2.78. Sim- 422

ilar improvements were observed on How2Sign, 423

OpenASL, and iSign, with SmolVLM2 producing 424

consistently higher BLEU and ROUGE scores. 425

To assess translation quality at a deeper semantic 426

level, we adopted Pseudo-Gloss Entity Recall and 427

Translation Soft Recall. Results in Table 4 and Ta- 428
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RWTH-PHOENIX-Weather 2014T (German Sign Language)

Model
Dev Set Test Set

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

SmolVLM2 25.53 15.51 10.11 7.80 25.91 24.15 14.89 10.16 8.44 24.51
Qwen2.5-VL 7.62 3.25 2.98 2.56 9.98 7.87 3.43 3.09 2.78 9.79

How2Sign (American Sign Language)

SmolVLM2 6.83 1.46 0.23 0.04 8.38 6.84 1.56 0.28 0.06 8.38
Qwen2.5-VL 2.45 0.74 0.21 0.01 4.83 2.80 0.75 0.18 0.02 5.05

OpenASL (American Sign Language)

SmolVLM2 7.64 1.91 1.05 0.79 8.47 7.06 1.20 0.60 0.41 7.78
Qwen2.5-VL 3.24 0.30 0.11 0.01 4.31 3.52 0.29 0.08 0.07 4.46

iSign (Indian Sign Language)

SmolVLM2 7.47 1.27 0.60 0.39 8.09 7.59 1.37 0.65 0.44 8.21
Qwen2.5-VL 2.48 0.27 0.15 0.13 3.85 2.51 0.33 0.22 0.18 3.87

Table 3: Sign language translation results across four datasets in German (RWTH-PHOENIX-Weather 2014T),
American (How2Sign, OpenASL), and Indian (iSign) sign languages. We report BLEU (1–4) and ROUGE-L scores
for both validation (Dev) and test sets using SmolVLM2 and Qwen2.5-VL.

ble 5 show that SmolVLM2 produces higher scores429

in all cases.430

Thus, SmolVLM2 consistently outperformed431

Qwen2.5-VL across all datasets on both lexical432

and semantic-level metrics. It can be observed433

the BLEU and ROUGE-L scores for all datasets,434

except PHOENIX-14T, are very low. Therefore, for435

ASL and ISL datasets, the generated translations436

are of extremely poor quality. Hence, we peform437

further analysis only on PHOENIX-14T.438

Model
PHOENIX

-2014T
How2Sign OpenASL iSign

SmolVLM2 0.1372 0.0678 0.0318 0.0190

Qwen2.5-VL 0.0221 0.0428 0.0128 0.0143

Table 4: Pseudo-Gloss Entity Recall (PGER) based on
key content words (noun, verb, adjective) on test sets.
Higher is better.

Model
PHOENIX

-2014T
How2Sign OpenASL iSign

SmolVLM2 0.7422 0.3102 0.2538 0.2611

Qwen2.5-VL 0.4857 0.3091 0.179 0.1195

Table 5: Translation Soft Recall (TSR) scores on test
sets across datasets. Higher is better.

4.4.1 Qualitative Analysis of Translation439

Results440

We examine a few cases from PHOENIX-2014T441

test set to understand the types of errors commit-442

ted by SmolVLM2. The cases displayed in Table443

7 reveals two recurring types of translation errors. 444

First, the model frequently failed at entity ground- 445

ing, for example, misidentifying specific dates or 446

days (e.g., predicting May 30th instead of the cor- 447

rect October 15th). Second, it often hallucinated 448

semantically plausible but incorrect content—such 449

as adding weather details like “rain in the north,” 450

that were absent in the reference. These patterns in- 451

dicate that translation of the SmolVLM2 frequently 452

lacked precise alignment between the visual input 453

and the target linguistic output. Additional results 454

on various datasets are provided in Appendix B 455

while a more detailed breakdown focused on noun- 456

phrase-level performance and qualitative examples 457

appear in Appendix C. 458

4.4.2 Vocabulary Bias and Overfitting 459

Tendencies 460

We have observed that some words are very fre- 461

quently present in the generated translation, and 462

they often appear in place of the right word in the 463

output. So we ask: Does the training set have a spe- 464

cific bias towards some set of words? To investigate 465

it, we select the PHOENIX-2014T dataset and pick 466

the top ten most frequent words and noun phrases 467

in the predicted translations from the SmolVLM2 468

model. While we notice several high-frequency 469

tokens (e.g., und, es, im) appeared consistently 470

across all sets, words such as süden and norden 471

were notably overrepresented in predictions despite 472

being much less frequent in the test set, and they 473

were also high frequency words in the training set. 474

This reflects a tendency of the model to overgener- 475
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ate words that were more prominent in the training476

distribution. Similar trends were also observed in477

the noun phrase results. A more detailed compari-478

son of vocabulary distributions across the predicted,479

test, and training sets is provided in Appendix D.480

These tendencies of biasness motivated us to481

carry out a vocabulary analysis across the training482

set of all four datasets and the frequency of each483

unique word; details of the analysis are presented in484

Table 2. All datasets demonstrated a highly skewed485

distribution, with the majority of tokens occurring486

fewer than ten times. In particular, over 70% of487

the vocabulary in OpenASL and iSign fell into this488

low-frequency range. This long-tailed nature of the489

data likely contributed to the model’s generation490

of high-frequency terms, impacting its ability to491

produce rare or diverse words during inference.492

Dataset
No. of
Tokens

No. of
Unique Token

Token
Freq.<10

Token
Freq >100

PHOENIX-2014T 99,081 2,887 2,083 182

How2Sign 41,421 3,577 3,105 65

OpenASL 13,71,021 29,197 21,335 1,561

iSign 13,20,855 33,498 25,304 1,517

Table 6: Vocabulary statistics of different sign language
datasets, including total token counts, number of unique
tokens, and the distribution of rare (frequency < 10) and
frequent (frequency > 100) tokens.

5 How do these results compare to SOTA?493

Our findings show that small-scale VLMs, even494

with their LMs fine-tuned on sign language data,495

fail to achieve competitive performance on stan-496

dard sign language translation benchmarks. The497

SOTA methods show a BLEU-4 score of 24.32 in498

the test set of the PHOENIX-2014T dataset, and499

10.11 BLEU-4 on the test set of the How2Sign500

dataset (Hwang et al., 2025). While OpenASL is501

less explored due to its scale, the BLEU-4 score502

on its test set is 7.06 (Lin et al., 2023). iSign is503

a more recent dataset that has a SOTA BLEU-4504

of 1.47 (Joshi et al., 2024). These numbers are505

substantially higher than the scores we obtained.506

We observe that the SOTA models employ very507

specialized architectures, though mostly based on508

transformers, that usually rely on training the vision509

encoder using pseudo-gloss (Lin et al., 2023; Gong510

et al., 2024) or visual-language pretraining to adapt511

the visual encoder to the complexities of sign lan-512

guage (Zhou et al., 2023) or designing modules to513

precisely capture spatial configurations and motion514

dynamics present in sign language (Hwang et al., 515

2025). Clearly, general-purpose vision-language 516

foundation models lack the inductive biases and 517

task-specific training necessary to capture the spa- 518

tiotemporal complexities of sign language, and this 519

cannot be addressed simply by training the LM. 520

This is likely because the models are exposed to 521

little or no sign language data during pretraining, 522

and is also not instruction-tuned on sign language 523

processing tasks. 524

6 Ablation Study 525

Model Parameter Selection and Fine-tuning 526

Strategy: We investigated three scales of the 527

SmolVLM2 model (Marafioti et al., 2025)—256M, 528

500M, and 2.2B parameters—across various fine- 529

tuning strategies. Full fine-tuning of the 256M 530

model yielded poor performance and was therefore 531

not pursued further. Due to resource constraints, 532

full fine-tuning of the 500M model was impractical, 533

so we explored partial strategies: i) tuning only the 534

vision or language models, ii) sequentially tuning 535

both, with the connector being trained with the lan- 536

guage model (LM) and iii) applying LoRA to only 537

LM while keeping the vision encoder frozen and 538

fully training the connector. 539

Model
Size

Fine-tuning
Strategy

BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L

256M Full 11.2801 3.1971 1.3475 0.9809 11.5488

500M LM only 21.1849 11.3004 7.0104 5.7513 20.8966

500M
Vision

model only
20.0229 9.8091 6.1418 4.9888 20.6542

500M
Vision then

LM
22.3609 12.0529 7.8071 6.0799 21.9553

500M LoRA for LM 23.1022 12.7053 7.8365 6.1264 23.4076

2.2 B LoRA for LM 22.2051 12.7622 8.2799 6.5134 22.5206

Table 8: Ablation study comparing different
SmolVLM2 model sizes and fine-tuning strategies on
the PHOENIX-2014T test set (after 5 epochs). We
report BLEU-1 to BLEU-4 and ROUGE-L scores.

The nature of the experimental results in the 540

third category of experiments of 500M, we also 541

scaled up to a 2.2B model with a similar strategy. 542

This setup yielded the best overall results (Table 8), 543

demonstrating that targeted fine-tuning of larger 544

models led to significant performance gains with- 545

out incurring the cost of full training. 546

Effect of Frame Length on Translation Quality: 547

To maintain compatibility with SmolVLM2’s ar- 548

chitectural constraints—specifically, a maximum 549

7



Ground Truth: und nun die wettervorhersage für morgen freitag den fünfzehnten oktober
Engligh Translation And now the weather forecast for tomorrow, Friday, October 15th.

SmolVLM2: und nun die wettervorhersage für morgen freitag den dreißigsten mai
English Translation And now the weather forecast for tomorrow, Friday, May 30th.

Qwen2.5-VL: und nun die neue richtung
English Translation And now the new direction.

Ground Truth: und nun die wettervorhersage für morgen donnerstag den fünfzehnten oktober
Engligh Translation And now the weather forecast for tomorrow, Thursday, October 15th.

SmolVLM2: und nun die wettervorhersage für morgen montag den achtundzwanzigsten oktober
English Translation And now the weather forecast for tomorrow, Monday, October 28th.

Qwen2.5-VL: und nun die wettervorhersage für morgen montag den neunzehnten oktober
English Translation and now the weather forecast for tomorrow, Monday, October 19th.

Ground Truth: am freitag ist es in der nähe der küsten und ganz im süden teilweise stark bewölkt
Engligh Translation On Friday, it will be partly cloudy near the coast and in the far south.

SmolVLM2: am freitag ist es im süden und osten weiter freundlich im norden regnet es gebietsweise
English Translation On Friday, it will remain pleasant in the south and east, with rain in some areas in the north.

Qwen2.5-VL: und jetzt wünsche ich ihnen noch einen schönen abend
English Translation and now I wish you a nice evening.

Table 7: Translation examples from test set of PHOENIX-2014T dataset for the two models. We highlight the errors
in translation in red and the corresponding ground-truth in blue.

of 64 frames at 384p resolution6—we standard-550

ized all experiments to 64-frame video inputs. To551

assess whether longer sequences improved transla-552

tion quality, we fine-tuned Qwen2.5-VL (Bai et al.,553

2025) with a context length of 256 frames on the554

Phoenix-2014T dataset.555

Max
Frames

BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L

64 7.8711 3.4272 3.0888 2.784 9.7947

256 6.4473 2.2679 2.0075 1.7449 7.4508

Table 9: Impact of Input Frame Length on Trans-
lation Performance for Qwen2.5-VL Fine-Tuned on
PHOENIX-2014T

Results in Table 9 show that increasing the frame556

count from 64 to 256 consistently reduced perfor-557

mance, suggesting that the model is not capable558

of accurately processing longer videos. Based on559

these findings, we adopted 64-frame inputs for all560

models to balance translation quality with compu-561

tational efficiency.562

7 Conclusion563

In this work, we analyse the relevance of off-the-564

shelf VLMs in SLT task. Our findings show that565

the direct integration of VLM with fine-tuning only566

6https://huggingface.co/HuggingFaceTB/
SmolVLM2-2.2B-Instruct/blob/main/preprocessor_
config.json

the language model (and not the vision encoder), 567

which shows promising results in other domains, 568

fails to produce satisfactory performance in the 569

SLT task. This highlights a significant limitation 570

of foundation models when it comes to the devel- 571

opment of inclusive AI tools and frameworks. In 572

particular, it is necessary to incorporate sign lan- 573

guage understanding objectives in the pretraining 574

and instruction-tuning phases of these models so 575

that they can be used with zero or few-shot prompt- 576

ing for sign language translation and other related 577

tasks for the more common sign languages, and can 578

be easily adapted to various other sign languages 579

with limited fine-tuning. 580
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performance. Additionally, we studied the severe595

data imbalance present in popular sign language596

datasets but did not provide a solution for this issue597

in the current work. Our experiments were limited598

to two small VLMs and four sign language trans-599

lation datasets, which could be expanded in future600

work.601
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Appendix962

This appendix provides additional details and anal-963

yses that support our main findings. It includes in-964

sights into dataset preparation, translation behavior,965

grounding errors, vocabulary analysis, and resource966

usage.967

Appendix Table of Contents968
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• D Vocabulary Bias and Distributional Influ-972

ence973

• E Prompt Used during Training and Testing974

• F Computational Resources975

A Dataset Selection and Splitting976

Strategy for iSign977

The iSign dataset contains noise at various places.978

For example, some videos do not have any human979

presence as illustrated in Figure 2, while some have980

no valid translation texts. To improve the dataset981

Figure 2: Frames sampled from a video with id
aTB_lu2Im8Y–129 showing no human presence from
iSign dataset.

quality, we first applied two basic cleanup steps: 982

removing samples without valid textual translations 983

and filtering out videos with no visually detectable 984

human presence using pose estimation. 985

To efficiently fine-tune a small VLM, we reduced 986

our dataset from 126,000 to 50,000 video-text pairs. 987

Rather than applying random sampling, we fol- 988

lowed a vocabulary-aware strategy as follows. A 989

vocabulary frequency analysis revealed that over 990

75% of the words in the dataset occurred fewer 991

than 10 times. These rare words are essential for 992

balancing the overall vocabulary spectrum, yet they 993

also pose a challenge for model generalization. To 994

strike a balance, we first selected up to 30,000 sam- 995

ples that contained at least one rare word. We then 996

sampled an additional 20,000 examples from the 997

rest of the dataset, which ensures both rare and fre- 998

quent expressions are present in the data subset we 999

used. 1000

This method ensures that the model is trained 1001

on a wide vocabulary, especially low-frequency 1002

tokens, while the validation and test sets remain 1003

challenging but not overly skewed toward rare or 1004

unseen words. The result is a dataset that better 1005

supports robust and generalizable model training. 1006

B Qualitative Analysis of Translation 1007

Results. 1008

As shown in Tables 10 and 11, we provide a few 1009

representative translation outputs from the Ope- 1010

nASL and iSign datasets. While the overall trans- 1011

lation quality across both models is poor, we in- 1012

clude a mix of relatively better and worse exam- 1013

ples to highlight common trends. In many cases, 1014

outputs fail to preserve critical entities or seman- 1015

tic meaning, underscoring the challenges of sign 1016

language translation in current settings. Although 1017

SmolVLM2 tends to generate slightly better trans- 1018

lation in some cases, the overall performance of 1019

both models shows poor quality translation. 1020
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Ground Truth: I am Ed Bosson, and I am 67 years old and now retired.
SmolVLM2: Hello, my name is E. Simmons and I am a retired school administrator.
Qwen2.5-VL: I’m Ez Sussy.

Ground Truth:
We are also supporting efforts of DeafBlind people to develop hospital access
because their needs are different from other deaf and hard of hearing people.

SmolVLM2:
The IDEA has been in place since 1975, and with the passing of the EHDI Act
in 2007, all deaf and hard of hearing children have a birth stage in education.

Qwen2.5-VL: I will show you how to do it.

Ground Truth: Thank you!
SmolVLM2: Congratulations!
Qwen2.5-VL: Congrats and Congratulations!

Ground Truth: I’m Crystal Cousineau
SmolVLM2: I’m Crystal Cousineau
Qwen2.5-VL: CRY.

Ground Truth: The gunman is behind bars being held without bail

SmolVLM2:
It took about that same time for his owner to get down on one knee and say

\"I love you\" in Spanish.
Qwen2.5-VL: The suspect was arrested and is 17 years old

Ground Truth: I’m Candace Jones.
SmolVLM2: Thank you for watching Sign1News.
Qwen2.5-VL: I’m Crystal Cousineau.

Table 10: Translation examples from test set of Ope-
nASL dataset, where we highlight the partial matches
in blue.

Ground Truth: What is the RAT test?
SmolVLM2: The cost of the surgery is around Rs 2 lakhs.
Qwen2.5-VL: and now there is an update

Ground Truth: Have a look at images.
SmolVLM2: Have a look at images.
Qwen2.5-VL: She is a 30 year old woman

Ground Truth: The priest sanctified the church with a special ceremony.
SmolVLM2: The priest sanctified the church with a special ceremony.
Qwen2.5-VL: The priest sanctified the church with a

Ground Truth:
and the ingredients should only be added when

the fire is burning properly
SmolVLM2: so that you can get all your essential nutrients

Qwen2.5-VL:
ISH NEWS has already made a video on this,

you can watch it on our YouTube channel.

Ground Truth: People can not step out for frivolous matters.
SmolVLM2: on flights to and from the UK said that,
Qwen2.5-VL: People can not step out for frivolous matters.

Ground Truth: the process of getting something
SmolVLM2: the process of getting something that you want
Qwen2.5-VL: acquisition noun

Table 11: Translation examples from test set of iSign
dataset, where we highlight the partial matches in blue.

C Error Patterns in Noun Phrase1021

The qualitative examples in Tables 12 and 13 high-1022

light a limitation in SmolVLM2’s ability to reli-1023

ably identify and preserve key noun phrases dur-1024

ing translation. We present a few examples in the1025

PHOENIX-2014T and OpenASL datasets, which1026

show that the model often substituted critical en-1027

tities with semantically plausible but incorrect al-1028

ternatives (e.g., "rehabilitation act" → "education1029

program", "Scandinavia" → "alps"). In some cases,1030

like for “july” and “freitag”, the entities are cor-1031

rectly identified, yet the model frequently misses1032

domain-relevant constructs (e.g., legal terms, geo-1033

graphic regions) that are essential for meaningful1034

interpretation. These patterns point to a broader1035

learning challenge: SmolVLM2 generates fluent 1036

text but struggles to produce the correct entities 1037

in many cases. Gloss identification by the model 1038

should be improved to reduce such hallucinations. 1039

Noun Phrase PHOENIX-2014T

Ground Truth
(English Translation)

"skandinavien", "wolken"
("Scandinavia", "clouds")

Predicted (SmolVLM2)
(English Translation)

"alpen", "norden", "nacht", "schnee"
("alps", "north", "night", "snow")

Ground Truth
(English Translation)

"westen", "sonne"
("west", "sun")

Predicted (SmolVLM2)
(English Translation)

"westen", "einzelne schauer", "nordwesten"
("west", "isolated showers", "northwest")

Ground Truth
(English Translation)

"neunundzwanzigsten oktober", "wettervorhersage"
("twenty-ninth October", "weather forecast")

Predicted (SmolVLM2)
(English Translation)

"fünften dezember", "wettervorhersage"
("fifth of December", "weather forecast")

Ground Truth
(English Translation)

"nordwesten deutschlands", "ostsee"
("northwest Germany", "Baltic Sea")

Predicted (SmolVLM2)
(English Translation)

"westen", "kurzen wetterberuhigung", "neuer tiefausläufer"
("west", "brief weather calm", "new low pressure system")

Ground Truth
(English Translation)

"norden", "alpen", "freitag", "süden", "einzelne schauer"
("north", "alps", "friday", "south", "isolated showers")

Predicted (SmolVLM2)
(English Translation)

"freitag", "einzelne schauer", "sonne", "längere zeit"
("Friday", "isolated showers", "sun", "longer period")

Table 12: Comparison of extracted noun phrases
from ground truth and SmolVLM2 predictions in the
PHOENIX-2014T dataset. Matching entities are high-
lighted in blue.

Noun Phrase OpenASL

Ground Truth "section", "suit", "rehabilitation act", "title ii", "americans", "disabilities act"
Predicted (SmolVLM2) "children", "education", "program", "nad", "projects", "child", "board members"

Ground Truth "issues", "demands", "city"
Predicted (SmolVLM2) "conference", "hartford", "ndec", "deaf education conference"

Ground Truth "employers", "state laws", "employees"
Predicted (SmolVLM2) "license", "driver", "people"

Ground Truth "soil"
Predicted (SmolVLM2) "everything", "earth", "flowers", "thing", "mindset", "trees", "nature", "plants"

Ground Truth "july", "court", "testimony"
Predicted (SmolVLM2) "july", "wednesday", "plan", "board"

Table 13: Examples from the OpenASL test set illus-
trating matches and mismatches between ground-truth
and predicted noun phrases. Matched entities are high-
lighted in blue. SmolVLM2 rarely aligns correctly (e.g.,
“july”); frequently it hallucinates incorrect content.

D Vocabulary Bias and Distributional 1040

Influence 1041

Tables 14 shows some of the most frequent noun 1042

phrases in the predicted text (for the test set), and 1043

their actual frequency in the ground-truth transla- 1044

tions (for the same test set) and in the training 1045

set. We observe that many top-predicted noun 1046

phrases, such as süden, norden, and tag, have 1047

higher frequencies in the predicted set than in the 1048

ground-truth test set, and they also have relatively 1049

higher frequency in the training set. Similarly, Ta- 1050

ble 15 shows the most frequent noun phrases in the 1051

ground-truth translations (in the test set), and their 1052

frequencies in the model’s output, the ground-truth 1053

13



test set, and in the training set. We observe the1054

same pattern that the more frequent words in the1055

training data were over-represented in the model’s1056

output. This is a classic example of data imbal-1057

ance, which makes model training very challenging.1058

These biases in the dataset should be addressed so1059

that model training can be done effectively.1060

Noun Phrase Predicted Freq Test Freq Train Freq

es 191 110 1419

süden 106 50 653

norden 67 54 628

tag 62 31 422

uns 48 37 331

wettervorhersage 43 42 354

osten 41 30 418

sich 40 70 822

montag 32 17 194

westen 31 35 520

Table 14: Top 10 noun phrases from the predicted out-
puts with their frequencies in the predicted, test, and
training sets.

Noun Phrase Predicted Freq Test Freq Train Freq

es 191 110 1419

sich 40 70 822

norden 67 54 628

süden 106 50 653

wettervorhersage 43 42 354

uns 48 37 331

westen 31 35 520

tag 62 31 422

osten 41 30 418

samstag 28 28 242

Table 15: Top 10 noun phrases from the test set along
with their frequency in the predicted and training sets.

Overall, these analyses indicate that training-1061

induced vocabulary bias significantly influenced1062

generation quality. The model often preferred fre-1063

quent but potentially irrelevant tokens, leading to1064

degraded semantic precision. These findings under-1065

line the need for frequency-aware modeling strate-1066

gies, particularly for low-resource and long-tailed1067

sign language datasets.1068

E Prompt Used 1069

The prompts used to fine-tune both of our models, 1070

and also during inference, are present in the Table 1071

16. 1072

Dataset Prompt

DGS (PHOENIX-2014T)
Übersetzen Sie das Video in deutscher

Gebärdensprache in deutschen Text (gesprochene Sprache).

English Translation
Translate the German Sign Language

video into German text (spoken language).

ASL (How2Sign and OpenASL) Translate the English sign language video into spoken text.

ISL (iSign) Translate the Indian sign language video into spoken text.

Table 16: The prompt used across different datasets, for
fine-tuning and inference.

F Computational Resources 1073

We conducted our experiments on a workstation 1074

with Intel® Xeon® Processor ICX 6326 @ 2.9 1075

GHz, 16 Cores, 32 Threads, 256.0 GB RAM, 1076

NVIDIA A100 GPU, CUDA Version: 12.6, and 1077

Ubuntu 22.04 operating system. 1078

14


	Introduction
	Related Work
	Sign Language Translation
	Vision-Language Models

	Method
	Overview
	VLM Selection.
	Frame Sampling Strategy
	Finetuning VLMs

	Experiments
	Datasets
	Evaluation Metrics
	Implementation Details
	Results
	Qualitative Analysis of Translation Results
	Vocabulary Bias and Overfitting Tendencies


	How do these results compare to SOTA?
	Ablation Study
	Conclusion
	Dataset Selection and Splitting Strategy for iSign
	Qualitative Analysis of Translation Results.
	Error Patterns in Noun Phrase
	Vocabulary Bias and Distributional Influence
	Prompt Used
	Computational Resources

