

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PLANNING WITH GENERATIVE COGNITIVE MAPS

Anonymous authors

Paper under double-blind review

ABSTRACT

Planning relies on cognitive maps – models that encode world structure given cognitive resource constraints. The problem of learning functional cognitive maps is shared by humans, animals and machines. However, we still lack a clear understanding of how people represent maps for planning, particularly when the goal is to support cost-efficient plans. We take inspiration from theory of compositional mental representations in cognitive science to propose GenPlan: a cognitively-grounded computational framework that models redundant structure in maps and saves planning cost through policy reuse. Our framework integrates (1) a Generative Map Module that infers generative compositional structure and (2) a Structure-Based Planner that exploits structural redundancies to reduce planning costs. We show that our framework closely aligns with human behavior, suggesting that people approximate planning by piecewise policies conditioned on world structure. We also show that our approach reduces the computational cost of planning while producing good-enough plans, and contribute a proof-of-concept implementation demonstrating how to build these principles into a working system.

1 INTRODUCTION

People are highly proficient in solving real-world planning problems. For example, we can navigate cities without precisely knowing every link in the street network (Fig. 1a.)(Bongiorno et al., 2021) and accomplish complex construction projects (Fig. 1b.) with many actions and sub-goals (Mugan et al., 2024). Solving these problems optimally is theoretically intractable (Kaelbling et al., 1998), and therefore approximate algorithms for planning in natural domains remain an active area of research in AI (Silver & Veness, 2010), robotics (Curtis et al., 2025), and cognitive science (Kryven et al., 2024; van Opheusden et al., 2023). Here, we seek to uncover cognitive computations that enable humans to plan efficiently in natural domains. To do this, we focus on the key intuition that the human world is structured (Fig.1c,d) and propose that people reason about redundancies in this structure to efficiently encode cognitive maps, and reduce planning costs. We formalize this hypothesis in GenPlan, a computational model that gives an algorithmic account of how structure-based planning can be implemented in practice.

Formally, a planning problem constitutes a search within a decision tree of possible states and actions (Kuperwajs et al., 2025; Russell & Norvig, 2016). This tree can be encoded as a learned neural policy (Liu et al., 2020), an explicit tree structure (Russell & Norvig, 2016; Silver & Veness, 2010), or a model describing states and actions in a symbolic form (Tang et al., 2024). The size of the underlying state-space determines the computational cost of the problem, or how difficult it should be. Since optimal planning beyond non-trivial state-spaces is intractable, approximate planning frameworks have focused on building partial state-spaces (Silver & Veness, 2010), learning generalizable policies (Curtis et al., 2022; Singh et al., 2012), and grouping actions frequently performed together into options (Sutton et al., 1999). However, the difficulty predicted by these approximate planning algorithms rarely aligns with human experience, as people often solve formally complex real-world problems with relative ease.

We take inspiration from the theory of *compositional concepts* in cognitive science, which states that humans learn complex concepts by combining simpler ones (Fodor, 1975; Lake & Piantadosi, 2020; Pitt et al., 2021), and adapt the principle of compositionality to model human cognitive maps and plans as generative structures. Compositionality has been successful in explaining concept representation in visual (Lake & Piantadosi, 2020; Tian et al., 2020), auditory (Verhoef et al., 2014;

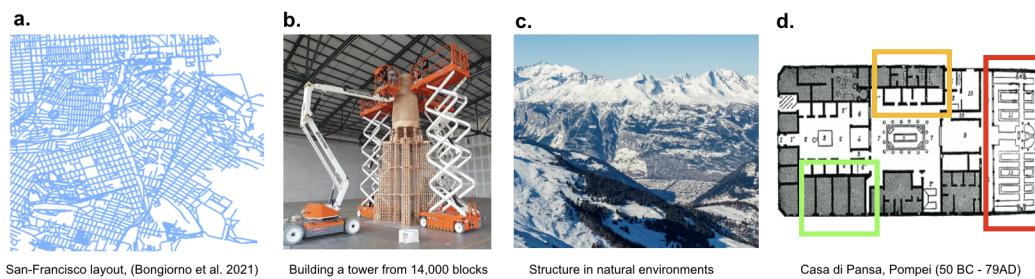


Figure 1: Structured human environments: city street networks, construction projects, natural landscapes, and an interior floor-plan with repeating structural elements highlighted. People learn mental world-models that exploit this structure to make resource-efficient plans.

Rohrmeier, 2020; Hofer et al., 2021) and spatial domains (Sharma et al., 2022; McCarthy et al., 2021). Further, compositional reasoning is culturally universal (Pitt et al., 2021), suggesting that it may be an evolved adaptation to natural structure people encounter in daily life (Johnston et al., 2022). Neural and behavioral studies provide ample evidence that cognitive maps are represented using similar compositional generative structures. Neural evidence from human studies includes mirror-invariant encoding of natural scenes (Dilks et al., 2011) and reuse of neural reference frames across similar environments (Marchette et al., 2014). Behavioral evidence includes hierarchical spatial representations (Kosslyn et al., 1974; Stevens & Coupe, 1978; Hirtle & Jonides, 1985) reflected in first planning routes between, and then within semantic regions (Bailenson et al., 2000; Newcombe et al., 1999; Wiener & Mallot, 2003; Wang & Brockmole, 2003; Balaguer et al., 2016; Tomov et al., 2020), and ability to predict unseen environment layout in structured environments (Sharma et al., 2022).

In formal terms, combinatorial concept representations can be modeled by *mental programs* – symbolic instructions specifying how to produce new instances of a given concept class (Lake et al., 2015; Lake & Piantadosi, 2020). Computational accounts of concept learning as *program induction* (inferring a program from a given set of examples) provide powerful explanations of human learning efficiency – only a few examples can suffice to deduce an underlying program, in contrast to vast amounts of data required by purely neural models (Tenenbaum et al., 2011; Lake et al., 2015). Building on this research, we model cognitive maps as generative programs that capture structures such as symmetries and repeated parts, and propose an algorithmic framework that models cost-efficient planning in such maps by reusing local policy conditioned on structure, instead of solving a global optimization problem.

In this work we adopt a scientific and an engineering goal: (1) to understand computational cognitive principles by which humans plan in structured spatial domains, and (2) to engineer a cost-efficient computational framework that formalizes human-like planning in structured environments. We contribute:

- Generative Map Module (GMM), which discovers programmatic map representations using tractable inference;
- Structure-Based Planner (SBP) that implements hierarchical planning both within and between the structural units
- Empirical validation of our framework on human behavior, showing that human planning is consistent with generative cognitive maps and policy reuse.

The GMM models observations of the environment by inferring a small distribution over programmatic maps. To do this, we use a Large Language Model (LLM) as an embedding of human priors learned through training on human data. The SBP extends a Partially Observable Markov Decision Process (POMDP) to use the GMM representation. It constructs end-to-end policies for within-unit planning and between-unit transitions using adaptations of a Partially Observable Monte Carlo Planner (POMCP). In the next section, we introduce the experimental environment, followed by a detailed description of computational models. In Section 3, we compare our models’ predictions with human empirical results.

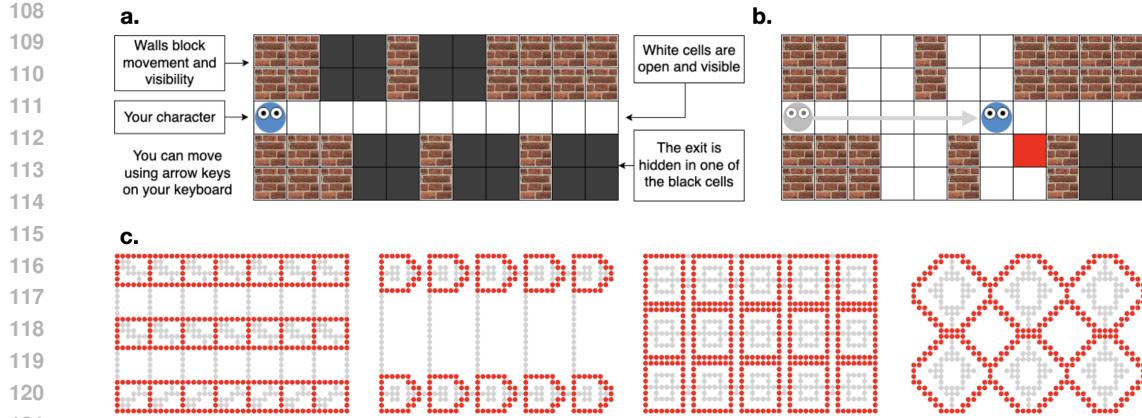


Figure 2: The Maze Search Task with structured layouts. (a.) Task Setup illustrated in a simple example. Participants can use keyboard keys to navigate over any non-wall cells. The exit is initially hidden in one of the black (unobserved) cells. (b) The exit is shown as a red tile when it comes into view. (c) A subset of structures environment layouts used to evaluate GenPlan and compare its performance to that of a Naive POMCP. The dots denote floor cells through which participants can move. Red dots denote structural unit boundaries.

2 METHODS

2.1 STRUCTURED SPATIAL DOMAIN

We examine people’s planning strategies by adapting a version of Maze Search Task (MST) previously used to study human behavior in spatial navigation domains (Kryven et al., 2024; 2021; Geva-Sagiv et al., 2025). The objective of MST is to navigate a series of partially observable, two-dimensional grid-worlds, finding exits hidden in each. Each environment has only one exit. The environment are partially observable, with the exits initially placed at a random unobserved location (black cells). Fig.2 shows a simple MST environment seen by participants during one of the practice trials. ¹ Full experiment instructions are given in Appendix I. People navigate by using their keyboard keys to move to any unoccupied grid cells adjacent to their character (a round avatar). The black hidden cells are revealed when they come into the avatar’s line of sight. When revealed, the exit becomes visible as a red tile. As soon as the character moves over the exit, the trial ends. In our adaptation of MST all mazes are structured, and contained between 2 and 20 repeating structural units. The units may have occurred as reflected or rotated instances, where the structured area comprised between 80 - 100% of the environment layout.

2.2 COMPUTATIONAL MODELS

Decision making under partial observability can be modeled by a partially observable Markov decision process (POMDP). Equivalently, it can be viewed as a fully observable search through a space of beliefs, where each belief is a probability distribution over possible states. Solving POMDPs is notoriously hard (Madani et al., 2003), hence understanding how people approach these problems holds deep importance for cognitive science and AI.

Formally, a POMDP is a tuple $\langle \Delta(S), A, \tau, r, b_0, \gamma \rangle$, where $\Delta(S)$ is the space of probability distributions over a state space S , A is the set of actions, τ is the belief update function, r is the reward function, b_0 is the initial belief, and γ is the discount factor. The belief state evolves deterministically via τ , reflecting both the agent’s actions and observations.

In this work, each state $s \in S$ is represented as an $N \times M$ grid whose cells are labeled {wall, empty, exit, agent}. The overall state space S consists of all such grids containing exactly one agent and one exit. A belief $b \in \Delta(S)$ is thus a probability distribution over these grids, encoding the agent’s uncertainty about the true state. Initially, b_0 assumes that the agent and the walls

¹A demo is available here: http://18.25.132.241/fragments/int_exp.php

162 are known, while the exit is uniformly distributed over all valid, unseen cells. The action space A
 163 contains four possible movements (up, down, left, right). Observations $o \in O$ reveal the visible
 164 subset of the grid around the agent, with each visible cell labeled {wall, empty, exit}, and any cell
 165 outside the agent's visibility range r labeled as *unseen*. Observations are consistent with the grid
 166 structure of the true state $s \in S$.

167 The belief update function τ is given by
 168

$$169 \quad b'(s') \propto Z(o | s') \sum_{s \in S} T(s', a, s) b(s), \\ 170 \\ 171$$

172 where $T(s', a, s)$ is the transition function, and $Z(o | s')$ is the observation likelihood. The
 173 transition function $T(s', a, s)$ specifies the probability of transitioning to state s' from s after
 174 executing action a . Here, actions that would move the agent into a wall result in the agent remaining
 175 in its current position, and transitions to an exit state terminate the process. The observation
 176 function $Z(o | s')$ encodes the likelihood of observing o given s' , where observations reflect the
 177 visible subset of the grid within range r of the agent's position. Visibility is blocked by walls, such
 178 that cells beyond a wall are labeled as *unseen*. Finally, the reward function $r(b, a)$ is the expected
 179 reward under the belief b . Since the agent can always see an exit before reaching it, $r(b, a) = 1$ if
 180 action a leads the agent to a known exit and 0 otherwise.
 181

182 **Expected Utility** The optimal policy for this POMDP can be found through a belief space tree
 183 search (Kaelbling et al., 1998). The search is conducted over a tree where each node represents
 184 a belief $b \in \Delta(S)$, and edges correspond to action-observation pairs (a, o) . Starting from the
 185 root node b_0 , the tree expands by simulating actions $a \in A$ and updating beliefs using the belief
 186 update function τ . For each action a , the agent considers all possible observations $o \in O$, with the
 187 likelihood of each observation determined by the observation function $Z(o | s')$. At each node, the
 188 value of a belief is computed recursively using the Bellman equation:
 189

$$190 \quad V(b) = \max_{a \in A} \left[r(b, a) + \gamma \sum_{o \in O} P(o | b, a) V(\tau(b, a, o)) \right], \\ 191 \\ 192 \quad (1)$$

193 where $P(o | b, a)$ is the probability of receiving observation o after taking action a under belief
 194 b . The optimal policy π^* is derived by selecting the action at each belief node that maximizes the
 195 expected value. See (Kryven et al., 2024) for further details on this implementation, which was used
 196 as a model of human planning in MST in prior work.
 197

198 Although this is the optimal strategy, human behavior has previously been shown to diverge at
 199 times from its predictions (Kryven et al., 2024), where the extent of this divergence varies between
 200 individuals in a way that can be explained by the amount of cognitive resources people allocate
 201 to planning (Kryven et al., 2021). Previous work with MST, as well as with related non-spatial
 202 planning tasks (Huys et al., 2015), has found that people's divergence from the optimal trajectories
 203 is most readily explained by a limited planning horizon (discount factor $\gamma < 1$ in Equation 1). In the
 204 remainder of this section we describe alternative computational hypotheses for how humans could
 205 make decisions in this environment by reasoning about structural patterns.
 206

207 **Generative Structure-Based Framework (GenPlan)** Next, we describe a modeling framework
 208 that formalizes planning strategies conditioned on automatically discovered latent structure of the
 209 state-space. Our model consists of two modules: a Generative Map Module (GMM) and Structure-
 210 Based Planner (SBP). See Fig.3 for a high-level overview of this architecture. The GMM recovers
 211 a programmatic representation of the observed state-space as a composition of structural units. The
 212 SBP then uses a planner to plan a piece-wise policy once per-unit, in contrast to a global policy, saving
 213 computing costs. Importantly, this reconstructed programmatic representation is a cognitively-
 214 inspired state-space compression. While such a reconstruction may match the ground-truth planning
 215 state-space, it does not need to be exact as long as it is sufficient to serve the agent's goals (Ho et al.,
 216 2022). In theory, the cognitive principle of combining automatic structure discovery with structure-
 217 aware planners can apply to any domain, as a proof of concept here we focus on spatial tasks.

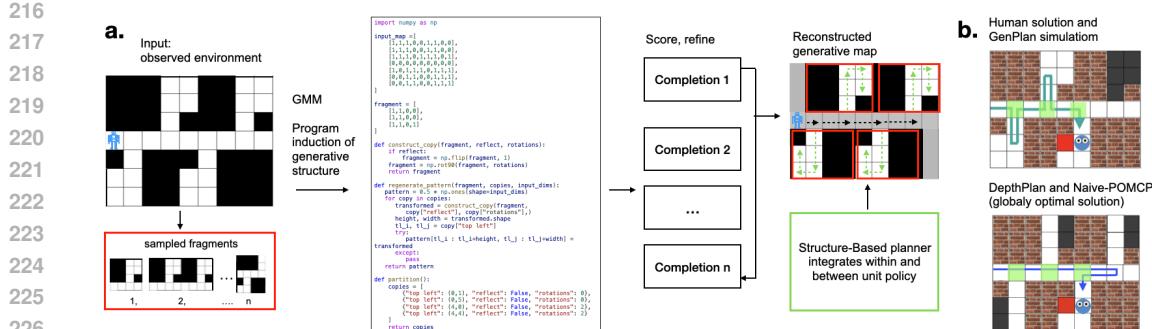


Figure 3: Model Architecture and predictions. (a) The GenPlan Framework. GMM recovers a small distribution over generative maps based on input (a partial observation of the ground truth map). Each generative map constitutes a set of candidate units coupled with a program for reconstructing the input from them. We assign a likelihood to each generative map, and pass the most likely reconstruction to SBP. SBP plans a policy once for each structural unit. (b) A human solution to the given example agrees with prediction of GenPlan (top panel). Arrows indicate the participant’s path. The path predicted by alternative models DepthPlan and Naive-POMCP (bottom panel) instead optimizes the global policy. Green highlighting shows discriminating decisions.

Generative Map Module (GMM) Let I be the global partially observed input grid map of cells S_I . Here, we assume that I specifies all wall locations, but does not reveal the reward location, matching the information given to people by MST design. In the general case, I can extend to any partial observation, as GMM will attempt to infer a structural unit from any input its given.

The GMM implements approximate inference of a posterior distribution $p(\mathcal{M}|I)$ over cognitive maps \mathcal{M} that partition I into structural units $\mathcal{M} = \{U_i\}_{i=1}^m$. We use LLM-based program synthesis with gpt-4, chosen for its strong code synthesis capabilities, to search for programs that generate \mathcal{M} based on I (Fig. 3). In Appendix F, we show that our approach can generalize to other LLM architectures, as long as a given LLM is able to infer at least one good-enough map in the distribution it infers. To do this, we prompt LLM to identify repeating units in the input map, and synthesize a Python program that approximately reconstructs the input from them. Prompts are given in Appendix G. The prompt includes Python code with functions describing admissible transformations, as well as a likelihood function for a given \mathcal{M} . In our implementation the input map I is a grid-world, specified by an numerical array, where each grid cell is associated with a number (e.g. wall=1, floor=0). The reconstructions \mathcal{M} do not allow overlapping units, and allow any units that repeat in I at least twice.

To develop a space of possible map representations, we estimate the likelihood of each candidate \mathcal{M} by a weighted combination of grid-level similarity, a function of total information in a candidate unit, and the Minimum Description Length (MDL) principle (Rissanen, 1978). MDL penalizes each unit occurrence by the bits necessary to specify the map reconstruction: their locations (effectively, the number of copies), rotations and reflections. This means that reconstructions made up of many smaller pieces are less likely than reconstructions made up of bigger ones. The function of total information in a unit ensures that the selected units are neither trivial (e.g., uniform blocks of cells made up of either walls or open space) nor noise, by defining an inverted-U relationship between likelihood and informativeness (Kidd et al., 2012). This treats large units where perception is subject to information bottleneck constraints as less likely (Cheyette & Piantadosi, 2020). Overall, this likelihood function can express a weighted preference for (1) more accurate reconstructions, (2) simpler units (to reduce planning cost).

To form the posterior $p(\mathcal{M}|I)$, we use the likelihood:

$$l(\mathcal{M}; I) \propto \frac{w_1}{d_x \cdot d_y} \sum_{x=1}^{d_x} \sum_{y=1}^{d_y} (I(x, y) - O(x, y))^2 - w_2 |\mathcal{M}| + w_3 \exp\left(-\frac{(H_{\text{total}} - \beta)^2}{2\sigma^2}\right), \quad (2)$$

where d_x, d_y are input dimensions, O is the output (reconstructed map), and w_i are weights associated with reconstruction accuracy, map complexity, and unit complexity – free parameters of

270 the model. Here, weights for map complexity and unit complexity directly control planning cost,
 271 as smaller units are less costly to plan in. The expression $w_2|\mathcal{M}|$ controls the number of units
 272 (map complexity), meaning that a lower w_2 corresponds to a lower planning cost. The expres-
 273 sion at w_3 controls total entropy in the unit (unit complexity), where more complex units incur
 274 higher planning costs. Therefore, a lower w_3 corresponds to a lower planning cost. See also
 275 Appendix E for the discussion of these parameters. We define the total entropy in the unit as
 276 $H_{\text{total}} = d_x d_y \cdot (-p \log_2 p - (1-p) \log_2(1-p))$, where p is the fraction of 1's in the array,
 277 and free parameter β reflects the processing bottleneck, in line with perceptual models explored
 278 in prior work (Cheyette & Piantadosi, 2020; Kryven et al., 2024). This definition ensures that the
 279 information term next to w_3 reaches a maximum of 1 $H_{\text{total}} = \beta$, but decays to 0 on both sides of
 280 this maximum. In the general case, input I and output O are real-valued 2D image arrays. In our
 281 current implementation input I takes values 0 and 1, and the output $0 \leq O(x, y) \leq 1$. Instead of
 282 using the raw Python program for λ to measure its complexity, we use a compressed encoding of
 283 the units and their transformations used to reconstruct the map. Here, compressing LLM-generated
 284 output and transformations is analogous to refactoring the synthesized programs. As the length of
 285 LLM-synthesized code may be noisy, due to injected comments and code redundancies, refactoring
 286 the output obtains a denoised metric of complexity.

286 The posterior $p(\mathcal{M}|I)$ defines how the environment structure is encoded into memory. The free
 287 parameters w_i, β balance reconstruction accuracy against the complexity of the generative structure
 288 and planning costs. Fig.3 shows a simple example with structural units highlighted in red. Bigger
 289 examples designed in our simulation experiment are shown in Fig.2. Our proof-of-concept imple-
 290 mentation uses the most likely generative map in the SBP module for generating a policy. This
 291 approach makes a simplifying assumption relative to prior work on human cognitive maps (Sharma
 292 et al., 2022), which found that people anticipate unseen map structure by maintaining a distribution
 293 over possible maps. However, as our experiment design does not distinguish between planning over
 294 a distribution or the most likely map, both approaches would make identical predictions.

295 **Structure-Based Planner (SBP)** Implementing SBP integrates planning within and between
 296 structural units. Since finding an exact solution is intractable due to the size of the problem (Kael-
 297 bling et al., 1998), we solve planning *within a unit* by searching through the belief space using an
 298 approximate online Partially Observable Monte Carlo Planner (POMCP) (Silver & Veness, 2010). A
 299 plan *in-between units* consists of leaving the current unit and transitioning to the next one. We solve
 300 the former by adapting Monte Carlo Tree Search (MCTS), and introducing an optimistic heuristic
 301 valuation for open cells around the boundary of a unit (i.e. cells through which we can exit the unit).
 302 Upon completing a plan for the current unit, this heuristic should encourage us to leave the unit in
 303 the direction that minimizes the expected global cost of reaching the exit. In the general case, this
 304 can be any heuristic that does not overestimate the true cost. Here, we compute the values of bound-
 305 ary cells as inversely proportional to the average of manhattan distances to the remaining external
 306 unobserved cells, hence assigning a higher value to cells that are on average closer to the remaining
 307 unseen parts of the map. We solve the transition to the next unit using a POMCP on the global map,
 308 but implement the option to switch to within-unit planning upon reaching the new unit. Here, we
 309 evaluate the option by estimating the average per-step cost to plan within the unit. The pseudo-code
 310 for GMM and SBP the algorithms is given in Appendix H. In Appendix B we analyze SBP by de-
 311 riving worst-case bounds on step-cost differences between SBP and the optimal policy. We show
 312 that SBP yields only a constant-factor step penalty that does not affect asymptotic exploration, and
 313 in non-structured settings the worst-case costs are identical.

314 2.3 COMPUTATIONAL HYPOTHESES

316 We compare human performance to the hypotheses (planing algorithms) to evaluate whether and
 317 how human planning implements the two computational steps outlined by GenPlan.

- 319 1. **Structure-Naive Planner (Naive-POMCP):** The model doesn't use generative maps, and
 320 plans by optimizing a global policy for the environment.
- 321 2. **Structure-Naive Planner With Cognitive Constraints (DepthPlan)** The model doesn't
 322 use generative maps, and plans by optimizing a global policy that discounts future states
 323 to model limited planning depth. This model was previously used to describe how people
 324 plan in MST (Kryven et al., 2024).

- 324 3. **A Generative Planner (Gen-POMCP):** The model uses generative maps, and plans a
 325 reusable policy based on the most likely map from the distribution of induced maps $p(\mathcal{M}|I)$
 326 (see Fig. 3a and b).

328 Naive-POMCP uses an approximate POMCP planner designed for large partially-observable state-
 329 spaces. It was previously used to model human planning in large domains, although this work did
 330 not examine the effect of environment structure on human plans (Sharma et al., 2022). DepthPlan
 331 is consistent with prior work that models human deviations from optimal cost minimization by
 332 limited planning horizon, without modeling environment structure (Kryven et al., 2024; Huys et al.,
 333 2015). Since DepthPlan internally computes an optimal policy, it can only be applied to smaller
 334 environments (generally 6 or fewer structural units, see Experiment 1). Only the third hypothesis is
 335 consistent with the two computational steps proposed by the GenPlan framework: it represents maps
 336 as generative programs, and uses this structure to plan a reusable policy, reducing planning costs.

337 3 EXPERIMENTS

340 We first test whether people use structure to reduce computational costs of planning, as implemented
 341 by Gen-POMCP, in contrast to DepthPlan – the state-of-the-art model of planning in MST (Kryven
 342 et al., 2024) (Experiment 1). For this experiment, we use a set of 20 structured environments at
 343 a scale that can be solved by DepthPlan, in order to compare DepthPlan and Gen-POMCP. **Based**
 344 **on the sample sizes used in a previous study of human planning in structured spaces** Sharma et al.
 345 (2022), and a preliminary pilot showing a strong effect of structure on planning, we recruited a
 346 N=30 participants as sufficient for confirm this effect. We then run a simulation experiment with
 347 10 large environments containing 20-25 units (Experiment 2) to compare the computational costs
 348 of Gen-POMCP and Naive-POMCP, demonstrating that Gen-POMCP requires significantly fewer
 349 computational resources.

350 3.1 EXPERIMENT 1: BEHAVIORAL VALIDATION

352 **Procedure** The experiment was conducted in a web browser, using the web-interface of MST
 353 (Kryven et al., 2024). Before beginning the experiment participant gave informed consent and com-
 354 pleted a series of practice trials, followed by an instruction quiz. Following this, they completed a
 355 variant of MST with structured mazes, with exit locations randomly chosen at the time of design.
 356 After completing the experiment, we administered a post-experiment questionnaire collecting de-
 357 mographic information. As our goal was to observe ecologically-valid planning, we did not offer
 358 performance-based incentives, and simply informed participants that the exit could be in any of the
 359 hidden tiles, and instructed them to find it in each environment.

360 We recruited 30 (13 female, 17 male, $M(\text{age}) = 36.7$, $SD(\text{age}) = 13.5$) english-speaking partici-
 361 pants on Prolific, who were paid 9£ per hour. None were excluded. On average the experiment took
 362 10 minutes to complete. The experiment was approved by our institution’s IRB.

363 **Behavioral metrics** We introduce the following *behavioral definitions* to quantify people’s align-
 364 ment with the GenPlan framework.

- 366 • A set of *discriminating decisions* $\mathcal{D}(I)$ in a given environment I is the subset of all states
 367 in I where Gen-POMCP and Depth Plan predict a different most likely action. That is,
 368 $\mathcal{D}(I)$ includes only actions diagnostic of structure-based planning. Fig. 3b illustrates dis-
 369 criminating decisions in a simple example. Unlike the global solution (bottom panel),
 370 Gen-POMCP and most humans search by entering inside the structural units. The cells
 371 highlighted in green are discriminating decisions.
- 372 • *Modular fraction* $\sigma(\mathcal{D})$ defines the fraction of decisions in a given set of discriminating
 373 decisions \mathcal{D} that are more likely under Gen-POMCP, compared to DepthPlan. Notably, as
 374 weights w_i in equation 2 can tradeoff accuracy against representation and planning costs,
 375 Gen-POMCP can capture flexible strategies that integrate global and local search. For
 376 simplicity, here we assume stable population-level weights that strongly favor structure
 377 over accuracy, meaning that $\sigma(\mathcal{D})$ is a conservative estimate of how well Gen-POMCP
 378 explain human behavior.

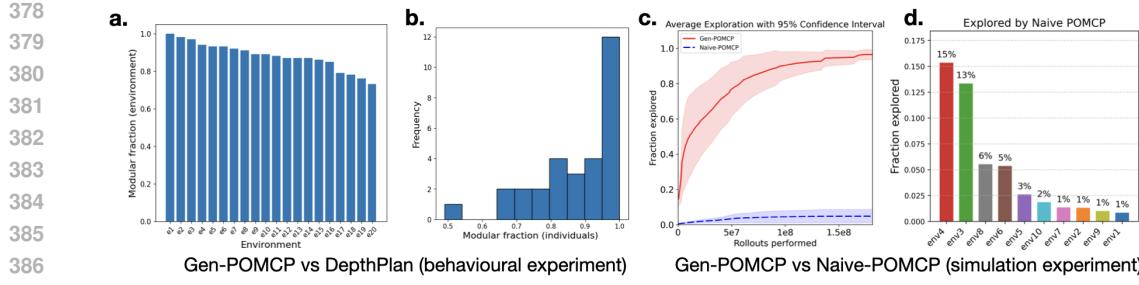


Figure 4: Experiment result shows that Gen-POMCP explains people better than DepthPlan. (a) Modular fraction for each environment (b.) The histogram of individual modular fractions per participant, over all discriminating decisions. (c) The fraction of each environment explored by Gen-POMCP across environments (solid line) and Naive-POMCP (dashed lines) as a function of compute budget (number of MCTS rollouts). (d) The fraction of each environment explored by Naive-POMCP, if given the amount of MCTS rollouts at which Gen-POMCP fully explores the given environment. Each bar shows a different environment.

Results Our results reveal that Gen-POMCP predicts human behavior significantly better than DepthPlan (Fig. 4). Examination of modular fractions for individuals and environments shows that people are highly consistent with our model, demonstrating structure-based planning across all environments and individuals. Across all environments, human behavior is better explained by Gen-POMCP, suggesting that people approximate planning by piecewise policies conditioned on structure, rather than by planning a global policy with a limited depth. Fig. 3b illustrates the difference between the models in a simple example. Like Gen-POMCP, the majority of people search the environment by a trajectory shown in the top panel. However, both the optimal policy predicted by the Naive-POMCP, and the depth-limited planning as implemented by DepthPlan, predict the trajectory shown at the bottom – because it allows to quickly reveal a large portion of the global map.

3.2 EXPERIMENT 2: SIMULATION

Next, we compare the computing resources needed by Gen-POMCP and Naive-POMCP to explore 10 large structured environments (e.g., see Fig. 2c). As the objective of MST is to find a hidden exit, each simulation is set up to run until the environment is fully explored (i.e., the exit is not revealed until the end of the simulation). We compare two quantitative comparisons. For each environment we compute the fraction of the environment that each model is able to explore given a certain compute budget (Fig. 4d), finding that the Gen-POMCP required a much smaller budget to search the entire environment. Fig. 4c separately shows the fraction of each environment that Naive-POMCP is able to explore, if given the rollout budget at which Gen-POMCP has searched the entire environment. In Appendix A we give a proof that the length of the search trajectories produced by Gen-POMCP exceeds trajectories produced by Naive-POMCP by a bounded amount, demonstrating that Gen-POMCP also produces good enough plans. All environments used in Experiments 1 and 2 are shown in Appendix B.

4 RELATED WORK

Models of Human Planning People make near-optimal plans in natural domains, such as city navigation (Bongiorno et al., 2021), yet often perform sub-optimally in laboratory-based behavioral paradigms such as multi-arm bandits (Keramati et al., 2016; Huys et al., 2015), strategic games (Ferreira, 2013), and sequential decision-making (Unterrainer et al., 2004; Kryven et al., 2024; Callaway et al., 2022). Such deviations from optimality are often explained by approximate planning with a limited planning horizon (Ferreira, 2013; Kryven et al., 2024; van Opheusden et al., 2023). Recent work (Correa et al., 2025) examines how people represent policies in programmatic forms that minimize description lengths, finding sensitivity to both effort minimization (similar to seeking shorter search paths) and MDL (shorter programs). Similar to our work, their study found that human plans

432 heavily favor reuse. Unlike our work, experimental paradigms used in these studies lack the regular
 433 problem-domain structure ubiquitous in the real-world.
 434

435
 436 **Cognitive Maps** A recent study found that people form cognitive maps that facilitate planning (Ho
 437 et al., 2022), by selectively representing only the goal-relevant parts of the map. Like our work, this
 438 study assumes that human cognitive maps are learned by compressing observations. Unlike our
 439 work, this study uses unstructured maps. A recent study of exploration in structured environments
 440 found that people anticipate environment structure, even when not informed about them in advance
 441 (Sharma et al., 2022), and can predict unseen parts of the map. Unlike our work, this study focuses
 442 solely on map prediction, and does not examine the role of cognitive maps in planning. It also relies
 443 on exhaustive enumerative search to discover the underlying map representations, unlike our work
 444 that implements tractable inference using LLM-based program synthesis.
 445

446 **Hierarchical Reinforcement Learning (HRL)** Reinforcement learning methods reduce planning
 447 complexity through hierarchical abstractions such as options (Sutton et al., 1999), shared structure
 448 across related MDPs (Wilson et al., 2012), and predictive state merging (Singh et al., 2012). Clas-
 449 sical approaches include abstraction spaces (Sacerdoti, 1974), HTNs (Erol, 1995; Nau et al., 1999),
 450 and probabilistic propositional planning (Littman, 1997), while recent work analyzes state abstrac-
 451 tion in tree search (Anand et al., 2016; Hostetler et al., 2014; Hutter, 2016) and structural conditions
 452 for efficient planning (Wen et al., 2020). Related lines study option discovery (Jinnai et al., 2019;
 453 Ivanov et al., 2025), generalized planning across task families (Curtis et al., 2022), and symmetry-
 454 based representations (Silver et al., 2017). These approaches engineer abstractions to improve worst-
 455 case or average efficiency. In contrast, GenPlan conditions planning on inferred structure: the GMM
 456 recovers repeated fragments from partial observations, and SBP reuses fragment-level policies with
 457 a focus is on explaining human planning behavior. While comprehensive theory of asymptotic guar-
 458antees for of GenPlan is outside the scope of our work², in Appendix B we show that the worst-case
 459 performance of GenPan differs from optimal POMCP only by a constant factor.
 460

461 **Using LLM to plan** Several related works have used LLM for offline planing. Similar to our
 462 work, Parsel (Zelikman et al., 2023) leverages LLMs to decompose complex tasks into modular
 463 components that can be composed to solve a larger problem. Unlike our work, Parsel solves prob-
 464 lems specified in natural language, rather than using LLMs to infer latent environmental structure
 465 for cognitive maps. A study of Kim et al. (2024) proposes a framework that fine-tunes LLM-based
 466 agents to plan in grid environments by constructing an internal representation. Unlike GbenPLan,
 467 which represents cognitive maps in code, their model works with text-based grid-world descriptions
 468 and uses unstructured maps. Chain-of-Thought Procedure Cloning enables agents to generalize to
 469 new fully observable environment configurations by imitating the intermediate reasoning steps of ex-
 470 pert procedures (Yang et al., 2022). The ReAct framework (Yao et al., 2022) guides anLLM through
 471 iterative thought-action steps, that can apply to spatial navigation domains. However, ReAct does
 472 not provide inference over environmental structure, or mechanisms for policy reuse (Gu et al., 2024).
 473 Unlike GenPlan, these models do not target planning in structured spatial environments, and are not
 474 evaluated in human experiments.
 475

476 **Natural priors.** Adaptive real-world planning draws on complex prior knowledge of the
 477 world (Acquaviva et al., 2022; Spek & Kinzler, 2007; Dehaene et al., 2006). Learning natural
 478 priors that make people so efficient in real-world remains an important problem in cognitive AI
 479 (Kumar et al., 2022; Li et al., 2024; Binz et al., 2024). (Feldman, 2013). Similar to our work, an
 480 emerging line of research leverages LLMs as a back-end to planning frameworks as a way of inform-
 481 ing planning by the implicit natural priors embedded in LLM though training on vast amounts of
 482 human data (Tang et al., 2024; Correa et al., 2025; Towers et al., 2024; Xie et al., 2023; Piriyakulkij
 483 et al., 2025; Curtis et al., 2025). Our computational framework builds on this approach, focusing on
 484 modeling how cognitive maps and planning policies may be learned together.
 485

²For example, it may be possible to adapt computational efficiency guarantees from Wen et al. (2020) to our setting.

486 **5 DISCUSSION**

487

488 We give a computational account of how people plan in structured environments by integrating
 489 (i) generative reconstruction of compressed cognitive maps from observations, coupled with (ii)
 490 structure-conditioned policy reuse. GenPlan operationalizes these two principles in a computational
 491 framework that (1) represents maps by approximate generative programs in a Turing-complete lan-
 492 guage, and (2) plans in these representations using POMCP with policy reuse. We adapt an ex-
 493 perimental Maze Search task previously used to study human planning, to show that in structured
 494 environments human planning is consistent with these two computational principles, in contrast to
 495 the state-of-the art model of depth-limited planning proposed in previous work. This result makes
 496 a *scientific contribution* by showing that environmental structure influences the selection of plan-
 497 ning strategies: human deviations from optimal policies are, at least in part, due to approximating
 498 planning by piecewise policies conditioned on structure for policy reuse. Our GenPlan framework
 499 makes an *engineering contribution* by showing how to actually build these principles into a working
 500 system. GenPlan is compute-efficient, because it achieves tractable inference over the underlying
 501 map structure by leveraging LLM-driven program generation (in contrast to enumerative search e.g.
 502 (Veness et al., 2011)) and because it reduces the amount of planning compute through policy reuse.
 503

503 We note that in our experiments planning varies between individuals, in line with variability ob-
 504 served in previous work Callaway et al. (2022). Our model proposes a computational account ex-
 505 plaining this variability as arising from how individuals may represent the same map in different
 506 ways. For example, depending on available cognitive resources, someone may form representations
 507 made up of coarser or finer patterns. In the limit, GenPlan can prioritize reconstruction accuracy
 508 and treat the entire environment as a single structural unit, solved by a globally optimal policy. Our
 509 implementation makes a simplifying assumption that that reconstruction and description weights are
 510 fixed and stable at population level, which works well to explain behavior in our experiment. Future
 511 work can further consider the stability and generalization of these parameters within and between
 512 individuals. General case solutions can be built to account for flexible cognitive resources, allowing
 513 the model to switch between map representations in response to changing cognitive demands. Future
 514 work can also examine how the weights should be chosen to optimally balance the computational
 515 costs of planning and memory, against utility.

515 **Limitations and future work.** Our choice of MST environment is motivated by prior state-of-
 516 the-art model on human spatial planning (Kryven et al., 2024). In alignment with prior work on
 517 human spatial planning (Kryven et al., 2024; Ho et al., 2022; Sharma et al., 2022), GenPlan relies
 518 on deterministic units that are stable over time, which allows comparison of our results with prior
 519 work. As natural environments are often probabilistic and evolving, future work should examine
 520 building blocks that differ superficially (e.g. square or rectangular city blocks), while preserving
 521 probabilistic generative constraints. To work with probabilistic units, GenPlan would rely on the
 522 same two cognitive principles of structure-based map compression and policy reuse, while using
 523 a different implementation of GMM and SBP where the unit maps themselves are specified by
 524 generative programs in a graph-grammar or a probabilistic CFG. We hope that our results will inspire
 525 future work on human planning in structured environments beyond grid-world domains (e.g. music
 526 performance, reasoning in cognitive graph domains).

526 Another promising direction of future work consists of modeling how different goals shape cognitive
 527 maps. For instance, people tend to perceive San Francisco as having a grid layout, even though its
 528 map reveals a more complex structure. Such grid-like intuitions could arise from goal-dependent
 529 cognitive maps (Ho et al., 2022) – where a local grid model may actually be good enough to plan
 530 a pedestrian shortcut across a neighborhood. Because our aim is to explain behavior, we do not
 531 provide full theoretical evaluation in terms of search efficiency, completeness, and scalability to
 532 arbitrary task sets. We hope the principles we proposed will motivate further theoretical work on
 533 when human-like priors are advantageous or suboptimal.

534 **Implications.** While planning cognition has been studied extensively, human planning real-world
 535 planning domains remains underexplored. A computational-level understanding of how human plan-
 536 ning adapts to real-world environments, given their distinctive properties such as structural and in-
 537 ductive biases, can inform models that not only empower AI to better understand and assist humans,
 538 but also decrease environmental impact of AI algorithms, by enabling them to achieve effective
 539 policies with less compute. In contributing a proof of concept implementation, GenPlan brings new
 insights into human spatial planning, and takes a step toward building cost-efficient planning in AI.

540 REFERENCES
541

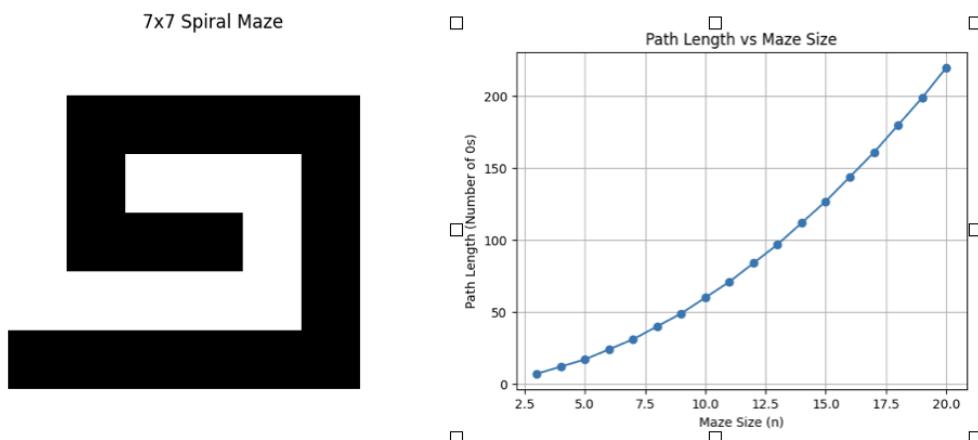
- 542 Sam Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle
543 Ecanow, Maxwell Nye, Michael Tessler, and Josh Tenenbaum. Communicating natural programs
544 to humans and machines. *Advances in Neural Information Processing Systems*, 35:3731–3743,
545 2022.
- 546 Ankit Anand, Ritesh Noothigattu, Parag Singla, et al. Oga-uct: On-the-go abstractions in uct. In
547 *Proceedings of the International Conference on Automated Planning and Scheduling*, volume 26,
548 pp. 29–37, 2016.
- 549 Jeremy N Bailenson, Michael S Shum, and David H Uttal. The initial segment strategy: A heuristic
550 for route selection. *Memory & Cognition*, 28(2):306–318, 2000.
- 552 Jan Balaguer, Hugo Spiers, Demis Hassabis, and Christopher Summerfield. Neural mechanisms of
553 hierarchical planning in a virtual subway network. *Neuron*, 90(4):893–903, 2016.
- 555 Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno,
556 Peter Dayan, Can Demircan, Maria K. Eckstein, Noémi Éltető, Thomas L. Griffiths, Susanne
557 Haridi, Akshay K. Jagadish, Li Ji-An, Alexander Kipnis, Sreejan Kumar, Tobias Ludwig, Marvin
558 Mathony, Marcelo Mattar, Alireza Modirshanechi, Surabhi S. Nath, Joshua C. Peterson, Milena
559 Rmus, Evan M. Russek, Tankred Saanum, Natalia Scharfenberg, Johannes A. Schubert, Luca
560 M. Schulze Buschoff, Nishad Singhi, Xin Sui, Mirko Thalmann, Fabian Theis, Vuong Truong,
561 Vishaal Udandarao, Konstantinos Voudouris, Robert Wilson, Kristin Witte, Shuchen Wu, Dirk
562 Wulff, Huadong Xiong, and Eric Schulz. Centaur: a foundation model of human cognition, 2024.
563 URL <https://arxiv.org/abs/2410.20268>.
- 564 Christian Bongiorno, Yulun Zhou, Marta Kryven, David Theurel, Alessandro Rizzo, Paolo Santi,
565 Joshua Tenenbaum, and Carlo Ratti. Vector-based pedestrian navigation in cities, 2021.
- 566 Frederick Callaway, Bas van Opheusden, Sayan Gul, Priyam Das, Paul M Krueger, Thomas L Grif-
567 fths, and Falk Lieder. Rational use of cognitive resources in human planning. *Nature Human
568 Behaviour*, 6(8):1112–1125, 2022.
- 570 Samuel J Cheyette and Steven T Piantadosi. A unified account of numerosity perception. *Nature
571 human behaviour*, 4(12):1265–1272, 2020.
- 572 Carlos G Correa, Sophia Sanborn, Mark K Ho, Frederick Callaway, Nathaniel D Daw, and Thomas L
573 Griffiths. Exploring the hierarchical structure of human plans via program generation. *Cognition*,
574 255:105990, 2025.
- 576 Aidan Curtis, Tom Silver, Joshua B Tenenbaum, Tomás Lozano-Pérez, and Leslie Kaelbling. Dis-
577 covering state and action abstractions for generalized task and motion planning. In *Proceedings
578 of the AAAI conference on artificial intelligence*, volume 36, pp. 5377–5384, 2022.
- 580 Aidan Curtis, Hao Tang, Thiago Veloso, Kevin Ellis, Joshua Tenenbaum, Tomás Lozano-Pérez, and
581 Leslie Pack Kaelbling. Llm-guided probabilistic program induction for pomdp model estimation.
582 *arXiv preprint arXiv:2505.02216*, 2025.
- 583 Stanislas Dehaene, Véronique Izard, Pierre Pica, and Elizabeth Spelke. Core knowledge of geometry
584 in an amazonian indigene group. *Science*, 311(5759):381–384, 2006.
- 585 Daniel D Dilks, Joshua B Julian, Jonas Kubilius, Elizabeth S Spelke, and Nancy Kanwisher. Mirror-
586 image sensitivity and invariance in object and scene processing pathways. *Journal of Neuro-
587 science*, 31(31):11305–11312, 2011.
- 588 Kutluhan Erol. *Hierarchical task network planning: formalization, analysis, and implementation*.
589 University of Maryland, College Park, 1995.
- 591 Jacob Feldman. Tuning your priors to the world. *Topics in cognitive science*, 5(1):13–34, 2013.
- 593 Diogo R Ferreira. The impact of the search depth on chess playing strength. *ICGA journal*, 36(2):
594 67–80, 2013.

- 594 Jerry A Fodor. *The language of thought*, volume 5. Harvard university press, 1975.
 595
- 596 Maya Geva-Sagiv, Soyeon Jun, Marta Kryven, Josh Tenenbaum, Erie D. Boorman, Randy O'Reilly,
 597 Jack J. Lin, Ignacio Saez, and Charan Ranganath. Fronto-hippocampal synchronization in rapid
 598 spatial learning in humans. *Current Biology*, 2025. Under review.
- 599 Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
 600 Srivastava, Yanan Xie, Peng Qi, et al. Is your llm secretly a world model of the internet? model-
 601 based planning for web agents. *arXiv preprint arXiv:2411.06559*, 2024.
- 602
- 603 Stephen C Hirtle and John Jonides. Evidence of hierarchies in cognitive maps. *Memory & cognition*,
 604 13(3):208–217, 1985.
- 605
- 606 Mark K Ho, David Abel, Carlos G Correa, Michael L Littman, Jonathan D Cohen, and Thomas L
 607 Griffiths. People construct simplified mental representations to plan. *Nature*, 606(7912):129–136,
 608 2022.
- 609
- 610 Matthias Hofer, Tuan Anh Le, Roger Levy, and Josh Tenenbaum. Learning evolved combinatorial
 611 symbols with a neuro-symbolic generative model. *arXiv preprint arXiv:2104.08274*, 2021.
- 612
- 613 Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in monte carlo tree search. In
 614 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 28, 2014.
- 615
- 616 Marcus Hutter. Extreme state aggregation beyond Markov decision processes. *Theoretical
 617 Computer Science*, 650:73–91, October 2016. ISSN 0304-3975. doi: 10.1016/j.tcs.
 2016.07.032. URL <https://www.sciencedirect.com/science/article/pii/S0304397516303772>.
- 618
- 619 Quentin JM Huys, Níall Lally, Paul Faulkner, Neir Eshel, Erich Seifritz, Samuel J Gershman, Peter
 620 Dayan, and Jonathan P Roiser. Interplay of approximate planning strategies. *Proceedings of the
 621 National Academy of Sciences*, 112(10):3098–3103, 2015.
- 622
- 623 Alexander Ivanov, Akhil Bagaria, and George Konidaris. Discovering options that minimize average
 624 planning time. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
 17573–17581, 2025.
- 625
- 626 Yuu Jinnai, David Abel, David Hershkowitz, Michael Littman, and George Konidaris. Finding
 627 options that minimize planning time. In *International Conference on Machine Learning*, pp.
 3120–3129. PMLR, 2019.
- 628
- 629 Iain G Johnston, Kamaludin Dingle, Sam F Greenbury, Chico Q Camargo, Jonathan PK Doye,
 630 Sebastian E Ahnert, and Ard A Louis. Symmetry and simplicity spontaneously emerge from
 631 the algorithmic nature of evolution. *Proceedings of the National Academy of Sciences*, 119(11):
 e2113883119, 2022.
- 632
- 633 Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
 634 partially observable stochastic domains. *Artificial intelligence*, 101(1-2):99–134, 1998.
- 635
- 636 Mehdi Keramati, Peter Smittenaar, Raymond J Dolan, and Peter Dayan. Adaptive integration of
 637 habits into depth-limited planning defines a habitual-goal-directed spectrum. *Proceedings of the
 638 National Academy of Sciences*, 113(45):12868–12873, 2016.
- 639
- 640 Celeste Kidd, Steven T Piantadosi, and Richard N Aslin. The goldilocks effect: Human infants
 641 allocate attention to visual sequences that are neither too simple nor too complex. *PloS one*, 7(5):
 e36399, 2012.
- 642
- 643 Doyoung Kim, Jongwon Lee, Jinho Park, and Minjoon Seo. How language models extrapolate
 644 outside the training data: A case study in textualized gridworld. 2024.
- 645
- 646 Stephen M Kosslyn, Herbert L Pick Jr, and Griffin R Fariello. Cognitive maps in children and men.
 647 *Child development*, pp. 707–716, 1974.
- 648
- Marta Kryven, Tomer D Ullman, William Cowan, and Joshua B Tenenbaum. Plans or outcomes:
 649 How do we attribute intelligence to others? *Cognitive Science*, 45(9):13–41, 2021.

- 648 Marta Kryven, Suhyoun Yu, Max Kleiman-Weiner, Tomer Ullman, and Joshua Tenenbaum. Approximate planning in spatial search. *PLOS Computational Biology*, 20(11):e1012582, 2024.
649
650
- 651 Sreejan Kumar, Carlos G Correa, Ishita Dasgupta, Raja Marjieh, Michael Hu, Robert D. Hawkins,
652 Jonathan Cohen, Nathaniel Daw, Karthik R Narasimhan, and Thomas L. Griffiths. Using natural
653 language and program abstractions to instill human inductive biases in machines. In Alice H. Oh,
654 Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information
655 Processing Systems*, 2022. URL <https://openreview.net/forum?id=buXZ7nIqiWE>.
656
- 657 Ionatan Kuperwajs, Evan M Russek, Marcelo G Mattar, Wei Ji Ma, and Thomas L Griffiths. Looking
658 deeper into the algorithms underlying human planning. *Trends in Cognitive Sciences*, 2025.
659
- 660 Brenden M Lake and Steven T Piantadosi. People infer recursive visual concepts from just a few
661 examples. *Computational Brain & Behavior*, 3(1):54–65, 2020.
662
- 663 Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
664 through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.
665
- 666 Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn,
667 Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Combining induction and transduction for
668 abstract reasoning. *arXiv preprint arXiv:2411.02272*, 2024.
669
- 670 Michael L Littman. Probabilistic propositional planning: Representations and complexity.
671 *AAAI/IAAI*, pp. 748–754, 1997.
672
- 673 Yunzhe Liu, Marcelo G Mattar, Timothy EJ Behrens, Nathaniel D Daw, and Raymond J Dolan.
674 Experience replay supports non-local learning. *BioRxiv*, pp. 2020–10, 2020.
675
- 676 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
677 related stochastic optimization problems. *Artificial Intelligence*, 147(1-2):5–34, 2003.
678
- 679 Steven A Marchette, Lindsay K Vass, Jack Ryan, and Russell A Epstein. Anchoring the neural com-
680 pass: coding of local spatial reference frames in human medial parietal lobe. *Nature neuroscience*,
681 17(11):1598, 2014.
682
- 683 William P McCarthy, Robert D Hawkins, Haoliang Wang, Cameron Holdaway, and Judith E Fan.
684 Learning to communicate about shared procedural abstractions. *arXiv preprint arXiv:2107.00077*,
685 2021.
686
- 687 Ugurcan Mugan, Seiichiro Amemiya, Paul S Regier, and A David Redish. Navigation through the
688 complex world: The neurophysiology of decision-making processes. In *Habits: Their Definition,
689 Neurobiology, and Role in Addiction*, pp. 109–139. Springer, 2024.
690
- 691 Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. Shop: Simple hierarchical ordered
692 planner. In *Proceedings of the 16th international joint conference on Artificial intelligence-
693 Volume 2*, pp. 968–973, 1999.
694
- 695 Nora Newcombe, Janellen Huttenlocher, Elisabeth Sandberg, Eunhui Lie, and Sarah Johnson. What
696 do misestimations and asymmetries in spatial judgement indicate about spatial representation?
697 *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 25(4):986, 1999.
698
- 699 Wasu Top Piriyakulkij, Yichao Liang, Hao Tang, Adrian Weller, Marta Kryven, and Kevin Ellis.
700 Poe-world: Compositional world modeling with products of programmatic experts. *arXiv preprint
701 arXiv:2505.10819*, 2025.
702
- 703 Benjamin Pitt, Stephen Ferrigno, Jessica F Cantlon, Daniel Casasanto, Edward Gibson, and Steven T
704 Piantadosi. Spatial concepts of number, size, and time in an indigenous culture. *Science Advances*,
705 7(33):eabg4141, 2021.
706
- 707 J. Rissanen. Modeling by shortest data description. *Automatica*, 14(5):465–471, 1978. ISSN
708 0005-1098. doi: [https://doi.org/10.1016/0005-1098\(78\)90005-5](https://doi.org/10.1016/0005-1098(78)90005-5). URL <https://www.sciencedirect.com/science/article/pii/0005109878900055>.
709

- 702 Martin Rohrmeier. Towards a formalization of musical rhythm. In *ISMIR*, pp. 621–629, 2020.
 703
- 704 Stuart J Russell and Peter Norvig. *Artificial intelligence: a modern approach*. Pearson, 2016.
 705
- 706 Earl D Sacerdoti. Planning in a hierarchy of abstraction spaces. *Artificial intelligence*, 5(2):115–135,
 707 1974.
- 708 Sugandha Sharma, Aidan Curtis, Marta Kryven, Josh Tenenbaum, and Ila Fiete. Map induction:
 709 Compositional spatial submap learning for efficient exploration in novel environments. *International
 710 Conference of Learning Representations*, 2022.
- 711 David Silver and Joel Veness. Monte-carlo planning in large pomdps. In *Advances in Neural
 712 Information Processing Systems, 2010*. Neural Information Processing Systems, 2010.
- 713 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 714 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
 715 without human knowledge. *nature*, 550(7676):354–359, 2017.
- 716 Satinder Singh, Michael James, and Matthew Rudary. Predictive state representations: A new theory
 717 for modeling dynamical systems. *arXiv preprint arXiv:1207.4167*, 2012.
- 718 Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. *Developmental Science*, 10(1):
 719 89–96, 2007.
- 720 Albert Stevens and Patty Coupe. Distortions in judged spatial relations. *Cognitive psychology*, 10
 721 (4):422–437, 1978.
- 722 Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
 723 work for temporal abstraction in reinforcement learning. *Artificial intelligence*, 112(1-2):181–
 724 211, 1999.
- 725 Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building world
 726 models by writing code and interacting with the environment. *arXiv preprint arXiv:2402.12275*,
 727 2024.
- 728 Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
 729 mind: Statistics, structure, and abstraction. *science*, 331(6022):1279–1285, 2011.
- 730 Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenenbaum. Learning abstract structure for draw-
 731 ing by efficient motor program induction. *Advances in Neural Information Processing Systems*,
 732 33, 2020.
- 733 Momchil S Tomov, Samyukta Yagati, Agni Kumar, Wanqian Yang, and Samuel J Gershman. Dis-
 734 covery of hierarchical representations for efficient planning. *PLoS computational biology*, 16(4):
 735 e1007594, 2020.
- 736 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 737 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 738 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.
- 739 Josef M Unterrainer, Benjamin Rahm, Christoph P Kaller, Rainer Leonhart, K Quiske, K Hoppe-
 740 Seyler, C Meier, C Müller, and Ulrike Halsband. Planning abilities and the tower of london: is
 741 this task measuring a discrete cognitive function? *Journal of clinical and experimental neuropsy-
 742 chology*, 26(6):846–856, 2004.
- 743 Bas van Opheusden, Ionatan Kuperwajs, Gianni Galbiati, Zahy Bnaya, Yunqi Li, and Wei Ji Ma.
 744 Expertise increases planning depth in human gameplay. *Nature*, pp. 1000–1005, 2023.
- 745 Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. A monte-carlo aixi
 746 approximation. *Journal of Artificial Intelligence Research*, 40:95–142, 2011.
- 747 Tessa Verhoeft, Simon Kirby, and Bart De Boer. Emergence of combinatorial structure and economy
 748 through iterated learning with continuous acoustic signals. *Journal of Phonetics*, 43:57–68, 2014.

- 756 Ranxiao Frances Wang and James R Brockmole. Human navigation in nested environments. *Journal*
757 *of Experimental Psychology: Learning, Memory, and Cognition*, 29(3):398, 2003.
758
- 759 Zheng Wen, Doina Precup, Morteza Ibrahimi, Andre Barreto, Benjamin Van Roy, and Satinder
760 Singh. On efficiency in hierarchical reinforcement learning. *Advances in Neural Information*
761 *Processing Systems*, 33:6708–6718, 2020.
- 762 Jan M Wiener and Hanspeter A Mallot. 'fine-to-coarse' route planning and navigation in regionalized
763 environments. *Spatial cognition and computation*, 3(4):331–358, 2003.
764
- 765 Aaron Wilson, Alan Fern, and Prasad Tadepalli. Transfer learning in sequential decision prob-
766 lems: A hierarchical bayesian approach. In *Proceedings of ICML Workshop on Unsupervised and*
767 *Transfer Learning*, pp. 217–227. JMLR Workshop and Conference Proceedings, 2012.
- 768 Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
769 guage to planning goals with large-language models. *arXiv preprint arXiv:2302.05128*, 2023.
770
- 771 Mengjiao Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought im-
772 itation with procedure cloning. *Advances in Neural Information Processing Systems*, 35:36366–
773 36381, 2022.
- 774 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
775 Cao. React: Synergizing reasoning and acting in language models. In *The eleventh international*
776 *conference on learning representations*, 2022.
- 777 Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorithmic
778 reasoning with language models by composing decompositions. *Advances in Neural Information*
779 *Processing Systems*, 36:31466–31523, 2023.
780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809

810 A CODE AVAILABILITY
811812 The Gen-POMCP implementation is available here: <https://anonymous.4open.science/r/GenPlan-FBCD/README.md>
813
814815 B PERFORMANCE BOUNDS FOR STRUCTURE-BASED PLANNING
816817 In structured environments Gen-POMCP can explore the environment faster than Naive-POMCP
818 (using fewer rollouts and in less time) by taking advantage of limited resources. However, it simplifies
819 the planning problem by entirely exploring each fragment it enters before moving to the next.
820 This heuristic can result in longer overall paths taken to search the environments. It is reasonable
821 to ask by how much the global Naive-POMCP can actually improve on the path length taken by
822 Gen-POMCP (and specifically the Structure-Based Planner).
823824 Below we sketch a proof that considers the limit in which each planner fully optimizes its respective
825 objective: Naive-POMCP follows the Bayes-optimal plan in each fragment and Gen-POMCP fol-
826 lows the Bayes-optimal global policy for the maze. We bound the cost difference according to the
827 worst-case cost in steps.
828829
830 **Expected and worst-case** The expected number of steps it takes for a policy to explore a maze is
831 the average over the length of path this policy takes to reach uniformly sampled exit locations. The
832 worst-case number of steps is the largest number of steps that the policy could take for some exit
833 position. This is bounded below by the number of steps required to fully explore the maze.
834835 **Lemma 1.** *There exists a fragment of size $n \times n$ which takes $O(n^2)$ steps to search in expectation,
836 and to explore fully.*
837
838

864 This yields
 865

$$\begin{aligned}
 866 \quad n + \sum_{i=0}^{\lfloor n/2 \rfloor - 1} 2(n-2i-1) &= \frac{n}{2}2n - 4\frac{(n/2)(n/2+1)}{2} + O(n) \\
 867 \quad &= \frac{1}{2}n^2 + O(n)
 \end{aligned} \tag{3}$$

□

872 **Theorem 2.** *In the an $n \times n$ maze, the expected number of steps taken by SBP may exceed the
 873 expected number of steps of an optimal policy by $\Omega(n^2)$.*

875 *Proof.* Build a fragment by adjoining an empty room and a spiral by a single door at a corner. Now
 876 connect the two fragments by adding a door between the empty rooms in the opposite corner. As-
 877 sume the size of the empty rooms is such that the optimal algorithm can find the exit with probability
 878 $1/2$ by checking each empty room, but the SBP algorithm must explore entirely the first fragment
 879 that it enters. With probability $3/4$, the exit is not in the first empty room, so it must explore the
 880 spiral, which takes time $\Omega(n^2)$ to fully explore by Lemma 1. The spiral also must be exited, so
 881 around n^2 steps are spent when the exit is in the other empty room (in this case the optimal planner
 882 finds immediately by checking each room). Since the optimal planner takes only a constant number
 883 of steps to check each empty room, and then behaves identically to the SBP, the expected cost when
 884 the exit is in any other location is asymptotically the same, so the expected cost difference is roughly
 885 $\frac{1}{4}n^2 = \Omega(n^2)$. □

886 **Theorem 3.** *The number of steps to fully explore a maze is $O(n^2)$.*
 887

888 *Proof.* Consider a v -vertex connected graph. The maximum width (roughly achievable by the spiral)
 889 is v , leading to a naive bound of $O(v^2) = O(n)$. This can be improved to $O(v)$ by running a
 890 depth-first search. Since there are 4 movement directions the degree of this graph is 4 meaning
 891 the maximum number of backtracks to a vertex is 3, which immediately gives $4v$. However, in a
 892 depth first search there is only one backtrack from each vertex is 1, which leads to an easy inductive
 893 proof that the bound is $O(2v - 1)$ regardless of degree, yielding $2n^2 - 1 = O(n^2)$. Note that
 894 further improvements should be possible by considering the number of walls required to induce the
 895 worst-case topology. □

896 This implies that the Bayes-optimal policy has $O(n^2)$ expected cost (since its *expected* cost must
 897 be at least as good as the *expected* cost of exhaustive search), regardless of the maze. Together,
 898 Lemma 1 and Theorem 3 demonstrate that the SBP heuristic does not damage the (asymptotic)
 899 expected cost in the worst maze.

900 **Theorem 4.** *Assume that an $n \times n$ maze is fragmented in such a way that any time a fragment
 901 is entered, it can be fully explored before exiting, into c^2 square $(n/c) \times (n/2)$ fragments. The
 902 asymptotic expected cost is $\Theta(n^2)$ in the worst such maze for the modular optimal and globally
 903 optimal policies.*

904 *Proof.* First, consider the global optimal policy. The additional requirements placed on the maze
 905 cannot make the $O(n^2)$ bound in Theorem 3 worse, and we can get a matching lower bound by
 906 simply adjoining multiple spiral examples as in Lemma 1 and adding doors between them.

907 Now consider the modular optimal policy. It is clear that the globally optimal policy has an ex-
 908 pected cost as least as low as the modular optimal policy (even in their respective worst mazes), by
 909 definition, so the $\Omega(n^2)$ lower bound automatically carries over to the modular optimal policy. We
 910 assumed that the modular optimal policy takes the Bayes-optimal paths between fragments. This
 911 must be at least as good as the following strategy: mimic the global optimal policy, but any time a
 912 new fragment is entered, first explore it completely and return to the entrance. By Theorem 3, each
 913 such “extra” exploration detour takes at most $2(\frac{n}{c})^2 - 1$ steps, and the return takes at most $(\frac{n}{c})^2$
 914 steps. The total is $3(\frac{n}{c})^2 - 1$. There are exactly c^2 such detours, for $4n^2 - c^2 = \Theta(n^2)$ extra steps.
 915 The global optimal policy also takes $\Theta(n^2)$ steps.

□

918 Therefore, in the worst case the modular algorithm is inferior by at least a constant factor of the total
 919 search time in expectation. Examining the proof of Theorem 4 yields a factor of 2.5 over our upper
 920 bound in Theorem 3, but presumably this can be improved substantially since a lot of exploration is
 921 being redone after the detours.
 922

923 **Improving expected cost upper bounds** Substantial improvements to the worst-case cost bound
 924 in Theorem 3 are easy to obtain when the proof is applied to expected cost by e.g. noting that the
 925 depth-first search visits at least one new cell every two steps, meaning that there is clearly at least
 926 a $1/4$ chance of finding the exit after n^2 steps, or by noting that the true number of “vertices” is
 927 reduced by walls. These improvements seem to apply equally to the modular and global optimal
 928 policies, and probably do not affect our constants much.

929 For worst-case cost, the situation is similar. However, the worst-case cost analysis simplifies signif-
 930 icantly with the additional assumption that transitions between fragments are negligible (say, if they
 931 all branch off from a central room). This observation is trivial but worth stating explicitly:

932 **Theorem 5.** *When the cost to transition between fragments is negligible, each has one entrance,
 933 and there is no line-of-sight across fragments, the modular algorithm has the same worst-case step
 934 count as the optimal algorithm.*

935 *Proof.* In the worst case, the optimal algorithm must explore each fragment, and since there is only
 936 one entrance to each fragment it is not possible to gain any advantage by exiting a fragment before
 937 it has been fully explored. \square
 938

939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

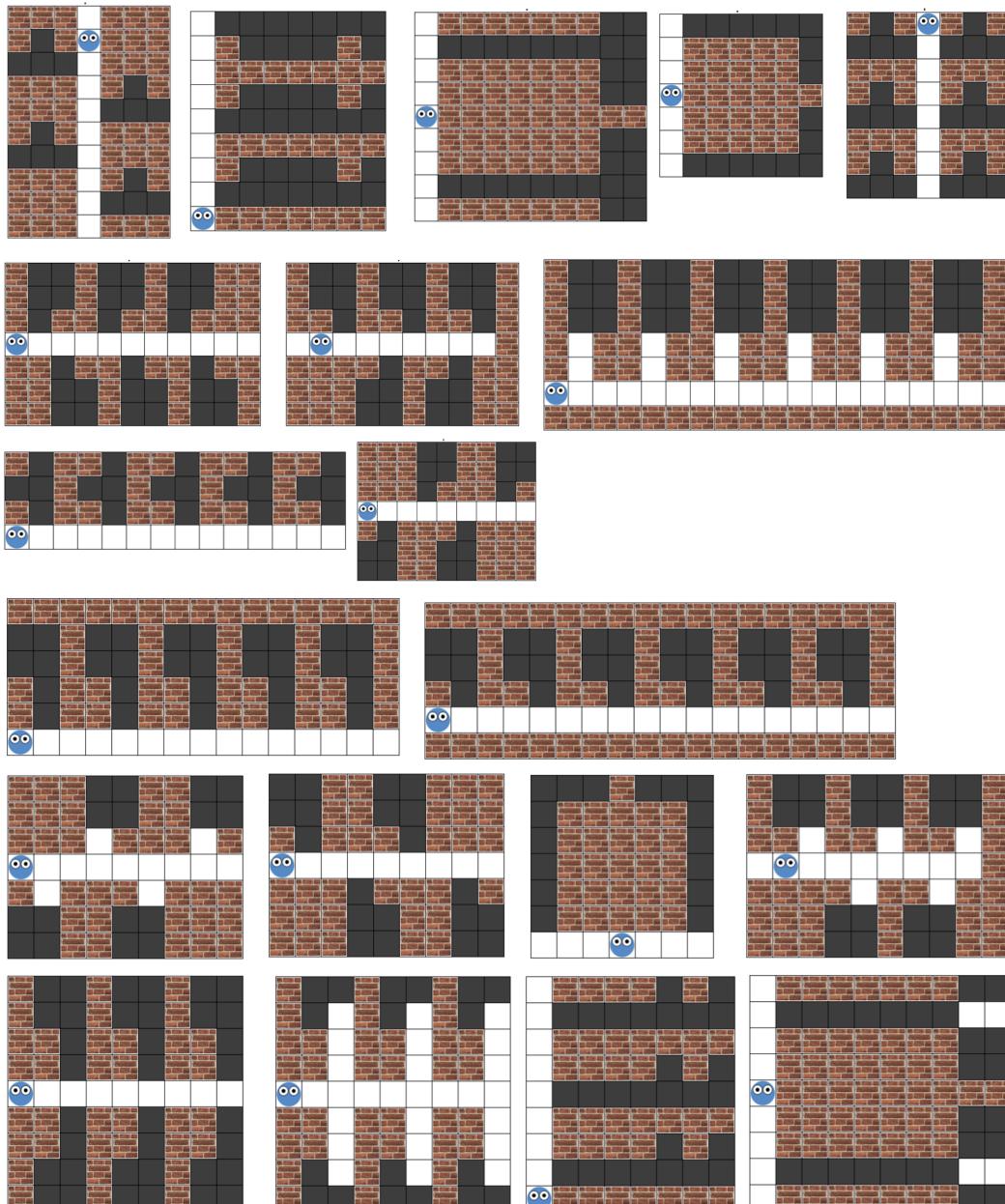
972 C EXPERIMENTAL ENVIRONMENTS
973
974975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 6: Environments used in Behavioral Experiment 1.

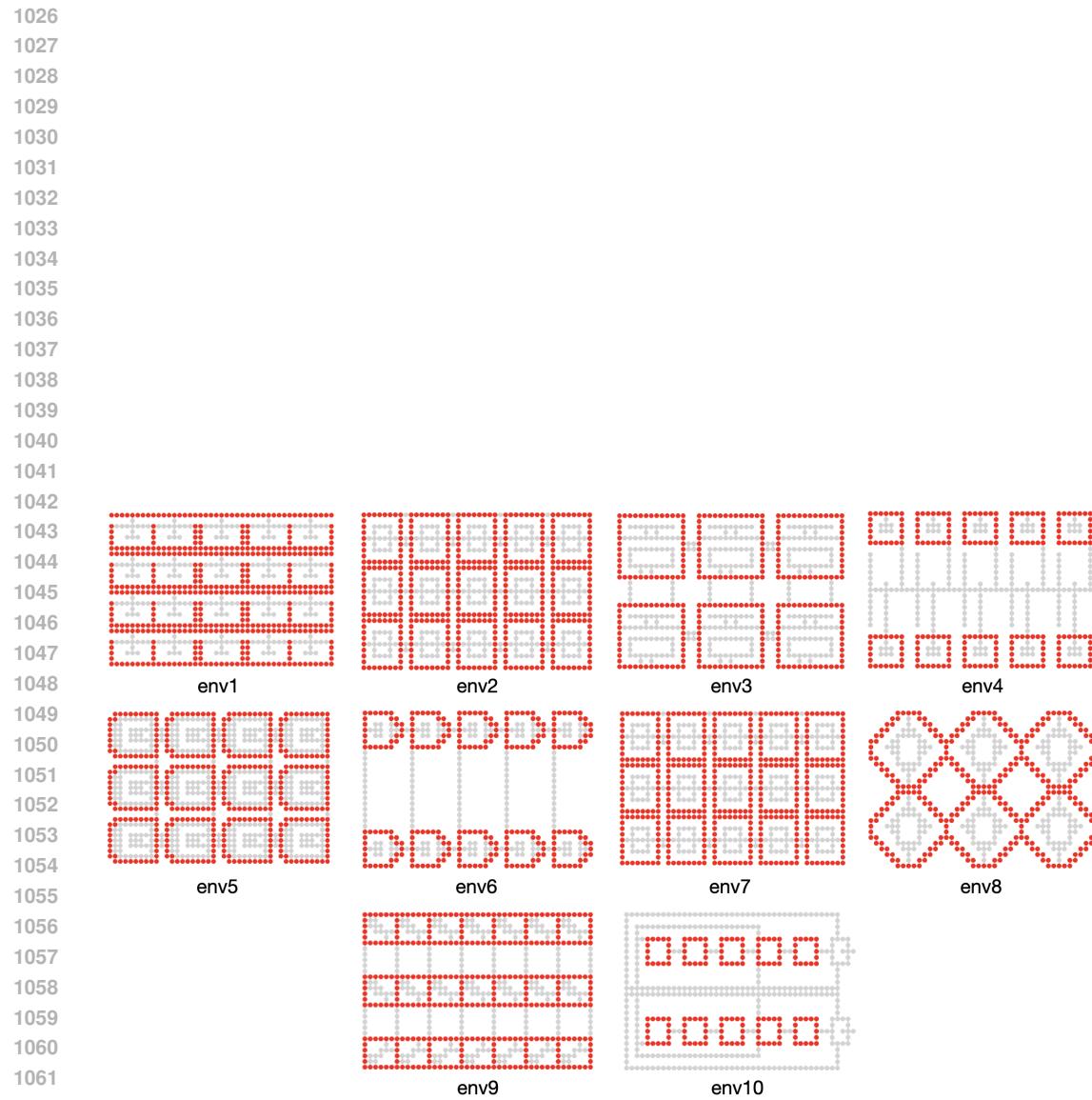
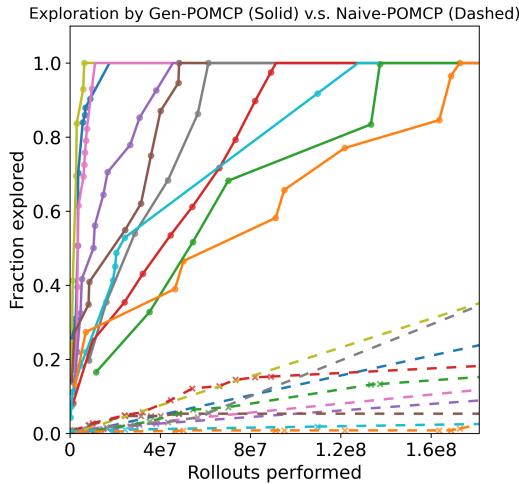
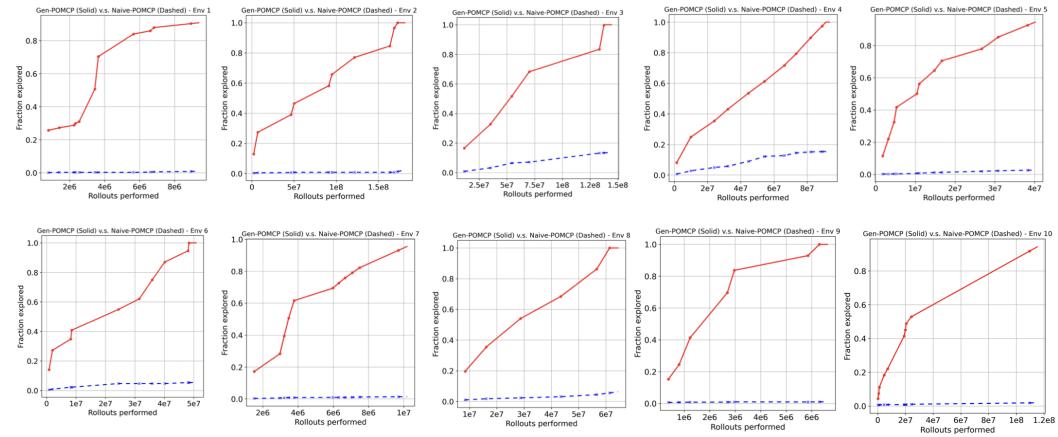


Figure 7: Environments used in Simulation Experiment 2.

1080
1081
1082
1083
1084 D ADDITIONAL RESULTS - SIMULATION EXPERIMENT
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

1099 Figure 8: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
1100 identical computational budget. Gen-POMCP requires fewer rollouts and saves computing costs.
1101 Each environment is shown in a different color (see also Figure 4.)



1117 Figure 9: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
1118 identical computational budget. In each individual environment Gen-POMCP requires fewer rollouts
1119 and saves computing costs.)

1120
1121
1122 E THE EFFECT OF FREE PARAMETERS ON RESULTS
1123

1124 *Reconstruction accuracy.* As map accuracy decreases, the amount of online heuristic planning
1125 increases, and the amount of structure-based planning decreases. We implement this heuristic based
1126 prior work with Maze Search (Kryven et al 2024). A zero reconstruction accuracy entails a fully
1127 heuristic planning, regardless of planning cost.

1128 *Planning cost.* As planning cost increases the units become smaller, leading to more localized
1129 search. A negligible planning cost paired with a high reconstruction accuracy reduces the model to
1130 a global planner. A high accuracy and high planning cost leads to a fully structure-based planning
1131 (the population level model used in the paper)

1132 Dissociating between these parameters in a human experiment requires a complex targeted design,
1133 beyond the scope of the current work. As our goal is to test whether people use structure-based

1134 planning, as opposed to global search considered in previous work, we use a population-level model
 1135 with high reconstruction accuracy and low planning costs. This leads the model to plan within single
 1136 units intended by design (rather than grouping them) and maximizes the amount of discriminating
 1137 decisions between structure-based and global planning.
 1138

1139 F GENERALIZING TO ACROSS LLM ARCHITECTURES

1140
 1141 In the paper, we used GPT-4 to build a proof-of-concept implementation for the GMM, originally
 1142 chosen due to its strong code-generation abilities. However, we clarify that the choice of LLM model
 1143 and prompting strategy are not critical to our framework’s results. The primary contribution of our
 1144 work is showing that human planning in structured environments relies on integrating two cognitive
 1145 principles – (1) compressed cognitive maps that leverage redundant structure (implemented in
 1146 GMM) and (2) policy reuse (implemented in SBP).
 1147

1148 Below we show that GMM can be implemented with different LLM architectures. To do this, we
 1149 show experimental results producing similar reconstructions by using different LLMs as a backend:
 1150 GPT-4, Gemini-2.5-flash, Llama-3.3-70B, and Kimi-K2-Instruct-0905. Furthermore, we present
 1151 results from two different prompting strategies (one-step prompt and multi-step prompts), showing
 1152 that the exact prompt wording is not critical to producing the given results.
 1153

1154 F.1 SINGLE PROMPT

1155 **Input map**

1165 **Top scoring unit candidate**

1166 GPT-4, Gemini-2.5-flash, Llama-3.3-70B

1167 Kimi-K2-Instruct-0905

1177 **Reconstructed map**

1178 GPT-4, Gemini-2.5-flash, Llama-3.3-70B

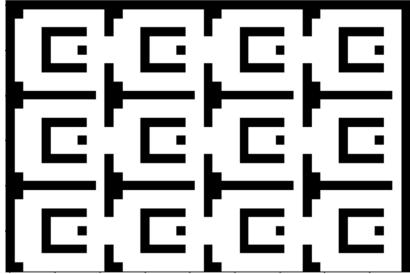
1179 Kimi-K2-Instruct-0905

1188
1189

F.2 MULTI PROMPT

1190
1191
1192**Input map**1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

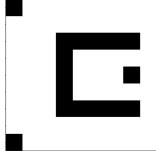
Complete input map



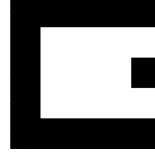
Partial input map

1203
1204**Top scoring unit candidate**1205
1206
1207
1208
1209
1210
1211
1212

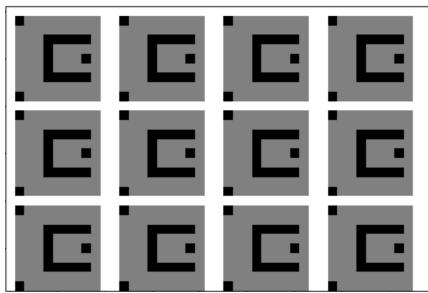
GPT-4, Gemini-2.5-flash, Llama-3.3-70B



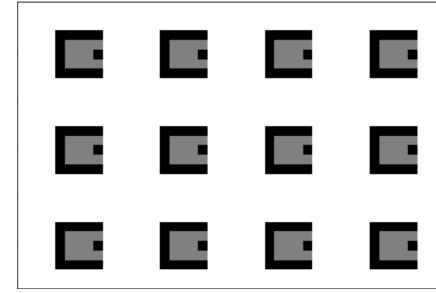
Kimi-K2-Instruct-0905

1213
1214
1215**Reconstructed map**1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

GPT-4, Gemini-2.5-flash, Llama-3.3-70B



Kimi-K2-Instruct-0905

1227
1228**G PROMPTS**1229
1230**G.1 ONE-STEP PROMPT FOR GMM**1231
1232
1233
1234

The Single Prompt GMM identifies the unit along with the reconstruction program using one prompt to the LLM. The prompt describes the task as a two-step procedure: first identify the repeating unit, then complete and return a runnable Python program that contains both the unit as a 2D array and the reconstruction function.

1235
1236
1237
1238
1239
1240
1241

System prompt:

You are a designer's assistant, skilled in noticing patterns, combining fragments into a pattern, and extrapolating them. You are skilled in identifying the underlying structure of a pattern and generating new fragments that fit the pattern. You are also skilled at writing Python code.

User prompt:

1242 There are two steps to this task. In Step 1, you will be given
 1243 an input (a map) and asked to identify its constituent units.
 1244 The input is a matrix, elements of which can take values 1 and
 1245 0. Your task is to identify a repeating unit in this input.
 1246

1247 To be considered a repeating unit, the unit does not have to tile
 1248 the space exactly, but it must appear at least twice. The unit
 1249 instances may be flipped horizontally or vertically, translated
 1250 horizontally or vertically, and rotated by multiples of 90 degrees
 1251 (i.e. 0, 90, 180, 270).

1252 **IMPORTANT:**

1253 1. Instances of the unit must NOT overlap in the original input.
 1254 2. The height and width of the unit need not be equal

1255

1256 **Example 1.**
 1257 Given input: {example input 1}
 1258 The repeating unit is: {example unit 1}

1259

1260 **Example 2.**
 1261 Given input: {example input 2}
 1262 The repeating unit is: {example unit 2}

1263

1264 **Example 3.**
 1265 Given input: {example input 3}
 1266 The repeating unit is: {example unit 3}

1267 In Step 2, you will write a function that attempts to identify all
 1268 occurrences of the unit in the input. Return a list containing
 1269 the indexical locations of the top left corner for each copy,
 1270 along with whether to reflect the copy horizontally and the
 1271 number of 90 degree counter-clockwise rotations (these operations
 1272 together generate the dihedral group D4).

1273

1274 For instance, in the examples above, possible solutions include

1275

1276 **Example 1.**
 1277 Solution 1: {example 1 program 1}
 1278 Solution 2: {example 1 program 2}

1279

1280 **Example 2.**
 1281 Solution 1: {example 2 program 1}
 1282 Solution 2: {example 2 program 2}

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

```

1296 Given your unit and partition, the user will attempt to
1297 reconstruct the input using the following function:
1298
1299 def construct_copy(unit, reflect, rotations):
1300     if reflect:
1301         unit = np.flip(unit, 1)
1302     unit = np.rot90(unit, rotations)
1303     return unit
1304
1305 def regenerate_pattern(unit, copies, input_dims):
1306     pattern = -1 * np.ones(shape=input_dims)
1307     for copy in copies:
1308         transformed = construct_copy(
1309             unit,
1310             copy["reflect"],
1311             copy["rotations"],
1312         )
1313         height, width = transformed.shape
1314         tl_i, tl_j = copy["top left"]
1315         try:
1316             pattern[tl_i:tl_i+height, tl_j:tl_j+width] = transformed
1317         except:
1318             pass
1319     return pattern
1320
1321
1322 We can test the success of this regeneration with
1323
1324 input_map = np.array(input_map)
1325 output = regenerate_pattern(
1326     unit,
1327     partition(),
1328     input_map.shape,
1329 )
1330
1331 Now is your turn. Propose a unit that can be used to reconstruct
1332 the given input. Respond by completing the following Python code:
1333
1334 input_map = {input map}
1335 # make sure to define all arrays as numpy arrays
1336 import numpy as np
1337 input_map = np.array(input_map)
1338
1339 unit = [...]
1340 unit = np.array(unit)
1341
1342 def partition():
1343     copies = []
1344     # Place your code here. Let's think step by step
1345     return copies
1346
1347 Please include only code in your response, no text.''
1348
1349

```

G.2 MULTI-PROMPT GMM

1348 To improve GMM scalability on large maps, we introduce a two-step approach. The two steps are
1349 implemented in two separate prompts, which adapt the strategy described in the previous section.
The first prompt provides a part of the map and asks to identify a repeating unit. The second prompt

1350 asks the LLM to infer a reconstruction program for the complete map given the previously identified
 1351 unit.

1352
 1353 System prompt:

1354 You are a designer's assistant, skilled in noticing patterns,
 1355 combining fragments into a patterns, and extrapolating them. You
 1356 are skilled in identifying the underlying structure of a pattern
 1357 and generating new fragments that fit the pattern. You are also
 1358 skilled at writing Python code.

1359
 1360 Unit Identification Prompt:

1361 You will be given an input (a map) and asked to identify its
 1362 constituent units. The input is a matrix, elements of which can
 1363 take values 1 and 0. Your task is to identify a repeating unit in
 1364 this input, and ONLY output the unit as a 2D python array. DO NOT
 1365 include anything else in the completion.

1366 To be considered a repeating unit, the unit does not have to tile
 1367 the space exactly, but it must appear at least twice. The unit
 1368 instances may be flipped horizontally or vertically, translated
 1369 horizontally or vertically, and rotated by multiples of 90 degrees
 1370 (i.e. 0, 90, 180, 270).

1371
 1372 IMPORTANT:

- 1373 1. Instances of the unit must NOT overlap in the original input.
 1374 2. The height and width of the unit need not be equal

1375
 1376 Example 1.

1377 Given input: {example input 1}
 1378 The repeating unit is: {example unit 1}

1379
 1380 Example 2.

1381 Given input: {example input 2}
 1382 The repeating unit is: {example unit 2}

1383
 1384 Example 3.

1385 Given input: {example input 3}
 1386 The repeating unit is: {example unit 3}

1387 The input you are working with is the following map: {input map}

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404 Reconstruction Program Prompt:
 1405

1406 You will write a function that attempts to identify all
 1407 non-overlapping occurrences of the unit in the input. Return a
 1408 list containing the indexical locations of the top left corner
 1409 for each copy, along with whether to reflect the copy horizontally
 1410 and the number of 90 degree counter-clockwise rotations (these
 1411 operations together generate the dihedral group D4).

1412

1413 Example 1.
 1414 Given input: {example input 1}
 1415 The unit is: {example unit 1}
 1416 A solution is: {example 1 program 1}
 1417 An alternative, more structured solution is: {example 1 program
 1418 2}

1419

1420 Given input: {example input 2}
 1421 The unit is: {example unit 2}
 1422 A solution is: {example 2 program 1}
 1423 An alternative, more structured solution is: {example 2 program
 1424 2}

1425

1426 Given your unit and partition, the user will attempt to
 1427 reconstruct the input using the following function:

1428 def construct_copy(unit, reflect, rotations):
 1429 if reflect:
 1430 unit = np.flip(unit, 1)
 1431 unit = np.rot90(unit, rotations)
 1432 return unit
 1433

1434 def regenerate_pattern(unit, copies, input_dims):
 1435 pattern = -1 * np.ones(shape=input_dims)
 1436 for copy in copies:
 1437 transformed = construct_copy(
 1438 unit,
 1439 copy["reflect"],
 1440 copy["rotations"],
 1441)
 1442 height, width = transformed.shape
 1443 tl_i, tl_j = copy["top left"]
 1444 try:
 1445 pattern[tl_i:tl_i+height, tl_j:tl_j+width] = transformed
 1446 except:
 1447 pass
 1448 return pattern

1449

1450 We can test the success of this regeneration with

1451 input_map = np.array(input_map)
 1452 output = regenerate_pattern(
 1453 unit,
 1454 partition(),
 1455 input_map.shape,
 1456)

1457

```

1458 Now is your turn. Respond by completing the following Python
1459 code,
1460 1. include everything that is between START OF CODE and END OF
1461 CODE
1462 2. include the entire input map provided, do not use ... to omit
1463 3. ONLY fill partition(), do not use variables/functions that are
1464 not defined
1465 4. In the returned copies, follow the exact key names in the
1466 examples: 'top left', 'reflect', 'rotations'.
1467 4. DO NOT include anything else in the completion

1468 # START OF CODE, make sure to define all arrays as numpy arrays
1469 import numpy as np
1470
1471 input_map = {input map}
1472 unit = {input unit}
1473 input_map = np.array(input_map)
1474 unit = np.array(unit)
1475
1476 def partition():
1477     copies = []
1478     # Place your code here. Let's think step by step
1479     return copies
1480 result = partition()

1481 # END OF CODE
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```

```

1512 G.3 IN-PROMPT EXAMPLES
1513
1514 Example 1
1515
1516 Input map
1517
1518 [
1519     [1, 0, 1, 0],
1520     [0, 1, 0, 1],
1521     [0, 0, 0, 0],
1522     [1, 0, 1, 0],
1523     [0, 1, 0, 1]
1524 ]
1525 Reconstruction program 1:
1526
1527 def partition():
1528     return [
1529         {"top left": (0,0), "reflect": False, "rotations": 0},
1530         {"top left": (0,2), "reflect": False, "rotations": 0},
1531         {"top left": (3,0), "reflect": False, "rotations": 0},
1532         {"top left": (3,2), "reflect": False, "rotations": 0},
1533     ]
1534
1535 Reconstruction program 2:
1536
1537 def partition():
1538     copies = []
1539     for tl_i, tl_j in [(0,0), (0,2), (3,0), (3,2)]:
1540         copies.append(
1541             {"top left": (tl_i, tl_j), "reflect": False, "rotations": 0},
1542         )
1543     return copies
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

```

```

1566 Example 2
1567
1568 Input map
1569
1570
1571 [
1572   [1,1,1,1,1,1],
1573   [0,0,1,0,0,1],
1574   [0,0,1,0,0,1],
1575   [1,0,1,1,0,1],
1576   [0,0,0,0,0,0],
1577   [1,1,1,1,1,1],
1578   [1,0,1,1,0,1],
1579   [0,0,1,0,0,1],
1580   [0,0,1,0,0,1]
1581 ]
1582
1583 Reconstruction program 1:
1584
1585 def partition():
1586     return [
1587         {"top left": (0,0), "reflect": False, "rotations": 0},
1588         {"top left": (0,3), "reflect": False, "rotations": 0},
1589         {"top left": (5,0), "reflect": True, "rotations": 2},
1590         {"top left": (5,3), "reflect": True, "rotations": 2},
1591     ]
1592
1593 Reconstruction program 2:
1594
1595 def partition():
1596     copies = []
1597     for tl_i, tl_j in [(0,0), (0,3)]:
1598         copies.append(
1599             {"top left": (tl_i, tl_j), "reflect": False, "rotation": 0},
1600         )
1601     for tl_i, tl_j in [(5,0), (5,3)]:
1602         copies.append(
1603             {"top left": (tl_i, tl_j), "reflect": True, "rotations": 2},
1604         )
1605     return corners
1606
1607 Example 3
1608
1609 Input map
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```

1620 **H PSEUDOCODE**
16211622 **Algorithm 1** Single-prompt Generative Map Module1624 **Require:** I : Input map, t : Threshold, C : Number of completions, S : Likelihood function1625 **Ensure:** λ : Generative program, u : Unit

```

1:  $S' \leftarrow 0$ 
2:  $\lambda \leftarrow \text{''''}$ 
3:  $u \leftarrow \text{''''}$ 
4: while  $S' < t$  do
5:   Generate a prompt from  $I$ 
6:   Send the prompt and receive  $C$  completions  $(\lambda_1, u_1), \dots, (\lambda_C, u_C)$ 
7:   Extract Python programs  $\{\lambda_1, \lambda_2, \dots, \lambda_C\}$ 
8:   for all  $\lambda_i \in \{\lambda_1, \dots, \lambda_C\}$  do
9:     if  $\lambda_i$  runs successfully then
10:       $S_i \leftarrow S(\lambda_i)$ 
11:    end if
12:   end for
13:    $(S', i) \leftarrow \max_i S_i$                                  $\triangleright$  highest scoring program based on likelihood
14:    $\lambda \leftarrow \lambda_i$ 
15:    $u \leftarrow u_i$ 
16: end while
17: return  $\lambda, u$ 

```

1642

1643 **Algorithm 2** Multi-prompt Generative Map Module1644 **Require:** I_c : Input map, I_p : Partial map, t : Threshold, C : Number of completions,1645 S : Likelihood function1646 **Ensure:** λ : Generative program, u : unit

```

1:  $S' \leftarrow 0$ 
2:  $\lambda \leftarrow \text{''''}$ 
3:  $u \leftarrow \text{''''}$ 
4: while  $S' < t$  do
5:   Generate a prompt from  $I_p$ 
6:   Send the prompt and receive  $C$  unit candidates  $u_1, \dots, u_C$ 
7:   for all  $u_i \in \{u_1, \dots, u_C\}$  do
8:     Generate a prompt from  $I_c$  and  $u_i$ 
9:     Send the prompt and receive program  $\lambda_i$ 
10:    if  $\lambda_i$  runs successfully then
11:       $S_i \leftarrow S(\lambda_i)$ 
12:    end if
13:   end for
14:    $(S', i) \leftarrow \max_i S_i$                                  $\triangleright$  highest scoring program based on likelihood
15:    $\lambda \leftarrow \lambda_i$ 
16:    $u \leftarrow u_i$ 
17: end while
18: return  $\lambda, u$ 

```

1664

1665

1666

1667

1668

1669

1670

1671

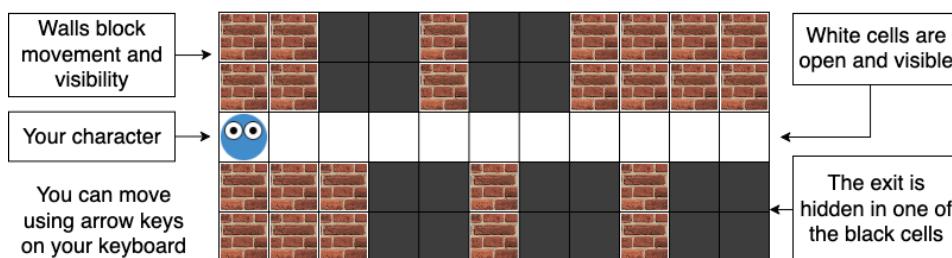
1672

1673

1674
1675
1676
1677 **Algorithm 3** Structure-Based Planner
1678 **Require:** I : Input map, u : Unit, C_i : Unit copies
1679 **Ensure:** P : Agent path
1680 1: $(r, c) \leftarrow$ Initial agent position
1681 2: $C \leftarrow$ Empty set to track fully explored unit copies
1682 3: $\pi \leftarrow$ Policy for unit exploration based on location of entrance
1683 4: **while** C does not contain all copies **do**
1684 5: Run POMCP on I until reaching an unexplored unit C_i
1685
1686 6: Identify the current entrance e into C_i
1687 7: **if** policy from e found in π **then**
1688 8: Explore C_i with policy from π
1689 9: Add C_i to C
1690 10: **else**
1691 11: Run POMCP on C_i explore the unit
1692 12: Add new policy (e, π_e) to π
1693 13: Add C_i to C
1694 14: **end if**
1695
1696 15: $o_1, \dots, o_m \leftarrow$ Exit locations of C_i
1697 16: **for** o_j in $\{o_1, \dots, o_m\}$ **do**
1698 17: $p_j \leftarrow$ compute penalty for escaping C_i from o_j
1699 18: **end for**
1700 19: Run MCTS on C_i until reaching an exit to escape
1701 20: **end while**
1702
1703 21: Run POMCP on I to explore the rest of the map
1704 22: **return** P

Algorithm 4 POMCP for In-Unit Planning

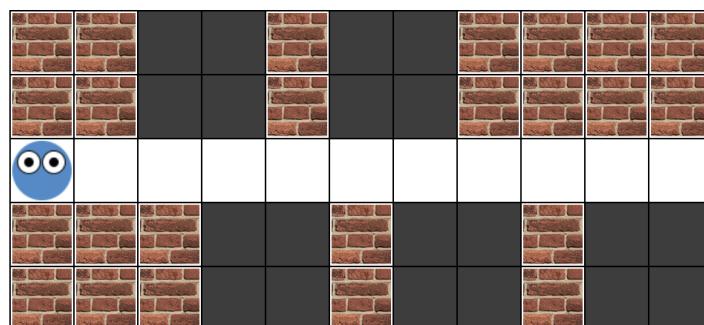
1: procedure $\text{SEARCH}(h)$ 2: if $B(h) = \emptyset$ then 3: return 4: else 5: repeat 6: $s_{\text{exit}} \sim B(h)$ 7: Simulate($s_{\text{exit}}, h, 0$) 8: until Timeout 9: return $\arg \max_a V(ha)$ 10: end if 11: end procedure 13: procedure $\text{ROLLOUT}(s_{\text{exit}}, h, \text{depth})$ 14: if $\text{depth} > \text{depth limit}$ then 15: return 0 16: end if 17: $a \sim \pi_{\text{random}}$ 18: $(o, r) \sim \mathcal{G}(h, a)$ 19: if o contains s_{exit} then 20: return r 21: else 22: return $r + \text{Rollout}(s_{\text{exit}}, ha, \text{depth} + 1)$ 23: end if 24: end procedure	1: procedure $\text{SIMULATE}(s_{\text{exit}}, h, \text{depth})$ 2: $N(h) \leftarrow N(h) + 1$ 3: if $\text{depth} > \text{depth limit}$ then 4: return 0 5: end if 6: if $h \notin T$ then 7: for $a \in \{\text{up, right, bottom, left}\}$ do 8: $T(ha) \leftarrow (N_{\text{init}}(ha), V_{\text{init}}(ha), \emptyset)$ 9: end for 10: return Rollout($s_{\text{exit}}, h, \text{depth}$) 11: end if 12: $a \leftarrow \arg \max_a \left[V(ha) + c \sqrt{\frac{\log N(h)}{N(ha)}} \right]$ 13: $(o, r) \sim \mathcal{G}(h, a)$ 14: if o contains s_{exit} then 15: $N(ha) \leftarrow N(ha) + 1$ 16: else 17: $r \leftarrow r + \text{Simulate}(s_{\text{exit}}, ha, \text{depth} + 1)$ 18: end if 19: $V(ha) \leftarrow V(ha) + \frac{r - V(ha)}{N(ha)}$ 20: return r 21: end procedure
--	--

1728 I HUMAN EXPERIMENT - MAZE SEARCH TASK
17291730
1731
1732 This study runs best on a desktop/laptop.
17331734 The study will **NOT** run on Safari, or a mobile device.
17351736
1737 In this study you will look for an exit in a maze.
17381739
1740 After this, you will be asked to provide demographic information.
17411742 The study is expected to take about 10 minutes.
17431744
1745 Thanks for participating!
17461747
1748 Figure 10: Introductory screen.
17491750 INSTRUCTIONS (PLEASE READ CAREFULLY)
17511752 Your task is to exit the maze by reaching the red square, which is initially hidden.
17531754 You can move one square at a time by clicking on the white squares next to your character.
17551756 You cannot see through the walls. The squares you cannot see yet are black.
17571758 The exit could be behind any of the black squares.
17591760 A maze looks like this:
17611770
1771 Figure 11: Instructions.
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799

Practice Maze 1 of 5

1800 Let's look at this map. There are some black squares, a brick wall, and your character.
 1801
 1802 The exit could be behind any of the black cells.
 1803
 1804 You can move your character by clicking one of adjacent white cells.
 1805
 1806 Find the exit and step on it to exit the maze.
 1807



1819
 1820 Figure 12: Practice (there are 5 practice trials).
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836

1837

1838

1839

1840

1841

1842

1843

Please answer the quiz to move on.

1844

1845

1846

Question 1: My task is to ..

1847

1848

- visit every square in the maze
- there is no specific task
- find the exit in each maze
- click as fast as possible

1849

1850

1851

1852

1853

1854

1855

1856

Question 2: Exits are always placed ...

1857

1858

1859

1860

- in the bottom left corner
- in one of the black cells
- some mazes have no exit
- there may be multiple exits

1861

1862

1863

Question 3: Which image correctly shows unseen parts of the maze?

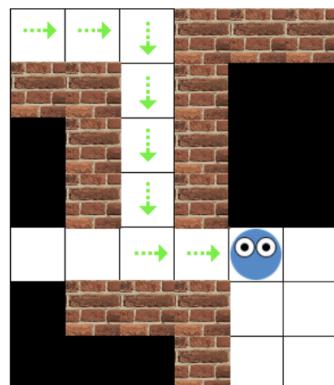
1864

1865

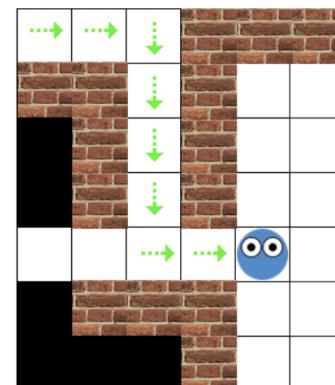
Image A Image B

1866

1867



A.



B.

Figure 13: Comprehension Quiz.

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

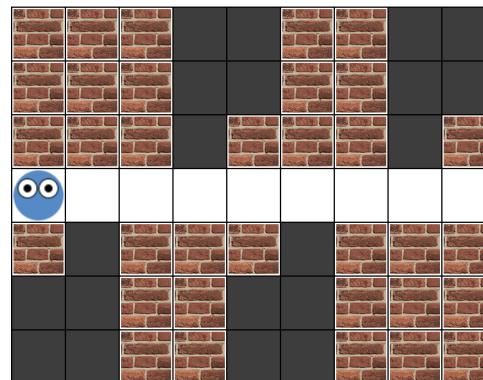
1908

1909

Maze 1 of 21

1910 Find the exit and step on it to exit the maze.

1911



1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

Figure 14: Experiment view.