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ABSTRACT

Planning relies on cognitive maps — models that encode world structure given cog-
nitive resource constraints. The problem of learning functional cognitive maps is
shared by humans, animals and machines. However, we still lack a clear un-
derstanding of how people represent maps for planning, particularly when the
goal is to support cost-efficient plans. We take inspiration from theory of com-
positional mental representations in cognitive science to propose GenPlan: a
cognitively-grounded computational framework that models redundant structure
in maps and saves planning cost through policy reuse. Our framework integrates
(1) a Generative Map Module that infers generative compositional structure and
(2) a Structure-Based Planner that exploits structural redundancies to reduce plan-
ning costs. We show that our framework closely aligns with human behavior,
suggesting that people approximate planning by piecewise policies conditioned
on world structure. We also show that our approach reduces the computational
cost of planning while producing good-enough plans, and contribute a proof-of-
concept implementation demonstrating how to build these principles into a work-
ing system.

1 INTRODUCTION

People are highly proficient in solving real-world planning problems. For example, we can navigate
cities without precisely knowing every link in the street network (Fig. [Th.)(Bongiorno et al., 2021)
and accomplish complex construction projects (Fig. [Ip.) with many actions and sub-goals (Mugan
et al.| 2024). Solving these problems optimally is theoretically intractable (Kaelbling et al., |1998)),
and therefore approximate algorithms for planning in natural domains remain an active area of re-
search in Al (Silver & Veness| 2010)), robotics (Curtis et al., [2025)), and cognitive science (Kryven
et al., 2024} [van Opheusden et al., 2023). Here, we seek to uncover cognitive computations that
enable humans to plan efficiently in natural domains. To do this, we focus on the key intuition that
the human world is structured (Fig[Ik,d) and propose that people reason about redundancies in this
structure to efficiently encode cognitive maps, and reduce planning costs. We formalize this hypoth-
esis in GenPlan, a computational model that gives an algorithmic account of how structure-based
planning can be implemented in practice.

Formally, a planning problem constitutes a search within a decision tree of possible states and ac-
tions (Kuperwajs et al.l 2025 |Russell & Norvig, 2016). This tree can be encoded as a learned neural
policy (Liu et al.l|2020), an explicit tree structure (Russell & Norvigl 2016} Silver & Veness}, 2010),
or a model describing states and actions in a symbolic form (Tang et al.| [2024). The size of the un-
derlying state-space determines the computational cost of the problem, or how difficult it should be.
Since optimal planning beyond non-trivial state-spaces is intractable, approximate planning frame-
works have focused on building partial state-spaces (Silver & Veness, 2010), learning generalizable
policies (Curtis et al.,|2022; Singh et al.| 2012}, and grouping actions frequently performed together
into options (Sutton et al. |1999). However, the difficulty predicted by these approximate planning
algorithms rarely aligns with human experience, as people often solve formally complex real-world
problems with relative ease.

We take inspiration from the theory of compositional concepts in cognitive science, which states
that humans learn complex concepts by combining simpler ones (Fodorl, 1975} Lake & Piantadosi}
2020; [Pitt et al., 2021}, and adapt the principle of compositionality to model human cognitive maps
and plans as generative structures. Compositionality has been successful in explaining concept rep-
resentation in visual (Lake & Piantadosi, [2020; [Tian et al., 2020), auditory (Verhoef et al., [2014;
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Figure 1: Structured human environments: city street networks, construction projects, natural land-
scapes, and an interior floor-plan with repeating structural elements highlighted. People learn mental
world-models that exploit this structure to make resource-efficient plans.

Rohrmeier, [2020; [Hofer et al} [2021) and spatial domains 2022}
2021). Further, compositional reasoning is culturally universal (Pitt et al.| |2021), suggesting that
it may be an evolved adaptation to natural structure people encounter in daily life (Johnston et al.,

[2022). Neural and behavioral studies provide ample evidence that cognitive maps are represented
using similar compositional generative structures. Neural evidence from human studies includes
mirror-invariant encoding of natural scenes (Dilks et al.} 201T)) and reuse of neural reference frames
across similar environments (Marchette et al.l 2014). Behavioral evidence includes hierarchical
spatial representations (Kosslyn et al [1974; [Stevens & Coupe, [1978}, [Hirtle & Jonides), [1985) re-
flected in first planning routes between, and then within semantic regions (Bailenson et al., 2000;
Newcombe et al., [1999; Wiener & Mallot, 2003} Wang & Brockmolel, [2003; [Balaguer et al., 2016
Tomov et al., 2020), and ability to predict unseen environment layout in structured environments
(Sharma et al., |2022).

In formal terms, combinatorial concept representations can be modeled by mental programs — sym-
bolic instructions specifying how to produce new instances of a given concept class
2015} [Lake & Piantadosi, [2020). Computational accounts of concept learning as program induction
(inferring a program from a given a set of examples) provide powerful explanations of human learn-
ing efficiency — only a few examples can suffice to deduce an underlying program, in contrast to
vast amounts of data required by purely neural models (Tenenbaum et al.}, 2011} [Lake et al, 2015).
Building on this research, we model cognitive maps as generative programs that capture structures
such as symmetries and repeated parts, and propose an algorithmic framework that models cost-
efficient planning in such maps by reusing local policy conditioned on structure, instead of solving
a global optimization problem.

In this work we adopt a scientific and an engineering goal: (1) to understand computational cognitive
principles by which humans plan in structured spatial domains, and (2) to engineer a cost-efficient
computational framework that formalizes human-like planning in structured environments. We con-
tribute:

* Generative Map Module (GMM), which discovers programmatic map representations us-
ing tractable inference;

* Structure-Based Planner (SBP) that implements hierarchical planning both within and be-
tween the structural units

* Empirical validation of our framework on human behavior, showing that human planning
is consistent with generative cognitive maps and policy reuse.

The GMM models observations of the environment by inferring a small distribution over program-
matic maps. To do this, we use a Large Language Model (LLM) as an embedding of human priors
learned through training on human data. The SBP extends a Partially Observable Markov Decision
Process (POMDP) to use the GMM representation. It constructs end-to-end policies for within-
unit planning and between-unit transitions using adaptations of a Partially Observable Monte Carlo
Planner (POMCP). In the next section, we introduce the experimental environment, followed by a
detailed description of computational models. In Section [3} we compare our models’ predictions
with human empirical results.
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Figure 2: The Maze Search Task with structured layouts. (a.) Task Setup illustrated in a simple
example. Participants can use keyboard keys to navigate over any non-wall cells. The exit is initially
hidden in one of the black (unobserved) cells. (b) The exit is shown as a red tile when it comes into
view. (c) A subset of structures environment layouts used to evaluate GenPlan and compare its
performance to that of a Naive POMCP. The dots denote floor cells through which participants can
move. Red dots denote structural unit boundaries.

2 METHODS

2.1 STRUCTURED SPATIAL DOMAIN

We examine people’s planning strategies by adapting a version of Maze Search Task (MST) pre-
viously used to study human behavior in spatial navigation domains (Kryven et al 2024} 2021}
Geva-Sagiv et al.,[2025)). The objective of MST is to navigate a series of partially observable, two-
dimensional grid-worlds, finding exits hidden in each. Each environment has only one exit. The
environment are partially observable, with the exits initially placed at a random unobserved location
(black cells). Figl2]shows a simple MST environment seen by participants during one of the prac-
tice trails. Full experiment instructions are given in Appendix ﬂ People navigate by using their
keyboard keys to move to any unoccupied grid cells adjacent to their character (a round avatar). The
black hidden cells are revealed when they come into the avatar’s line of sight. When revealed, the
exit becomes visible as a red tile. As soon as the character moves over the exit, the trial ends. In
our adaptation of MST all mazes are structured, and contained between 2 and 20 repeating struc-
tural units. The units may have occurred as reflected or rotated instances, where the structured area
comprised between 80 - 100% of the environment layout.

2.2 COMPUTATIONAL MODELS

Decision making under partial observability can be modeled by a partially observable Markov deci-
sion process (POMDP). Equivalently, it can be viewed as a fully observable search through a space
of beliefs, where each belief is a probability distribution over possible states. Solving POMDPs is
notoriously hard (Madani et all, 2003)), hence understanding how people approach these problems
holds deep importance for cognitive science and Al

Formally, a POMDP is a tuple (A(S), A, 7,7, bo, ), where A(S) is the space of probability distri-
butions over a state space S, A is the set of actions, 7 is the belief update function, r is the reward
function, by is the initial belief, and -y is the discount factor. The belief state evolves deterministically
via 7, reflecting both the agent’s actions and observations.

In this work, each state s € S is represented as an N x M grid whose cells are labeled
{wall, empty, exit, agent}. The overall state space S consists of all such grids containing exactly
one agent and one exit. A belief b € A(S) is thus a probability distribution over these grids, en-
coding the agent’s uncertainty about the true state. Initially, by assumes that the agent and the walls

'A demo is available here: http://18.25.132.241/fragments/int_exp.php
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are known, while the exit is uniformly distributed over all valid, unseen cells. The action space A
contains four possible movements (up, down, left, right). Observations 0 € O reveal the visible
subset of the grid around the agent, with each visible cell labeled {wall, empty, exit}, and any cell
outside the agent’s visibility range r labeled as unseen. Observations are consistent with the grid
structure of the true state s € S.

The belief update function 7 is given by

b'(s") o< Z(o]|s') ZT(s',a,s)b(s),

ses

where T'(s',a, s) is the transition function, and Z(o | s’) is the observation likelihood. The
transition function T'(s’, a, s) specifies the probability of transitioning to state s’ from s after
executing action a. Here, actions that would move the agent into a wall result in the agent remaining
in its current position, and transitions to an exit state terminate the process. The observation
function Z(o | s’) encodes the likelihood of observing o given s’, where observations reflect the
visible subset of the grid within range r of the agent’s position. Visibility is blocked by walls, such
that cells beyond a wall are labeled as unseen. Finally, the reward function (b, a) is the expected
reward under the belief b. Since the agent can always see an exit before reaching it, (b,a) = 1 if
action ¢ leads the agent to a known exit and 0 otherwise.

Expected Utility The optimal policy for this POMDP can be found through a belief space tree
search (Kaelbling et al. [1998). The search is conducted over a tree where each node represents
a belief b € A(S), and edges correspond to action-observation pairs (a,0). Starting from the
root node by, the tree expands by simulating actions @ € A and updating beliefs using the belief
update function 7. For each action a, the agent considers all possible observations o € O, with the
likelihood of each observation determined by the observation function Z (o | s’). At each node, the
value of a belief is computed recursively using the Bellman equation:

V(b) = max T(b,a)+7(;P(0\b7a)V(T(b,a,0)) : (1)

where P(o | b,a) is the probability of receiving observation o after taking action a under belief
b. The optimal policy 7* is derived by selecting the action at each belief node that maximizes the
expected value. See (Kryven et al.,2024) for further details on this implementation, which was used
as a model of human planning in MST in prior work.

Although this is the optimal strategy, human behavior has previously been shown to diverge at
times from its predictions (Kryven et al., [2024), where the extent of this divergence varies between
individuals in a way that can be explained by the amount of cognitive resources people allocate
to planning (Kryven et al.l 2021). Previous work with MST, as well as with related non-spatial
planning tasks (Huys et al 2015)), has found that people’s divergence from the optimal trajectories
is most readily explained by a limited planning horizon ( discount factor v < 1 in Equation[I). In the
remainder of this section we describe alternative computational hypotheses for how humans could
make decisions in this environment by reasoning about structural patterns.

Generative Structure-Based Framework (GenPlan) Next, we describe a modeling framework
that formalizes planning strategies conditioned on automatically discovered latent structure of the
state-space. Our model consists of two modules: a Generative Map Module (GMM) and Structure-
Based Planner (SBP). See Fig[3|for a high-level overview of this architecture. The GMM recovers
a programmatic representation of the observed state-space as a composition of structural units. The
SBP then uses a planner to plan a piece-wise policy once per-unit, in contrast to a global policy, sav-
ing computing costs. Importantly, this reconstructed programmatic representation is a cognitively-
inspired state-space compression. While such a reconstruction may match the ground-truth planning
state-space, it does not need to be exact as long as it is sufficient to serve the agent’s goals (Ho et al.,
2022). In theory, the cognitive principle of combining automatic structure discovery with structure-
aware planners can apply to any domain, as a proof of concept here we focus on spatial tasks.
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Figure 3: Model Architecture and predictions. (a) The GenPlan Framework. GMM recovers a small
distribution over generative maps based on input (a partial observation of the ground truth map).
Each generative map constitutes a set of candidate units coupled with a program for reconstructing
the input from them. We assign a likelihood to each generative map, and pass the most likely
reconstruction to SBP. SBP plans a policy once for each structural unit. (b) A human solution to
the given example agrees with prediction of GenPlan (top panel). Arrows indicate the participant’s
path. The path predicted by alternative models DepthPlan and Naive-POMCP (bottom panel) instead
optimizes the global policy. Green highlighting shows discriminating decisions.

Generative Map Module (GMM) Let I be the global partially observed input grid map of cells
S;. Here, we assume that [ specifies all wall locations, but does not reveal the reward location,
matching the information given to people by MST design. In the general case, I can extend to any
partial observation, as GMM will attempt to infer a structural unit from any input its given.

The GMM implements approximate inference of a posterior distribution p(M|I) over cognitive
maps M that partition I into structural units M = {U; }I" ;. We use LLM-based program synthesis
with gpt-4, chosen for its strong code synthesis capabilities, to search for programs that generate M
based on I (Fig. 3). In Appendix [l we show that our approach can generalize to other LLM ar-
chitectures, as long as a given LLM is able to infer at least one good-enough map in the distribution
it infers. To do this, we prompt LLM to identify repeating units in the input map, and synthe-
size a Python program that approximately reconstructs the input from them. Prompts are given in
Appendix |G} The prompt includes Python code with functions describing admissible transforma-
tions, as well as a likelihood function for a given M. In our implementation the input map [ is a
grid-world, specified by an numerical array, where each grid cell is associated with a number (e.g.
wall=1, floor=0). The reconstructions M do not allow overlapping units, and allow any units that
repeat in [ at least twice.

To develop a space of possible map representations, we estimate the likelihood of each candidate
M by a weighted combination of grid-level similarity, a function of total information in a candidate
unit, and the Minimum Description Length (MDL) principle (Rissanen,|1978). MDL penalizes each
unit occurrence by the bits necessary to specify the map reconstruction: their locations (effectively,
the number of copies), rotations and reflections. This means that reconstructions made up of many
smaller pieces are less likely than reconstructions made up of bigger ones. The function of total
information in a unit ensures that the selected units are neither trivial (e.g., uniform blocks of cells
made up of either walls or open space) nor noise, by defining an inverted-U relationship between
likelihood and informativeness (Kidd et all 2012). This treats large units where perception is
subject to information bottleneck constraints as less likely (Cheyette & Piantadosil |2020). Overall,
this likelihood function can express a weighted preference for (1) more accurate reconstructions, (2)
simpler units (to reduce planning cost).

To form the posterior p(M |I), we use the likelihood:

dm d?} 2
DO U@y) = Oz, ) — wa| M| + ws exp(—(H“’“”_m) . @

w1
dy - d,

(M) x 552
rz=1y=1

where d, d, are input dimensions, O is the output (reconstructed map), and w; are weights as-
sociated with reconstruction accuracy, map complexity, and unit complexity — free parameters of
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the model. Here, weights for map complexity and unit complexity directly control planning cost,
as smaller units are less costly to plan in. The expression ws|M| controls the number of units
(map complexity), meaning that a lower wsy corresponds to a lower planning cost. The expres-
sion at ws controls total entropy in the unit (unit complexity), where more complex units incur
higher planning costs. Therefore, a lower ws corresponds to a lower planning cost. See also
Appendix [E] for the discussion of these parameters. We define the total entropy in the unit as
Hior = dgdy - (—plogyp — (1 — p)logy(1 — p)), where p is the fraction of 1’s in the array,
and free parameter 3 reflects the processing bottleneck, in line with perceptual models explored
in prior work (Cheyette & Piantadosi, 2020; |[Kryven et al., [2024)). This definition ensures that the
information term next to ws reaches a maximum of 1 Hyy, = S, but decays to 0 on both sides of
this maximum. In the general case, input I and output O are real-valued 2D image arrays. In our
current implementation input I takes values 0 and 1, and the output 0 < O(z,y) < 1. Instead of
using the raw Python program for A\ to measure its complexity, we use a compressed encoding of
the units and their transformations used to reconstruct the map. Here, compressing LLM-generated
output and transformations is analogous to refactoring the synthesized programs. As the length of
LLM-synthesized code may be noisy, due to injected comments and code redundancies, refactoring
the output obtains a denoised metric of complexity.

The posterior p(M|I) defines how the environment structure is encoded into memory. The free
parameters w;, 5 balance reconstruction accuracy against the complexity of the generative structure
and planning costs. Fig[3|shows a simple example with structural units highlighted in red. Bigger
examples designed in our simulation experiment are shown in Fig[2] Our proof-of-concept imple-
mentation uses the most likely generative map in the SBP module for generating a policy. This
approach makes a simplifying assumption relative to prior work on human cognitive maps (Sharma
et al.| 2022)), which found that people anticipate unseen map structure by maintaining a distribution
over possible maps. However, as our experiment design does not distinguish between planning over
a distribution or the most likely map, both approaches would make identical predictions.

Structure-Based Planner (SBP) Implementing SBP integrates planning within and between
structural units. Since finding an exact solution is intractable due to the size of the problem (Kael-
bling et al., [1998), we solve planning within a unit by searching through the belief space using an
approximate online Partially Observable Monte Carlo Planner (POMCP) (Silver & Veness,[2010). A
plan in-between units consists of leaving the current unit and transitioning to the next one. We solve
the former by adapting Monte Carlo Tree Search (MCTS), and introducing an optimistic heuristic
valuation for open cells around the boundary of a unit (i.e. cells through which we can exit the unit).
Upon completing a plan for the current unit, this heuristic should encourage us to leave the unit in
the direction that minimizes the expected global cost of reaching the exit. In the general case, this
can be any heuristic that does not overestimate the true cost. Here, we compute the values of bound-
ary cells as inversely proportional to the average of manhattan distances to the remaining external
unobserved cells, hence assigning a higher value to cells that are on average closer to the remaining
unseen parts of the map. We solve the transition to the next unit using a POMCP on the global map,
but implement the option to switch to within-unit planning upon reaching the new unit. Here, we
evaluate the option by estimating the average per-step cost to plan within the unit. The pseudo-code
for GMM and SBP the algorithms is given in Appendix [H] In Appendix [B] we analyze SBP by de-
riving worst-case bounds on step-cost differences between SBP and the optimal policy. We show
that SBP yields only a constant-factor step penalty that does not affect asymptotic exploration, and
in non-structured settings the worst-case costs are identical.

2.3 COMPUTATIONAL HYPOTHESES

We compare human performance to the hypotheses (planing algorithms) to evaluate whether and
how human planning implements the two computational steps outlined by GenPlan.

1. Structure-Naive Planner (Naive-POMCP): The model doesn’t use generative maps, and
plans by optimizing a global policy for the environment.

2. Structure-Naive Planner With Cognitive Constraints (DepthPlan) The model doesn’t
use generative maps, and plans by optimizing a global policy that discounts future states
to model limited planning depth. This model was previously used to describe how people
plan in MST (Kryven et al., 2024).
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3. A Generative Planner (Gen-POMCP): The model uses generative maps, and plans a
reusable policy based on the most likely map from the distribution of induced maps p(M|I)
(see Fig. B and b).

Naive-POMCP uses an approximate POMCP planner designed for large partially-observable state-
spaces. It was previously used to model human planning in large domains, although this work did
not examine the effect of environment structure on human plans (Sharma et al., 2022). DepthPlan
is consistent with prior work that models human deviations from optimal cost minimization by
limited planning horizon, without modeling environment structure (Kryven et al.,2024; Huys et al.,
2015). Since DepthPlan internally computes an optimal policy, it can only be applied to smaller
environments (generally 6 or fewer structural units, see Experiment 1). Only the third hypothesis is
consistent with the two computational steps proposed by the GenPlan framework: it represents maps
as generative programs, and uses this structure to plan a reusable policy, reducing planning costs.

3 EXPERIMENTS

We first test whether people use structure to reduce computational costs of planning, as implemented
by Gen-POMCEP, in contrast to DepthPlan — the state-of-the-art model of planning in MST (Kryven
et al.l 2024) (Experiment 1). For this experiment, we use a set of 20 structured environments at
a scale that can be solved by DepthPlan, in order to compare DepthPlan and Gen-POMCP. Based
on the sample sizes used in a previous study of human planning in structured spaces Sharma et al.
(2022), and a preliminary pilot showing a strong effect of structure on planning, we recruited a
N=30 participants as sufficient for confirm this effect. We then run a simulation experiment with
10 large environments containing 20-25 units (Experiment 2) to compare the computational costs
of Gen-POMCP and Naive-POMCP, demonstrating that Gen-POMCP requires significantly fewer
computational resources.

3.1 EXPERIMENT 1: BEHAVIORAL VALIDATION

Procedure The experiment was conducted in a web browser, using the web-interface of MST
(Kryven et al.l|2024)). Before beginning the experiment participant gave informed consent and com-
pleted a series of practice trials, followed by an instruction quiz. Following this, they completed a
variant of MST with structured mazes, with exit locations randomly chosen at the time of design.
After completing the experiment, we administered a post-experiment questionnaire collecting de-
mographic information. As our goal was to observe ecologically-valid planning, we did not offer
performance-based incentives, and simply informed participants that the exit could be in any of the
hidden tiles, and instructed them to find it in each environment.

We recruited 30 (13 female, 17 male, M (age) = 36.7, SD(age) = 13.5) english-speaking partici-
pants on Prolific, who were paid 9£ per hour. None were excluded. On average the experiment took
10 minutes to complete. The experiment was approved by our institution’s IRB.

Behavioral metrics We introduce the following behavioral definitions to quantify people’s align-
ment with the GenPlan framework.

* A set of discriminating decisions D(I) in a given environment [ is the subset of all states
in I where Gen-POMCP and Depth Plan predict a different most likely action. That is,
D(I) includes only actions diagnostic of structure-based planning. Fig. |3p illustrates dis-
criminating decisions in a simple example. Unlike the global solution (bottom panel),
Gen-POMCP and most humans search by entering inside the structural units. The cells
highlighted in green are discriminating decisions.

* Modular fraction o(D) defines the fraction of decisions in a given set of discriminating
decisions D that are more likely under Gen-POMCP, compared to DepthPlan. Notably, as
weights w; in equation [2] can tradeoff accuracy against representation and planning costs,
Gen-POMCP can capture flexible strategies that integrate global and local search. For
simplicity, here we assume stable population-level weights that strongly favor structure
over accuracy, meaning that o(D) is a conservative estimate of how well Gen-POMCP
explain human behavior.
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Figure 4: Experiment result shows that Gen-POMCP explains people better than DepthPlan. (a.)
Modular fraction for each environment (b.) The histogram of individual modular fractions per
participant, over all discriminating decisions. (c) The fraction of each environment explored by
Gen-POMCEP across environments (solid line) and Naive-POMCP (dashed lines) as a function of
compute budget (number of MCTS rollouts). (d) The fraction of each environment explored by
Naive-POMCEP, if given the amount of MCTS rollouts at which Gen-POMCP fully explores the
given environment. Each bar shows a different environment.

Results Our results reveal that Gen-POMCP predicts human behavior significantly better than
DepthPlan (Fig. @). Examination of modular fractions for individuals and environments shows
that people are highly consistent with our model, demonstrating structure-based planning across
all environments and individuals. Across all environments, human behavior is better explained by
Gen-POMCP, suggesting that people approximate planning by piecewise policies conditioned on
structure, rather than by planning a global policy with a limited depth. Fig. [Bp illustrates the dif-
ference between the models in a simple example. Like Gen-POMCP, the majority of people search
the environment by a trajectory shown in the top panel. However, both the optimal policy predicted
by the Naive-POMCP, and the depth-limited planning as implemented by DepthPlan, predict the
trajectory shown at the bottom — because it allows to quickly reveal a large portion of the global
map.

3.2 EXPERIMENT 2: SIMULATION

Next, we compare the computing resources needed by Gen-POMCP and Naive-POMCP to explore
10 large structured environments (e.g., see Fig. [2k). As the objective of MST is to find a hidden
exit, each simulation is set up to run until the environment is fully explored (i.e., the exit is not
revealed until the end of the simulation). We compare two quantitative comparisons. For each
environment we compute the fraction of the environment that each model is able to explore given a
certain compute budget (Fig. [@d), finding that the Gen-POMCP required a much smaller budget to
search the entire environment. FigHk separately shows the fraction of each environment that Naive-
POMCEP is able to explore, if given the rollout budget at which Gen-POMCP has searched the entire
environment. In AppendixA]we give a proof that the length of the search trajectories produced by
Gen-POMCP exceeds trajectories produced by Naive-POMCP by a bounded amount, demonstrating
that Gen-POMCEP also produces good enough plans. All environments used in Experiments 1 and 2
are shown in Appendix{B]

4 RELATED WORK

Models of Human Planning People make near-optimal plans in natural domains, such as city
navigation (Bongiorno et al.} [202T)), yet often perform sub-optimally in laboratory-based behavioral
paradigms such as multi-arm bandits (Keramati et al.| 2016} [Huys et al., 2013)), strategic games (Fer-
reira, [2013)), and sequential decision-making (Unterrainer et al.,[2004; Kryven et al.,[2024} |Callaway
et al., [2022). Such deviations from optimality are often explained by approximate planning with a
limited planning horizon (Ferreira, 2013}, [Kryven et al.l 2024} [van Opheusden et al},[2023)). Recent
work (Correa et al} [2025]) examines how people represent policies in programmatic forms that min-
imize description lengths, finding sensitivity to both effort minimization (similar to seeking shorter
search paths) and MDL (shorter programs). Similar to our work, their study found that human plans
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heavily favor reuse. Unlike our work, experimental paradigms used in these studies lack the regular
problem-domain structure ubiquitous in the real-world.

Cognitive Maps A recent study found that people form cognitive maps that facilitate planning
2022), by selectively representing only the goal-relevant parts of the map. Like our work, this
study assumes that human cognitive maps are learned by compressing observations. Unlike our
work, this study uses unstructured maps. A recent study of exploration in structured environments
found that people anticipate environment structure, even when not informed about them in advance
(Sharma et al,[2022)), and can predict unseen parts of the map. Unlike our work, this study focuses
solely on map prediction, and does not examine the role of cognitive maps in planning. It also relies
on exhaustive enumerative search to discover the underlying map representations, unlike our work
that implements tractable inference using LLM-based program synthesis.

Hierarchical Reinforcement Learning (HRL) Reinforcement learning methods reduce planning
complexity through hierarchical abstractions such as options (Sutton et al.|[T999)), shared structure

across related MDPs (Wilson et al.| 2012), and predictive state merging (Singh et all 2012). Clas-
sical approaches include abstraction spaces (Sacerdoti} [1974), HTNs (Erol, [1995} Nau et al., [1999),

and probabilistic propositional planning (Littman, |[1997)), while recent work analyzes state abstrac-
tion in tree search (Anand et al.| 2016} Hostetler et al.| 2014} [Hutter, 2016)) and structural conditions

for efficient planning (Wen et al., 2020). Related lines study option discovery (Jinnai et all, [2019;
Ivanov et all,[2025), generalized planning across task families (Curtis et all,[2022), and symmetry-

based representations [2017). These approaches engineer abstractions to improve worst-
case or average efficiency. In contrast, GenPlan conditions planning on inferred structure: the GMM

recovers repeated fragments from partial observations, and SBP reuses fragment-level policies with
a focus is on explaining human planning behavior. While comprehensive theory of asymptotic guar-
antees for of GenPlan is outside the scope of our workﬂ in Appendixwe show that the worst-case
performance of GenPan differs from optimal POMCP only by a constant factor.

Using LLM to plan Several related works have used LLM for offline planing. Similar to our
work, Parsel (Zelikman et al, [2023) leverages LLMs to decompose complex tasks into modular
components that can be composed to solve a larger problem. Unlike our work, Parsel solves prob-
lems specified in natural language, rather than using LLMSs to infer latent environmental structure
for cognitive maps. A study of (2024) proposes a framework that fine-tunes LLM-based
agents to plan in grid environments by constructing an internal representation. Unlike GbenPLan,
which represents cognitive maps in code, their model works with text-based grid-world descriptions
and uses unstructured maps. Chain-of-Thought Procedure Cloning enables agents to generalize to
new fully observable environment configurations by imitating the intermediate reasoning steps of ex-
pert procedures [2022). The ReAct framework guides anLLM through
iterative thought-action steps, that can apply to spatial navigation domains. However, ReAct does
not provide inference over enironmental structure, or mechanisms for policy reuse 2024).
Unlike GenPlan, these models do not target planning in structured spatial environments, and are not
evaluated in human experiments.

Natural priors. Adaptive real-world planning draws on complex prior knowledge of the

world (Acquaviva et all 2022} [Spelke & Kinzler, 2007}, [Dehaene et all [2006). Learning natural
priors that make people so efficient in real-world remains an important problem in cognitive Al

(Kumar et al, 2022} [Li et al., 2024} Binz et al., 2024). (Feldman| [2013). Similar to our work, an
emerging line of research leverages LLMs as a back-end to planning frameworks as a way of inform-
ing planning by the implicit natural priors embedded in LLM though training on vast amounts of
human data (Tang et al. [Correa et al.| 2023}, [Towers et al.} 2024} Xie et al, 2023} [Piriyakulkij
let all 2025} [Curtis et al.|[2025)). Our computational framework builds on this approach, focusing on
modeling how cognitive maps and planning policies may be learned together.

2For example, it may be possible to adapt computational efficiency guarantees from (2020) to our
setting.
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5 DISCUSSION

We give a computational account of how people plan in structured environments by integrating
(i) generative reconstruction of compressed cognitive maps from observations, coupled with (ii)
structure-conditioned policy reuse. GenPlan operationalizes these two principles in a computational
framework that (1) represents maps by approximate generative programs in a Turing-complete lan-
guage, and (2) plans in these representations using POMCP with policy reuse. We adapt an ex-
perimental Maze Search task previously used to study human planning, to show that in structured
environments human planning is consistent with these two computational principles, in contrast to
the state-of-the art model of depth-limited planning proposed in previous work. This result makes
a scientific contribution by showing that environmental structure influences the selection of plan-
ning strategies: human deviations from optimal policies are, at least in part, due to approximating
planning by piecewise policies conditioned on structure for policy reuse. Our GenPlan framework
makes an engineering contribution by showing how to actually build these principles into a working
system. GenPlan is compute-efficient, because it achieves tractable inference over the underlying
map structure by leveraging LLM-driven program generation (in contrast to enumerative search e.g.
(Veness et al., 2011) ) and because it reduces the amount of planning compute through policy reuse.

We note that in our experiments planning varies between individuals, in line with variability ob-
served in previous work (Callaway et al.| (2022)). Our model proposes a computational account ex-
plaining this variability as arising from how individuals may represent the same map in different
ways. For example, depending on available cognitive resources, someone may form representations
made up of coarser or finer patterns. In the limit, GenPlan can prioritize reconstruction accuracy
and treat the entire environment as a single structural unit, solved by a globally optimal policy. Our
implementation makes a simplifying assumption that that reconstruction and description weights are
fixed and stable at population level, which works well to explain behavior in our experiment. Future
work can further consider the stability and generalization of these parameters within and between
individuals. General case solutions can be built to account for flexible cognitive resources, allowing
the model to switch between map representations in response to changing cognitive demands. Future
work can also examine how the weights should be chosen to optimally balance the computational
costs of planning and memory, against utility.

Limitations and future work. Our choice of MST environment is motivated by prior state-of-
the-art model on human spatial planning (Kryven et al., [2024). In alignment with prior work on
human spatial planning (Kryven et al., 2024; |[Ho et al.| |2022; |Sharma et al., 2022), GenPlan relies
on deterministic units that are stable over time, which allows comparison of our results with prior
work. As natural environments are often probabilistic and evolving, future work should examine
building blocks that differ superficially (e.g. square or rectangular city blocks), while preserving
probabilistic generative constraints. To work with probabilistic units, GenPLan would rely on the
same two congitive principles of structure-based map compression and policy reuse, while using
a different implementation of GMM and SBP where the unit maps themselves are specified by
generative programs in a graph-grammar or a probabilistic CFG. We hope that our results will inspire
future work on human planning in structured environments beyond grid-world domains (e.g. music
performance, reasoning in cognitive graph domains).

Another promising direction of future work consists of modeling how different goals shape cognitive
maps. For instance, people tend to perceive San Francisco as having a grid layout, even though its
map reveals a more complex structure. Such grid-like intuitions could arise from goal-dependent
cognitive maps (Ho et al.| 2022) — where a local grid model may actually be good enough to plan
a pedestrian shortcut across a neighborhood. Because our aim is to explain behavior, we do not
provide full theoretical evaluation in terms of search efficiency, completeness, and scalability to
arbitrary task sets. We hope the principles we proposed will motivate further theoretical work on
when human-like priors are advantageous or suboptimal.

Implications. While planning cognition has been studied extensively, human planning real-world
planning domains remains underexplored. A computational-level understanding of how human plan-
ning adapts to real-world environments, given their distinctive properties such as structural and in-
ductive biases, can inform models that not only empower Al to better understand and assist humans,
but also decrease environmental impact of Al algorithms, by enabling them to achieve effective
policies with less compute. In contributing a proof of concept implementation, GenPlan brings new
insights into human spatial planning, and takes a step toward building cost-efficient planning in Al
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A CODE AVAILABILITY

The Gen-POMCP implementation is available here: https://anonymous.4open.
science/r/GenPlan—-FBCD/README .md

B PERFORMANCE BOUNDS FOR STRUCTURE-BASED PLANNING

In structured environments Gen-POMCP can explore the environment faster than Naive-POMCP
(using fewer rollouts and in less time) by taking advantage of limited resources. However, it simpli-
fies the planning problem by entirely exploring each fragment it enters before moving to the next.
This heuristic can result in longer overall paths taken to search the environments. It is reasonable
to ask by how much the global Naive-POMCP can actually improve on the path length taken by
Gen-POMCP (and specifically the Structure-Based Planner).

Below we sketch a proof that considers the limit in which each planner fully optimizes its respective
objective: Naive-POMCP follows the Bayes-optimal plan in each fragment and Gen-POMCP fol-
lows the Bayes-optimal global policy for the maze. We bound the cost difference according to the
worst-case cost in steps.

Expected and worst-case The expected number of steps it takes for a policy to explore a maze is
the average over the length of path this policy takes to reach uniformly sampled exit locations. The
worst-case number of steps is the largest number of steps that the policy could take for some exit
position. This is bounded below by the number of steps required to fully explore the maze.

Lemma 1. There exists a fragment of size n x n which takes O(n?) steps to search in expectation,
and to explore fully.

7x7 Spiral Maze O O O
Path Length vs Maze Size
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Figure 5: Consider a maze with a spiral wall - the white cells indicate traversable floor, and black
indicate intraversable wall. Simulating these environments shows that the maximal length of path
(white cells) in the environment grows as ~ %n2

Proof. Consider a fragment with the maximum spiral path (e.g. Figure[5). The length of this path
scales quadratically with n. In particular, following a spiral path takes a series of four legs at each
depth, and the length of every other leg reduces by two (one for the wall and one for the path itself).
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This yields
[n/2]-1
nt Y 2n-2i-1)= Mo — g 224D o0y
- 2 2
=0 (3)
= %nz +O(n)
O

Theorem 2. In the an n X n maze, the expected number of steps taken by SBP may exceed the
expected number of steps of an optimal policy by (n?).

Proof. Build a fragment by adjoining an empty room and a spiral by a single door at a corner. Now
connect the two fragments by adding a door between the empty rooms in the opposite corner. As-
sume the size of the empty rooms is such that the optimal algorithm can find the exit with probability
1/2 by checking each empty room, but the SBP algorithm must explore entirely the first fragment
that it enters. With probability 3/4, the exit is not in the first empty room, so it must explore the
spiral, which takes time (n?) to fully explore by Lemma [1} The spiral also must be exited, so
around n? steps are spent when the exit is in the other empty room (in this case the optimal planner
finds immediately by checking each room). Since the optimal planner takes only a constant number
of steps to check each empty room, and then behaves identically to the SBP, the expected cost when
the exit is in any other location is asymptotically the same, so the expected cost difference is roughly
in? = Q(n?). O

Theorem 3. The number of steps to fully explore a maze is O(n?).

Proof. Consider a v-vertex connected graph. The maximum width (roughly achievable by the spiral)
is v, leading to a naive bound of O(v?) = O(n). This can be improved to O(v) by running a
depth-first search. Since there are 4 movement directions the degree of this graph is 4 meaning
the maximum number of backtracks fo a vertex is 3, which immediately gives 4v. However, in a
depth first search there is only one backtrack from each vertex is 1, which leads to an easy inductive
proof that the bound is O(2v — 1) regardless of degree, yielding 2n? — 1 = O(n?). Note that
further improvements should be possible by considering the number of walls required to induce the
worst-case topology. O

This implies that the Bayes-optimal policy has O(n?) expected cost (since its expected cost must
be at least as good as the expected cost of exhaustive search), regardless of the maze. Together,
Lemma (1| and Theorem [3| demonstrate that the SBP heuristic does not damage the (asymptotic)
expected cost in the worst maze.

Theorem 4. Assume that an n X n maze is fragmented in such a way that any time a fragment
is entered, it can be fully explored before exiting, into ¢ square (n/c) x (n/2) fragments. The
asymptotic expected cost is ©(n?) in the worst such maze for the modular optimal and globally
optimal policies.

Proof. First, consider the global optimal policy. The additional requirements placed on the maze
cannot make the O(n?) bound in Theorem [3| worse, and we can get a matching lower bound by
simply adjoining multiple spiral examples as in Lemma [I]and adding doors between them.

Now consider the modular optimal policy. It is clear that the globally optimal policy has an ex-
pected cost as least as low as the modular optimal policy (even in their respective worst mazes), by
definition, so the ©(n?) lower bound automatically carries over to the modular optimal policy. We
assumed that the modular optimal policy takes the Bayes-optimal paths between fragments. This
must be at least as good as the following strategy: mimic the global optimal policy, but any time a
new fragment is entered, first explore it completely and return to the entrance. By Theorem |3} each
such “extra” exploration detour takes at most 2(2)? — 1 steps, and the return takes at most (2)?
steps. The total is 3(%)? — 1. There are exactly ¢ such detours, for 4n* — ¢* = ©(n?) extra steps.

The global optimal policy also takes ©(n?) steps.
O

17



Under review as a conference paper at ICLR 2026

Therefore, in the worst case the modular algorithm is inferior by at least a constant factor of the total
search time in expectation. Examining the proof of Theorem [4|yields a factor of 2.5 over our upper
bound in Theorem [3] but presumably this can be improved substantially since a lot of exploration is
being redone after the detours.

Improving expected cost upper bounds Substantial improvements to the worst-case cost bound
in Theorem [3] are easy to obtain when the proof is applied to expected cost by e.g. noting that the
depth-first search visits at least one new cell every two steps, meaning that there is clearly at least
a 1/4 chance of finding the exit after n? steps, or by noting that the true number of “vertices” is
reduced by walls. These improvements seem to apply equally to the modular and global optimal
policies, and probably do not affect our constants much.

For worst-case cost, the situation is similar. However, the worst-case cost analysis simplifies signif-
icantly with the additional assumption that transitions between fragments are negligible (say, if they
all branch off from a central room). This observation is trivial but worth stating explicitly:

Theorem 5. When the cost to transition between fragments is negligible, each has one entrance,
and there is no line-of-sight across fragments, the modular algorithm has the same worst-case step
count as the optimal algorithm.

Proof. In the worst case, the optimal algorithm must explore each fragment, and since there is only
one entrance to each fragment it is not possible to gain any advantage by exiting a fragment before
it has been fully explored. O
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C EXPERIMENTAL ENVIRONMENTS

Figure 6: Environments used in Behavioral Experiment 1.
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D ADDITIONAL RESULTS - SIMULATION EXPERIMENT

Exploration by Gen-POMCP (Solid) v.s. Naive-POMCP (Dashed)
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Figure 8: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. Gen-POMCP requires fewer rollouts and saves computing costs.
Each environment is shown in a different color (see also Figure 4.)
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Figure 9: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. In each individual environment Gen-POMCP requires fewer rollouts
and saves computing costs.)

E THE EFFECT OF FREE PARAMETERS ON RESULTS

Reconstruction accuracy. As map accuracy decreases, the amount of online heuristic planning in-
creases, and the amount of structure-based planning decreases. We implement this heuristic based
prior work with Maze Search (Kryven et al 2024). A zero reconstruction accuracy entails a fully
heuristic planning, regardless of planning cost.

Planning cost. As planning cost increases the units become smaller, leading to more localized
search. A negligible planning cost paired with a high reconstruction accuracy reduces the model to
a global planner. A high accuracy and high planning cost leads to a fully structure-based planning
(the population level model used in the paper)

Dissociating between these parameters in a human experiment requires a complex targeted design,
beyond the scope of the current work. As our goal is to test whether people use structure-based
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planning, as opposed to global search considered in previous work, we use a population-level model
with high reconstruction accuracy and low planning costs. This leads the model to plan within single
units intended by design (rather than grouping them) and maximizes the amount of discriminating
decisions between structure-based and global planning.

F GENERALIZING TO ACROSS LLLM ARCHITECTURES

In the paper, we used GPT-4 to build a proof-of-concept implementation for the GMM, originally
chosen due to its strong code-generation abilities. However, we clarify that the choice of LLM model
and prompting strategy are not critical to our framework’s results. The primary contribution of our
work is showing that human planning in structured environments relies on integrating two cogni-
tive principles — (1) compressed cognitive maps that leverage redundant structure (implemented in
GMM) and (2) policy reuse (implemented in SBP).

Below we show that GMM can be implemented with different LLM architectures. To do this, we
show experimental results producing similar reconstructions by using different LLMs as a backend:
GPT-4, Gemini-2.5-flash, Llama-3.3-70B, and Kimi-K2-Instruct-0905. Furthermore, we present
results from two different prompting strategies (one-step prompt and multi-step prompts), showing
that the exact prompt wording is not critical to producing the given results.

Top scoring unit candidate

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

Reconstructed map

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

Wdddd, M,

22
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F.2 MULTI PROMPT

Input map

Complete input map Partial input map

Top scoring unit candidate

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

E -

Reconstructed map

GPT-4, Gemini-2.5-flash, Llama-3.3-70B Kimi-K2-Instruct-0905

G ProMPTS

G.1 ONE-STEP PROMPT FOR GMM

The Single Prompt GMM identifies the unit along with the reconstruction program using one prompt
to the LLM. The prompt describes the task as a two-step procedure: first identify the repeating unit,
then complete and return a runnable Python program that contains both the unit as a 2D array and
the reconstruction function.

System prompt:

You are a designer’s assistant, skilled in noticing patterns,
combining fragmets into a patterns, and extrapolating them. You
are skilled in identifying the underlying structure of a pattern
and generating new fragments that fit the pattern. You are also
skilled at writing Python code.

User prompt:

23
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There are two steps to this task. In Step 1, you will be given
an input (a map) and asked to identify its constituent units.
The input is a matrix, elements of which can take values 1 and
0. Your task is to identify a repeating unit in this input.

To be considered a repeating unit, the unit does not have to tile
the space exactly, but it must appear at least twice. The unit
instances may be flipped horizontally or vertically, translated
horizontally or vertically, and rotated by multiples of 90 degrees
(i.e. 0, 90, 180, 270).

IMPORTANT :
1. Instances of the unit must NOT overlap in the original input.
2. The height and width of the unit need not be equal

Example 1.

Given input: {example input 1}

The repeating unit is: {example unit 1}
Example 2.

Given input: {example input 2}

The repeating unit is: {example unit 2}
Example 3.

Given input: {example input 3}

The repeating unit is: {example unit 3}

In Step 2, you will write a function that attempts to identify all
occurrences of the unit in the input. Return a list containing
the indexical locations of the top left corner for each copy,
along with whether to reflect the copy horizontally and the

number of 90 degree counter-clockwise rotations (these operations
together generate the dihedral group D4).

For instance, in the examples above, possible solutions include

Example 1.
Solution 1: {example 1 program 1}
Solution 2. {example 1 program 2}

Example 2.
Solution 1: {example 2 program 1}
Solution 2: {example 2 program 2}

24
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Given your unit and partition, the user will attempt to
reconstruct the input using the following function:

def construct_copy (unit, reflect, rotations):
if reflect:
unit = np.flip(unit, 1)
unit = np.rot90 (unit, rotations)
return unit

def regenerate pattern(unit, copies, input._dims):
pattern = -1 * np.ones (shape=input_dims)
for copy in copies:
transformed = construct_copy (
unit,
copy["reflect"],
copy["rotations"],
)
height, width = transformed.shape
tli, tl.j = copyl["top left"]
try:
pattern[tl_i:tl_i+height, tl_j:tl_j+width] = transformed
except:
pass
return pattern

We can test the success of this regeneration with

input_map = np.array (input_map)
output = regenerate_pattern(
unit,
partition(),
input_map.shape,

)

Now is your turn. Propose a unit that can be used to reconstruct
the given input. Respond by completing the following Python code:

input_map = {input map}

# make sure to define all arrays as numpy arrays
import numpy as np

input-map = np.array (input_map)

[ ... ]

np.array (unit)

unit
unit

def partition():
copies = []
# Place your code here. Let’s think step by step
return copies

Please include only code in you response, no text.’’’

G.2 MULTI-PROMPT GMM
To improve GMM scalability on large maps, we introduce a two-step approach. The two steps are

implemented in two separate prompts, which adapt the strategy described in the previous section.
The first prompt provides a part of the map and asks to identify a repeating unit. The second prompt
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asks the LLM to infer a reconstruction program for the complete map given the previously identified
unit.

System prompt:

You are a designer’s assistant, skilled in noticing patterns,
combining fragments into a patterns, and extrapolating them. You
are skilled in identifying the underlying structure of a pattern
and generating new fragments that fit the pattern. You are also
skilled at writing Python code.

Unit Identification Prompt:

You will be given an input (a map) and asked to identify its
constituent units. The input is a matrix, elements of which can
take values 1 and 0. Your task is to identify a repeating unit in
this input, and ONLY output the unit as a 2D python array. DO NOT
include anything else in the completion.

To be considered a repeating unit, the unit does not have to tile
the space exactly, but it must appear at least twice. The unit
instances may be flipped horizontally or vertically, translated
horizontally or vertically, and rotated by multiples of 90 degrees
(i.e. 0, 90, 180, 270).

IMPORTANT:
1. 1Instances of the unit must NOT overlap in the original input.
2. The height and width of the unit need not be equal

Example 1.

Given input: {example input 1}

The repeating unit is: {example unit 1}

Example 2.

Given input: {example input 2}

The repeating unit is: {example unit 2}

Example 3.

Given input: {example input 3}

The repeating unit is: {example unit 3}

The input you are working with is the following map: {input map}
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Reconstruction Program Prompt:

You will write a function that attempts to identify all
non-overlapping occurrences of the unit in the input. Return a
list containing the indexical locations of the top left corner

for each copy, along with whether to reflect the copy horizontally
and the number of 90 degree counter-clockwise rotations (these
operations together generate the dihedral group D4).

Example 1.

Given input: {example input 1}

The unit is: {example unit 1}

A solution is: {example 1 program 1}

An alternative, more structured solution is: {example 1 program

2}

Given input: {example input 2}

The unit is: {example unit 2}

A solution is: {example 2 program 1}

An alternative, more structured solution is: {example 2 program

2}

Given your unit and partition, the user will attempt to
reconstruct the input using the following function:

def construct_copy (unit, reflect, rotations):
if reflect:
unit = np.flip(unit, 1)
unit = np.rot90 (unit, rotations)
return unit

def regenerate_pattern(unit, copies, input_dims) :
pattern = -1 * np.ones (shape=input_dims)
for copy in copies:
transformed = construct_copy (
unit,
copyl["reflect"],
copy["rotations"],
)
height, width = transformed.shape
tli, tl_.j = copyl["top left"]
try:
pattern[tl_i:tl_it+height, tl_j:tl_j+width] = transformed
except:
pass
return pattern

We can test the success of this regeneration with

input_map = np.array (input_map)
output = regenerate_pattern(
unit,

partition (),
input_map.shape,
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Now is your turn. Respond by completing the following Python
code,

1. include everything that is between START OF CODE and END OF
CODE

2. include the entire input map provided, do not use ... to omit
3. ONLY fill partition(), do not use variables/functions that are
not defined

4. In the returned copies, follow the exact key names in the
examples: "top left’, ’'reflect’, ’'rotations’.

4. DO NOT include anything else in the completion

# START OF CODE, make sure to define all arrays as numpy arrays
import numpy as np

input_map = {input map}

unit = {input unit}
input-map = np.array (input_map)
unit = np.array(unit)

def partition():
copies = []
# Place your code here. Let’s think step by step
return copies

result = partition{()

# END OF CODE
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G.3 IN-PROMPT EXAMPLES

Example 1
Input map Unit
[ [
(1, o, 1, 01, [1, 01,
(6, 1, 0, 11, [0, 11
[0, o, 0, 01, ]
(1, o, 1, 01,
[0, 1, 0, 11
]
Reconstruction program 1:
def partition():
return [
{"top left": (0,0), "reflect": False, "rotations":
{"top left": (0,2), "reflect": False, "rotations":
{"top left": (3,0), "reflect": False, "rotations":
{"top left": (3,2), "reflect": False, "rotations":

]
Reconstruction program 2:

def partition():
copies = []
for tl_i, tl_3j in [(0,0), (0,2),(3,0),(3,2)1]:
copies.append (
{"top left": (tl_i, tl_7j), "reflect": False,
)

return copies

29
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Example 2

Input map

N N N N N~ N

~

N SN N N N~ N

~

N SN N N N O~

~

N SN N N N N

~

N SN SN N S~ O~

~

N N N SN NN

~

~

OO PP ORFrOOoO-R

~ 0~

[cNeoNeoR SHoNeNeNeN

~ 0~

PR R P OR R R

~ 0~

OO RrRrPFrPr O OOH-R

~ 0~

OO O OOOoOOoO-Rr

~ 0~

PR R PR OR R R
e e D e s

Reconstruction program 1:

def partition():
return [
{"top left":
{"top left":
{"top left":
{"top left":

U101 O O

]
Reconstruction program 2:

def partition():
copies = []
for tl_i, tl_3j in
copies.append (
{"top left":
)
for tl_i, tl_3j in
copies.append (
{"top left":
)

return corners

Example 3

Input map

~ N O~ N

~ 0~

PO OOR Rk
PR R OoOOOR

~
~

~ N N~ N

~ 0~

PO OOR Kk

~

\
PR PR OOOR
<

~

~ ~ 0~

~ 0~

~

~ 0~

~ 0~

PO OO PP

~

\\\\\
PR R OoOOOR

~

~ SN O~ N

~ 0~

30

Unit
[
(1,1,11,
[0,0,17,
[0,0,17,
[1,0,1]
]
,0), "reflect": False, "rotations": 0},
,3), "reflect": False, "rotations": 0},
,0), "reflect": True, "rotations": 2},
,3), "reflect": True, "rotations": 2},
[(0,0),(0,3)1:
(t1_i, tl_j), "reflect": False, "rotation":
[(5,0),(5,3)1:
(tl_1i, tl_3j), "reflect": True, "rotations":
Unit
(1,11,
[1,01,
[1,0]

0},

2},
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H PSEUDOCODE

Algorithm 1 Single-prompt Generative Map Module

Require: [ : Input map, ¢: Threshold, C': Number of completions, S : Likelihood function
Ensure: )\ : Generative program, wu : Unit

1: S"+0

2: A F 9

3: u % 999

4: while S" < t do

5: Generate a prompt from [

6: Send the prompt and receive C' completions (A1, u1), ..., (Ac, uc)
7: Extract Python programs {\1, A2, ..., A¢}

8: forall \; € {\1,...,\c} do

9: if \; runs successfully then
10: SZ‘ — S()\z)
11: end if
12: end for
13: (5',1) « max; S; > highest scoring program based on likelihood
14: AN\
15: U — U,

16: end while
17: return \, u

Algorithm 2 Multi-prompt Generative Map Module

Require: I : Input map, I, : Partial map, ¢: Threshold, C': Number of completions,
S : Likelihood function
Ensure: )\ : Generative program, wu : unit

1: S"«0
2, )\ % 7
3: u e 79
4: while S" < t do
5: Generate a prompt from I,
6: Send the prompt and receive C' unit candidates u, .. ., uc
7: for all u; € {uy,...,uc} do
8: Generate a prompt from /. and u;
9: Send the prompt and receive program \;
10: if \; runs successfully then
11: Si  S(\)
12: end if
13: end for
14: (5',1) « max; S; > highest scoring program based on likelihood
15: A /\i
16: U — U

17: end while
18: return \, u
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Algorithm 3 Structure-Based Planner
Require: [ : Input map, w: Unit, C;: Unit copies
Ensure: P : Agent path
1: (r,c) < Initial agent position
2: C < Empty set to track fully explored unit copies
3: 7 < Policy for unit exploration based on location of entrance
4: while C does not contain all copies do
5: Run POMCP on [ until reaching an unexplored unit C;;

6 Identify the current entrance e into C;
7: if policy from e found in 7 then
8: Explore C; with policy from 7
9: Add Cz to C
10: else
11: Run POMCP on C;; explore the unit
12: Add new policy (e, ) to 7
13: Add C;to C
14: end if
15: 01,...,0m < Exitlocations of C;
16: for o; in {o01,...,0,} do
17: p;j < compute penalty for escaping C; from o;

18: end for
19: Run MCTS on C; until reaching an exit to escape
20: end while

21: Run POMCP on I to explore the rest of the map
22: return P

Algorithm 4 POMCP for In-Unit Planning

1: procedure SEARCH(h) 1: procedure SIMULATE(Scyit, I, depth)
2: if B(h) = () then 2 N(h) < N(h)+1
3: return 3 if depth > depth limit then
4: else 4 return 0
5 repeat 5: end if
6: Sexit ~ B(h) 6: if h ¢ T then
7: Simulate( Sexit, 7, 0) 7 for a € {up, right, bottom, left} do
8: until Timeout 8: T (ha) < (Niic(ha), Vigic(ha), 0)
9: return arg max, V (ha) 9: end for
10: end if 10: return Rollout( sy, 7, depth)
11: end procedure 11: end if
12: . log N (h)
13: procedure ROLLOUT(Seit, i, depth) N @ e mgx {V(ha) e N(ha)
14:  if depth > depth limit then 13: ,(07 r) ~ G(h,a)
15: return 0 14: if 0 contains s.y; then
16: end if 15: N(ha) — N(ha) + 1
17- @ ~ Trandom 16: else '
18- (0,7) ~ G(h, a) }; dr.fe 7+ Simulate ( Sexit, ha, depth + 1)
19: if 0 contains s then : end1 r—V(ha
20: return r o 19: V(ha) < V(ha) + N‘(/;S;))
21: else 20: return r
22: return 7+Rollout (s, ha, depth41) ~ 21: end procedure
23: end if

24: end procedure
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I HUMAN EXPERIMENT - MAZE SEARCH TASK

This study runs best on a desktop/laptop.

The study will NOT run on Safari, or a mobile device.

In this study you will look for an exit in a maze.
After this, you will be asked to provide demographic information.
The study is expected to take about 10 minutes.

Thanks for participating!

Figure 10: Introductory screen.

INSTRUCTIONS (PLEASE READ CAREFULLY)
Your task is to exit the maze by reaching the red square, which is initially hidden.
You can move one square at a time by clicking on the white squares next to your character.
You cannot see through the walls. The squares you cannot see yet are black.
The exit could be behind any of the black squares.

A maze looks like this:

Walls block .. - White cells are
movement and —> g

open and visible
visibility

Your character —»

The exit is
hidden in one of
the black cells

You can move
using arrow keys
on your keyboard

Figure 11: Instructions.

33




Under review as a conference paper at ICLR 2026

Practice Maze 1 of 5
Let's look at this map. There are some black squares, a brick wall, and your character.
The exit could be behind any of the black cells.

You can move your character by clicking one of adjacent white cells.

Find the exit and step on it to exit the maze.

Figure 12: Practice (there are 5 practice trials).
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Please answer the quiz to move on.

Question 1: My task is to ..

O visit every square in the maze
O there is no specific task

O find the exit in each maze

O click as fast as possible

Question 2: Exits are always placed ...

O in the bottom left corner
O in one of the black cells

O some mazes have no exit
O there may be multiple exits

Question 3: Which image correctly shows unseen parts of the maze?

Olmage A O lImage B

Figure 13: Comprehension Quiz.
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Maze 1 of 21

Find the exit and step on it to exit the maze.

Figure 14: Experiment view.
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