
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PLANNING WITH GENERATIVE COGNITIVE MAPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Planning relies on cognitive maps – models that encode world structure given cog-
nitive resource constraints. The problem of learning functional cognitive maps is
shared by humans, animals and machines. However, we still lack a clear un-
derstanding of how people represent maps for planning, particularly when the
goal is to support cost-efficient plans. We take inspiration from theory of com-
positional mental representations in cognitive science to propose GenPlan: a
cognitively-grounded computational framework that models redundant structure
in maps and saves planning cost through policy reuse. Our framework integrates
(1) a Generative Map Module that infers generative compositional structure and
(2) a Structure-Based Planner that exploits structural redundancies to reduce plan-
ning costs. We show that our framework closely aligns with human behavior,
suggesting that people approximate planning by piecewise policies conditioned
on world structure. We also show that our approach reduces the computational
cost of planning while producing good-enough plans, and contribute a proof-of-
concept implementation demonstrating how to build these principles into a work-
ing system.

1 INTRODUCTION

People are highly proficient in solving real-world planning problems. For example, we can navigate
cities without precisely knowing every link in the street network (Fig. 1a.)(Bongiorno et al., 2021)
and accomplish complex construction projects (Fig. 1b.) with many actions and sub-goals (Mugan
et al., 2024). Solving these problems optimally is theoretically intractable (Kaelbling et al., 1998),
and therefore approximate algorithms for planning in natural domains remain an active area of re-
search in AI (Silver & Veness, 2010), robotics (Curtis et al., 2025), and cognitive science (Kryven
et al., 2024; van Opheusden et al., 2023). Here, we seek to uncover cognitive computations that
enable humans to plan efficiently in natural domains. To do this, we focus on the key intuition that
the human world is structured (Fig.1c,d) and propose that people reason about redundancies in this
structure to efficiently encode cognitive maps, and reduce planning costs. We formalize this hypoth-
esis in GenPlan, a computational model that gives an algorithmic account of how structure-based
planning can be implemented in practice.

Formally, a planning problem constitutes a search within a decision tree of possible states and ac-
tions (Kuperwajs et al., 2025; Russell & Norvig, 2016). This tree can be encoded as a learned neural
policy (Liu et al., 2020), an explicit tree structure (Russell & Norvig, 2016; Silver & Veness, 2010),
or a model describing states and actions in a symbolic form (Tang et al., 2024). The size of the un-
derlying state-space determines the computational cost of the problem, or how difficult it should be.
Since optimal planning beyond non-trivial state-spaces is intractable, approximate planning frame-
works have focused on building partial state-spaces (Silver & Veness, 2010), learning generalizable
policies (Curtis et al., 2022; Singh et al., 2012), and grouping actions frequently performed together
into options (Sutton et al., 1999). However, the difficulty predicted by these approximate planning
algorithms rarely aligns with human experience, as people often solve formally complex real-world
problems with relative ease.

We take inspiration from the theory of compositional concepts in cognitive science, which states
that humans learn complex concepts by combining simpler ones (Fodor, 1975; Lake & Piantadosi,
2020; Pitt et al., 2021), and adapt the principle of compositionality to model human cognitive maps
and plans as generative structures. Compositionality has been successful in explaining concept rep-
resentation in visual (Lake & Piantadosi, 2020; Tian et al., 2020), auditory (Verhoef et al., 2014;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Structured human environments: city street networks, construction projects, natural land-
scapes, and an interior floor-plan with repeating structural elements highlighted. People learn mental
world-models that exploit this structure to make resource-efficient plans.

Rohrmeier, 2020; Hofer et al., 2021) and spatial domains (Sharma et al., 2022; McCarthy et al.,
2021). Further, compositional reasoning is culturally universal (Pitt et al., 2021), suggesting that
it may be an evolved adaptation to natural structure people encounter in daily life (Johnston et al.,
2022). Neural and behavioral studies provide ample evidence that cognitive maps are represented
using similar compositional generative structures. Neural evidence from human studies includes
mirror-invariant encoding of natural scenes (Dilks et al., 2011) and reuse of neural reference frames
across similar environments (Marchette et al., 2014). Behavioral evidence includes hierarchical
spatial representations (Kosslyn et al., 1974; Stevens & Coupe, 1978; Hirtle & Jonides, 1985) re-
flected in first planning routes between, and then within semantic regions (Bailenson et al., 2000;
Newcombe et al., 1999; Wiener & Mallot, 2003; Wang & Brockmole, 2003; Balaguer et al., 2016;
Tomov et al., 2020), and ability to predict unseen environment layout in structured environments
(Sharma et al., 2022).

In formal terms, combinatorial concept representations can be modeled by mental programs – sym-
bolic instructions specifying how to produce new instances of a given concept class (Lake et al.,
2015; Lake & Piantadosi, 2020). Computational accounts of concept learning as program induction
(inferring a program from a given a set of examples) provide powerful explanations of human learn-
ing efficiency – only a few examples can suffice to deduce an underlying program, in contrast to
vast amounts of data required by purely neural models (Tenenbaum et al., 2011; Lake et al., 2015).
Building on this research, we model cognitive maps as generative programs that capture structures
such as symmetries and repeated parts, and propose an algorithmic framework that models cost-
efficient planning in such maps by reusing local policy conditioned on structure, instead of solving
a global optimization problem.

In this work we adopt a scientific and an engineering goal: (1) to understand computational cognitive
principles by which humans plan in structured spatial domains, and (2) to engineer a cost-efficient
computational framework that formalizes human-like planning in structured environments. We con-
tribute:

• Generative Map Module (GMM), which discovers programmatic map representations us-
ing tractable inference;

• Structure-Based Planner (SBP) that implements hierarchical planning both within and be-
tween the structural units

• Empirical validation of our framework on human behavior, showing that human planning
is consistent with generative cognitive maps and policy reuse.

The GMM models observations of the environment by inferring a small distribution over program-
matic maps. To do this, we use a Large Language Model (LLM) as an embedding of human priors
learned through training on human data. The SBP extends a Partially Observable Markov Decision
Process (POMDP) to use the GMM representation. It constructs end-to-end policies for within-
unit planning and between-unit transitions using adaptations of a Partially Observable Monte Carlo
Planner (POMCP). In the next section, we introduce the experimental environment, followed by a
detailed description of computational models. In Section 3, we compare our models’ predictions
with human empirical results.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: The Maze Search Task with structured layouts. (a.) Task Setup illustrated in a simple
example. Participants can use keyboard keys to navigate over any non-wall cells. The exit is initially
hidden in one of the black (unobserved) cells. (b) The exit is shown as a red tile when it comes into
view. (c) A subset of structures environment layouts used to evaluate GenPlan and compare its
performance to that of a Naive POMCP. The dots denote floor cells through which participants can
move. Red dots denote structural unit boundaries.

2 METHODS

2.1 STRUCTURED SPATIAL DOMAIN

We examine people’s planning strategies by adapting a version of Maze Search Task (MST) pre-
viously used to study human behavior in spatial navigation domains (Kryven et al., 2024; 2021;
Geva-Sagiv et al., 2025). The objective of MST is to navigate a series of partially observable, two-
dimensional grid-worlds, finding exits hidden in each. Each environment has only one exit. The
environment are partially observable, with the exits initially placed at a random unobserved location
(black cells). Fig.2 shows a simple MST environment seen by participants during one of the prac-
tice trails. 1. Full experiment instructions are given in Appendix I. People navigate by using their
keyboard keys to move to any unoccupied grid cells adjacent to their character (a round avatar). The
black hidden cells are revealed when they come into the avatar’s line of sight. When revealed, the
exit becomes visible as a red tile. As soon as the character moves over the exit, the trial ends. In
our adaptation of MST all mazes are structured, and contained between 2 and 20 repeating struc-
tural units. The units may have occurred as reflected or rotated instances, where the structured area
comprised between 80 - 100% of the environment layout.

2.2 COMPUTATIONAL MODELS

Decision making under partial observability can be modeled by a partially observable Markov deci-
sion process (POMDP). Equivalently, it can be viewed as a fully observable search through a space
of beliefs, where each belief is a probability distribution over possible states. Solving POMDPs is
notoriously hard (Madani et al., 2003), hence understanding how people approach these problems
holds deep importance for cognitive science and AI.

Formally, a POMDP is a tuple ⟨∆(S), A, τ, r, b0, γ⟩, where ∆(S) is the space of probability distri-
butions over a state space S, A is the set of actions, τ is the belief update function, r is the reward
function, b0 is the initial belief, and γ is the discount factor. The belief state evolves deterministically
via τ , reflecting both the agent’s actions and observations.

In this work, each state s ∈ S is represented as an N × M grid whose cells are labeled
{wall, empty, exit, agent}. The overall state space S consists of all such grids containing exactly
one agent and one exit. A belief b ∈ ∆(S) is thus a probability distribution over these grids, en-
coding the agent’s uncertainty about the true state. Initially, b0 assumes that the agent and the walls

1A demo is available here: http://18.25.132.241/fragments/int_exp.php

3

http://18.25.132.241/fragments/int_exp.php

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

are known, while the exit is uniformly distributed over all valid, unseen cells. The action space A
contains four possible movements (up, down, left, right). Observations o ∈ O reveal the visible
subset of the grid around the agent, with each visible cell labeled {wall, empty, exit}, and any cell
outside the agent’s visibility range r labeled as unseen. Observations are consistent with the grid
structure of the true state s ∈ S.

The belief update function τ is given by

b′(s′) ∝ Z(o | s′)
∑
s∈S

T (s′, a, s) b(s),

where T (s′, a, s) is the transition function, and Z(o | s′) is the observation likelihood. The
transition function T (s′, a, s) specifies the probability of transitioning to state s′ from s after
executing action a. Here, actions that would move the agent into a wall result in the agent remaining
in its current position, and transitions to an exit state terminate the process. The observation
function Z(o | s′) encodes the likelihood of observing o given s′, where observations reflect the
visible subset of the grid within range r of the agent’s position. Visibility is blocked by walls, such
that cells beyond a wall are labeled as unseen. Finally, the reward function r(b, a) is the expected
reward under the belief b. Since the agent can always see an exit before reaching it, r(b, a) = 1 if
action a leads the agent to a known exit and 0 otherwise.

Expected Utility The optimal policy for this POMDP can be found through a belief space tree
search (Kaelbling et al., 1998). The search is conducted over a tree where each node represents
a belief b ∈ ∆(S), and edges correspond to action-observation pairs (a, o). Starting from the
root node b0, the tree expands by simulating actions a ∈ A and updating beliefs using the belief
update function τ . For each action a, the agent considers all possible observations o ∈ O, with the
likelihood of each observation determined by the observation function Z(o | s′). At each node, the
value of a belief is computed recursively using the Bellman equation:

V (b) = max
a∈A

[
r(b, a) + γ

∑
o∈O

P (o | b, a)V (τ(b, a, o))

]
, (1)

where P (o | b, a) is the probability of receiving observation o after taking action a under belief
b. The optimal policy π∗ is derived by selecting the action at each belief node that maximizes the
expected value. See (Kryven et al., 2024) for further details on this implementation, which was used
as a model of human planning in MST in prior work.

Although this is the optimal strategy, human behavior has previously been shown to diverge at
times from its predictions (Kryven et al., 2024), where the extent of this divergence varies between
individuals in a way that can be explained by the amount of cognitive resources people allocate
to planning (Kryven et al., 2021). Previous work with MST, as well as with related non-spatial
planning tasks (Huys et al., 2015), has found that people’s divergence from the optimal trajectories
is most readily explained by a limited planning horizon (discount factor γ < 1 in Equation 1). In the
remainder of this section we describe alternative computational hypotheses for how humans could
make decisions in this environment by reasoning about structural patterns.

Generative Structure-Based Framework (GenPlan) Next, we describe a modeling framework
that formalizes planning strategies conditioned on automatically discovered latent structure of the
state-space. Our model consists of two modules: a Generative Map Module (GMM) and Structure-
Based Planner (SBP). See Fig.3 for a high-level overview of this architecture. The GMM recovers
a programmatic representation of the observed state-space as a composition of structural units. The
SBP then uses a planner to plan a piece-wise policy once per-unit, in contrast to a global policy, sav-
ing computing costs. Importantly, this reconstructed programmatic representation is a cognitively-
inspired state-space compression. While such a reconstruction may match the ground-truth planning
state-space, it does not need to be exact as long as it is sufficient to serve the agent’s goals (Ho et al.,
2022). In theory, the cognitive principle of combining automatic structure discovery with structure-
aware planners can apply to any domain, as a proof of concept here we focus on spatial tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Model Architecture and predictions. (a) The GenPlan Framework. GMM recovers a small
distribution over generative maps based on input (a partial observation of the ground truth map).
Each generative map constitutes a set of candidate units coupled with a program for reconstructing
the input from them. We assign a likelihood to each generative map, and pass the most likely
reconstruction to SBP. SBP plans a policy once for each structural unit. (b) A human solution to
the given example agrees with prediction of GenPlan (top panel). Arrows indicate the participant’s
path. The path predicted by alternative models DepthPlan and Naive-POMCP (bottom panel) instead
optimizes the global policy. Green highlighting shows discriminating decisions.

Generative Map Module (GMM) Let I be the global partially observed input grid map of cells
SI . Here, we assume that I specifies all wall locations, but does not reveal the reward location,
matching the information given to people by MST design. In the general case, I can extend to any
partial observation, as GMM will attempt to infer a structural unit from any input its given.

The GMM implements approximate inference of a posterior distribution p(M|I) over cognitive
mapsM that partition I into structural unitsM = {Ui}mi=1. We use LLM-based program synthesis
with gpt-4, chosen for its strong code synthesis capabilities, to search for programs that generateM
based on I (Fig. 3). In Appendix F, we show that our approach can generalize to other LLM ar-
chitectures, as long as a given LLM is able to infer at least one good-enough map in the distribution
it infers. To do this, we prompt LLM to identify repeating units in the input map, and synthe-
size a Python program that approximately reconstructs the input from them. Prompts are given in
Appendix G. The prompt includes Python code with functions describing admissible transforma-
tions, as well as a likelihood function for a givenM. In our implementation the input map I is a
grid-world, specified by an numerical array, where each grid cell is associated with a number (e.g.
wall=1, floor=0). The reconstructionsM do not allow overlapping units, and allow any units that
repeat in I at least twice.

To develop a space of possible map representations, we estimate the likelihood of each candidate
M by a weighted combination of grid-level similarity, a function of total information in a candidate
unit, and the Minimum Description Length (MDL) principle (Rissanen, 1978). MDL penalizes each
unit occurrence by the bits necessary to specify the map reconstruction: their locations (effectively,
the number of copies), rotations and reflections. This means that reconstructions made up of many
smaller pieces are less likely than reconstructions made up of bigger ones. The function of total
information in a unit ensures that the selected units are neither trivial (e.g., uniform blocks of cells
made up of either walls or open space) nor noise, by defining an inverted-U relationship between
likelihood and informativeness (Kidd et al., 2012). This treats large units where perception is
subject to information bottleneck constraints as less likely (Cheyette & Piantadosi, 2020). Overall,
this likelihood function can express a weighted preference for (1) more accurate reconstructions, (2)
simpler units (to reduce planning cost).

To form the posterior p(M|I), we use the likelihood:

l(M; I) ∝ w1

dx · dy

dx∑
x=1

dy∑
y=1

(I(x, y)−O(x, y))
2 − w2|M|+ w3 exp

(
− (Htotal − β)2

2σ2

)
, (2)

where dx, dy are input dimensions, O is the output (reconstructed map), and wi are weights as-
sociated with reconstruction accuracy, map complexity, and unit complexity – free parameters of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the model. Here, weights for map complexity and unit complexity directly control planning cost,
as smaller units are less costly to plan in. The expression w2|M| controls the number of units
(map complexity), meaning that a lower w2 corresponds to a lower planning cost. The expres-
sion at w3 controls total entropy in the unit (unit complexity), where more complex units incur
higher planning costs. Therefore, a lower w3 corresponds to a lower planning cost. See also
Appendix E for the discussion of these parameters. We define the total entropy in the unit as
Htotal = dxdy · (−p log2 p − (1 − p) log2(1 − p)), where p is the fraction of 1’s in the array,
and free parameter β reflects the processing bottleneck, in line with perceptual models explored
in prior work (Cheyette & Piantadosi, 2020; Kryven et al., 2024). This definition ensures that the
information term next to w3 reaches a maximum of 1 Htotal = β, but decays to 0 on both sides of
this maximum. In the general case, input I and output O are real-valued 2D image arrays. In our
current implementation input I takes values 0 and 1, and the output 0 ≤ O(x, y) ≤ 1. Instead of
using the raw Python program for λ to measure its complexity, we use a compressed encoding of
the units and their transformations used to reconstruct the map. Here, compressing LLM-generated
output and transformations is analogous to refactoring the synthesized programs. As the length of
LLM-synthesized code may be noisy, due to injected comments and code redundancies, refactoring
the output obtains a denoised metric of complexity.

The posterior p(M|I) defines how the environment structure is encoded into memory. The free
parameters wi, β balance reconstruction accuracy against the complexity of the generative structure
and planning costs. Fig.3 shows a simple example with structural units highlighted in red. Bigger
examples designed in our simulation experiment are shown in Fig.2. Our proof-of-concept imple-
mentation uses the most likely generative map in the SBP module for generating a policy. This
approach makes a simplifying assumption relative to prior work on human cognitive maps (Sharma
et al., 2022), which found that people anticipate unseen map structure by maintaining a distribution
over possible maps. However, as our experiment design does not distinguish between planning over
a distribution or the most likely map, both approaches would make identical predictions.

Structure-Based Planner (SBP) Implementing SBP integrates planning within and between
structural units. Since finding an exact solution is intractable due to the size of the problem (Kael-
bling et al., 1998), we solve planning within a unit by searching through the belief space using an
approximate online Partially Observable Monte Carlo Planner (POMCP) (Silver & Veness, 2010). A
plan in-between units consists of leaving the current unit and transitioning to the next one. We solve
the former by adapting Monte Carlo Tree Search (MCTS), and introducing an optimistic heuristic
valuation for open cells around the boundary of a unit (i.e. cells through which we can exit the unit).
Upon completing a plan for the current unit, this heuristic should encourage us to leave the unit in
the direction that minimizes the expected global cost of reaching the exit. In the general case, this
can be any heuristic that does not overestimate the true cost. Here, we compute the values of bound-
ary cells as inversely proportional to the average of manhattan distances to the remaining external
unobserved cells, hence assigning a higher value to cells that are on average closer to the remaining
unseen parts of the map. We solve the transition to the next unit using a POMCP on the global map,
but implement the option to switch to within-unit planning upon reaching the new unit. Here, we
evaluate the option by estimating the average per-step cost to plan within the unit. The pseudo-code
for GMM and SBP the algorithms is given in Appendix H. In Appendix B we analyze SBP by de-
riving worst-case bounds on step-cost differences between SBP and the optimal policy. We show
that SBP yields only a constant-factor step penalty that does not affect asymptotic exploration, and
in non-structured settings the worst-case costs are identical.

2.3 COMPUTATIONAL HYPOTHESES

We compare human performance to the hypotheses (planing algorithms) to evaluate whether and
how human planning implements the two computational steps outlined by GenPlan.

1. Structure-Naive Planner (Naive-POMCP): The model doesn’t use generative maps, and
plans by optimizing a global policy for the environment.

2. Structure-Naive Planner With Cognitive Constraints (DepthPlan) The model doesn’t
use generative maps, and plans by optimizing a global policy that discounts future states
to model limited planning depth. This model was previously used to describe how people
plan in MST (Kryven et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3. A Generative Planner (Gen-POMCP): The model uses generative maps, and plans a
reusable policy based on the most likely map from the distribution of induced maps p(M|I)
(see Fig. 3a and b).

Naive-POMCP uses an approximate POMCP planner designed for large partially-observable state-
spaces. It was previously used to model human planning in large domains, although this work did
not examine the effect of environment structure on human plans (Sharma et al., 2022). DepthPlan
is consistent with prior work that models human deviations from optimal cost minimization by
limited planning horizon, without modeling environment structure (Kryven et al., 2024; Huys et al.,
2015). Since DepthPlan internally computes an optimal policy, it can only be applied to smaller
environments (generally 6 or fewer structural units, see Experiment 1). Only the third hypothesis is
consistent with the two computational steps proposed by the GenPlan framework: it represents maps
as generative programs, and uses this structure to plan a reusable policy, reducing planning costs.

3 EXPERIMENTS

We first test whether people use structure to reduce computational costs of planning, as implemented
by Gen-POMCP, in contrast to DepthPlan – the state-of-the-art model of planning in MST (Kryven
et al., 2024) (Experiment 1). For this experiment, we use a set of 20 structured environments at
a scale that can be solved by DepthPlan, in order to compare DepthPlan and Gen-POMCP. Based
on the sample sizes used in a previous study of human planning in structured spaces Sharma et al.
(2022), and a preliminary pilot showing a strong effect of structure on planning, we recruited a
N=30 participants as sufficient for confirm this effect. We then run a simulation experiment with
10 large environments containing 20-25 units (Experiment 2) to compare the computational costs
of Gen-POMCP and Naive-POMCP, demonstrating that Gen-POMCP requires significantly fewer
computational resources.

3.1 EXPERIMENT 1: BEHAVIORAL VALIDATION

Procedure The experiment was conducted in a web browser, using the web-interface of MST
(Kryven et al., 2024). Before beginning the experiment participant gave informed consent and com-
pleted a series of practice trials, followed by an instruction quiz. Following this, they completed a
variant of MST with structured mazes, with exit locations randomly chosen at the time of design.
After completing the experiment, we administered a post-experiment questionnaire collecting de-
mographic information. As our goal was to observe ecologically-valid planning, we did not offer
performance-based incentives, and simply informed participants that the exit could be in any of the
hidden tiles, and instructed them to find it in each environment.

We recruited 30 (13 female, 17 male, M(age) = 36.7, SD(age) = 13.5) english-speaking partici-
pants on Prolific, who were paid 9£ per hour. None were excluded. On average the experiment took
10 minutes to complete. The experiment was approved by our institution’s IRB.

Behavioral metrics We introduce the following behavioral definitions to quantify people’s align-
ment with the GenPlan framework.

• A set of discriminating decisions D(I) in a given environment I is the subset of all states
in I where Gen-POMCP and Depth Plan predict a different most likely action. That is,
D(I) includes only actions diagnostic of structure-based planning. Fig. 3b illustrates dis-
criminating decisions in a simple example. Unlike the global solution (bottom panel),
Gen-POMCP and most humans search by entering inside the structural units. The cells
highlighted in green are discriminating decisions.

• Modular fraction σ(D) defines the fraction of decisions in a given set of discriminating
decisions D that are more likely under Gen-POMCP, compared to DepthPlan. Notably, as
weights wi in equation 2 can tradeoff accuracy against representation and planning costs,
Gen-POMCP can capture flexible strategies that integrate global and local search. For
simplicity, here we assume stable population-level weights that strongly favor structure
over accuracy, meaning that σ(D) is a conservative estimate of how well Gen-POMCP
explain human behavior.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Experiment result shows that Gen-POMCP explains people better than DepthPlan. (a.)
Modular fraction for each environment (b.) The histogram of individual modular fractions per
participant, over all discriminating decisions. (c) The fraction of each environment explored by
Gen-POMCP across environments (solid line) and Naive-POMCP (dashed lines) as a function of
compute budget (number of MCTS rollouts). (d) The fraction of each environment explored by
Naive-POMCP, if given the amount of MCTS rollouts at which Gen-POMCP fully explores the
given environment. Each bar shows a different environment.

Results Our results reveal that Gen-POMCP predicts human behavior significantly better than
DepthPlan (Fig. 4). Examination of modular fractions for individuals and environments shows
that people are highly consistent with our model, demonstrating structure-based planning across
all environments and individuals. Across all environments, human behavior is better explained by
Gen-POMCP, suggesting that people approximate planning by piecewise policies conditioned on
structure, rather than by planning a global policy with a limited depth. Fig. 3b illustrates the dif-
ference between the models in a simple example. Like Gen-POMCP, the majority of people search
the environment by a trajectory shown in the top panel. However, both the optimal policy predicted
by the Naive-POMCP, and the depth-limited planning as implemented by DepthPlan, predict the
trajectory shown at the bottom – because it allows to quickly reveal a large portion of the global
map.

3.2 EXPERIMENT 2: SIMULATION

Next, we compare the computing resources needed by Gen-POMCP and Naive-POMCP to explore
10 large structured environments (e.g., see Fig. 2c). As the objective of MST is to find a hidden
exit, each simulation is set up to run until the environment is fully explored (i.e., the exit is not
revealed until the end of the simulation). We compare two quantitative comparisons. For each
environment we compute the fraction of the environment that each model is able to explore given a
certain compute budget (Fig. 4d), finding that the Gen-POMCP required a much smaller budget to
search the entire environment. Fig.4c separately shows the fraction of each environment that Naive-
POMCP is able to explore, if given the rollout budget at which Gen-POMCP has searched the entire
environment. In AppendixA we give a proof that the length of the search trajectories produced by
Gen-POMCP exceeds trajectories produced by Naive-POMCP by a bounded amount, demonstrating
that Gen-POMCP also produces good enough plans. All environments used in Experiments 1 and 2
are shown in AppendixB.

4 RELATED WORK

Models of Human Planning People make near-optimal plans in natural domains, such as city
navigation (Bongiorno et al., 2021), yet often perform sub-optimally in laboratory-based behavioral
paradigms such as multi-arm bandits (Keramati et al., 2016; Huys et al., 2015), strategic games (Fer-
reira, 2013), and sequential decision-making (Unterrainer et al., 2004; Kryven et al., 2024; Callaway
et al., 2022). Such deviations from optimality are often explained by approximate planning with a
limited planning horizon (Ferreira, 2013; Kryven et al., 2024; van Opheusden et al., 2023). Recent
work (Correa et al., 2025) examines how people represent policies in programmatic forms that min-
imize description lengths, finding sensitivity to both effort minimization (similar to seeking shorter
search paths) and MDL (shorter programs). Similar to our work, their study found that human plans

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

heavily favor reuse. Unlike our work, experimental paradigms used in these studies lack the regular
problem-domain structure ubiquitous in the real-world.

Cognitive Maps A recent study found that people form cognitive maps that facilitate planning (Ho
et al., 2022), by selectively representing only the goal-relevant parts of the map. Like our work, this
study assumes that human cognitive maps are learned by compressing observations. Unlike our
work, this study uses unstructured maps. A recent study of exploration in structured environments
found that people anticipate environment structure, even when not informed about them in advance
(Sharma et al., 2022), and can predict unseen parts of the map. Unlike our work, this study focuses
solely on map prediction, and does not examine the role of cognitive maps in planning. It also relies
on exhaustive enumerative search to discover the underlying map representations, unlike our work
that implements tractable inference using LLM-based program synthesis.

Hierarchical Reinforcement Learning (HRL) Reinforcement learning methods reduce planning
complexity through hierarchical abstractions such as options (Sutton et al., 1999), shared structure
across related MDPs (Wilson et al., 2012), and predictive state merging (Singh et al., 2012). Clas-
sical approaches include abstraction spaces (Sacerdoti, 1974), HTNs (Erol, 1995; Nau et al., 1999),
and probabilistic propositional planning (Littman, 1997), while recent work analyzes state abstrac-
tion in tree search (Anand et al., 2016; Hostetler et al., 2014; Hutter, 2016) and structural conditions
for efficient planning (Wen et al., 2020). Related lines study option discovery (Jinnai et al., 2019;
Ivanov et al., 2025), generalized planning across task families (Curtis et al., 2022), and symmetry-
based representations (Silver et al., 2017). These approaches engineer abstractions to improve worst-
case or average efficiency. In contrast, GenPlan conditions planning on inferred structure: the GMM
recovers repeated fragments from partial observations, and SBP reuses fragment-level policies with
a focus is on explaining human planning behavior. While comprehensive theory of asymptotic guar-
antees for of GenPlan is outside the scope of our work2, in Appendix B we show that the worst-case
performance of GenPan differs from optimal POMCP only by a constant factor.

Using LLM to plan Several related works have used LLM for offline planing. Similar to our
work, Parsel (Zelikman et al., 2023) leverages LLMs to decompose complex tasks into modular
components that can be composed to solve a larger problem. Unlike our work, Parsel solves prob-
lems specified in natural language, rather than using LLMs to infer latent environmental structure
for cognitive maps. A study of Kim et al. (2024) proposes a framework that fine-tunes LLM-based
agents to plan in grid environments by constructing an internal representation. Unlike GbenPLan,
which represents cognitive maps in code, their model works with text-based grid-world descriptions
and uses unstructured maps. Chain-of-Thought Procedure Cloning enables agents to generalize to
new fully observable environment configurations by imitating the intermediate reasoning steps of ex-
pert procedures (Yang et al., 2022). The ReAct framework (Yao et al., 2022) guides anLLM through
iterative thought-action steps, that can apply to spatial navigation domains. However, ReAct does
not provide inference over enironmental structure, or mechanisms for policy reuse (Gu et al., 2024).
Unlike GenPlan, these models do not target planning in structured spatial environments, and are not
evaluated in human experiments.

Natural priors. Adaptive real-world planning draws on complex prior knowledge of the
world (Acquaviva et al., 2022; Spelke & Kinzler, 2007; Dehaene et al., 2006). Learning natural
priors that make people so efficient in real-world remains an important problem in cognitive AI
(Kumar et al., 2022; Li et al., 2024; Binz et al., 2024). (Feldman, 2013). Similar to our work, an
emerging line of research leverages LLMs as a back-end to planning frameworks as a way of inform-
ing planning by the implicit natural priors embedded in LLM though training on vast amounts of
human data (Tang et al., 2024; Correa et al., 2025; Towers et al., 2024; Xie et al., 2023; Piriyakulkij
et al., 2025; Curtis et al., 2025). Our computational framework builds on this approach, focusing on
modeling how cognitive maps and planning policies may be learned together.

2For example, it may be possible to adapt computational efficiency guarantees from Wen et al. (2020) to our
setting.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 DISCUSSION

We give a computational account of how people plan in structured environments by integrating
(i) generative reconstruction of compressed cognitive maps from observations, coupled with (ii)
structure-conditioned policy reuse. GenPlan operationalizes these two principles in a computational
framework that (1) represents maps by approximate generative programs in a Turing-complete lan-
guage, and (2) plans in these representations using POMCP with policy reuse. We adapt an ex-
perimental Maze Search task previously used to study human planning, to show that in structured
environments human planning is consistent with these two computational principles, in contrast to
the state-of-the art model of depth-limited planning proposed in previous work. This result makes
a scientific contribution by showing that environmental structure influences the selection of plan-
ning strategies: human deviations from optimal policies are, at least in part, due to approximating
planning by piecewise policies conditioned on structure for policy reuse. Our GenPlan framework
makes an engineering contribution by showing how to actually build these principles into a working
system. GenPlan is compute-efficient, because it achieves tractable inference over the underlying
map structure by leveraging LLM-driven program generation (in contrast to enumerative search e.g.
(Veness et al., 2011)) and because it reduces the amount of planning compute through policy reuse.

We note that in our experiments planning varies between individuals, in line with variability ob-
served in previous work Callaway et al. (2022). Our model proposes a computational account ex-
plaining this variability as arising from how individuals may represent the same map in different
ways. For example, depending on available cognitive resources, someone may form representations
made up of coarser or finer patterns. In the limit, GenPlan can prioritize reconstruction accuracy
and treat the entire environment as a single structural unit, solved by a globally optimal policy. Our
implementation makes a simplifying assumption that that reconstruction and description weights are
fixed and stable at population level, which works well to explain behavior in our experiment. Future
work can further consider the stability and generalization of these parameters within and between
individuals. General case solutions can be built to account for flexible cognitive resources, allowing
the model to switch between map representations in response to changing cognitive demands. Future
work can also examine how the weights should be chosen to optimally balance the computational
costs of planning and memory, against utility.

Limitations and future work. Our choice of MST environment is motivated by prior state-of-
the-art model on human spatial planning (Kryven et al., 2024). In alignment with prior work on
human spatial planning (Kryven et al., 2024; Ho et al., 2022; Sharma et al., 2022), GenPlan relies
on deterministic units that are stable over time, which allows comparison of our results with prior
work. As natural environments are often probabilistic and evolving, future work should examine
building blocks that differ superficially (e.g. square or rectangular city blocks), while preserving
probabilistic generative constraints. To work with probabilistic units, GenPLan would rely on the
same two congitive principles of structure-based map compression and policy reuse, while using
a different implementation of GMM and SBP where the unit maps themselves are specified by
generative programs in a graph-grammar or a probabilistic CFG. We hope that our results will inspire
future work on human planning in structured environments beyond grid-world domains (e.g. music
performance, reasoning in cognitive graph domains).

Another promising direction of future work consists of modeling how different goals shape cognitive
maps. For instance, people tend to perceive San Francisco as having a grid layout, even though its
map reveals a more complex structure. Such grid-like intuitions could arise from goal-dependent
cognitive maps (Ho et al., 2022) – where a local grid model may actually be good enough to plan
a pedestrian shortcut across a neighborhood. Because our aim is to explain behavior, we do not
provide full theoretical evaluation in terms of search efficiency, completeness, and scalability to
arbitrary task sets. We hope the principles we proposed will motivate further theoretical work on
when human-like priors are advantageous or suboptimal.

Implications. While planning cognition has been studied extensively, human planning real-world
planning domains remains underexplored. A computational-level understanding of how human plan-
ning adapts to real-world environments, given their distinctive properties such as structural and in-
ductive biases, can inform models that not only empower AI to better understand and assist humans,
but also decrease environmental impact of AI algorithms, by enabling them to achieve effective
policies with less compute. In contributing a proof of concept implementation, GenPlan brings new
insights into human spatial planning, and takes a step toward building cost-efficient planning in AI.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sam Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle
Ecanow, Maxwell Nye, Michael Tessler, and Josh Tenenbaum. Communicating natural programs
to humans and machines. Advances in Neural Information Processing Systems, 35:3731–3743,
2022.

Ankit Anand, Ritesh Noothigattu, Parag Singla, et al. Oga-uct: On-the-go abstractions in uct. In
Proceedings of the International Conference on Automated Planning and Scheduling, volume 26,
pp. 29–37, 2016.

Jeremy N Bailenson, Michael S Shum, and David H Uttal. The initial segment strategy: A heuristic
for route selection. Memory & Cognition, 28(2):306–318, 2000.

Jan Balaguer, Hugo Spiers, Demis Hassabis, and Christopher Summerfield. Neural mechanisms of
hierarchical planning in a virtual subway network. Neuron, 90(4):893–903, 2016.

Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno,
Peter Dayan, Can Demircan, Maria K. Eckstein, Noémi Éltető, Thomas L. Griffiths, Susanne
Haridi, Akshay K. Jagadish, Li Ji-An, Alexander Kipnis, Sreejan Kumar, Tobias Ludwig, Marvin
Mathony, Marcelo Mattar, Alireza Modirshanechi, Surabhi S. Nath, Joshua C. Peterson, Milena
Rmus, Evan M. Russek, Tankred Saanum, Natalia Scharfenberg, Johannes A. Schubert, Luca
M. Schulze Buschoff, Nishad Singhi, Xin Sui, Mirko Thalmann, Fabian Theis, Vuong Truong,
Vishaal Udandarao, Konstantinos Voudouris, Robert Wilson, Kristin Witte, Shuchen Wu, Dirk
Wulff, Huadong Xiong, and Eric Schulz. Centaur: a foundation model of human cognition, 2024.
URL https://arxiv.org/abs/2410.20268.

Christian Bongiorno, Yulun Zhou, Marta Kryven, David Theurel, Alessandro Rizzo, Paolo Santi,
Joshua Tenenbaum, and Carlo Ratti. Vector-based pedestrian navigation in cities, 2021.

Frederick Callaway, Bas van Opheusden, Sayan Gul, Priyam Das, Paul M Krueger, Thomas L Grif-
fiths, and Falk Lieder. Rational use of cognitive resources in human planning. Nature Human
Behaviour, 6(8):1112–1125, 2022.

Samuel J Cheyette and Steven T Piantadosi. A unified account of numerosity perception. Nature
human behaviour, 4(12):1265–1272, 2020.

Carlos G Correa, Sophia Sanborn, Mark K Ho, Frederick Callaway, Nathaniel D Daw, and Thomas L
Griffiths. Exploring the hierarchical structure of human plans via program generation. Cognition,
255:105990, 2025.

Aidan Curtis, Tom Silver, Joshua B Tenenbaum, Tomás Lozano-Pérez, and Leslie Kaelbling. Dis-
covering state and action abstractions for generalized task and motion planning. In Proceedings
of the AAAI conference on artificial intelligence, volume 36, pp. 5377–5384, 2022.

Aidan Curtis, Hao Tang, Thiago Veloso, Kevin Ellis, Joshua Tenenbaum, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Llm-guided probabilistic program induction for pomdp model estimation.
arXiv preprint arXiv:2505.02216, 2025.

Stanislas Dehaene, Véronique Izard, Pierre Pica, and Elizabeth Spelke. Core knowledge of geometry
in an amazonian indigene group. Science, 311(5759):381–384, 2006.

Daniel D Dilks, Joshua B Julian, Jonas Kubilius, Elizabeth S Spelke, and Nancy Kanwisher. Mirror-
image sensitivity and invariance in object and scene processing pathways. Journal of Neuro-
science, 31(31):11305–11312, 2011.

Kutluhan Erol. Hierarchical task network planning: formalization, analysis, and implementation.
University of Maryland, College Park, 1995.

Jacob Feldman. Tuning your priors to the world. Topics in cognitive science, 5(1):13–34, 2013.

Diogo R Ferreira. The impact of the search depth on chess playing strength. ICGA journal, 36(2):
67–80, 2013.

11

https://arxiv.org/abs/2410.20268

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jerry A Fodor. The language of thought, volume 5. Harvard university press, 1975.

Maya Geva-Sagiv, Soyeon Jun, Marta Kryven, Josh Tenenbaum, Erie D. Boorman, Randy O’Reilly,
Jack J. Lin, Ignacio Saez, and Charan Ranganath. Fronto-hippocampal synchronization in rapid
spatial learning in humans. Current Biology, 2025. Under review.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, et al. Is your llm secretly a world model of the internet? model-
based planning for web agents. arXiv preprint arXiv:2411.06559, 2024.

Stephen C Hirtle and John Jonides. Evidence of hierarchies in cognitive maps. Memory & cognition,
13(3):208–217, 1985.

Mark K Ho, David Abel, Carlos G Correa, Michael L Littman, Jonathan D Cohen, and Thomas L
Griffiths. People construct simplified mental representations to plan. Nature, 606(7912):129–136,
2022.

Matthias Hofer, Tuan Anh Le, Roger Levy, and Josh Tenenbaum. Learning evolved combinatorial
symbols with a neuro-symbolic generative model. arXiv preprint arXiv:2104.08274, 2021.

Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in monte carlo tree search. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.

Marcus Hutter. Extreme state aggregation beyond Markov decision processes. Theoreti-
cal Computer Science, 650:73–91, October 2016. ISSN 0304-3975. doi: 10.1016/j.tcs.
2016.07.032. URL https://www.sciencedirect.com/science/article/pii/
S0304397516303772.

Quentin JM Huys, Nı́all Lally, Paul Faulkner, Neir Eshel, Erich Seifritz, Samuel J Gershman, Peter
Dayan, and Jonathan P Roiser. Interplay of approximate planning strategies. Proceedings of the
National Academy of Sciences, 112(10):3098–3103, 2015.

Alexander Ivanov, Akhil Bagaria, and George Konidaris. Discovering options that minimize average
planning time. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
17573–17581, 2025.

Yuu Jinnai, David Abel, David Hershkowitz, Michael Littman, and George Konidaris. Finding
options that minimize planning time. In International Conference on Machine Learning, pp.
3120–3129. PMLR, 2019.

Iain G Johnston, Kamaludin Dingle, Sam F Greenbury, Chico Q Camargo, Jonathan PK Doye,
Sebastian E Ahnert, and Ard A Louis. Symmetry and simplicity spontaneously emerge from
the algorithmic nature of evolution. Proceedings of the National Academy of Sciences, 119(11):
e2113883119, 2022.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Mehdi Keramati, Peter Smittenaar, Raymond J Dolan, and Peter Dayan. Adaptive integration of
habits into depth-limited planning defines a habitual-goal–directed spectrum. Proceedings of the
National Academy of Sciences, 113(45):12868–12873, 2016.

Celeste Kidd, Steven T Piantadosi, and Richard N Aslin. The goldilocks effect: Human infants
allocate attention to visual sequences that are neither too simple nor too complex. PloS one, 7(5):
e36399, 2012.

Doyoung Kim, Jongwon Lee, Jinho Park, and Minjoon Seo. How language models extrapolate
outside the training data: A case study in textualized gridworld. 2024.

Stephen M Kosslyn, Herbert L Pick Jr, and Griffin R Fariello. Cognitive maps in children and men.
Child development, pp. 707–716, 1974.

Marta Kryven, Tomer D Ullman, William Cowan, and Joshua B Tenenbaum. Plans or outcomes:
How do we attribute intelligence to others? Cognitive Science, 45(9):13–41, 2021.

12

https://www.sciencedirect.com/science/article/pii/S0304397516303772
https://www.sciencedirect.com/science/article/pii/S0304397516303772

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Marta Kryven, Suhyoun Yu, Max Kleiman-Weiner, Tomer Ullman, and Joshua Tenenbaum. Ap-
proximate planning in spatial search. PLOS Computational Biology, 20(11):e1012582, 2024.

Sreejan Kumar, Carlos G Correa, Ishita Dasgupta, Raja Marjieh, Michael Hu, Robert D. Hawkins,
Jonathan Cohen, Nathaniel Daw, Karthik R Narasimhan, and Thomas L. Griffiths. Using nat-
ural language and program abstractions to instill human inductive biases in machines. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
buXZ7nIqiwE.

Ionatan Kuperwajs, Evan M Russek, Marcelo G Mattar, Wei Ji Ma, and Thomas L Griffiths. Looking
deeper into the algorithms underlying human planning. Trends in Cognitive Sciences, 2025.

Brenden M Lake and Steven T Piantadosi. People infer recursive visual concepts from just a few
examples. Computational Brain & Behavior, 3(1):54–65, 2020.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduction for
abstract reasoning. arXiv preprint arXiv:2411.02272, 2024.

Michael L Littman. Probabilistic propositional planning: Representations and complexity.
AAAI/IAAI, pp. 748–754, 1997.

Yunzhe Liu, Marcelo G Mattar, Timothy EJ Behrens, Nathaniel D Daw, and Raymond J Dolan.
Experience replay supports non-local learning. BioRxiv, pp. 2020–10, 2020.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
related stochastic optimization problems. Artificial Intelligence, 147(1-2):5–34, 2003.

Steven A Marchette, Lindsay K Vass, Jack Ryan, and Russell A Epstein. Anchoring the neural com-
pass: coding of local spatial reference frames in human medial parietal lobe. Nature neuroscience,
17(11):1598, 2014.

William P McCarthy, Robert D Hawkins, Haoliang Wang, Cameron Holdaway, and Judith E Fan.
Learning to communicate about shared procedural abstractions. arXiv preprint arXiv:2107.00077,
2021.

Ugurcan Mugan, Seiichiro Amemiya, Paul S Regier, and A David Redish. Navigation through the
complex world: The neurophysiology of decision-making processes. In Habits: Their Definition,
Neurobiology, and Role in Addiction, pp. 109–139. Springer, 2024.

Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop: Simple hierarchical ordered
planner. In Proceedings of the 16th international joint conference on Artificial intelligence-
Volume 2, pp. 968–973, 1999.

Nora Newcombe, Janellen Huttenlocher, Elisabeth Sandberg, Eunhui Lie, and Sarah Johnson. What
do misestimations and asymmetries in spatial judgement indicate about spatial representation?
Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4):986, 1999.

Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, and Kevin Ellis.
Poe-world: Compositional world modeling with products of programmatic experts. arXiv preprint
arXiv:2505.10819, 2025.

Benjamin Pitt, Stephen Ferrigno, Jessica F Cantlon, Daniel Casasanto, Edward Gibson, and Steven T
Piantadosi. Spatial concepts of number, size, and time in an indigenous culture. Science Advances,
7(33):eabg4141, 2021.

J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978. ISSN
0005-1098. doi: https://doi.org/10.1016/0005-1098(78)90005-5. URL https://www.
sciencedirect.com/science/article/pii/0005109878900055.

13

https://openreview.net/forum?id=buXZ7nIqiwE
https://openreview.net/forum?id=buXZ7nIqiwE
https://www.sciencedirect.com/science/article/pii/0005109878900055
https://www.sciencedirect.com/science/article/pii/0005109878900055

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Martin Rohrmeier. Towards a formalization of musical rhythm. In ISMIR, pp. 621–629, 2020.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Earl D Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial intelligence, 5(2):115–135,
1974.

Sugandha Sharma, Aidan Curtis, Marta Kryven, Josh Tenenbaum, and Ila Fiete. Map induction:
Compositional spatial submap learning for efficient exploration in novel environments. Interna-
tional Conference of Learning Representations, 2022.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in Neural
Information Processing Systems, 2010. Neural Information Processing Systems, 2010.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Satinder Singh, Michael James, and Matthew Rudary. Predictive state representations: A new theory
for modeling dynamical systems. arXiv preprint arXiv:1207.4167, 2012.

Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. Developmental Science, 10(1):
89–96, 2007.

Albert Stevens and Patty Coupe. Distortions in judged spatial relations. Cognitive psychology, 10
(4):422–437, 1978.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building world
models by writing code and interacting with the environment. arXiv preprint arXiv:2402.12275,
2024.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
mind: Statistics, structure, and abstraction. science, 331(6022):1279–1285, 2011.

Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenenbaum. Learning abstract structure for draw-
ing by efficient motor program induction. Advances in Neural Information Processing Systems,
33, 2020.

Momchil S Tomov, Samyukta Yagati, Agni Kumar, Wanqian Yang, and Samuel J Gershman. Dis-
covery of hierarchical representations for efficient planning. PLoS computational biology, 16(4):
e1007594, 2020.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Josef M Unterrainer, Benjamin Rahm, Christoph P Kaller, Rainer Leonhart, K Quiske, K Hoppe-
Seyler, C Meier, C Müller, and Ulrike Halsband. Planning abilities and the tower of london: is
this task measuring a discrete cognitive function? Journal of clinical and experimental neuropsy-
chology, 26(6):846–856, 2004.

Bas van Opheusden, Ionatan Kuperwajs, Gianni Galbiati, Zahy Bnaya, Yunqi Li, and Wei Ji Ma.
Expertise increases planning depth in human gameplay. Nature, pp. 1000–1005, 2023.

Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. A monte-carlo aixi
approximation. Journal of Artificial Intelligence Research, 40:95–142, 2011.

Tessa Verhoef, Simon Kirby, and Bart De Boer. Emergence of combinatorial structure and economy
through iterated learning with continuous acoustic signals. Journal of Phonetics, 43:57–68, 2014.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ranxiao Frances Wang and James R Brockmole. Human navigation in nested environments. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 29(3):398, 2003.

Zheng Wen, Doina Precup, Morteza Ibrahimi, Andre Barreto, Benjamin Van Roy, and Satinder
Singh. On efficiency in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 33:6708–6718, 2020.

Jan M Wiener and Hanspeter A Mallot. ’fine-to-coarse’route planning and navigation in regionalized
environments. Spatial cognition and computation, 3(4):331–358, 2003.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. Transfer learning in sequential decision prob-
lems: A hierarchical bayesian approach. In Proceedings of ICML Workshop on Unsupervised and
Transfer Learning, pp. 217–227. JMLR Workshop and Conference Proceedings, 2012.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Mengjiao Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought im-
itation with procedure cloning. Advances in Neural Information Processing Systems, 35:36366–
36381, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The eleventh international
conference on learning representations, 2022.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions. Advances in Neural Information
Processing Systems, 36:31466–31523, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A CODE AVAILABILITY

The Gen-POMCP implementation is available here: https://anonymous.4open.
science/r/GenPlan-FBCD/README.md

B PERFORMANCE BOUNDS FOR STRUCTURE-BASED PLANNING

In structured environments Gen-POMCP can explore the environment faster than Naive-POMCP
(using fewer rollouts and in less time) by taking advantage of limited resources. However, it simpli-
fies the planning problem by entirely exploring each fragment it enters before moving to the next.
This heuristic can result in longer overall paths taken to search the environments. It is reasonable
to ask by how much the global Naive-POMCP can actually improve on the path length taken by
Gen-POMCP (and specifically the Structure-Based Planner).

Below we sketch a proof that considers the limit in which each planner fully optimizes its respective
objective: Naive-POMCP follows the Bayes-optimal plan in each fragment and Gen-POMCP fol-
lows the Bayes-optimal global policy for the maze. We bound the cost difference according to the
worst-case cost in steps.

Expected and worst-case The expected number of steps it takes for a policy to explore a maze is
the average over the length of path this policy takes to reach uniformly sampled exit locations. The
worst-case number of steps is the largest number of steps that the policy could take for some exit
position. This is bounded below by the number of steps required to fully explore the maze.

Lemma 1. There exists a fragment of size n× n which takes O(n2) steps to search in expectation,
and to explore fully.

Figure 5: Consider a maze with a spiral wall - the white cells indicate traversable floor, and black
indicate intraversable wall. Simulating these environments shows that the maximal length of path
(white cells) in the environment grows as ≈ 1

2n
2

.

Proof. Consider a fragment with the maximum spiral path (e.g. Figure 5). The length of this path
scales quadratically with n. In particular, following a spiral path takes a series of four legs at each
depth, and the length of every other leg reduces by two (one for the wall and one for the path itself).

16

https://anonymous.4open.science/r/GenPlan-FBCD/README.md
https://anonymous.4open.science/r/GenPlan-FBCD/README.md

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This yields

n+

⌊n/2⌋−1∑
i=0

2(n− 2i− 1) =
n

2
2n− 4

(n/2)(n/2 + 1)

2
+O(n)

=
1

2
n2 +O(n)

(3)

Theorem 2. In the an n × n maze, the expected number of steps taken by SBP may exceed the
expected number of steps of an optimal policy by Ω(n2).

Proof. Build a fragment by adjoining an empty room and a spiral by a single door at a corner. Now
connect the two fragments by adding a door between the empty rooms in the opposite corner. As-
sume the size of the empty rooms is such that the optimal algorithm can find the exit with probability
1/2 by checking each empty room, but the SBP algorithm must explore entirely the first fragment
that it enters. With probability 3/4, the exit is not in the first empty room, so it must explore the
spiral, which takes time Ω(n2) to fully explore by Lemma 1. The spiral also must be exited, so
around n2 steps are spent when the exit is in the other empty room (in this case the optimal planner
finds immediately by checking each room). Since the optimal planner takes only a constant number
of steps to check each empty room, and then behaves identically to the SBP, the expected cost when
the exit is in any other location is asymptotically the same, so the expected cost difference is roughly
1
4n

2 = Ω(n2).

Theorem 3. The number of steps to fully explore a maze is O(n2).

Proof. Consider a v-vertex connected graph. The maximum width (roughly achievable by the spiral)
is v, leading to a naive bound of O(v2) = O(n). This can be improved to O(v) by running a
depth-first search. Since there are 4 movement directions the degree of this graph is 4 meaning
the maximum number of backtracks to a vertex is 3, which immediately gives 4v. However, in a
depth first search there is only one backtrack from each vertex is 1, which leads to an easy inductive
proof that the bound is O(2v − 1) regardless of degree, yielding 2n2 − 1 = O(n2). Note that
further improvements should be possible by considering the number of walls required to induce the
worst-case topology.

This implies that the Bayes-optimal policy has O(n2) expected cost (since its expected cost must
be at least as good as the expected cost of exhaustive search), regardless of the maze. Together,
Lemma 1 and Theorem 3 demonstrate that the SBP heuristic does not damage the (asymptotic)
expected cost in the worst maze.
Theorem 4. Assume that an n × n maze is fragmented in such a way that any time a fragment
is entered, it can be fully explored before exiting, into c2 square (n/c) × (n/2) fragments. The
asymptotic expected cost is Θ(n2) in the worst such maze for the modular optimal and globally
optimal policies.

Proof. First, consider the global optimal policy. The additional requirements placed on the maze
cannot make the O(n2) bound in Theorem 3 worse, and we can get a matching lower bound by
simply adjoining multiple spiral examples as in Lemma 1 and adding doors between them.

Now consider the modular optimal policy. It is clear that the globally optimal policy has an ex-
pected cost as least as low as the modular optimal policy (even in their respective worst mazes), by
definition, so the Ω(n2) lower bound automatically carries over to the modular optimal policy. We
assumed that the modular optimal policy takes the Bayes-optimal paths between fragments. This
must be at least as good as the following strategy: mimic the global optimal policy, but any time a
new fragment is entered, first explore it completely and return to the entrance. By Theorem 3, each
such “extra” exploration detour takes at most 2(nc)

2 − 1 steps, and the return takes at most (nc)
2

steps. The total is 3(nc)
2 − 1. There are exactly c2 such detours, for 4n2 − c2 = Θ(n2) extra steps.

The global optimal policy also takes Θ(n2) steps.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, in the worst case the modular algorithm is inferior by at least a constant factor of the total
search time in expectation. Examining the proof of Theorem 4 yields a factor of 2.5 over our upper
bound in Theorem 3, but presumably this can be improved substantially since a lot of exploration is
being redone after the detours.

Improving expected cost upper bounds Substantial improvements to the worst-case cost bound
in Theorem 3 are easy to obtain when the proof is applied to expected cost by e.g. noting that the
depth-first search visits at least one new cell every two steps, meaning that there is clearly at least
a 1/4 chance of finding the exit after n2 steps, or by noting that the true number of “vertices” is
reduced by walls. These improvements seem to apply equally to the modular and global optimal
policies, and probably do not affect our constants much.

For worst-case cost, the situation is similar. However, the worst-case cost analysis simplifies signif-
icantly with the additional assumption that transitions between fragments are negligible (say, if they
all branch off from a central room). This observation is trivial but worth stating explicitly:
Theorem 5. When the cost to transition between fragments is negligible, each has one entrance,
and there is no line-of-sight across fragments, the modular algorithm has the same worst-case step
count as the optimal algorithm.

Proof. In the worst case, the optimal algorithm must explore each fragment, and since there is only
one entrance to each fragment it is not possible to gain any advantage by exiting a fragment before
it has been fully explored.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL ENVIRONMENTS

Figure 6: Environments used in Behavioral Experiment 1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Environments used in Simulation Experiment 2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS - SIMULATION EXPERIMENT

Figure 8: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. Gen-POMCP requires fewer rollouts and saves computing costs.
Each environment is shown in a different color (see also Figure 4.)

Figure 9: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. In each individual environment Gen-POMCP requires fewer rollouts
and saves computing costs.)

E THE EFFECT OF FREE PARAMETERS ON RESULTS

Reconstruction accuracy. As map accuracy decreases, the amount of online heuristic planning in-
creases, and the amount of structure-based planning decreases. We implement this heuristic based
prior work with Maze Search (Kryven et al 2024). A zero reconstruction accuracy entails a fully
heuristic planning, regardless of planning cost.

Planning cost. As planning cost increases the units become smaller, leading to more localized
search. A negligible planning cost paired with a high reconstruction accuracy reduces the model to
a global planner. A high accuracy and high planning cost leads to a fully structure-based planning
(the population level model used in the paper)

Dissociating between these parameters in a human experiment requires a complex targeted design,
beyond the scope of the current work. As our goal is to test whether people use structure-based

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

planning, as opposed to global search considered in previous work, we use a population-level model
with high reconstruction accuracy and low planning costs. This leads the model to plan within single
units intended by design (rather than grouping them) and maximizes the amount of discriminating
decisions between structure-based and global planning.

F GENERALIZING TO ACROSS LLM ARCHITECTURES

In the paper, we used GPT-4 to build a proof-of-concept implementation for the GMM, originally
chosen due to its strong code-generation abilities. However, we clarify that the choice of LLM model
and prompting strategy are not critical to our framework’s results. The primary contribution of our
work is showing that human planning in structured environments relies on integrating two cogni-
tive principles – (1) compressed cognitive maps that leverage redundant structure (implemented in
GMM) and (2) policy reuse (implemented in SBP).

Below we show that GMM can be implemented with different LLM architectures. To do this, we
show experimental results producing similar reconstructions by using different LLMs as a backend:
GPT-4, Gemini-2.5-flash, Llama-3.3-70B, and Kimi-K2-Instruct-0905. Furthermore, we present
results from two different prompting strategies (one-step prompt and multi-step prompts), showing
that the exact prompt wording is not critical to producing the given results.

F.1 SINGLE PROMPT

Input map

Top scoring unit candidate

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

Reconstructed map

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F.2 MULTI PROMPT

Input map

Complete input map Partial input map

Top scoring unit candidate

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

Reconstructed map

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

G PROMPTS

G.1 ONE-STEP PROMPT FOR GMM

The Single Prompt GMM identifies the unit along with the reconstruction program using one prompt
to the LLM. The prompt describes the task as a two-step procedure: first identify the repeating unit,
then complete and return a runnable Python program that contains both the unit as a 2D array and
the reconstruction function.

System prompt:

You are a designer’s assistant, skilled in noticing patterns,
combining fragmets into a patterns, and extrapolating them. You
are skilled in identifying the underlying structure of a pattern
and generating new fragments that fit the pattern. You are also
skilled at writing Python code.

User prompt:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

There are two steps to this task. In Step 1, you will be given
an input (a map) and asked to identify its constituent units.
The input is a matrix, elements of which can take values 1 and
0. Your task is to identify a repeating unit in this input.

To be considered a repeating unit, the unit does not have to tile
the space exactly, but it must appear at least twice. The unit
instances may be flipped horizontally or vertically, translated
horizontally or vertically, and rotated by multiples of 90 degrees
(i.e. 0, 90, 180, 270).

IMPORTANT:
1. Instances of the unit must NOT overlap in the original input.
2. The height and width of the unit need not be equal

Example 1.
Given input: {example input 1}
The repeating unit is: {example unit 1}

Example 2.
Given input: {example input 2}
The repeating unit is: {example unit 2}

Example 3.
Given input: {example input 3}
The repeating unit is: {example unit 3}

In Step 2, you will write a function that attempts to identify all
occurrences of the unit in the input. Return a list containing
the indexical locations of the top left corner for each copy,
along with whether to reflect the copy horizontally and the
number of 90 degree counter-clockwise rotations (these operations
together generate the dihedral group D4).

For instance, in the examples above, possible solutions include

Example 1.
Solution 1: {example 1 program 1}
Solution 2. {example 1 program 2}

Example 2.
Solution 1: {example 2 program 1}
Solution 2: {example 2 program 2}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Given your unit and partition, the user will attempt to
reconstruct the input using the following function:

def construct copy(unit, reflect, rotations):
if reflect:
unit = np.flip(unit, 1)

unit = np.rot90(unit, rotations)
return unit

def regenerate pattern(unit, copies, input dims):
pattern = -1 * np.ones(shape=input dims)
for copy in copies:

transformed = construct copy(
unit,
copy["reflect"],
copy["rotations"],

)
height, width = transformed.shape
tl i, tl j = copy["top left"]
try:

pattern[tl i:tl i+height, tl j:tl j+width] = transformed
except:

pass
return pattern

We can test the success of this regeneration with

input map = np.array(input map)
output = regenerate pattern(

unit,
partition(),
input map.shape,

)

Now is your turn. Propose a unit that can be used to reconstruct
the given input. Respond by completing the following Python code:

input map = {input map}
make sure to define all arrays as numpy arrays
import numpy as np
input map = np.array(input map)

unit = [...]
unit = np.array(unit)

def partition():
copies = []
Place your code here. Let’s think step by step
return copies

Please include only code in you response, no text.’’’

G.2 MULTI-PROMPT GMM

To improve GMM scalability on large maps, we introduce a two-step approach. The two steps are
implemented in two separate prompts, which adapt the strategy described in the previous section.
The first prompt provides a part of the map and asks to identify a repeating unit. The second prompt

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

asks the LLM to infer a reconstruction program for the complete map given the previously identified
unit.

System prompt:

You are a designer’s assistant, skilled in noticing patterns,
combining fragments into a patterns, and extrapolating them. You
are skilled in identifying the underlying structure of a pattern
and generating new fragments that fit the pattern. You are also
skilled at writing Python code.

Unit Identification Prompt:

You will be given an input (a map) and asked to identify its
constituent units. The input is a matrix, elements of which can
take values 1 and 0. Your task is to identify a repeating unit in
this input, and ONLY output the unit as a 2D python array. DO NOT
include anything else in the completion.

To be considered a repeating unit, the unit does not have to tile
the space exactly, but it must appear at least twice. The unit
instances may be flipped horizontally or vertically, translated
horizontally or vertically, and rotated by multiples of 90 degrees
(i.e. 0, 90, 180, 270).

IMPORTANT:
1. Instances of the unit must NOT overlap in the original input.
2. The height and width of the unit need not be equal

Example 1.
Given input: {example input 1}
The repeating unit is: {example unit 1}

Example 2.
Given input: {example input 2}
The repeating unit is: {example unit 2}

Example 3.
Given input: {example input 3}
The repeating unit is: {example unit 3}

The input you are working with is the following map: {input map}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Reconstruction Program Prompt:

You will write a function that attempts to identify all
non-overlapping occurrences of the unit in the input. Return a
list containing the indexical locations of the top left corner
for each copy, along with whether to reflect the copy horizontally
and the number of 90 degree counter-clockwise rotations (these
operations together generate the dihedral group D4).

Example 1.
Given input: {example input 1}
The unit is: {example unit 1}
A solution is: {example 1 program 1}
An alternative, more structured solution is: {example 1 program
2}

Given input: {example input 2}
The unit is: {example unit 2}
A solution is: {example 2 program 1}
An alternative, more structured solution is: {example 2 program
2}

Given your unit and partition, the user will attempt to
reconstruct the input using the following function:

def construct copy(unit, reflect, rotations):
if reflect:
unit = np.flip(unit, 1)

unit = np.rot90(unit, rotations)
return unit

def regenerate pattern(unit, copies, input dims):
pattern = -1 * np.ones(shape=input dims)
for copy in copies:

transformed = construct copy(
unit,
copy["reflect"],
copy["rotations"],

)
height, width = transformed.shape
tl i, tl j = copy["top left"]
try:

pattern[tl i:tl i+height, tl j:tl j+width] = transformed
except:

pass
return pattern

We can test the success of this regeneration with

input map = np.array(input map)
output = regenerate pattern(

unit,
partition(),
input map.shape,

)

)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Now is your turn. Respond by completing the following Python
code,
1. include everything that is between START OF CODE and END OF
CODE
2. include the entire input map provided, do not use ... to omit
3. ONLY fill partition(), do not use variables/functions that are
not defined
4. In the returned copies, follow the exact key names in the
examples: ’top left’, ’reflect’, ’rotations’.
4. DO NOT include anything else in the completion

START OF CODE, make sure to define all arrays as numpy arrays
import numpy as np

input map = {input map}
unit = {input unit}
input map = np.array(input map)
unit = np.array(unit)

def partition():
copies = []
Place your code here. Let’s think step by step
return copies

result = partition()

END OF CODE

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G.3 IN-PROMPT EXAMPLES

Example 1

Input map

[
[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 0, 0],
[1, 0, 1, 0],
[0, 1, 0, 1]

]

Unit

[
[1, 0],
[0, 1]

]

Reconstruction program 1:

def partition():
return [

{"top left": (0,0), "reflect": False, "rotations": 0},
{"top left": (0,2), "reflect": False, "rotations": 0},
{"top left": (3,0), "reflect": False, "rotations": 0},
{"top left": (3,2), "reflect": False, "rotations": 0},

]

Reconstruction program 2:

def partition():
copies = []
for tl_i, tl_j in [(0,0),(0,2),(3,0),(3,2)]:

copies.append(
{"top left": (tl_i, tl_j), "reflect": False, "rotations": 0},

)
return copies

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Example 2

Input map

[
[1,1,1,1,1,1],
[0,0,1,0,0,1],
[0,0,1,0,0,1],
[1,0,1,1,0,1],
[0,0,0,0,0,0],
[1,1,1,1,1,1],
[1,0,1,1,0,1],
[0,0,1,0,0,1],
[0,0,1,0,0,1]

]

Unit

[
[1,1,1],
[0,0,1],
[0,0,1],
[1,0,1]

]

Reconstruction program 1:

def partition():
return [

{"top left": (0,0), "reflect": False, "rotations": 0},
{"top left": (0,3), "reflect": False, "rotations": 0},
{"top left": (5,0), "reflect": True, "rotations": 2},
{"top left": (5,3), "reflect": True, "rotations": 2},

]

Reconstruction program 2:

def partition():
copies = []
for tl_i, tl_j in [(0,0),(0,3)]:

copies.append(
{"top left": (tl_i, tl_j), "reflect": False, "rotation": 0},

)
for tl_i, tl_j in [(5,0),(5,3)]:

copies.append(
{"top left": (tl_i, tl_j), "reflect": True, "rotations": 2},

)
return corners

Example 3

Input map

[
[1,1,1,1,1,1],
[1,0,1,0,1,0],
[1,0,1,0,1,0],
[0,0,0,0,0,0],
[0,1,0,1,0,1],
[0,1,0,1,0,1],
[1,1,1,1,1,1]

]

Unit

[
[1,1],
[1,0],
[1,0]

]

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

H PSEUDOCODE

Algorithm 1 Single-prompt Generative Map Module
Require: I : Input map, t : Threshold, C : Number of completions, S : Likelihood function
Ensure: λ : Generative program, u : Unit

1: S′ ← 0
2: λ← ””
3: u← ””
4: while S′ < t do
5: Generate a prompt from I
6: Send the prompt and receive C completions (λ1, u1), . . . , (λC , uC)
7: Extract Python programs {λ1, λ2, . . . , λC}
8: for all λi ∈ {λ1, . . . , λC} do
9: if λi runs successfully then

10: Si ← S(λi)
11: end if
12: end for
13: (S′, i)← maxi Si ▷ highest scoring program based on likelihood
14: λ← λi

15: u← ui

16: end while
17: return λ, u

Algorithm 2 Multi-prompt Generative Map Module
Require: Ic : Input map, Ip : Partial map, t : Threshold, C : Number of completions,

S : Likelihood function
Ensure: λ : Generative program, u : unit

1: S′ ← 0
2: λ← ””
3: u← ””
4: while S′ < t do
5: Generate a prompt from Ip
6: Send the prompt and receive C unit candidates u1, . . . , uC

7: for all ui ∈ {u1, . . . , uC} do
8: Generate a prompt from Ic and ui

9: Send the prompt and receive program λi

10: if λi runs successfully then
11: Si ← S(λi)
12: end if
13: end for
14: (S′, i)← maxi Si ▷ highest scoring program based on likelihood
15: λ← λi

16: u← ui

17: end while
18: return λ, u

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 3 Structure-Based Planner
Require: I : Input map, u : Unit, Ci : Unit copies
Ensure: P : Agent path

1: (r, c)← Initial agent position
2: C ← Empty set to track fully explored unit copies
3: π ← Policy for unit exploration based on location of entrance
4: while C does not contain all copies do
5: Run POMCP on I until reaching an unexplored unit Ci

6: Identify the current entrance e into Ci

7: if policy from e found in π then
8: Explore Ci with policy from π
9: Add Ci to C

10: else
11: Run POMCP on Ci explore the unit
12: Add new policy (e, πe) to π
13: Add Ci to C
14: end if

15: o1, . . . , om ← Exit locations of Ci

16: for oj in {o1, . . . , om} do
17: pj ← compute penalty for escaping Ci from oj
18: end for
19: Run MCTS on Ci until reaching an exit to escape
20: end while

21: Run POMCP on I to explore the rest of the map
22: return P

Algorithm 4 POMCP for In-Unit Planning
1: procedure SEARCH(h)
2: if B(h) = ∅ then
3: return
4: else
5: repeat
6: sexit ∼ B(h)
7: Simulate(sexit, h, 0)
8: until Timeout
9: return argmaxa V (ha)

10: end if
11: end procedure
12:
13: procedure ROLLOUT(sexit, h, depth)
14: if depth > depth limit then
15: return 0
16: end if
17: a ∼ πrandom
18: (o, r) ∼ G(h, a)
19: if o contains sexit then
20: return r
21: else
22: return r+Rollout(sexit, ha, depth+1)
23: end if
24: end procedure

1: procedure SIMULATE(sexit, h, depth)
2: N(h)← N(h) + 1
3: if depth > depth limit then
4: return 0
5: end if
6: if h /∈ T then
7: for a ∈ {up, right, bottom, left} do
8: T (ha)← (Ninit(ha), Vinit(ha), ∅)
9: end for

10: return Rollout(sexit, h, depth)
11: end if
12: a← argmax

a

[
V (ha) + c

√
logN(h)
N(ha)

]
13: (o, r) ∼ G(h, a)
14: if o contains sexit then
15: N(ha)← N(ha) + 1
16: else
17: r ← r+Simulate(sexit, ha, depth+1)
18: end if
19: V (ha)← V (ha) + r−V (ha)

N(ha)

20: return r
21: end procedure

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

I HUMAN EXPERIMENT - MAZE SEARCH TASK

Figure 10: Introductory screen.

Figure 11: Instructions.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 12: Practice (there are 5 practice trials).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 13: Comprehension Quiz.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 14: Experiment view.

36

	Introduction
	Methods
	Structured Spatial Domain
	Computational Models
	Computational Hypotheses

	Experiments
	Experiment 1: Behavioral Validation
	Experiment 2: Simulation

	Related Work
	Discussion
	Code availability
	Performance Bounds for Structure-Based Planning
	Experimental Environments
	Additional results - simulation experiment
	The effect of free parameters on results
	Generalizing to across LLM architectures
	Single Prompt
	Multi Prompt

	Prompts
	One-Step Prompt for GMM
	Multi-prompt GMM
	In-prompt Examples

	Pseudocode
	Human Experiment - Maze Search Task

