
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNAST: UNIFIED FRAMEWORK FOR NEURAL ARCHI-
TECTURE SEARCH FOR TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present UNAST, a novel method for optimizing Large Language Models
(LLMs) after training. UNAST integrates Neural Architecture Search (NAS) with
sparsity and quantization techniques to compress LLMs. Starting from a pre-
trained model, it replaces layers (such as attention and MLP) with more efficient
alternatives by modifying attention heads, key-value projection dimensions, and
MLP expansion ratios. Layer candidates undergo local distillation to replicate
the original layers. Scores and costs (e.g., latency, parameter count) for each
operator are input into an Integer Linear Optimizer, which determines the optimal
architecture under given constraints. Our experiments show that UNAST scales
effectively to large models, reducing training costs by up to 10x compared to
training smaller models from scratch. Testing on GPT-3 and LLaMa reveals
that UNAST enhances latency and memory efficiency by up to 60% with minimal
accuracy loss. Additionally, it offers insights into the impact of various compression
techniques on Transformer layers, facilitating the creation of non-uniform models.

1 INTRODUCTION

Natural Language Processing (NLP) has undergone a major transformation with the rise of Large
Language Models (LLMs), largely due to the scalability of the attention mechanism. However,
deploying these increasingly large models efficiently presents growing challenges. LLM families,
like LLaMa with its 7B, 13B, and 70B variants, typically feature multiple versions to accommodate
different hardware and time constraints. These models, however, are trained independently, creating
redundancy. A more efficient strategy would be to compress larger models down to smaller sizes
rather than training each from scratch.

Building on this idea, post-training techniques like quantization and sparsity have emerged to enhance
LLM deployment. While they reduce model size, they don’t always improve throughput and often
require manual hyperparameter tuning. Neural Architecture Search (NAS) can optimize model
architectures automatically for efficiency but is resource-intensive when applied to LLMs. Therefore,
a comprehensive post-training optimization method is needed.

To tackle this challenge, we introduce UNAST, an optimization framework that leverages NAS
to compress models according to specific constraints like latency and parameter count. UNAST
adjusts internal layer parameters, including the number of attention heads, Key-Value (KV) projection
dimensions, and expansion factors, to achieve efficient compression.

We begin with a pre-trained model and distill teacher layers (attention and MLP) into candidate
configurations by adjusting parameters like the number of heads, MLP projections, and attention
types. Each candidate is scored based on its similarity to the original teacher blocks. Using integer
linear programming (ILP), we select K architectures that optimize for constraints using candidate
scores and associated costs. These architectures undergo quick fine-tuning and evaluation, with the
top-performing one chosen for a longer final fine-tuning iteration.

We demonstrate several key advantages of our approach:

1. Time to Create a New Model. Our method produces new models up to 10 times faster than pre-
training from scratch, thanks to efficient layer-wise knowledge distillation and automated candidate
model selection.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Input: prompt

Embedding

Transformer Block
Layer 1

Transformer Block
Layer …

Transformer Block
Layer L

Softmax

Output

Layer norm

Layer norm

Attention

MLP

4, 8, 12 heads

Local 
distillation

1% data

Trained LLM

2, 3, 4 expansion

Attention variants:

32, 64, 128 kv proj

2:4 sparsity

Int4/int8

Squared ReLU

Activation sparsity

MLP variants

Fast Neural 
Architecture search

Model 1
0.5x latency

Model 2
0.5x memory

Model 3
H100 optimal

Model 4
A100 optimal

Token Throughput

A
cc

ur
ac

y

5B
2B

1B

From scratch - suboptimal

UNAST – faster/better

The best model 

8B

5B

2B

1
B

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

VKQ

MatMul

MatMul

Expansion

MLP is more sensitive than Attention

At
te
nt
io
n

M
LP

Head 1 Head 2 Head 3

Head 1 Head 2

2×#! = 3×#"
#" #" #"

#! #!

#heads < KV projection

Worse 

Better 

Layers in the first half are easier to compress

&" &! &# &$ &% &&&" &! &# &$ &% &&

Si
ze

 

Better Worse 

Figure 1: Overview of UNAST as a unified approach to post-training LLM optimization. Starting
from a pre-trained model, layers are replaced with more efficient counterparts using a fast NAS
approach to find models under user-defined constraints like latency and number of parameters. This
results in better, smaller models with a 10x reduction in costs compared to training from scratch. At
the bottom, we share the main findings for future architecture design.

2. Latency and Memory Footprint Improvements.Models generated by our approach greatly
improve the original model’s latency and memory footprint. Crucially, target parameters like latency
or memory can be customized and set as constraints in the NAS process. These efficiency gains are
achieved with minimal accuracy loss, ensuring the models remain highly effective for their tasks.
3. Detection of Heterogeneity in Model Structure. Our approach enables heterogeneity in the
teacher model’s structure, resulting in models with non-uniform blocks. This optimization creates
more tailored and efficient architectures that capitalize on the strengths of various model components.

Our main contributions can be summarized as:

1. Novel Neural Architecture Search (NAS) Approach Applied to Large Language Models. We
present a NAS methodology specifically designed to optimize Transformer-based large language
models. This approach refines model architectures, enhancing both performance and efficiency. It
effectively addresses the unique challenges posed by the structures of large language models like
GPT and LLaMA.
2. Empirical Insights into Transformer Model Structure. Through extensive empirical obser-
vations, we offer insights into the structure of Transformer models, including analyses of how
compression impacts various layers of these architectures.

2 RELATED WORK

Compression of neural networks remains an active area of research, as highlighted in recent sur-
veys Cheng et al. (2018); Gou et al. (2020); Park et al. (2024). Common methods include weight
sparsification Han et al. (2016); LeCun et al. (1990); Hassibi & Stork (1993), structured pruning via
channel removal Molchanov et al. (2017), and quantization Frantar et al. (2022); Lin et al. (2023);
Xiao et al. (2022). We focus on LLM compression for faster inference and will review some recent
work in this section.

Sparsity in the unstructured form is not directly beneficial for GPU inference. SparseGPT Frantar
& Alistarh (2023) and Wanda Sun et al. (2023) additionally explore 2:4 structured sparsity that can
benefit faster inference. Structured pruning is another popular technique where entire heads and
MLP channels are removed from the transformer Xia et al. (2022); Ma et al. (2023b); Zhang et al.
(2023); Xia et al. (2023); Kurtic et al. (2023a). Such pruning results in a smaller and faster model;
however, the entire process needs to be repeated for every target budget. Depth pruning removes
entire blocks from the model as the residual skip connections will still allow signal propagation.
Stochastic depth during training was applied in Fan et al. (2020). Importance-based layer dropping

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

was studied in Men et al. (2024); Kim et al. (2024); Yuan et al. (2024), and layer merging was
explored in Yang et al. (2024). Quantization is a common technique to reduce the bitwidth of weight
tensors. Round-to-nearest approaches Dettmers et al.; Yao et al. (2022) perform straight-forward per-
element quantization, while carefully selecting quantization granularity. AdaRoundNagel et al. (2020)
computes data-depending quatnization, whereas GPTQFrantar et al. (2022), AWQ Lin et al. (2023)
or RPTQ Yuan et al. (2023) re-adjust the weights after quatnization to meet the dense model layers
output. Quantization helps reduce memory transfer overhead for bandwidth-limited operations under
small batch sizes. We pick GPTQ Frantar et al. (2022) as the representative approach. Knowledge
distillation is a popular technique to bootstrap model performance using a stronger model Sanh
et al. (2019); Wang et al. (2020c); Jiao et al. (2019); Sun et al. (2019); Passban et al. (2020); Li
et al. (2021). Considering only the access to the original model, we opt for per-layer distillation as
it has proven effective. Efficient architecture design and NAS provide another way to obtain a
more efficient model. Manual design has been explored in Kitaev et al. (2020); Child et al. (2019);
Wang et al. (2020b); Sun et al. (2020); Dai et al. (2020). In this work, we are constrained by the
architecture of the teacher model. NAS offers another method to attain a model with an accuracy-
latency trade-off Chen et al. (2020); Dong et al. (2021); Wang et al. (2020a); Xu et al. (2021); Yin
et al. (2021). Unfortunately, the high cost of these NAS techniques limits their application to LLMs.
We opt for fast NAS techniques applied to convolutional neural networks, such as DONNA Moons
et al. (2021) and LANA Molchanov et al. (2022). We analyze, extend, and apply these techniques to
LLMs, demonstrating the first scalable NAS method for LLMs.

3 METHOD

Our approach, depicted in Figure 2, comprises two main parts: 1) Candidate training (see Section 3),
where layer-wise knowledge distillation is applied to train various candidate operations to mimic
those in the original teacher model; 2) Architecture search phase, which explores the candidate space
to find a model meeting custom constraints using linear optimization.

Candidate training phase. Our research focuses on Transformer-like models, particularly on
enhancing the performance of layers within Transformer blocks. While embedding and output layers
constitute a significant portion of the model, we defer their performance optimization for future work.
Within each Transformer block, our focus is on optimizing two key layers: Attention and Multilayer
Perceptron (MLP).

We define the set of student operations for each of the 2 layer types, offering a diverse range of
candidates for each layer. The only constraint is that the input and output dimensions must match
those of the corresponding teacher layer. Unlike other NAS approaches that aim to discover entirely
new models, our goal is to replace the original model with a more efficient one. This confines our
search to the architecture space “near” the teacher network. To achieve this, we conduct layer-wise
knowledge distillation training to simulate the corresponding teacher layer.

Thus we train each student layer to simulate the corresponding teacher layer using layer-wise
knowledge-distillation: min

∑
x∈XD

L(ti(xi), sij(xi)) where XD
i is a set of training samples and xi

is an input for the layer i, L is a loss function.

We experimented with various layer-wise loss functions, including Mean Squared Error (MSE),
cosine similarity, L1 norm or various linear combinations of the losses. However, we have found
that the best performing loss function in terms of its effect on accuracy of the distilled layer is the
normalized MSE (SquareHead Kurtic et al. (2023b)): L(a, b) = MSE(a, b)/MSE(a, 0). Further in
the paper, we represent the results for this type of distillation loss.

In such candidate pre-training we can break down the training process into (MLP_ops+ATT_ops)∗
layers independent minimization problems, allowing us to train all candidates simultaneously.

Search phase. In the rest of the paper, we adopt the following notation. We use W = wi,j as a set
of weights of all pre-trained students. We use a set of binary vectors Z = {zi}, i = 1..2N , where
zi = 0, 1S

M

(or zi = 0, 1S
A

depending on layer type) is a one-hot vector representing the choice of
the candidate layer. Thus, the candidate architecture defined by Z can be written as C(x;Z,W). The
usual formulation of the NAS problem can be expressed as:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

min
Z

min
W

∑
X

L(C(x;Z,W), y) (1)

The possible extensions of the problem may include various constraints like F(
∑

i=1..2N

pizi,P) ≥ 0

where pi is a performance metric vector (e.g. latency, number of parameters) for each candidate
operation of the i-th layer. The function F and user-provided constant P define the performance
budget.

Similar to the LANA Molchanov et al. (2022) approach, we approximate loss function in the NAS
problem as:

∑
X

L(C(x;Z,W), y) ≈
∑
X

(T (x), y) +
∑

i=1...2N

eizi. (2)

The first component represents the teacher training loss and remains constant. The second component
is determined by ei - vector of model loss changes if i-th layer. Here, ei,j is a difference between
teacher loss and loss of the model where i-th layer is replaced with j-th (pre-trained) candidate on
the same data and all the other layers in the model are left intact. Such a linear approximation lets
us frame the NAS problem in terms of an ILP. This reformulation allows us to scale up to a large
number of operations per layer and results in multiple diverse solutions.

The approximation shares similarities with the first-degree Taylor expansion of the student loss
grounded on the premise that the teacher resides within the same search space. In other words, we
approximate the non-linear effects of the layer-wise model changes with a linear function. Despite
the fact that this approach neglects the cumulative effects of layer changes affects on model accuracy,
empirical experiments validate its effectiveness.

Formally, the k-th solution, denoted as zk is obtained by solving:

min
Z

∑
i=1..2N

aizki , s.t.F(
∑

i=1..2N

pizi,P) ≥ 0, (3)

where zi is a one-hot vector. To improve the diversity of the solution, we add the following constraint:

∑
i=1..2N

zki z
′k̂
i ≤ O,∀k̂ < k (4)

The scalar O sets the maximum overlap of the suggested architectures, which we set as in (Molchanov
et al., 2022) to be equal 0.7 of the total number of layers. In the ILP we minimize the linear
approximation of model output changes due to layer replacement meeting the budget criterion and
with overlap constraint we force the solver to provide varied solutions.

Architecture Selection and Fine-tuning. After the search phase, multiple architectures meeting the
constraint are received and ranked based on the cumulative accuracy metric of per-layer operators.
However, this ranking may not fully reflect the final model’s accuracy, and models may react
differently to further training. To address this, each architecture undergoes short training (100s
millions of tokens), and their performance is evaluated (see Stage 3 in Figure 2). This approach
helps identify the model that responds better to training, as detailed in Section 5.1. Once the best
model is identified, a relatively short (tens of billions of tokens) version of the baseline pre-training
is conducted, referred to as fine-tuning in our paper. The same learning rate schedule and dataset
are used, with a higher learning rate for models with lower performance constraints. This choice is
justified by the smaller and more efficient models having lower quality initially and needing larger
optimization steps for improvement.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Stage 1: Layer-wise Distillation Stage 2: Architecture SearchPreamble: Build Operator
Database

Teacher
Layer

Student
Layer

Layer Input

Operators
ATT nh 32 kv 96
ATT nh 32 kv 64
...

ATT nh 16 kv 64
ATT nh 16 kv 48
MLP hs 3
MLP hs 2
MLP hs 1

Target
Device

10ms, 2B
Parameters

Target
Cost

Operator
Costs

Measure Latency,
memory footprint

Device

Mobile Laptop Cloud
GPU

Operator
Scores

Constrained
Optimization

Candidate
i

Embed

Layer 1

Layer i

Layer L

Softmax

Candidate
K

Embed

Layer 1

Layer i

Layer L

Softmax

Candidate
1

Embed

Layer 1

Layer i

Layer L

Softmax

Stage 3: Select Architecture Stage 4: Finetuning

Calibration
Data

Data

Final Model

Embed

Layer 1

Layer i

Layer L

Softmax

Operators
...

...

Operator
Scores & Costs

Candidate
Architecture i

Candidate
Architecture 1

Final
Architecture

Short Train

Short Train

Short Train Select Best

Final
Architecture

Finetune

Pre-trained
LLM

Embed

Layer 1

Layer i

Layer L

Softmax

Input: prompt

Output

Knowledge
distillation

Scoring

Candidate
Architecture K

Figure 2: Method overview. In a preliminary stage, we select candidate operators and measure
their cost (device-specific latency, memory footprint). (1) Each layer in the pre-trained model is
distilled into suitable candidate operators by minimizing activation distance. Scores and weights
for each teacher/operator pair are stored. (2) Under user-specified latency and memory constraints,
we select the Top-K candidate architectures based on aggregate operator scores. (3) Each candidate
architecture is fine-tuned on a calibration dataset, and the best architecture is selected. (4) Finally, the
best architecture is fine-tuned to produce the UNAST model.

4 EXPERIMENTAL SETTINGS AND DETAILS

4.1 GENERAL SETUP

We focus on improving efficiency of Transformer-based models. Specifically, we gather insights
by exploring 3 pretrained models: proprietary GPT-architecture models with 2B (GPT-2B) and 8B
(GPT-8B) parameters, respectively, as well as the open LLaMa2-7B model. GPT-2B and GPT-8B are
trained on 1.1T tokens datasets. GPT-2B and GPT-8B contain 24/32 layers with hidden dimension
2048/4096 and 16/32 heads in attention layers. The LLaMa2-7B models is the publicly available 7B
GPT model trained on 2T tokens. It has similar configuration parameters as GPT3-8B. We used a
version of LlaMa2-7B, shortly (∼ 10B tokens) finetuned on a 1.1T tokens dataset. This was done
due to the requirements of knowledge distillation, as this stage UNAST relies on the dataset used.
It means that in the baseline results of the LlaMa2-7B, we use the locally-fine-tuned version of
LlaMa2-7B.

Implementation details. We integrated the UNAST pipeline into the Megatron Nvidia (2024)
codebase. For GPT experiments a 1.1T dataset was used for local distillation (5K steps, 2.5M tokens),
evaluation (50 steps), finetuning (10K steps, 5M tokens). For LLaMa2 experiments a 3.5T dataset was
used for distillation (5K steps, 5M tokens), evaluation (50 steps), finetuning (10K steps, 10M tokens).
We use NVIDIA A100 as our target hardware. Training parameters are described in Appendix A.

Evaluation metrics. We use several model evaluation metrics in our experiments. LM score is the
evaluation score after training on 50 samples on our 1.1T dataset. LM-eval average is computed
over the zero-shot lm-harness benchmark Gao et al. (2023) accuracies. Hellaswag Zellers et al.
(2019), Lambada Paperno et al. (2016), PiQA Bisk et al. (2019), RACE Lai et al. (2017) and
Winogrande Sakaguchi et al. (2019) datasets are used, unless stated otherwise. Wikitext-103 Merity
et al. (2016) is used to measure perplexity.

Model size computation. As one of the evaluation metrics, we will measure the size required to store
the model, we assume BF16 format for the original model. Details can be found in the Appendix D.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 UNAST DETAILS

The cost - total training time. We work with the GPT-3 8B and LLaMa2 7B models, originally
trained on 1.1 trillion and 2 trillion tokens, respectively. In the local distillation step, we select
15 model candidates and fine-tune each for 10 billion tokens. The architecture search requires
quick fine-tuning of 100 architectures, each for 102 million tokens. Finally, the best architecture
is fine-tuned for 20 billion tokens. Each of the first two stages can be parallelized. In a sequential
implementation, creating a single model incurs only 9% of the original costs (an 11× speedup), or
1.5% with parallelization. To produce three sub-models, costs could be reduced by 25× or even 85×
with parallelization.

Finding 1. Our approach reduces training time by 11× - 85× to get 3 additional models.

Candidates. We establish a set of candidate operations based on the model and layer types, focusing
on Attention or MLP layers with inputs and outputs of size N . The following operations can be
applied: Teacher operation: A copy of the corresponding baseline layer, requiring no knowledge
distillation. Identity layer: Essentially a skip-layer, propagating the input of the block to the output,
also not requiring knowledge distillation. Linear layer: Replacing an Attention or MLP block with a
linear layer of size N ×N . This candidate, along with the Identity layer, is the most computationally
efficient but may significantly affect model accuracy. Some of the candidates are layer-type dependent,
meaning they can only replace either Attention or MLP layers, representing the same layer type with
different parameters. The first such candidate is downsized Attention layer with lower number of
heads or number of channels. Here, we do layer-wise distillation from the teacher Attention layers
to the candidates with lower parameters. The symmetrical candidate for MLP is a downsized MLP
layer with lower hidden expansion.

Knowledge distillation. The success of the UNAST approach depends on the quality of candidates.
To get strong candidates we perform per-layer distillation with the goal of mimicking teacher layers.
We pre-train separate candidates for Attention and ML layers. In Figure 3 we show the dependency
of LM score on latency for various candidates. In this evaluation we replace all teachers of the
corresponding type with the pre-trained layer candidates.

UNAST necessitates estimating per-candidate scores regarding how well they mimic their teacher.
Detailed ablations led us to consider the Mean Squared Error (MSE) between teacher and candidate
activations as a score. We showcase per-layer scores for various candidates in Figure 4.

Knowledge distillation loss. We ablate multiple loss functions for the per-layer distillation in the
Table 1. The metric is global MSE for the layers in the head, middle, tail of the model body. Total
model row represents LM score of the model where all layers of the corresponding type are replaced
with the distilled candidates. Attention layer candidate: attention layer with 16 heads and 128
channels. MLP candidate: MLP layer with expansion factor 2. We conclude that SquareHead Kurtic
et al. (2023b) allows the students to better track the teacher, as shown by the lower MSE loss, and
leads to better models overall, as shown by the better LM score.

We can see that MLP layers are more sensitive to down-sizing than Attention layers, as an equivalent
removal of channels in the Attention layer damages the model accuracy slightly less than MLP. As
expected, the most sensitive layer is the last one as it has the highest impact on the model output and
there are no layers after it to recover the possible inaccuracies.

Performance metric. A key performance metric we aim to improve in UNAST is latency. This
metric naturally depends on various deployment settings, such as the regime in which a model is used
or its parameters (e.g. batch size or input sequence size). Our approach works with any deployment
setting. We build a timing lookup table for any setup, which is then used in the search phase. We note
that it does not require any re-training of the candidates. We argue that the main body (Transformer
blocks) consumes most of compute in the pre-fill stage. We analyse costs in Appendix B.

Lookup Table. Accurate latency estimation is crucial for model performance optimization, as the
resulting model depends on the measurement regime. It’s essential to assess latency in the deployment
regime. Our experiments measure latency only in the pre-fill regime. We leave the auto-regressive
regime for future work. A hardware-specific lookup table is computed in the pre-fill phase with batch
size 1 and sequence length 4096.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.0 2.5 3.0 3.5
LM Score

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

La
te

nc
y 

(%
)

Baseline
Attention
MLP

Figure 3: Latency vs LM loss trade-off
of different candidates used in UNAST.
Size represents the relative ratio of the
parameter count.

0 5 10 15 20 25 30
Layer number

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
gl

ob
al

 M
SE

Normalized MSE Across Different Attention Configurations
att_nh_32_kv_96
att_nh_32_kv_48
att_nh_32_kv_32

att_nh_24_kv_128
att_nh_24_kv_64
att_nh_24_kv_48

att_nh_16_kv_128
att_nh_16_kv_64
att_nh_16_kv_48

0 5 10 15 20 25 30
Layer number

10 2

10 1

100

No
rm

al
ize

d 
gl

ob
al

 M
SE

Normalized MSE Across Different MLP Configurations
mlp_hs_1_swiglu_1
mlp_hs_2_swiglu_1

mlp_hs_3_swiglu_1

Figure 4: Per-layer normalized MSE loss in-
duced by replacing a single teacher layer with
specified operator.

Method L1 Loss↓ L2 Loss↓ SquareHead↓

Attention, head 2.9e-3 2.8e-3 2.5e-3
Attention, middle 1.14e-2 1.15e-2 1.02e-2
Attention, tail 1.20e-2 9.0e-3 8.9e-3

Total model ATT, LM score 2.120 2.098 2.094

MLP, head 2.12e-2 1.70e-2 1.65e-2
MLP, middle 2.67e-2 2.63e-2 2.64e-2
MLP, tail 2.38e-1 2.30e-1 2.29e-1

Total model MLP, LM score 2.790 2.760 2.750

Table 1: Study of different knowledge-
distillation losses. We report the teacher-
student MSE for each loss, as well as the
resulting LM score.

Pool Budget LM-eval↓ Wiki ppl ↓

Baseline 100% 63.46 7.28
Only Attention 80% 62.01 7.49
Only MLP 80% 61.84 7.78
Only Linear 80% 60.78 7.89
Only skip 80% 60.34 8.18
Full pool 80% 62.31 7.44

Table 2: Ablation results with limited pool of
operators. Evaluation results for the UNAST
architectures built from various partitions of
the candidates pool.

5 EXPERIMENTAL RESULTS

Compression Candidate Architecture Final Validation
Finetuning Perplexity↓

33% No 2.57
33% Yes 2.41
50% No 2.32
50% Yes 2.25

Table 3: Evaluation of the impact of running
short fine-tuning on architecture candidates
before selecting the final architecture.

5.1 ABLATION STUDIES

We study various candidate operations (layers) in more details in this section. Particularly, we are
interested in ablating compression with: (i) only Attention candidates; (ii) only MLP layers; (iii)
identity candidates (layer skip); (iv) linear layer candidates (cheap linear layer instead of original
layers); (v) all candidate layers with the full pool. We target budgets 33%-80%. All ablations are
summarized in Table 2. The full pool of candidates shows the best overall result.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Budget ARC-E LAMBADA PIQA WinoGrande Average wiki-103 Non-emb Through-
params, B put

GPT3 8B 100% 73.4 70.4 78.0 69.6 72.9 7.28 6.4 3060
GPT3 8B 80% 71.9 69.9 77.0 67.6 71.6 7.44 5.5 3764
GPT3 8B 75% 69.9 68.7 77.2 68.0 71.0 7.66 5.0 3960
GPT3 8B 60% 69.4 67.0 77.1 65.7 69.8 7.99 4.4 4455
GPT3 8B 50% 68.7 65.5 76.9 67.5 69.6 8.10 3.7 4961
GPT3 8B 33% 63.9 58.1 76.0 59.3 64.3 9.26 2.4 5992
GPT3 8B depth 50% 66.7 63.2 75.3 63.1 67.1 10.3 3.2 5520

GPT3 2B 100% 63.2 60.9 75.9 61.7 65.4 9.35 1.2 7421
GPT3 2B 50% 56.6 48.7 72.8 52.6 57.7 11.5 0.7 10915
GPT3 2B 33% 54.8 38.8 70.5 51.4 53.8 13.4 0.5 13479
GPT3 843M 100% 53.2 50.2 70.0 54.3 56.9 12.4 0.3 11692

Model Budget ARC-E LAMBADA PIQA WinoGrande MMLU HellaSwag Non-emb Through-
5 shot 10 shot params, B put

LLaMa 7b Touvron et al. (2023) 100% 71.0 67.6 78.1 68.4 45 76.2 6.7 3138
OpenLLaMa-7Bv2 Geng & Liu (2023) - 69.5 63.8 79.9 66.0 40 76.6 7.0 -
Pythia-6.9B Biderman et al. (2023) - 60.2 47.1 75.2 59.9 26 64.4 6.4 -

LLaMa 7b - UNAST 75% 72.7 68.2 76.8 67.8 38 75.1 5.3 3775
Compresso Guo et al. (2023) - 66.0 - 72.9 63.4 26 - 4.5 -
LLM-Pruner Ma et al. (2023a) - 59.2 - 73.4 63.4 24 56.5 4.5 -
LLaMa 7b - UNAST 60% 68.5 65.8 74.5 66.5 45 - 4.2 4423

Pythia-2.8B - 57.9 50.1 73.8 58.6 27 - 2.5 -
OpenLLaMa-3Bv2 - 63.7 59.1 78.1 63.3 26 - 3.2 -
ShearedLLaMa-2.7B - 67.0 68.4 75.8 64.2 26 - 2.5 -
LLaMa 7b - UNAST 40% 63.5 55.8 72.4 61.0 38 - 2.8 -

Table 4: Evaluation results for various baseline and UNAST models. Non-embedding parameter count
stands for number of parameters in the backbone, without embedding and output layers. LM-harness
average: ARC-easy, LAMBADA, PIQA and WinoGrande in zero-shot. For techniques other than
ours, we report numbers from the original or overview papers, we do not replicate them.

Finding 2. Layer skipping under full model finetuning exhibits the poorest performance;
replacing an entire layer with a simple linear one yields better results.

Finding 3. Opting for smaller alternatives, such as reducing the number of heads or the MLP
expansion factor, proves to be the most effective strategy.

Architecture evaluation step. Recall that, during ILP, we identify 100 architectures and rank them
by a score proxy, which does not fully represent the model’s performance. We propose fine-tuning
these models for a minimal 100M tokens, corresponding to 50 training iterations, and re-ranking
them based on the final LM loss. To evaluate this step’s importance, Figure 5 shows the correlation
between LM loss before and after fine-tuning. We observe no correlation in ranking, underscoring
the critical nature of this step for UNAST. Similarly, Figure 3 shows the importance of running
fine-tuning before selecting the final architecture. The original LANA algorithm omits this step.

5.2 DISCUSSION OF COMPRESSION RESULTS

3.4 3.6 3.8 4.0 4.2 4.4 4.6
LM score after 0 iterations

2.350

2.355

2.360

2.365

2.370

2.375

LM
 sc

or
e 

af
te

r 5
0 

ite
ra

tio
ns

LM Score After Short Finetuning of Top-100 Archs

Linear fit (Pearson corr=0.48)
Best before finetuning
Best after finetuning

Figure 5: Architectures evaluation results for GPT 8B,
50% latency budget. X axis represents lm score of an
architecture without fine-tuning, Y axis - lm score of the
architecture after 50 steps (25k samples) of fine-tuning.

Depth pruning. Depth pruning is popular for
its simplicity, relying on importance estimation
of blocks, followed by trimming and finetuning.
We implement the Shortened LLaMA method
Kim et al. (2024) at the layer level, comparing
it with UNAST. For UNAST, we use two set-
tings: (i) the same scoring technique with ILP
search and architecture evaluation, and (ii) the
full UNAST pipeline. In (i), there’s no local
distillation, making it a simple improvement on
depth pruning.

Implementing this is straightforward, as we can
create a pool with two candidates: the teacher
layer and the identity layer. The ILP provides
multiple architecture candidates, with the best
in terms of cumulative accuracy (Mean Squared Error) chosen for finetuning. We see that the ILP
improves LM eval from 47.9 to 57.8 (see comparison against ShortenedLlama in Appendix C). Full
UNAST produces better final architecture with LM eval at 60.3.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

GPT3-8B LLaMa7B

Method Size Wiki103 LM Speed Param Method Size Wiki103 LM Speed Param
GB PPL eval up GB PPL eval up

Baseline 15.9 7.28 63.4 1.0x 6.4 12.55 5.48 62 1.0x 6.7

Quantization∗ Quantization∗

GPTQ Frantar et al. (2022) 3b 6.10 11.8 32.3 - 6.4 GPTQ 3b 2.75 8.13 47.3 - 6.7
UNAST 50% + 4b 5.63 9.44 57.8 1.6x 3.7 U60% 4b 2.33 6.66 58.8 1.4x 4.5
GPTQ 4b 6.80 9.31 51.6 - 6.4 GPTQ 4b 3.50 5.78 60.4 - 6.7
RTN Dettmers et al. 4b 6.80 16507 30.1 - 6.4 RTN 4b 3.50 10557 32.1 - 6.7
UNAST 75% + 4b 6.23 9.06 58.1 1.3x 5.0 U75% 4b 2.94 6.01 60.8 1.2 5.0

Sparsity Sparsity

SparseGPT Frantar & Alistarh (2023) 1:4 6.90 1427 30.2 1.4x 1.6 SparseGPT 1:4 3.50 1262 30.3 1.4x 1.6
SparseGPT 25% 6.90 246 31.5 - 1.6 SparseGPT 25% 3.50 224 31.4 - 1.6
UNAST 50% s50% 7.36 9.36 58.0 1.6x 1.9 U60% s40% 3.64 7.83 55.0 1.4x 1.6

SparseGPT 2:4 9.90 12.0 54.7 1.4 3.2 SparseGPT 2:4 6.50 224 52.6 1.4x 3.2
SparseGPT 50% 9.90 8.87 60.3 - 3.2 SparseGPT 50% 6.50 6.90 58.7 - 3.5
Depth pruning Kim et al. (2024) 10.38 11.70 47.9 1.7 3.5 - - - - - -
UNAST 50%_d 9.88 10.33 57.8 1.7 3.2 U60% 8.34 6.38 59.4 1.4x 4.2
UNAST 50% 10.80 8.10 60.3 1.6x 3.7 U75% s50% 5.39 6.01 61.1 1.2x 2.6

Table 5: Comparison of UNAST with SOTA post-training compression techniques. UNAST allows
to apply the same compression methods on top of the resulting architectures resulting in even more
succinct models. GPT 8b. ∗ We assume no speed up from quantization to 3 or 4 bits, for lack of
suitable hardware implementations. SliceGPT model includes finetuning. Speed up is computed as a
ratio to the base model in BF16 with BS=32, input/output length is 16/512 tokens. The speed up from
UNAST+Ampere 2:4 is not supported at this time and we only report the speed up from UNAST.
UNAST 50%_d stands for UNAST with layer skipping as candidates only, sX% for unstructured
sparsity with X%.

Memory footprint target. UNAST also supports minimizing the final number of parameters. In
Appendix F we compare the performance of these models. We find that optimizing for fewer
parameters improves latency but slightly reduces accuracy compared to latency-targeted architectures.

Full model compression. Main results of compressing GPT3-2B, GPT3-8B and LLaMa2-7B as
well as comparisons to other models and efficiency methods are summarized in Table 4. From these
comparisons, it is clear that UNAST enables the creation of multiple models constrained to different
target latencies, while maintaining reasonable accuracy reductions. The results show that UNAST
produces efficient models that outperform other models, such as OpenLLaMa and Pythia, in terms of
accuracy, despite having fewer parameters.

5.3 COMBINING WITH OTHER PTO TECHNIQUES

UNAST is a new Post-Training Optimization (PTO) approach, orthogonal to popular techniques
like quantization and sparsity. In this section, we illustrate that these techniques complement each
other well. Furthermore, combining UNAST with quantization/pruning yields markedly superior
results compared to using a single technique. Specifically, UNAST focuses on replacing layers with
more efficient candidates emulating the behavior of the original layer, while quantization reduces
the bit-width of model parameters and sparsity removes redundant parameters. As shown in Table 5,
combining UNAST with quantization or pruning results in significantly improved accuracy and
efficiency compared to models of the same size compressed using a single technique. For instance,
the UNAST 50% + 4 bits quantization for the GPT 8B model yields a smaller resulting model size
than the baseline compressed to 3 bits, with higher accuracy.

Finding 4. Combining UNAST with other PTO techniques is significantly better than individual
PTO techniques.

6 DISCUSSION ON RESULTING MODEL STRUCTURES

In this section we describe the insights on the model structure we can infer from the UNAST resulting
models. We focus on GPT 8B model.

General Observations. First, we discuss the models with restricted latency budget and the layer
operator candidates are taken from all available distilled candidates. The figures with structures
of the resulting models are presented in Appendix G. From the model structures we can make the
following observations: 1. The method tends to compress Attention layers rather than MLP, and 2.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The algorithm prefers to achieve speedup by removing channels rather than Attention heads. However,
reducing the number of heads or channels has a similar effect on latency: the latency of the layer
with 16 heads and 128 channels is equal to the latency of the layer with 32 heads and 64 channels.
This means that reducing the number of heads affects accuracy more than reducing channels.

This finding is confirmed for other budget latency models as well. (See Appendix G).

Finding 5. Compressing Attention layers has a lower effect on model accuracy than MLP
compression.

Finding 6. Opting for a reduction in the number of heads rather than number of channels in the
Attention layer has a positive effect on the model accuracy.

Attention vs MLP. To delve deeper into the impact of compression on the two types of basic
layers within Transformer models, we conducted experiments where we restricted the search of
potential candidates to one type of layer: Attention or MLP, while keeping all other layers the same
as the teacher. This approach forces UNAST to achieve speedup solely from one type of layer. The
accuracy results are presented in Table 2. For model structure illustrations, please refer to Appendix G,
reinforcing our assertion about the importance of heads in the attention layer over channels. From
the results of isolated MLP layer compression search, we observe that layers in the first half of the
model body are more readily compressed than those in the second half. A similar trend is noticed for
Attention layers. However, UNAST decides to apply high compression on the last 5 MLP layers.

Finding 7. Layers in the first half of the model are more amenable to compression compared to
those in the second half.

Depth pruning. Next we study the affect of skipping the layers, where the evaluation results are
presented in the Table 4. We can see (Appendix G) that it is preferable to remove more attention
layers rather than MLPs. Moreover, it chooses to remove the layers in the middle of the model and
keep a large group of MLP layers in the tail.

Finding 8. Depth pruning tends to prune both types of layers around the middle of the model.

Relationship to LANA LANA Molchanov et al. (2022) explores layer-wise distillation by focusing
on CNN architectures in vision. Our work extends this study to the transformer architecture and
language models. This involves studying different sets of operators, including attention and MLP.
Besides, the scale of LLMs imposes implementation constraints and the use of tensor and pipeline
parallelism. Our work studies different pre-training losses, which were not discussed in the LANA
work. An additional contribution of our work is the introduction of a short fine-tuning stage for
candidate architectures. The experimental results in Table 3 highlight the advantages of this approach.

7 CONCLUSION AND LIMITATIONS

In this paper, we introduce a novel NAS approach for Transformer-based Large Language Models,
facilitating adaptable model tuning to accommodate various performance and resource constraints.
UNAST enhances both performance and efficiency, making it essential for creating high-performing,
resource-efficient models. Our analysis of layer sensitivity to compression—especially structured
pruning—identifies components prone to degradation, guiding the development of effective compres-
sion strategies.

REFERENCES

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun
Huang, Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression with differentiable
neural architecture search. In Christian Bessiere (ed.), Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-20, pp. 2463–2469. International Joint
Conferences on Artificial Intelligence Organization, 2020. doi: 10.24963/ijcai.2020/341. URL
https://doi.org/10.24963/ijcai.2020/341.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey on deep neural network compression:
Challenges, overview, and solutions. IEEE Access, 6:39136–39150, 2018.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Zihang Dai, Yiming Yang, Guokun Lai, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Funnel-transformer: Filtering out sequential redundancy for efficient language processing. arXiv
preprint arXiv:2006.03236, 2020.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale, 2022. CoRR abs/2208.07339.

Chenhe Dong, Guangrun Wang, Hang Xu, Jiefeng Peng, Xiaozhe Ren, and Xiaodan Liang.
Efficientbert: Progressively searching multilayer perceptron via warm-up knowledge distilla-
tion. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 1424–1437. Association for Computational Linguistics, 2021. URL https:
//aclanthology.org/2021.emnlp-main.108.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Elias Frantar, Eldar Kurtic, Pierre Stock, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. An survey of neural network
compression. arXiv preprint arXiv:2006.03669, 2020.

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. Compresso: Structured pruning with
collaborative prompting learns compact large language models. arXiv preprint arXiv:2310.05015,
2023.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems (NIPS), pp. 164–171, 1993.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiaodong Chen, Lin Li, and Fang Wang. Tinybert:
Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351, 2019.

11

https://doi.org/10.24963/ijcai.2020/341
https://aclanthology.org/2021.emnlp-main.108
https://aclanthology.org/2021.emnlp-main.108
https://zenodo.org/records/10256836
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 2024.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In Interna-
tional Conference on Learning Representations, 2020. URL https://iclr.cc/virtual_
2020/poster_rkgNKkHtvB.html.

Eldar Kurtic, Elias Frantar, and Dan Alistarh. Ziplm: Hardware-aware structured pruning of language
models. arXiv, 2023a. URL https://arxiv.org/abs/2302.04089. arXiv:2302.04089
[cs.LG].

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse fine-tuning
for inference acceleration of large language models, 2023b.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems (NIPS), pp. 598–605, 1990.

Xiao Li, Yu Cheng, Zhe Gan, Jingjing Yu, and Jingjing Liu. Bert-emd: Many-to-many layer mapping
for bert compression with earth mover’s distance. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm efficiency optimization and applicability. arXiv preprint
arXiv:2306.00978, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023b.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations (ICLR), 2017.

Pavlo Molchanov, Jimmy Hall, Hongxu Yin, Jan Kautz, Nicolò Fusi, and Arash Vahdat. LANA:
latency aware network acceleration. In Computer Vision - ECCV 2022 - 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XII, pp. 137–156. Springer, 2022. URL
https://doi.org/10.1007/978-3-031-19775-8_9.

Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani, Dushyant Mehta, Chris Lott, and
Tijmen Blankevoort. Distilling optimal neural networks: Rapid search in diverse spaces, 2021.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Nvidia. Megatron-lm & megatron-core, 2024. URL https://github.com/NVIDIA/
Megatron-LM.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

12

https://iclr.cc/virtual_2020/poster_rkgNKkHtvB.html
https://iclr.cc/virtual_2020/poster_rkgNKkHtvB.html
https://arxiv.org/abs/2302.04089
https://doi.org/10.1007/978-3-031-19775-8_9
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Seungcheol Park, Jaehyeon Choi, Sojin Lee, and U Kang. A comprehensive survey of compression
algorithms for language models. arXiv preprint arXiv:2401.15347, 2024. doi: 10.48550/arXiv.
2401.15347. URL https://arxiv.org/abs/2401.15347.

Peyman Passban, Longyue Li, and Qun Liu Wen. Cross-lingual knowledge distillation for self-
supervised learning. arXiv preprint arXiv:2010.11506, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. An adversarial winograd
schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a
compact task-agnostic bert for resource-limited devices. In Annual Meeting of the Association for
Computational Linguistics, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han.
Hat: Hardware-aware transformers for efficient natural language processing. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7675–7688.
Association for Computational Linguistics, 2020a. URL https://aclanthology.org/
2020.acl-main.684.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020b.

Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei. Minilmv2: Multi-head self-attention relation
distillation for compressing pre-trained transformers. arXiv preprint arXiv:2012.15828, 2020c.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1513–1528, Dublin, Ireland, 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.acl-long.107. URL https://aclanthology.org/2022.acl-long.107.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Wayne Xiao, Zhanghao Zhang, Hanrui Wang, and Song Han Zhang. Smoothquant: Accurate and
efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438,
2022.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: Task-
agnostic and adaptive-size bert compression with neural architecture search. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1933–1943. ACM,
2021. URL https://dl.acm.org/doi/10.1145/3447548.3467404.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024. URL https://arxiv.org/abs/2402.11187.

13

https://arxiv.org/abs/2401.15347
https://aclanthology.org/2020.acl-main.684
https://aclanthology.org/2020.acl-main.684
https://aclanthology.org/2022.acl-long.107
https://dl.acm.org/doi/10.1145/3447548.3467404
https://arxiv.org/abs/2402.11187


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters for Knowledge-
Distillation

Parameter Value

Optimizer Adam
Global batch size 256

Momentum 0.0
Max/Min LR 5e-4/5e-5

LR decay Cosine
Iterations 5k

Table 7: Hyperparameters for Fine-tuning

Parameter Value

Optimizer Adam
Global batch size 256

Momentum 0.1
Max/Min LR 5e-4/5e-5

LR decay Cosine
Iterations 10k

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Autotinybert: Auto-
matic hyper-parameter optimization for efficient pre-trained language models. In Proceedings of
the 2021 International Joint Conference on Natural Language Processing, pp. 5146–5157. As-
sociation for Computational Linguistics, 2021. URL https://aclanthology.org/2021.
ijcnlp-main.428.

Shuzhou Yuan, Ercong Nie, Bolei Ma, and Michael Färber. Why lift so heavy? slimming large
language models by cutting off the layers. arXiv preprint arXiv:2402.11700, 2024. URL https:
//arxiv.org/abs/2402.11700.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for
large language models. arXiv preprint arXiv:2305.01693, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Lo-
raprune: Pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403,
2023.

A TRAINING PARAMETERS

In tables 6 and 7 we present the hyperparameters for knowledge distillation training and fine-tuning
(final training of the best architecture) respectively. In the short training of the top-k candidates for
their ranking we used the same hyperparameters as in the fine-tuning.

B MODEL PERFORMANCE METRICS

In table 8 we profile the inference of GPT3-8B model under two workloads: pre-fill and auto-
regressive. We can see that most of the time in both regimes is taken by the Transformer blocks, more
than 80%. However, in terms of parameter count main body takes 76%.

C DEPTH PRUNING

In Table 9 we compare our implementation of ShortenedLlamaKim et al. (2024) applied to GPT3
8B vs full UNAST pipeline. In our ShortenedLlama implementation we basically pick the best
architecture in terms of sum of global MSEs and then run the finetuning. In UNAST on contrary we
first run short fine-tuning and pick the best model based on evaluation and then start the finetuning
for the chosen architechture. We can see than UNAST approach outperform the ShortenedLlama
approach in accuracy and speedup.

14

https://aclanthology.org/2021.ijcnlp-main.428
https://aclanthology.org/2021.ijcnlp-main.428
https://arxiv.org/abs/2402.11700
https://arxiv.org/abs/2402.11700


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Params, M Latency, s

prefill zero-shot

Embedding 1048 15% 0%
Main body 6425 85% 99%
Output 1048 0% 1%

Table 8: Performance metrics different stages
of GPT3-8B model. The main body, trans-
former decoder blocks, consume 76% param-
eters and 94% compute and are selected for
compression with UNAST.

Method Wiki-103 PPL LM eval Speedup

Depth pruning 11.70 47.9 1.7
UNAST depth 10.33 57.8 1.7
UNAST 8.1 60.3 1.6

Table 9: Compressing the model to 50% bud-
get with original Depth pruning, UNAST ap-
proach to depth pruning and full UNAST al-
gorithm.

0.00790 0.00795 0.00800 0.00805 0.00810
Sum of global MSE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LM
 sc

or
e 

af
te

r 5
0 

ite
ra

tio
ns

Figure 6: Evaluation of LLaMa 7B 60% latency budget model. X axis stands for the metric we use in
ILP, lower is better. Y axis is lm score of a model after 50 steps of the finetuning.

D MODEL SIZE COMPUTATION

We compute the models sizes in table 5 the following way. The embedding and output layers are
always uncompressed and stored in float16 precision. The main body parameters can be compressed
in different ways. For the UNAST compression we compute the total number of main body parameters
in the resulting architecture. For GPTQ compression we assume that each element takes certain
number of bits. For SparseGPT we compute the number of non-zero parameters. For example, to
compute model size of UNAST 50% + GPTQ 4b for GPT 8B model, we consider 2.1B embedding +
output parameters, add 3.7B parameters compressed to 4 bits and as result we get (2.1B * 16 bits
+ 3.7B * 4 bits) = 5.63 GB. For UNAST 50% + SparseGPT 50%, the formula is following (2.1B +
3.7B * 0.5) * 16 bits = 7.36GB.

E EFFECT OF SHORT FINETUNING

To validate the effect of the short finetuning on the choice of the best model we compare the metric
we use in the ILP - sum of the layer-wise global MSE against the evaluation score after 50 steps of
the finetuning for each of 100 models that ILP outputs. The result is shown in Figure 6. We can see
that the top-1 model after ILP might be in the cluster of the worst models after the finetuning. It
means that short finetuning helps to properly rank the sampled models.

F PARAMETERS CONSTRAINT

UNAST supports various types of model efficiency targets. In Table 10 we compare latency and
memory footprint targets. We can see that UNAST with memory footprint constraint results in more
faster and succinct models which in its turn negatively affects the model accuracy.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Objective LM-eval Wiki latency Params
PPL ratio ratio

Baseline 63.4 7.28 1.0 1.0
80% latency 62.3 7.44 .86 .89
80% params 62.3 7.52 .83 .85
50% latency 60.3 8.10 .62 .68
50% params 57.8 8.61 .59 .62

Table 10: Optimization objective ablation.
Latency and number of parameters include
uncompressed embedding and output layers.

G MODEL STRUCTURE

In Figures 7, 8, 9, 10 structure for Attention and MLP layers for GPT3 8B with constrained latency
budget. In Figure11 we see the structures of the models which gain latency profits from only one
type of the layers whereas the layers of the other type are same as in the teacher. We can see which
layers UNAST suggests to remove in Figures 12 and 13. Figure 14 shows the structure of the model
with constrained parameters count.

In Figures 15, 16 we can see structures of GPT3 2B model. Figures 17 and 18 represent UNAST
resulting architectures of Llama 7B model with constrained latency budget.

Based on the figures, we can confirm the statements we did in the Section 6:

1. Attention layers are less sensitive to compression than MLP.
2. Reducing number of heads in Attention layer has less affect on the model accuracy than

reducing number of channels
3. Layers in the first half of the model are easier to compress than the layers in the second half

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

Linear

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 7: Layers parameters for a single architecture with latency budget 33%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.

H PRUNED LAYERS IN THE CANDIDATES POOL

As ablation study we created two possible candidates: 2:4 pruned layer and quantized layer. Using
these candidates we can get some insights which layers are more sensitive to different types of
compression. For that we pruned the original model using SparseGPT (2:4 sparsity) or GPTQ (with
4 and 8 bits). Then. for each Attention or MLP layer we created three candidates: 1. Candidate
with compressed linear module (QKV or FC1) 2. Candidate with compressed second linear module
(attention output or FC2). 3. Both linear modules are compressed. Then we evaluated each candidates
the same way we do after the pretraining, in this case we didn’t do any knowledge distillation.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 8: Layers parameters for a single architecture with latency budget 50%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 9: Layers parameters for a single architecture with latency budget 60%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.

We added each of the candidate operators to the original pool of candidates. Turns out that the best
model (see Figure 19) was chosen to use mostly quantized candidates, and quantize both modules
inside each of the layers. When we removed the quantize candidates from the pool to see the effect of
pruned operations, the best model was designed like in Figure 20. Here, we can see that UNAST
mostly decides to prune both modules in MLP layers but it prefers to use downsized candidates in
case of Attention layers.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

Teacher

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 10: Layers parameters for a single architecture with latency budget 80%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4
Hi

dd
en

 si
ze

 e
xp

an
sio

n

(b) MLP layers

Figure 11: Layers parameters for 2 different result architectures with only Attention (left) and only MLP (right).
The latency budget for both candidates is 80%. The layers of the other type are uncompressed. Hatched bars
stand for the layers that are identical to the corresponding baseline layers.

0 5 10 15 20 25 30
Layer

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(a) Attention layers

0 5 10 15 20 25 30
Layer

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 12: Layers of the UNAST architecture with 50% latency budget from skip layers pool.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(a) Attention layers

0 5 10 15 20 25 30
Layer

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 13: Layers of the UNAST architecture with 75% latency budget from skip layers pool.

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

(b) MLP layers

Figure 14: Layers parameters for a single architecture with parameters count budget 80%. Hatched bars stand
for the layers that are identical to the corresponding teacher(baseline) layers.

0 5 10 15 20
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

Linear

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 15: GPT-2B. Layers parameters for a single architecture with latency budget 50%. Hatched bars stand
for the layers that are identical to the corresponding teacher(baseline) layers.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 5 10 15 20
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 16: GPT-2B. Layers parameters for a single architecture with latency budget 80%.Hatched bars stand
for the layers that are identical to the corresponding teacher(baseline) layers.

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 17: LLaMa 7B. Layers parameters for a single architecture with latency budget 60%.

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

Teacher

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

0 5 10 15 20 25 30
Layer

1

2

3

4

Hi
dd

en
 si

ze
 e

xp
an

sio
n

Teacher

(b) MLP layers

Figure 18: LLaMa 7B. Layers parameters for a single architecture with latency budget 75%.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

Quant, bits 4, both
Quant, bits 8, both
Teacher

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s
(a) Attention layers

0 5 10 15 20 25 30

Quant, bits 4 both
Quant, bits 8 both

(b) MLP layers

Figure 19: Layers parameters for a single architecture with parameters budget 50%. Includes quantized layers
as candidates.

0 5 10 15 20 25 30
Layer

16

24

32

Nu
m

be
r o

f h
ea

ds

Prune 2:4, both

32

64

96

128

Nu
m

be
r o

f c
ha

nn
el

s

(a) Attention layers

35 40 45 50 55 60

1

2

3

4 Teacher
Prune 2:4, fc1
Prune 2:4, both

(b) MLP layers

Figure 20: Layers parameters for a single architecture with parameters budget 50%, includes pruned layers as
candidates.

21


	Introduction
	Related work
	Method
	Experimental settings and details
	General setup
	UNAST details

	Experimental results
	Ablation studies
	Discussion of compression results
	Combining with other PTO techniques

	Discussion on resulting model structures
	Conclusion and limitations
	Training parameters
	Model Performance Metrics
	Depth pruning
	Model size computation
	Effect of short finetuning
	Parameters constraint
	Model structure
	Pruned layers in the candidates pool

