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Abstract

The rapid advancement of large language models (LLMs)
has brought significant benefits to various domains while in-
troducing substantial risks. Despite being fine-tuned through
reinforcement learning, LLMs lack the capability to discern
malicious content, limiting their defense against jailbreak. To
address these safety concerns, we propose a feature-aware
method for harmful response rejection (FMM), which detects
the presence of malicious features within the model’s fea-
ture space and adaptively adjusts the model’s rejection mech-
anism. By employing a simple discriminator, we detect po-
tential malicious traits during the decoding phase. Upon de-
tecting features indicative of toxic tokens, FMM regenerates
the current token. By employing activation patching, an addi-
tional rejection vector is incorporated during the subsequent
token generation, steering the model towards a refusal re-
sponse. Experimental results demonstrate the effectiveness of
our approach across multiple language models and diverse
attack techniques, while crucially maintaining the models’
standard generation capabilities.

Introduction
Large language models are playing increasingly important
roles in various tasks and are gradually being deployed in
real-world applications (Grattafiori et al. 2024; Yang et al.
2024a). However, LLMs may inadvertently generate re-
sponses that are harmful to humans, which limits the further
adoption. Despite employing alignment training methods
during model development, such as supervised fine-tuning
(SFT) (Ouyang et al. 2022; Bai et al. 2022) and reinforce-
ment learning from human feedback (RLHF) (Rafailov et al.
2024; Bai et al. 2022), instruction-tuned language models
still exhibit the potential to generate harmful content. This
vulnerability frequently arises because alignment training
data do not fully encompass the capability boundaries es-
tablished by the underlying model during pre-training (Wei,
Haghtalab, and Steinhardt 2023). Consequently, various jail-
breaking methods can exploit these vulnerabilities at differ-
ent stages of the alignment training process, thereby under-
mining the LLMs’ defense mechanisms.
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Figure 1: t-SNE results of hidden states.

Given the aforementioned limitations, adopting a singular
rejection training strategy to defend against all potential at-
tack methods is impractical. To effectively counter a broad
spectrum of attack strategies, we analyze the mechanisms
by which aligned models reject malicious queries. Specifi-
cally, we investigate how instruction-tuned models initiate a
rejection loop upon receiving malicious inputs, resulting in
a rejection response. Through visual analysis, Zheng et al.
(2024) observe that language models exhibit a latent ability
to distinguish between benign and malicious queries. Fur-
thermore, we analyze and visualize the hidden states during
the decoding phase for both malicious and benign outputs.
The t-SNE visualization, presented in Figure 1, reveals that
the feature representations corresponding to benign and ma-
licious outputs exhibit linear separability during the decod-
ing process.

Based on the above findings, we propose a detection-
intervention method, dubbed FMM, designed to detect and
defend against malicious responses during decoding phase.
Specifically, during the generation of response, we employ
a malicious feature discriminator to ascertain the presence
of any malicious features within the model’s current feature
space. Upon detecting such features, we proactively trigger
the model’s rejection loop, prompting the model to generate
a rejection response. FMM demonstrates strong generalizabil-
ity, effectively triggering our detector to produce refusal re-
sponses irrespective of the attack method employed. Unlike
traditional alignment training, which only enforces refusals
at the start of a response and allows malicious follow-ups,



Figure 2: The pipeline of FMM. We first train a detector and collected intervention vectors. During the decoding process, once
detect the generation of malicious token, the intervention vector is used to induce the model to refuse.

FMM enables refusals at any token position, reducing posi-
tional bias and making jailbreak attacks less effective.

To validate the effectiveness and generalization of our
method, we conducted extensive experiments across multi-
ple LLMs and datasets. The experimental results confirm the
method’s effectiveness and robust general capabilities. Our
contributions can be summarized as follows:
1. We analyze how alignment models reject malicious

queries and find that language models can already dis-
tinguish between benign and malicious queries after pre-
training, enabling them to generate refusal responses.

2. We introduce FMM, a novel defense mechanism operat-
ing at the decoding stage, designed to mitigate malicious
queries.

3. Through extensive experiments on multiple LLMs and
datasets, our approach demonstrates strong defense and
generalization capabilities.

Related Work
Jailbreak Attacks A jailbreak attack aims to manipulate
the prompt input to circumvent the model’s alignment mech-
anisms, thereby enabling it to respond to malicious instruc-
tions or generate harmful outputs. Jailbreak methods are
broadly categorized into black-box and white-box methods.
Black-box approaches operate without requiring access to
the model’s architecture and parameters (Liu et al. 2023a,b;
Chao et al. 2023). In contrast, white-box methods lever-
age information such as gradients or hidden states to itera-
tively refine adversarial inputs (Zou et al. 2023). Our defense
mechanism is agnostic to the distinction between black-box
and white-box attacks, demonstrating robust performance
against both categories of adversarial methodologies.

Defensive Mechanism Research in explainability seeks to
understand how instruction-tuned models decline to answer
malicious queries. For instance, Zhou et al. (2024) connects
malicious and benign inputs with positive and negative emo-
tions, respectively. Lee et al. (2024) identifies parameter re-
gions resulting from instruction tuning that govern refusal

behavior. Complementarily,Wei, Haghtalab, and Steinhardt
(2023) investigates the underlying mechanisms that enable
various jailbreaking techniques. In contrast, Arditi et al.
(2024) proposes a linear direction to circumvent all refusal
responses.

Methods
Regardless of the jailbreak attack method employed, the ob-
jective remains to elicit malicious outputs from the LLM.
Therefore, we investigate the feasibility of discerning ma-
licious outputs by analyzing the LLM’s hidden states dur-
ing the decoding phase. We propose FMM, a method de-
signed to detect and mitigate malicious states during autore-
gressive generation. Specifically, FMM operates by assessing
each generated token’s hidden state for the presence of ma-
licious features. Upon detection, the current token is regen-
erated with an increased refusal probability. Figure 2 illus-
trates this workflow. The core components of FMM, including
the detection and refusal mechanisms, are detailed below.

Malicious Output Detection

Our detector, denoted as C, is a binary classifier that iden-
tifies whether a given token constitutes a malicious output.
C takes a hidden state of the LLM as its input, and outputs
a binary label (true or false). To train C, we synthesize a
dataset of benign and malicious queries using GPT-4. We
then forward these queries through the target LLM, record-
ing hidden states at each layer, and partition the resulting
dataset into training and testing sets. Following (Zou et al.
2023), we use the hidden state at the final token position of
each prompt as the input for C. Malicious query labels are set
to 1, while benign query labels are set to 0. We train C us-
ing cross-entropy loss and select the layer that achieves the
highest accuracy on the test set as the target layer. During
inference, we use C to determine if the current output token
is malicious based on its hidden state at the target layer, thus
triggering the subsequent intervention mechanism.



Model Defense Harmful Benchmark ↓ Jailbreak Attacks ↓
AdvBench AdvBenchProxy GCG AutoDAN PAIR

Qwen2

No Defense 0.0% / 10.0% 72.5% / 74.0% 4.6% / 14.0% 3.5% / 36.0% 29.5% / 21.0%
PPL 0.0% / 0.0% 46.0% / 23.0% 0.0% / 8.0% 3.5% / 27.0% 25.5% / 13.5%

Self-Examination 0.0% / 10.0% 37.0% / 21.0% 40.6% / 14.0% 0.5% / 15.0% 15.5% / 12.0%
Paraphrase 18.0% / 12.0% 34.0% / 8.0% 19.3% / 12.6% 72.0% / 50.5% 23.0% / 13.0%

Retokenization 6.0% / 12.0% 45.0% / 25.0% 16.6% / 10.0% 16.5% / 42.5% 27.5% / 17.5%
Self-Reminder 0.0% / 0.0% 54.0% / 7.0% 11.3% / 17.3% 2.5% / 23.5% 17.0% / 4.0%

ICD 2.0% / 14.0% 30.0% / 28.5% 4.6% / 13.3% 2.0% / 37.0% 29.5% / 21.0%
SafeDecoding 8.0% / 8.0% 22.0% / 23.0% 14.0% / 18.6% 6.0% / 24.5% 30.5% / 20.0%

DRO 0.0% / 0.0% 43.0% / 47.5% 0.0% / 0.0% 4.0% / 0.0% 18.0% / 16.0%
FMM 0.0% / 0.0% 18.5% / 18.0% 0.0% / 0.0% 1.0% / 2.0% 6.0% / 6.0%

Llama2

No Defense 0.0% / 0.0% 62.1% / 52.3% 6.0% / 0.0% 4.0% / 0.0% 34.0% / 2.0%
PPL 0.0% / 0.0% 14.0% / 0.0% 0.0% / 8.0% 4.0% / 0.0% 34.0% / 2.0%

Self-Examination 0.0% / 8.0% 1.0% / 0.0% 2.0% / 6.0% 0.0% / 6.0% 2.0% / 8.0%
Paraphrase 12.0% / 0.0% 66.0% / 0.0% 8.0% / 0.0% 4.0% / 0.0% 36.0% / 0.0%

Retokenization 8.0% / 0.0% 68.0% / 7.0% 8.0% / 0.0% 1.0% / 0.0% 46.0% / 0.0%
Self-Reminder 0.0% / 0.0% 10.0% / 1.0% 0.0% / 0.0% 4.0% / 0.0% 4.0% / 0.0%

ICD 0.0% / 0.0% 14.0% / 2.0% 0.0% / 0.0% 0.0% / 0.0% 0.0% / 0.0%
SafeDecoding 0.0% / 0.0% 15.0% / 23.0% 0.0% / 0.0% 0.0% / 0.0% 14.0% / 0.0%

DRO 0.0% / 0.0% 43.0% / 47.5% 0.0% / 0.0% 4.0% / 0.0% 26.0% / 10.0%
FMM 0.0% / 0.0% 21.0% / 18.0% 2.0% / 0.0% 2.0% / 2.0% 6.0% / 4.0%

Table 1: Multiple defense methods’ response results under attack methods. The table shows the response rate/rejection rate.

Refusal Response Triggering
When a malicious output is detected, the current token is
regenerated with increased refusal probability. The enforce-
ment of refusal is achieved through activation patching by
adding a refusal intervention vector (vrefusal) to the output
features (H) of specific layers in the LLM. The intervened
features (H ′) are defined as:

H ′ = H + α · vrefusal

where α represents the steering strength. To create the re-
fusal vector vrefusal, we adopt a method similar to (Arditi
et al. 2024). We construct two distinct sets of queries: one
set that elicits benign responses from the target LLM, and
another set where the model explicitly declines to respond.
For each query, we obtain the hidden state at the last token of
each layer as both response Hreply and refusal Hrefusal states.
The refusal vector is calculated by taking the mean differ-
ence:

vrefusal =
1

N

N∑
i=1

(Hi
refusal −Hi

reply)

where N denotes the number of samples within set. With
vrefusal now capturing the core difference between general
response and refusal outputs, we select for intervention at
inference time the layer for which vrefusal maximizes the like-
lihood of refusal responses.

Experiments
Datasets and Metrics We assessed our method using Ad-
vbench (Zou et al. 2023) for malicious instruction-induced

responses and AlpacaEval (Li et al. 2023) for utility preser-
vation. On Advbench, we measured response rate (rule-
based refusal detection, e.g., ”Sorry, I can’t...”) and risk rate
(LlamaGuard (Inan et al. 2023) for assessing the proportion
of responses flagged as harmful by its safety classifiers). On
AlpacaEval, we measured response and win rates, the latter
assessing performance against text-davinci-003.

Attack Methods Following Xu et al. (2024), we use Au-
toDAN (Liu et al. 2023a), GCG (Zou et al. 2023), PAIR
(Chao et al. 2023), and Proxy. Proxy, the most effective,
elicits malicious content from a less robust model, which is
then appended to input queries, transforming them into an-
swer continuation tasks.

Baselines We compare against eight jailbreak defenses:
PPL (Alon and Kamfonas 2023), Self-Examination (Phute
et al. 2023), Paraphrase (Jain et al. 2023), Retokeniza-
tion (Jain et al. 2023), Self-Remind (Wu et al. 2023), ICD
(Weidinger et al. 2021), SafeDecoding (Xu et al. 2024), and
DRO (Zheng et al. 2024). SafeDecoding and DRO need
prefix tuning/LoRA, PPL and Self-Examination involve in-
put/output checks, and Paraphrase, Retokenization, Self-
Remind, and ICD modify inputs.

Victim Models We use LLaMA 2 (Touvron et al. 2023)
and Qwen 2 (Yang et al. 2024b), which lead open-source
models due to their current prominence and adoption.

Layers to Intervene We determined the optimal layers for
detecting malicious feature and implementing refusal inter-
ventions through a combination of detector accuracy evalu-
ation and grid search. Our findings align with those of Arditi
et al. (2024), demonstrating that selecting intermediate lay-
ers of the model yields the most effective results. Specifi-



Model Defense Alpaca Eval
Reply Rate ↑ Win Rate ↑

Qwen2

No Defense 96.00% 95.00%
PPL 83.50% 84.50%

Self-Examination 95.50% 94.00%
Paraphrase 97.50% 82.00%

Retokenization 96.50% 87.00%
Self-Reminder 98.50% 95.50%

ICD 96.50% 93.50%
SafeDecoding 88.00% 86.50%

DRO 95.90% 86.50%
FMM 94.70% 94.00%

Llama2

No Defense 93.50% 87.50%
PPL 81.00% 77.00%

Self-Examination 32.00% 33.00%
Paraphrase 93.00% 76.50%

Retokenization 84.00% 57.00%
Self-Reminder 23.50% 55.00%

ICD 23.00% 41.00%
SafeDecoding 87.00% 85.00%

DRO 93.80% 88.00%
FMM 92.00% 89.50%

Table 2: Multiple defense methods’ responses to Alpaca in-
structions.

cally, for both LLaMA and Qwen models used in our exper-
iments, we identified the 15th layer as the optimal choice for
detection, while layers 12 to 15 were selected for interven-
tion.

Experimental Results

Malicious Outputs are Mitigated Table 1 compares re-
sponse and risk rates for baselines and FMM across various
attacks. FMM consistently triggers rejection responses, sig-
nificantly reducing the risk rate. While response rate indi-
cates how often a refusal occurs, risk rate captures the pro-
portion of generated content that remains harmful—even
with initial rejections. We observed instances where risk
rate slightly exceeds response rate due to models generating
some malicious content after an initial refusal. Compared
to SafeDecoding and DRO, FMM achieves comparable per-
formance in mitigating malicious outputs without requiring
computationally expensive fine-tuning.

Benign Outputs are not Affected Table 2 shows the re-
sponse and win rates of baselines and FMM on the Alpaca
dataset. FMM, like most baselines, maintains response rates
and overall response quality for benign queries. Notably,
some methods show higher win rates than undefended mod-
els. This is likely because models, without any defense
method, sometimes include content segments that are in-
correctly flagged as potentially harmful. By skipping these
flagged segments, models can then generate better qual-
ity responses. This suggests that aligned models may ex-
hibit some implicit refusal behavior—even in normal in-
puts—which our method can also mitigate.

Ablation Results
To evaluate the robustness of FMM, we conducted compre-
hensive ablation experiments by varying key parameters.
Specifically, we investigated three aspects: (1) the impact
of the training dataset size on detector optimization, (2) the
choice of LLM layers for intervention, and (3) the effect of
token position on intervention. Our primary ablation analy-
ses were conducted using LLaMA 2.

Training Samples for the Detector We trained our clas-
sifier using a default of 150 benign and 150 malicious sam-
ples. As shown in Table 3, we observed that reducing the
number of training samples does not significantly impact
FMM’s ability to reject malicious queries. This is likely be-
cause the features of benign and malicious responses are rel-
atively distinct, as visualized in Figure 1, which allows the
detector to learn the decision boundary effectively with only
a few samples.

Samples 30 60 90 120 150

Reply Rate 29.4% 24.6% 25.5% 22.1% 21.0%
Unsafe Rate 28.8% 23.0% 23.8% 21.1% 18.0%

Table 3: Results on AdvBenchProxy.
Layers to Steer We evaluated the impact of adding rejec-
tion intervention at different layers of the model, with results
presented in Figure 3. The figure shows that intervention re-
sults across different layers do not exhibit a clear pattern and
fluctuate within a relatively stable range. Given that abstract
concepts are typically formed and expressed in the middle
layers, we selected these layers for default intervention.

Figure 3: Varying the layers to steer.

Token Positions for Intervention We investigated
whether intervening solely at the first token of a malicious
response would suffice to trigger refusal. However, our
experiments revealed that steering only the first malicious
token did not significantly affect the response or risk rates.
Consequently, effective intervention necessitates detecting
and steering every token during the decoding phase.

Conclusion
We introduced FMM, an two-stage decoding-oriented method
for detecting and mitigating harmful responses. FMM first op-
erates by monitoring the feature space to detect malicious
token at each generation step, once the token is determined



to be harmful, FMM intervenes inner features to induce the
model to refuse. The core of the work lies in leveraging and
enhancing the inherent feature extraction and rejection ca-
pabilities acquired during pre-training and alignment. This
method effectively defends against multiple jailbreak attacks
while preserving the model’s ability to respond to general
queries. Ablation experiments confirmed the robustness of
FMM across varied parameter settings. We believe that this
token-level feature detection and intervention paradigm of-
fers a promising direction for enhancing the safety of large
language models.
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