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ABSTRACT

Planning relies on cognitive maps – models that encode world structure given cog-
nitive resource constraints. The problem of learning functional cognitive maps is
shared by humans, animals and machines. However, we still lack a clear un-
derstanding of how people represent maps for planning, particularly when the
goal is to support cost-efficient plans. We take inspiration from theory of com-
positional mental representations in cognitive science to propose GenPlan: a
cognitively-grounded computational framework that models redundant structure
in maps and saves planning cost through policy reuse. Our framework integrates
(1) a Generative Map Module that infers generative compositional structure and
(2) a Structure-Based Planner that exploits structural redundancies to reduce plan-
ning costs. We show that our framework closely aligns with human behavior,
suggesting that people approximate planning by piecewise policies conditioned
on world structure. We also show that our approach reduces the computational
cost of planning while producing good-enough plans, and contribute a proof-of-
concept implementation demonstrating how to build these principles into a work-
ing system.

1 INTRODUCTION

People are highly proficient in solving real-world planning problems. For example, we can navigate
cities without precisely knowing every link in the street network (Fig. 1a.)(Bongiorno et al., 2021)
and accomplish complex construction projects (Fig. 1b.) with many actions and sub-goals (Mugan
et al., 2024). Solving there problems optimally is theoretically intractable (Kaelbling et al., 1998),
and therefore approximate algorithms for planning in natural domains remain an active area of re-
search in AI (Silver & Veness, 2010), robotics (Curtis et al., 2025), and cognitive science (Kryven
et al., 2024; van Opheusden et al., 2023). Here, we seek to uncover cognitive computations that
enable humans to plan efficiently in natural domains. To do this, we focus on the key intuition that
the human world is structured (Fig.1c,d) and propose that people reason about redundancies in this
structure to efficiently encode cognitive maps, and reduce planning costs. We formalize this hypoth-
esis in GenPlan, a computational model that gives an algorithmic account of how structure-based
planning can be implemented in practice.

Formally, a planning problem constitutes a search within a decision tree that describes possible
states and actions (Kuperwajs et al., 2025; Russell & Norvig, 2016). This tree can be encoded
as a learned neural policy (Liu et al., 2020), an explicit tree structure (Russell & Norvig, 2016;
Silver & Veness, 2010), or a model describing states and actions in a symbolic form (Tang et al.,
2024). The size of the underlying state-space determines the computational cost of the problem,
or how difficult it should be. Since optimal planning beyond non-trivial state-spaces is intractable,
approximate planning frameworks have focused on building partial state-spaces (Silver & Veness,
2010), learning generalizable policies (Curtis et al., 2022; Singh et al., 2012), and grouping actions
frequently performed together into options (Sutton et al., 1999). However, the difficulty predicted by
these approximate planning algorithms rarely aligns with human experience, as people often solve
formally complex real-world problems with relative ease.

We take inspiration from the theory of compositional concepts in cognitive science, which states
that humans learn complex concepts by combining simpler ones (Fodor, 1975; Lake & Piantadosi,
2020; Pitt et al., 2021), and adapt the principle of compositionality to model human cognitive maps
and plans as generative structures. Compositionality has been successful in explaining concept rep-
resentation in visual (Lake & Piantadosi, 2020; Tian et al., 2020), auditory (Verhoef et al., 2014;
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Figure 1: Structured human environments: city street networks, construction projects, natural land-
scapes, and an interior floor-plan with repeating structural elements highlighted. People learn mental
world-models that exploit this structure to make resource-efficient plans.

Rohrmeier, 2020; Hofer et al., 2021) and spatial domains (Sharma et al., 2022; McCarthy et al.,
2021). Further, compositional reasoning is culturally universal (Pitt et al., 2021), suggesting that
it may be an evolved adaptation to natural structure people encounter in daily life (Johnston et al.,
2022). Neural and behavioral studies provide ample evidence that cognitive maps are represented
using similar compositional generative structures. Neural evidence from human studies includes
mirror-invariant encoding of natural scenes (Dilks et al., 2011) and reuse of neural reference frames
across similar environments (Marchette et al., 2014). Behavioral evidence includes hierarchical
spatial representations (Kosslyn et al., 1974; Stevens & Coupe, 1978; Hirtle & Jonides, 1985) re-
flected in first planning routes between, and then within semantic regions (Bailenson et al., 2000;
Newcombe et al., 1999; Wiener & Mallot, 2003; Wang & Brockmole, 2003; Balaguer et al., 2016;
Tomov et al., 2020), and ability to predict unseen environment layout in structured environments
(Sharma et al., 2022).

In formal terms, combinatorial concept representations can be modeled by mental programs – sym-
bolic instructions specifying how to produce new instances of a given concept class (Lake et al.,
2015; Lake & Piantadosi, 2020). Computational accounts of concept learning as program induction
(inferring a program from a given a set of examples) provide powerful explanations of human learn-
ing efficiency – only a few examples can suffice to deduce an underlying program, in contrast to
vast amounts of data required by purely neural models (Tenenbaum et al., 2011; Lake et al., 2015).
Building on this research, we model cognitive maps as generative programs that capture structures
such as symmetries and repeated parts, and propose an algorithmic framework that models cost-
efficient planning in such maps by reusing local policy conditioned on structure, instead of solving
a global optimization problem.

In this work we adopt a scientific and an engineering goal: (1) to understand computational cognitive
principles by which humans plan in structured spatial domains, and (2) to engineer a cost-efficient
computational framework that formalizes human-like planning in structured environments. We con-
tribute:

• Generative Map Module (GMM), which discovers programmatic map representations us-
ing tractable inference;

• Structure-Based Planner (SBP) that implements hierarchical planning both within and be-
tween the structural units

• Empirical validation of our framework on human behavior, showing that human planning
is consistent with generative cognitive maps and policy reuse.

The GMM models observations of the environment by inferring a small distribution over program-
matic maps. To do this, we use a Large Language Model (LLM) as an embedding of human priors
learned through training on human data. The SBP extends a Partially Observable Markov Decision
Process (POMDP) to use the GMM representation. It constructs end-to-end policies for within-
unit planning and between-unit transitions using adaptations of a Partially Observable Monte Carlo
Planner (POMCP). In the next section, we introduce the experimental environment, followed by a
detailed description of computational models. In Section 3, we compare our models’ predictions
with human empirical results.
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Figure 2: The Maze Search Task with structured layouts. (a.) Task Setup illustrated in a simple
example. Participants can use keyboard keys to navigate over any non-wall cells. The exit is initially
hidden in one of the black (unobserved) cells. (b) The exit is shown as a red tile when it comes into
view. (c) A subset of structures environment layouts used to evaluate GenPlan and compare its
performance to that of a Naive POMCP. The dots denote floor cells through which participants can
move. Red dots denote structural unit boundaries.

2 METHODS

2.1 STRUCTURED SPATIAL DOMAIN

We examine people’s planning strategies by adapting a version of Maze Search Task (MST) pre-
viously used to study human behavior in spatial navigation domains (Kryven et al., 2024; 2021;
Geva-Sagiv et al., 2025). The objective of MST is to navigate a series of partially observable, two-
dimensional grid-worlds, finding exits hidden in each. Each environment has only one exit. The
environment are partially observable, with the exits initially placed at a random unobserved location
(black cells). Fig.2 shows a simple MST environment seen by participants during one of the practice
trails 1. People navigate by using their keyboard keys to move to any unoccupied grid cells adjacent
to their character (a round avatar). The black hidden cells are revealed when they come into the
avatar’s line of sight. When revealed, the exit becomes visible as a red tile. As soon as the character
moves over the exit, the trial ends. In our adaptation of MST all mazes are structured, and contained
between 2 and 20 repeating structural units. The units may have occurred as reflected or rotated
instances, where the structured area comprised between 80 - 100% of the environment layout.

2.2 COMPUTATIONAL MODELS

Decision making under partial observability can be modeled by a partially observable Markov deci-
sion process (POMDP). Equivalently, it can be viewed as a fully observable search through a space
of beliefs, where each belief is a probability distribution over possible states. Solving POMDPs is
notoriously hard (Madani et al., 2003), hence understanding how people approach these problems
holds deep importance for cognitive science and AI.

Formally, a POMDP is a tuple ⟨∆(S), A, τ, r, b0, γ⟩, where ∆(S) is the space of probability distri-
butions over a state space S, A is the set of actions, τ is the belief update function, r is the reward
function, b0 is the initial belief, and γ is the discount factor. The belief state evolves deterministically
via τ , reflecting both the agent’s actions and observations.

In this work, each state s ∈ S is represented as an N × M grid whose cells are labeled
{wall, empty, exit, agent}. The overall state space S consists of all such grids containing exactly
one agent and one exit. A belief b ∈ ∆(S) is thus a probability distribution over these grids, en-
coding the agent’s uncertainty about the true state. Initially, b0 assumes that the agent and the walls
are known, while the exit is uniformly distributed over all valid, unseen cells. The action space A

1A demo is available here: http://18.25.132.241/fragments/int_exp.php
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contains four possible movements (up, down, left, right). Observations o ∈ O reveal the visible
subset of the grid around the agent, with each visible cell labeled {wall, empty, exit}, and any cell
outside the agent’s visibility range r labeled as unseen. Observations are consistent with the grid
structure of the true state s ∈ S.

The belief update function τ is given by

b′(s′) ∝ Z(o | s′)
∑
s∈S

T (s′, a, s) b(s),

where T (s′, a, s) is the transition function, and Z(o | s′) is the observation likelihood. The
transition function T (s′, a, s) specifies the probability of transitioning to state s′ from s after
executing action a. Here, actions that would move the agent into a wall result in the agent remaining
in its current position, and transitions to an exit state terminate the process. The observation
function Z(o | s′) encodes the likelihood of observing o given s′, where observations reflect the
visible subset of the grid within range r of the agent’s position. Visibility is blocked by walls, such
that cells beyond a wall are labeled as unseen. Finally, the reward function r(b, a) is the expected
reward under the belief b. Since the agent can always see an exit before reaching it, r(b, a) = 1 if
action a leads the agent to a known exit and 0 otherwise.

Expected Utility The optimal policy for this POMDP can be found through a belief space tree
search (Kaelbling et al., 1998). The search is conducted over a tree where each node represents
a belief b ∈ ∆(S), and edges correspond to action-observation pairs (a, o). Starting from the
root node b0, the tree expands by simulating actions a ∈ A and updating beliefs using the belief
update function τ . For each action a, the agent considers all possible observations o ∈ O, with the
likelihood of each observation determined by the observation function Z(o | s′). At each node, the
value of a belief is computed recursively using the Bellman equation:

V (b) = max
a∈A

[
r(b, a) + γ

∑
o∈O

P (o | b, a)V (τ(b, a, o))

]
, (1)

where P (o | b, a) is the probability of receiving observation o after taking action a under belief
b. The optimal policy π∗ is derived by selecting the action at each belief node that maximizes the
expected value. See (Kryven et al., 2024) for further details on this implementation, which was used
as a model of human planning in MST in prior work.

Although this is the optimal strategy, human behavior has previously been shown to diverge at
times from its predictions (Kryven et al., 2024), where the extent of this divergence varies between
individuals in a way that can be explained by the amount of cognitive resources people allocate
to planning (Kryven et al., 2021). Previous work with MST, as well as with related non-spatial
planning tasks (Huys et al., 2015), has found that people’s divergence from the optimal trajectories
is most readily explained by a limited planning horizon ( discount factor γ < 1 in Equation 1). In
the the remainder of this section we describe alternative computational hypotheses for how humans
could make decisions in this environment by reasoning about structural patterns.

Generative Structure-Based Framework (GenPlan) Next, we describe a modeling framework
that formalizes planning strategies conditioned on automatically discovered latent structure of the
state-space. Our model consists of two modules: a Generative Map Module (GMM) and Structure-
Based Planner (SBP). See Fig.3 for a high-level overview of this architecture. The GMM recovers
a programmatic representation of the observed state-space as a composition of structural units. The
SBP then uses a planner to plan a piece-wise policy once per-unit, in contrast to a global policy, sav-
ing computing costs. Importantly, this reconstructed programmatic representation is a cognitively-
inspired state-space compression. While such a reconstruction may match the ground-truth planning
state-space, it does not need to be exact as long as it is sufficient to serve the agent’s goals (Ho et al.,
2022). In theory, the cognitive principle of combining automatic structure discovery with structure-
aware planners can apply to any domain, as a proof of concept here we focus on spatial tasks.

Generative Map Module (GMM) Let I be the global partially observed input grid map of cells
SI . Here, we assume that I specifies all wall locations, however, in the general case, it can be any
initial partial observation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Model Architecture and predictions. (a) The GenPlan Framework. GMM recovers a small
distribution over generative maps based on input (a partial observation of the ground truth map).
Each generative map constitutes a set of candidate units coupled with a program for reconstructing
the input from them. We assign a likelihood to each generative map, and pass the most likely
reconstruction to SBP. SBP plans a policy once for each structural unit. (b) A human solution to
the given example agrees with prediction of GenPlan (top panel). Arrows indicate the participant’s
path. The path predicted by alternative models DepthPlan and Naive-POMCP (bottom panel) instead
optimizes the global policy. Green highlighting shows discriminating decisions.

The GMM implements approximate inference of a posterior distribution p(M|I) over cognitive
maps M that partition I into structural units M = {Ui}mi=1. We use LLM-based program synthesis
with GPT4 to search for programs that generate M based on I (Fig. 3). To do this, we prompt LLM
to identify redundant units in the input map, and synthesize a Python program that approximately
reconstructs the input from them. The prompt includes Python code with functions describing ad-
missible transformations, as well as a likelihood function for a given M. In our implementation the
input map I is a grid-world, specified by an numerical array, where each grid cell is associated with
a number (e.g. wall=1, floor=0). The reconstructions M do not allow overlapping units, and allow
any units that repeat in I at least twice.

To develop a space of possible map representations, we estimate the likelihood of each candidate
M by a weighted combination of grid-level similarity, a function of total information in a candidate
unit, and the Minimum Description Length (MDL) principle (Rissanen, 1978). MDL penalizes each
unit occurrence by the bits necessary to specify the map reconstruction: their locations (effectively,
the number of copies), rotations and reflections. This means that reconstructions made up of many
smaller pieces are less likely than reconstructions made up of bigger ones. The function of total
information in a unit ensures that the selected units are neither trivial (e.g., uniform blocks of cells
made up of either walls or open space) nor noise, by defining an inverted-U relationship between
likelihood and informativeness (Kidd et al., 2012). This treats large units where perception is
subject to information bottleneck constraints as less likely (Cheyette & Piantadosi, 2020). Overall,
this likelihood function can express a weighted preference for (1) more accurate reconstructions,
(2) simple generative programs (where the programs use primitives transformations and symmetries
relevant to planning), and (3) simpler units. To form the posterior p(M|I), we use the likelihood:

l(M; I) ∝ w1

dx · dy

dx∑
x=1

dy∑
y=1

(I(x, y)−O(x, y))
2 − w2|M|+ w3 exp

(
− (Htotal − β)2

2σ2

)
, (2)

where dx, dy are input dimensions, O is the output (reconstructed map), and wi are weights asso-
ciated with reconstruction accuracy, map complexity, and unit complexity – free parameters of the
model. We define the total entropy in the unit as Htotal = dxdy · (−p log2 p− (1− p) log2(1− p)),
where p is the fraction of 1’s in the array, and free parameter β reflects the processing bottle-
neck, in line with perceptual models explored in prior work (Cheyette & Piantadosi, 2020; Kryven
et al., 2024). This definition ensures that the information term next to w3 reaches a maximum of 1
Htotal = β, but decays to 0 on both sides of this maximum. In the general case, input I and output
O are real-valued 2D image arrays. In our current implementation input I takes values 0 and 1,
and the output 0 ≤ O(x, y) ≤ 1. Instead of using the raw Python program for λ to measure its
complexity, we use a compressed encoding of the units and their transformations used to reconstruct
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the map. Here, compressing LLM-generated output and transformations is analogous to refactoring
the synthesized programs. As the length of LLM-synthesized code may be noisy, due to injected
comments and code redundancies, refactoring the output obtains a denoised metric of complexity.

The posterior p(M|I) defines how the environment structure is encoded into memory. The free
parameters wi, β balance reconstruction accuracy against the complexity of the generative structure
and planning costs. In the general case, the framework can maintain a distribution over generative
maps, and switch between them at execution time to resolve local observations. In our proof-of-
concept implementation we make a simplifying assumption to use the most likely generative map
in the SBP module for generating a policy. Fig.3 shows a simple example with structural units
highlighted in red. Bigger examples designed in our simulation experiment are shown in Fig.2.

Structure-Based Planner (SBP) Implementing SBP integrates planning within and between
structural units. Since finding an exact solution is intractable due to the size of the problem (Kael-
bling et al., 1998), we solve planning within a unit by searching through the belief space using an
approximate online Partially Observable Monte Carlo Planner (POMCP) (Silver & Veness, 2010). A
plan in-between units consists of leaving the current unit and transitioning to the next one. We solve
the former by adapting Monte Carlo Tree Search (MCTS), and introducing an optimistic heuristic
valuation for open cells around the boundary of a unit (i.e. cells through which we can exit the unit).
Upon completing a plan for the current unit, this heuristic should encourage us to leave the unit in
the direction that minimizes the expected global cost of reaching the exit. In the general case, this
can be any heuristic that does not overestimate the true cost. Here, we compute the values of bound-
ary cells as inversely proportional to the average of manhattan distances to the remaining external
unobserved cells, hence assigning a higher value to cells that are on average closer to the remaining
unseen parts of the map. We solve the transition to the next unit using a POMCP on the global map,
but implement the option to switch to within-unit planning upon reaching the new unit. Here, we
evaluate the option by estimating the average per-step cost to plan within the unit. This value scales
with the complexity of the unit, and is optimal when a reusable policy can be applied.

2.3 COMPUTATIONAL HYPOTHESES

We compare human performance to the hypotheses (planing algorithms) to evaluate whether and
how human planning implements the two computational steps outlined by GenPlan.

1. Structure-Naive Planner (Naive-POMCP): The model doesn’t use generative maps, and
plans by optimizing a global policy for the environment.

2. Structure-Naive Planner With Cognitive Constraints (DepthPlan) The model doesn’t
use generative maps, and plans by optimizing a global policy that discounts future states
to model limited planning depth. This model was previously used to describe how people
plan in MST (Kryven et al., 2024).

3. A Generative Planner (Gen-POMCP): The model uses generative maps, and plans a
reusable policy based on the most likely map from the distribution of induced maps p(M|I)
(see Fig. 3a and b).

Naive-POMCP uses an approximate POMCP planner designed for large partially-observable state-
spaces. It was previously used to model human planning in large domains, although this work did
not examine the effect of environment structure on human plans (Sharma et al., 2022). DepthPlan
is consistent with prior work that models human deviations from optimal cost minimization by
limited planning horizon, without modeling environment structure (Kryven et al., 2024; Huys et al.,
2015). Since DepthPlan internally computes an optimal policy, it can only be applied to smaller
environments (generally 6 or fewer structural units, see Experiment 1). Only the third hypothesis is
consistent with the two computational steps proposed by the GenPlan framework: it represents maps
as generative programs, and uses this structure to plan a reusable policy, reducing planning costs.

3 EXPERIMENTS

We first test whether people use structure to reduce computational costs of planning, as implemented
by Gen-POMCP, in contrast to DepthPlan – the state-of-the-art model of planning in MST Kryven
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et al. (2024) (Experiment 1). For this experiment, we use a set of 20 structured environments at
a scale that can be solved by DepthPlan, in order to compare DepthPlan and Gen-POMCP. A pre-
liminary pilot study revealed a strong effect of structure on planning, leading us to conclude that a
sample of N=30 participants is sufficient to confirm this effect. We then run a simulation experiment
with 10 large environments containing 20-25 units (Experiment 2) to compare the computational
costs of Gen-POMCP and Naive-POMCP, demonstrating that Gen-POMCP requires significantly
fewer computational resources.

3.1 EXPERIMENT 1: BEHAVIORAL VALIDATION

Procedure The experiment was conducted in a web browser, using the web-interface of MST
(Kryven et al., 2024). Before beginning the experiment participant gave informed consent and com-
pleted a series of practice trials, followed by an instruction quiz. Following this, they completed a
variant of MST with structured mazes, with exit locations randomly chosen at the time of design.
After completing the experiment, we administered a post-experiment questionnaire collecting de-
mographic information. As our goal was to observe ecologically-valid planning, we did not offer
performance-based incentives, and simply informed participants that the exit could be in any of the
hidden tiles, and instructed them to find it in each environment.

We recruited 30 (13 female, 17 male, M(age) = 36.7, SD(age) = 13.5) english-speaking partici-
pants on Prolific, who were paid 9£ per hour. None were excluded. On average the experiment took
10 minutes to complete. The experiment was approved by our institution’s IRB.

Behavioral metrics We introduce the following behavioral definitions to quantify people’s align-
ment with the GenPlan framework.

• A set of discriminating decisions D(I) in a given environment I is the subset of all states
in I where Gen-POMCP and Depth Plan predict a different most likely action. That is,
D(I) includes only actions diagnostic of structure-based planning. Fig. 3b illustrates dis-
criminating decisions in a simple example. Unlike the global solution (bottom panel),
Gen-POMCP and most humans search by entering inside the structural units. The cells
highlighted in green are discriminating decisions.

• Modular fraction σ(D) defines the fraction of decisions in a given set of discriminating
decisions D that are more likely under Gen-POMCP, compared to DepthPlan. Notably, as
weights wi in equation 2 can tradeoff accuracy against representation and planning costs,
Gen-POMCP can capture flexible strategies that integrate global and local search. For
simplicity, here we assume stable population-level weights that strongly favor structure
over accuracy, meaning that σ(D) is a conservative estimate of how well Gen-POMCP
explain human behavior.

Results Our results reveal that Gen-POMCP predicts human behavior significantly better than
DepthPlan (Fig. 4). Examination of modular fractions for individuals and environments shows
that people are highly consistent with our model, demonstrating structure-based planning across
all environments and individuals. Across all environments, human behavior is better explained by
Gen-POMCP, suggesting that people approximate planning by piecewise policies conditioned on
structure, rather than by planning a global policy with a limited depth. Fig. 3b illustrates the dif-
ference between the models in a simple example. Like Gen-POMCP, the majority of people search
the environment by a trajectory shown in the top panel. However, both the optimal policy predicted
by the Naive-POMCP, and the depth-limited planning as implemented by DepthPlan, predict the
trajectory shown at the bottom – because it allows to quickly reveal a large portion of the global
map.

3.2 EXPERIMENT 2: SIMULATION

Next, we compare the computing resources needed by Gen-POMCP and Naive-POMCP to explore
10 large structured environments (e.g., see Fig. 2c). As the objective of MST is to find a hidden
exit, each simulation is set up to run until the environment is fully explored (i.e., the exit is not
revealed until the end of the simulation). We compare two quantitative comparisons. For each
environment we compute the fraction of the environment that each model is able to explore given a
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Figure 4: Experiment result shows that Gen-POMCP explains people better than DepthPlan. (a.)
Modular fraction for each environment (b.) The histogram of individual modular fractions per
participant, over all discriminating decisions. (c) The fraction of each environment explored by
Gen-POMCP across environments (solid line) and Naive-POMCP (dashed lines) as a function of
compute budget (number of MCTS rollouts). (d) The fraction of each environment explored by
Naive-POMCP, if given the amount of MCTS rollouts at which Gen-POMCP fully explores the
given environment. Each bar shows a different environment.

certain compute budget (Fig. 4d), finding that the Gen-POMCP required a much smaller budget to
search the entire environment. Fig.4c separately shows the fraction of each environment that Naive-
POMCP is able to explore, if given the rollout budget at which Gen-POMCP has searched the entire
environment. In AppendixB we give a proof that the length of the search trajectories produced by
Gen-POMCP exceeds trajectories produced by Naive-POMCP by a bounded amount, demonstrating
that Gen-POMCP also produces good enough plans. All environments used in Experiments 1 and 2
are shown in AppendixC.

4 RELATED WORK

Models of Human Planning People make near-optimal plans in natural domains, such as city
navigation (Bongiorno et al., 2021), yet often perform sub-optimally in laboratory-based behavioral
paradigms such as multi-arm bandits (Keramati et al., 2016; Huys et al., 2015), strategic games (Fer-
reira, 2013), and sequential decision-making (Unterrainer et al., 2004; Kryven et al., 2024; Callaway
et al., 2022). Such deviations from optimality are often explained by approximate planning with a
limited planning horizon (Ferreira, 2013; Kryven et al., 2024; van Opheusden et al., 2023). Recent
work (Correa et al., 2025) examines how people represent policies in programmatic forms that min-
imize description lengths, finding sensitivity to both effort minimization (similar to seeking shorter
search paths) and MDL (shorter programs). Similar to our work, their study found that human plans
heavily favor reuse. Unlike our work, experimental paradigms used in these studies lack the regular
problem-domain structure ubiquitous in the real-world.

Cognitive Maps A recent study found that people form cognitive maps that facilitate planning (Ho
et al., 2022), by selectively representing only the goal-relevant parts of the map. Like our work, this
study assumes that human cognitive maps are learned by compressing observations. Unlike our
work, this study uses unstructured maps. A recent study of exploration in structured environments
found that people anticipate environment structure, even when not informed about them in advance
(Sharma et al., 2022), and can predict unseen parts of the map. Unlike our work, this study focuses
solely on map prediction, and does not examine the role of cognitive maps in planning. It also relies
on exhaustive enumerative search to discover the underlying map representations, unlike our work
that implements tractable inference using LLM-based program synthesis.

Learning Compressed Policies to Plan. Reinforcement Learning (RL) models express actions
performed together as options (Sutton et al., 1999), learn families of similar Markov Decision Pro-
cess (MDP) with shared rewards (Wilson et al., 2012), and build efficient state-spaces by recognizing
actions that lead to identical observations (Singh et al., 2012). Generalized planning frameworks can
find algorithm-like policies for solving multiple instances of a task (Curtis et al., 2022), although
studies have not yet considered their alignment with human behavior. A principle of grouping game-
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board states based on rotation and reflection symmetries was used to optimize representations in the
game of Go (Silver et al., 2017). Unlike our work, these works do not directly consider policy reuse
by conditioning on approximate structured state-space representations.

Natural priors. Adaptive real-world planning draws on complex prior knowledge of the
world (Acquaviva et al., 2022; Spelke & Kinzler, 2007; Dehaene et al., 2006). Learning natural
priors that make people so efficient in real-world remains an important problem in cognitive AI
(Kumar et al., 2022; Li et al., 2024; Binz et al., 2024). (Feldman, 2013). Similar to our work, an
emerging line of research leverages LLMs as a back-end to planning frameworks as a way of inform-
ing planning by the implicit natural priors embedded in LLM though training on vast amounts of
human data (Tang et al., 2024; Correa et al., 2025; Towers et al., 2024; Xie et al., 2023; Piriyakulkij
et al., 2025; Curtis et al., 2025). Our computational framework builds on this approach, focusing on
modeling how cognitive maps and planning policies may be learned together.

5 DISCUSSION

We propose a computational framework that (1) represents maps by approximate generative pro-
grams and (2) plans in these representations through policy reuse. We adapt an experimental Maze
Search task previously used to study human planning, to show that in structured environments hu-
man planning is consistent with these two computational principles, in contrast to the state-of-the
art model of depth-limited planning proposed in previous work. This result makes a scientific con-
tribution by showing that human deviations from optimal policies are, at least in part, due to ap-
proximating planning by piecewise policies conditioned on structure for policy reuse. Our GenPlan
framework makes an engineering contribution by showing how to actually build these principles
into a working system. GenPlan is compute-efficient, because it achieves tractable inference over
the underlying map structure by leveraging LLM-driven program generation (in contrast to enumer-
ative search e.g. (Veness et al., 2011) ) and because it reduces the amount of planning compute
through policy reuse.

We note that in our experiments planning varies between individuals, in line with variability ob-
served in previous work Callaway et al. (2022). Our model proposes a computational account ex-
plaining this variability as arising from how individuals may represent the same map in different
ways. For example, depending on available cognitive resources, someone may form representations
made up of coarser or finer patterns. In the limit, GenPlan can prioritize reconstruction accuracy
and treat the entire environment as a single structural unit, solved by a globally optimal policy. Our
implementation makes a simplifying assumption that that reconstruction and description weights are
fixed and stable at population level, which works well to explain behavior in our experiment. Future
work can further consider the stability and generalization of these parameters within and between
individuals. General case solutions can be built to account for flexible cognitive resources, allowing
the model to switch between map representations in response to changing cognitive demands. Future
work can also examine how the weights should be chosen to optimally balance the computational
costs of planning and memory, against utility.

Limitations and future work. Natural environment structure is often probabilistic, where the
underlying building blocks of a given class differ superficially (e.g. square or rectangular city blocks;
dunes of varied shapes and sizes). Future work can examine ways of capturing such representations,
as well as modeling how different goals shape cognitive map structure. For instance, people tend
to perceive San Francisco as having a grid layout, even though its map reveals a complex structure
that is merely grid-like. Such intuitions could arise from goal-dependent cognitive maps (Ho et al.,
2022) – where a local grid model is actually good enough to plan a pedestrian shortcut across a
neighborhood.

Implications. While planning cognition has been studied extensively, the domain of real-world
planning remains underexplored. Reverse-engineering human planning can inform models that not
only empower AI to better understand and assist humans, but also decrease environmental impact
of AI algorithms, by enabling them to achieve effective policies with less compute. In contributing
a proof of concept implementation, GenPlan brings new insights into human spatial planning, and
takes a step toward building cost-efficient planning in AI.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sam Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle
Ecanow, Maxwell Nye, Michael Tessler, and Josh Tenenbaum. Communicating natural programs
to humans and machines. Advances in Neural Information Processing Systems, 35:3731–3743,
2022.

Jeremy N Bailenson, Michael S Shum, and David H Uttal. The initial segment strategy: A heuristic
for route selection. Memory & Cognition, 28(2):306–318, 2000.

Jan Balaguer, Hugo Spiers, Demis Hassabis, and Christopher Summerfield. Neural mechanisms of
hierarchical planning in a virtual subway network. Neuron, 90(4):893–903, 2016.

Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno,
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A CODE AVAILABILITY

The Gen-POMCP implementation is available here: https://anonymous.4open.
science/r/GenPlan-FBCD/README.md

B PERFORMANCE BOUNDS FOR STRUCTURE-BASED PLANNING

In structured environments Gen-POMCP can explore the environment faster than Naive-POMCP
(using fewer rollouts and in less time) by taking advantage of limited resources. However, it simpli-
fies the planning problem by entirely exploring each fragment it enters before moving to the next.
This heuristic can result in longer overall paths taken to search the environments. It is reasonable
to ask by how much the global Naive-POMCP can actually improve on the path length taken by
Gen-POMCP (and specifically the Structure-Based Planner).

Below give a sense of this answer by sketching a proof that considers the limit in which each plan-
ner fully optimizes its respective objective: Naive-POMCP follows the Bayes-optimal plan in each
fragment and Gen-POMCP follows the Bayes-optimal global policy for the maze. We bound the
cost difference according to expected and worst-case cost in steps (the latter is more analytically
tractable).

Expected and worst-case The expected number of steps it takes for a policy to explore a maze is
the average over the length of path this policy takes to reach uniformly sampled exit locations. The
worst-case number of steps is the largest number of steps that the policy could take for some exit
position. This is bounded below by the number of steps required to fully explore the maze.

Lemma 1. There exists a fragment of size n× n which takes O(n2) steps to search in expectation,
and to explore fully.

Figure 5: Consider a maze with a spiral wall - the white cells indicate traversable floor, and black
indicate intraversable wall. Simulating these environments shows that the maximal length of path
(white cells) in the environment grows as ≈ 1

2n
2

.

Proof. Consider a fragment with the maximum spiral path (e.g. Figure 5). The length of this path
scales quadratically with n. In particular, following a spiral path takes a series of four legs at each
depth, and the length of every other leg reduces by two (one for the wall and one for the path itself).
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This yields

n+

⌊n/2⌋−1∑
i=0

2(n− 2i− 1) =
n

2
2n− 4

(n/2)(n/2 + 1)

2
+O(n)

=
1

2
n2 +O(n)

(3)

Theorem 2. In the an n × n maze, the expected number of steps taken by SBP may exceed the
expected number of steps of an optimal policy by Ω(n2).

Proof. Build a fragment by adjoining an empty room and a spiral by a single door at a corner. Now
connect the two fragments by adding a door between the empty rooms in the opposite corner. As-
sume the size of the empty rooms is such that the optimal algorithm can find the exit with probability
1/2 by checking each empty room, but the SBP algorithm must explore entirely the first fragment
that it enters. With probability 3/4, the exit is not in the first empty room, so it must explore the
spiral, which takes time Ω(n2) to fully explore by Lemma 1. The spiral also must be exited, so
around n2 steps are spent when the exit is in the other empty room (in this case the optimal planner
finds immediately by checking each room). Since the optimal planner takes only a constant number
of steps to check each empty room, and then behaves identically to the SBP, the expected cost when
the exit is in any other location is asymptotically the same, so the expected cost difference is roughly
1
4n

2 = Ω(n2).

Theorem 3. The number of steps to fully explore a maze is O(n2).

Proof. Consider a v-vertex connected graph. The maximum width (roughly achievable by the spiral)
is v, leading to a naive bound of O(v2) = O(n). This can be improved to O(v) by running a
depth-first search. Since there are 4 movement directions the degree of this graph is 4 meaning
the maximum number of backtracks to a vertex is 3, which immediately gives 4v. However, in a
depth first search there is only one backtrack from each vertex is 1, which leads to an easy inductive
proof that the bound is O(2v − 1) regardless of degree, yielding 2n2 − 1 = O(n2). Note that
further improvements should be possible by considering the number of walls required to induce the
worst-case topology.

This implies that the Bayes-optimal policy has O(n2) expected cost (since its expected cost must
be at least as good as the expected cost of exhaustive search), regardless of the maze. Together,
Lemma 1 and Theorem 3 demonstrate that the SBP heuristic does not damage the (asymptotic)
expected cost in the worst maze.

Theorem 4. Assume that an n × n maze is fragmented in such a way that any time a fragment
is entered, it can be fully explored before exiting, into c2 square (n/c) × (n/2) fragments. The
asymptotic expected cost is Θ(n2) in the worst such maze for the modular optimal and globally
optimal policies.

Proof. First, consider the global optimal policy. The additional requirements placed on the maze
cannot make the O(n2) bound in Theorem 3 worse, and we can get a matching lower bound by
simply adjoining multiple spiral examples as in Lemma 1 and adding doors between them.

Now consider the modular optimal policy. It is clear that the globally optimal policy has an ex-
pected cost as least as low as the modular optimal policy (even in their respective worst mazes), by
definition, so the Ω(n2) lower bound automatically carries over to the modular optimal policy. We
assumed that the modular optimal policy takes the Bayes-optimal paths between fragments. This
must be at least as good as the following strategy: mimic the global optimal policy, but any time a
new fragment is entered, first explore it completely and return to the entrance. By Theorem 3, each
such “extra” exploration detour takes at most 2(nc )

2 − 1 steps, and the return takes at most (nc )
2

steps. The total is 3(nc )
2 − 1. There are exactly c2 such detours, for 4n2 − c2 = Θ(n2) extra steps.

The global optimal policy also takes Θ(n2) steps.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Therefore, in the worst case the modular algorithm is inferior by at least a constant factor of the total
search time in expectation. Examining the proof of Theorem 4 yields a factor of 2.5 over our upper
bound in Theorem 3, but presumably this can be improved substantially since a lot of exploration is
being redone after the detours.

Improving expected cost upper bounds Substantial improvements to the worst-case cost bound
in Theorem 3 are easy to obtain when the proof is applied to expected cost by e.g. noting that the
depth-first search visits at least one new cell every two steps, meaning that there is clearly at least
a 1/4 chance of finding the exit after n2 steps, or by noting that the true number of “vertices” is
reduced by walls. These improvements seem to apply equally to the modular and global optimal
policies, and probably do not affect our constants much.

For worst-case cost, the situation is similar. However, the worst-case cost analysis simplifies signif-
icantly with the additional assumption that transitions between fragments are negligible (say, if they
all branch off from a central room). This observation is trivial but worth stating explicitly:
Theorem 5. When the cost to transition between fragments is negligible, each has one entrance,
and there is no line-of-sight across fragments, the modular algorithm has the same worst-case step
count as the optimal algorithm.

Proof. In the worst case, the optimal algorithm must explore each fragment, and since there is only
one entrance to each fragment it is not possible to gain any advantage by exiting a fragment before
it has been fully explored.
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C EXPERIMENTAL ENVIRONMENTS

Figure 6: Environments used in Behavioral Experiment 1.
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Figure 7: Environments used in Simulation Experiment 2.
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D ADDITIONAL RESULTS - SIMULATION EXPERIMENT

Figure 8: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. Gen-POMCP requires fewer rollouts and saves computing costs.
Each environment is shown in a different color (see also Figure 4.)

Figure 9: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. In each individual environment Gen-POMCP requires fewer rollouts
and saves computing costs.)
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