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ABSTRACT

We present UNAST, a novel method for optimizing Large Language Models
(LLMs) after training. UNAST integrates Neural Architecture Search (NAS) with
sparsity and quantization techniques to compress LLMs. Starting from a pre-
trained model, it replaces layers (such as attention and MLP) with more efficient
alternatives by modifying attention heads, key-value projection dimensions, and
MLP expansion ratios. Layer candidates undergo local distillation to replicate
the original layers. Scores and costs (e.g., latency, parameter count) for each
operator are input into an Integer Linear Optimizer, which determines the optimal
architecture under given constraints. Our experiments show that UNAST scales
effectively to large models, reducing training costs by up to 10x compared to
training smaller models from scratch. Testing on GPT-3 and LLaMa reveals
that UNAST enhances latency and memory efficiency by up to 60% with minimal
accuracy loss. Additionally, it offers insights into the impact of various compression
techniques on Transformer layers, facilitating the creation of non-uniform models.

1 INTRODUCTION

Natural Language Processing (NLP) has undergone a major transformation with the rise of Large
Language Models (LLMs), largely due to the scalability of the attention mechanism. However,
deploying these increasingly large models efficiently presents growing challenges. LLM families,
like LLaMa with its 7B, 13B, and 70B variants, typically feature multiple versions to accommodate
different hardware and time constraints. These models, however, are trained independently, creating
redundancy. A more efficient strategy would be to compress larger models down to smaller sizes
rather than training each from scratch.

Building on this idea, post-training techniques like quantization and sparsity have emerged to enhance
LLM deployment. While they reduce model size, they don’t always improve throughput and often
require manual hyperparameter tuning. Neural Architecture Search (NAS) can optimize model
architectures automatically for efficiency but is resource-intensive when applied to LLMs. Therefore,
a comprehensive post-training optimization method is needed.

To tackle this challenge, we introduce UNAST, an optimization framework that leverages NAS
to compress models according to specific constraints like latency and parameter count. UNAST
adjusts internal layer parameters, including the number of attention heads, Key-Value (KV) projection
dimensions, and expansion factors, to achieve efficient compression.

We begin with a pre-trained model and distill teacher layers (attention and MLP) into candidate
configurations by adjusting parameters like the number of heads, MLP projections, and attention
types. Each candidate is scored based on its similarity to the original teacher blocks. Using integer
linear programming (ILP), we select K architectures that optimize for constraints using candidate
scores and associated costs. These architectures undergo quick fine-tuning and evaluation, with the
top-performing one chosen for a longer final fine-tuning iteration.

We demonstrate several key advantages of our approach:

1. Time to Create a New Model. Our method produces new models up to 10 times faster than pre-
training from scratch, thanks to efficient layer-wise knowledge distillation and automated candidate
model selection.



Under review as a conference paper at ICLR 2025

. Local
Trained LLM distillation

Output 1% data

Attention variants:
Fast Neural
Softmax 48 12heads )\ Architecture search 8B
T \
rmes

Model 1

\ | Losatensy
Model 2
0.5x memory
Model 3
H100 optimal

Intdfint8

Accuracy

i
i
@ The best model é
Model 4 R
@ From scratch - suboptimal
UNAST - faster/better

Input: prompt Token Throughput

MLP is more sensitive than Attention #heads <KV projection Layers in the first half are easier to compress
Worse

c N, N, 1

2

: : <

e N

2 worse | |8

Ny N, Ny
2xN, = 3xN; Ly Ly Ly Ly Ls Lg Ly Ly Ly Ly Ls Lg

Figure 1: Overview of UNAST as a unified approach to post-training LLM optimization. Starting
from a pre-trained model, layers are replaced with more efficient counterparts using a fast NAS
approach to find models under user-defined constraints like latency and number of parameters. This
results in better, smaller models with a 10x reduction in costs compared to training from scratch. At
the bottom, we share the main findings for future architecture design.

2. Latency and Memory Footprint Improvements.Models generated by our approach greatly
improve the original model’s latency and memory footprint. Crucially, target parameters like latency
or memory can be customized and set as constraints in the NAS process. These efficiency gains are
achieved with minimal accuracy loss, ensuring the models remain highly effective for their tasks.

3. Detection of Heterogeneity in Model Structure. Our approach enables heterogeneity in the
teacher model’s structure, resulting in models with non-uniform blocks. This optimization creates
more tailored and efficient architectures that capitalize on the strengths of various model components.

Our main contributions can be summarized as:

1. Novel Neural Architecture Search (NAS) Approach Applied to Large Language Models. We
present a NAS methodology specifically designed to optimize Transformer-based large language
models. This approach refines model architectures, enhancing both performance and efficiency. It
effectively addresses the unique challenges posed by the structures of large language models like
GPT and LLaMA.

2. Empirical Insights into Transformer Model Structure. Through extensive empirical obser-
vations, we offer insights into the structure of Transformer models, including analyses of how
compression impacts various layers of these architectures.

2 RELATED WORK

Compression of neural networks remains an active area of research, as highlighted in recent sur-
veys|Cheng et al.| (2018)); |Gou et al.| (2020); [Park et al.| (2024). Common methods include weight
sparsification |Han et al.|(2016)); LeCun et al.| (1990); Hassibi & Stork|(1993)), structured pruning via
channel removal Molchanov et al.|(2017), and quantization [Frantar et al.|(2022); Lin et al.|(2023);
Xiao et al.[(2022). We focus on LLM compression for faster inference and will review some recent
work in this section.

Sparsity in the unstructured form is not directly beneficial for GPU inference. SparseGPT |Frantar
& Alistarh| (2023) and Wanda Sun et al.| (2023)) additionally explore 2:4 structured sparsity that can
benefit faster inference. Structured pruning is another popular technique where entire heads and
MLP channels are removed from the transformer Xia et al.|(2022);|Ma et al.| (2023b)); Zhang et al.
(2023); Xia et al.| (2023)); [Kurtic et al.|(2023a). Such pruning results in a smaller and faster model;
however, the entire process needs to be repeated for every target budget. Depth pruning removes
entire blocks from the model as the residual skip connections will still allow signal propagation.
Stochastic depth during training was applied in [Fan et al.|(2020). Importance-based layer dropping
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was studied in [Men et al.| (2024); [Kim et al.| (2024); [Yuan et al| (2024), and layer merging was
explored in Yang et al.| (2024). Quantization is a common technique to reduce the bitwidth of weight
tensors. Round-to-nearest approaches Dettmers et al.;|Yao et al.|(2022) perform straight-forward per-
element quantization, while carefully selecting quantization granularity. AdaRoundNagel et al.|(2020)
computes data-depending quatnization, whereas GPTQFrantar et al.|(2022), AWQ |Lin et al.| (2023)
or RPTQ |Yuan et al.| (2023) re-adjust the weights after quatnization to meet the dense model layers
output. Quantization helps reduce memory transfer overhead for bandwidth-limited operations under
small batch sizes. We pick GPTQ |Frantar et al.|(2022) as the representative approach. Knowledge
distillation is a popular technique to bootstrap model performance using a stronger model [Sanh
et al.| (2019); [Wang et al.| (2020c]); Jiao et al.| (2019); [Sun et al.| (2019); [Passban et al.| (2020); Li
et al.|(2021). Considering only the access to the original model, we opt for per-layer distillation as
it has proven effective. Efficient architecture design and NAS provide another way to obtain a
more efficient model. Manual design has been explored in Kitaev et al.|(2020); [Child et al.| (2019);
Wang et al.| (2020b); Sun et al.| (2020); Dai et al.| (2020). In this work, we are constrained by the
architecture of the teacher model. NAS offers another method to attain a model with an accuracy-
latency trade-off|Chen et al.| (2020); Dong et al.|(2021); Wang et al.| (2020a); |Xu et al.| (2021); [Yin
et al.|(2021). Unfortunately, the high cost of these NAS techniques limits their application to LLMs.
We opt for fast NAS techniques applied to convolutional neural networks, such as DONNA Moons
et al.|(2021)) and LANA [Molchanov et al.|(2022)). We analyze, extend, and apply these techniques to
LLMs, demonstrating the first scalable NAS method for LLM:s.

3 METHOD

Our approach, depicted in Figure 2] comprises two main parts: 1) Candidate training (see Section [3),
where layer-wise knowledge distillation is applied to train various candidate operations to mimic
those in the original teacher model; 2) Architecture search phase, which explores the candidate space
to find a model meeting custom constraints using linear optimization.

Candidate training phase. Our research focuses on Transformer-like models, particularly on
enhancing the performance of layers within Transformer blocks. While embedding and output layers
constitute a significant portion of the model, we defer their performance optimization for future work.
Within each Transformer block, our focus is on optimizing two key layers: Attention and Multilayer
Perceptron (MLP).

We define the set of student operations for each of the 2 layer types, offering a diverse range of
candidates for each layer. The only constraint is that the input and output dimensions must match
those of the corresponding teacher layer. Unlike other NAS approaches that aim to discover entirely
new models, our goal is to replace the original model with a more efficient one. This confines our
search to the architecture space “near” the teacher network. To achieve this, we conduct layer-wise
knowledge distillation training to simulate the corresponding teacher layer.

Thus we train each student layer to simulate the corresponding teacher layer using layer-wise

knowledge-distillation: min Y. L(t;(x;), s;j(z;)) where X is a set of training samples and x;
zeXP

is an input for the layer ¢, L is a loss function.

We experimented with various layer-wise loss functions, including Mean Squared Error (MSE),
cosine similarity, L1 norm or various linear combinations of the losses. However, we have found
that the best performing loss function in terms of its effect on accuracy of the distilled layer is the
normalized MSE (SquareHead [Kurtic et al.[(2023b): L(a,b) = M SE(a,b)/MSE(a,0). Further in
the paper, we represent the results for this type of distillation loss.

In such candidate pre-training we can break down the training process into (M LP_ops+ATT_ops)*
layers independent minimization problems, allowing us to train all candidates simultaneously.

Search phase. In the rest of the paper, we adopt the following notation. We use W = w; ; as a set
of weights of all pre-trained students. We use a set of binary vectors Z = {z;},7 = 1..2N, where
z; =0,1° Y (or z; = 0,1° B depending on layer type) is a one-hot vector representing the choice of
the candidate layer. Thus, the candidate architecture defined by Z can be written as C(z; Z, W). The
usual formulation of the NAS problem can be expressed as:
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mZinn%n;ﬁ(C(x;Z,W),y) (D

The possible extensions of the problem may include various constraints like F( > p,z;,P) >0
i=1..2N
where p; is a performance metric vector (e.g. latency, number of parameters) for each candidate

operation of the i-th layer. The function F and user-provided constant P define the performance
budget.

Similar to the LANA Molchanov et al.|(2022)) approach, we approximate loss function in the NAS
problem as:

ZE(C(x,Z,W),y)%Z(T(a:),y)—k Z €,Z;. (2)

The first component represents the teacher training loss and remains constant. The second component
is determined by e; - vector of model loss changes if i-th layer. Here, ¢; ; is a difference between
teacher loss and loss of the model where ¢-th layer is replaced with j-th (pre-trained) candidate on
the same data and all the other layers in the model are left intact. Such a linear approximation lets
us frame the NAS problem in terms of an ILP. This reformulation allows us to scale up to a large
number of operations per layer and results in multiple diverse solutions.

The approximation shares similarities with the first-degree Taylor expansion of the student loss
grounded on the premise that the teacher resides within the same search space. In other words, we
approximate the non-linear effects of the layer-wise model changes with a linear function. Despite
the fact that this approach neglects the cumulative effects of layer changes affects on model accuracy,
empirical experiments validate its effectiveness.

Formally, the k-th solution, denoted as z* is obtained by solving:

i 7k 7 >
mzln Z a;z;, s.t.F( Z p;zi,P) > 0, 3)

i=1..2N i=1..2N

where z; is a one-hot vector. To improve the diversity of the solution, we add the following constraint:

> ik <Ok <k “)
i=1.2N

The scalar O sets the maximum overlap of the suggested architectures, which we set as in (Molchanov
et al., 2022) to be equal 0.7 of the total number of layers. In the ILP we minimize the linear
approximation of model output changes due to layer replacement meeting the budget criterion and
with overlap constraint we force the solver to provide varied solutions.

Architecture Selection and Fine-tuning. After the search phase, multiple architectures meeting the
constraint are received and ranked based on the cumulative accuracy metric of per-layer operators.
However, this ranking may not fully reflect the final model’s accuracy, and models may react
differently to further training. To address this, each architecture undergoes short training (100s
millions of tokens), and their performance is evaluated (see Stage 3 in Figure[2)). This approach
helps identify the model that responds better to training, as detailed in Section [5.1] Once the best
model is identified, a relatively short (tens of billions of tokens) version of the baseline pre-training
is conducted, referred to as fine-tuning in our paper. The same learning rate schedule and dataset
are used, with a higher learning rate for models with lower performance constraints. This choice is
justified by the smaller and more efficient models having lower quality initially and needing larger
optimization steps for improvement.



Under review as a conference p

aper at ICLR 2025

Preamble: Build Operator
Database

Operators
ATT nh 32 kv 96

ATT nh 32 kv 64 Device

Stage 1: Layer-wise Distillation

—
Operator
Scores

Output

Stage 2: Architecture Search

Operator
ores & Cosf

Target
Device

peoring Constrained St
Ki led: 10ms, 28
ATT nh 16 kv 48 | |obile Laptop Cloud
= Teacher Student Candidate Candidate| (Candidate
Layer, Layeré\p 1 i K
[Softmax] ISoftmax] [Softmax]
Layer L Layer L Layer L
Measure Latency, Layer Input [ ] [ ] [ ]
memory footprint m Layer i Layeri evgar
— - [Layer 1] [Layer 1] [ﬁayer 7
Input: prompt
Costs — Embed Embed [Embed]

Stage 3: Select Architecture

Candidate .
Architecture 1

Candidate
Architecture i

Candidate .
Architecture K | Short Train

Stage 4: Finetuning

Short Train

Final
Seleclect Architecture
e
Calibration
Data

Figure 2: Method overview. In a preliminary stage, we select candidate operators and measure
their cost (device-specific latency, memory footprint). (1) Each layer in the pre-trained model is
distilled into suitable candidate operators by minimizing activation distance. Scores and weights
for each teacher/operator pair are stored. (2) Under user-specified latency and memory constraints,
we select the Top-K candidate architectures based on aggregate operator scores. (3) Each candidate
architecture is fine-tuned on a calibration dataset, and the best architecture is selected. (4) Finally, the
best architecture is fine-tuned to produce the UNAST model.

4 EXPERIMENTAL SETTINGS AND DETAILS

4.1 GENERAL SETUP

We focus on improving efficiency of Transformer-based models. Specifically, we gather insights
by exploring 3 pretrained models: proprietary GPT-architecture models with 2B (GPT-2B) and 8B
(GPT-8B) parameters, respectively, as well as the open LLaMa2-7B model. GPT-2B and GPT-8B are
trained on 1.1T tokens datasets. GPT-2B and GPT-8B contain 24/32 layers with hidden dimension
2048/4096 and 16/32 heads in attention layers. The LLaMa2-7B models is the publicly available 7B
GPT model trained on 2T tokens. It has similar configuration parameters as GPT3-8B. We used a
version of LlaMa2-7B, shortly (~ 10B tokens) finetuned on a 1.1T tokens dataset. This was done
due to the requirements of knowledge distillation, as this stage UNAST relies on the dataset used.
It means that in the baseline results of the LlaMa2-7B, we use the locally-fine-tuned version of
LlaMa2-7B.

Implementation details. We integrated the UNAST pipeline into the Megatron Nvidia, (2024)
codebase. For GPT experiments a 1.1T dataset was used for local distillation (5K steps, 2.5M tokens),
evaluation (50 steps), finetuning (10K steps, SM tokens). For LLaMa?2 experiments a 3.5T dataset was
used for distillation (5K steps, SM tokens), evaluation (50 steps), finetuning (10K steps, 10M tokens).
We use NVIDIA A100 as our target hardware. Training parameters are described in Appendix [A]

Evaluation metrics. We use several model evaluation metrics in our experiments. LM score is the
evaluation score after training on 50 samples on our 1.1T dataset. LM-eval average is computed
over the zero-shot Im-harness benchmark |Gao et al.| (2023)) accuracies. Hellaswag Zellers et al.
(2019), Lambada [Paperno et al| (2016)), PiQA [Bisk et al.| (2019), RACE |Lai et al.| (2017) and
Winogrande [Sakaguchi et al.|(2019) datasets are used, unless stated otherwise. Wikitext-103 |Merity
et al.|(2016) is used to measure perplexity.

Model size computation. As one of the evaluation metrics, we will measure the size required to store
the model, we assume BF16 format for the original model. Details can be found in the Appendix D}
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4.2 UNAST DETAILS

The cost - total training time. We work with the GPT-3 8B and LLaMa2 7B models, originally
trained on 1.1 trillion and 2 trillion tokens, respectively. In the local distillation step, we select
15 model candidates and fine-tune each for 10 billion tokens. The architecture search requires
quick fine-tuning of 100 architectures, each for 102 million tokens. Finally, the best architecture
is fine-tuned for 20 billion tokens. Each of the first two stages can be parallelized. In a sequential
implementation, creating a single model incurs only 9% of the original costs (an 11x speedup), or
1.5% with parallelization. To produce three sub-models, costs could be reduced by 25x or even 85x
with parallelization.

Finding 1. Our approach reduces training time by 11x - 85x to get 3 additional models.

Candidates. We establish a set of candidate operations based on the model and layer types, focusing
on Attention or MLP layers with inputs and outputs of size N. The following operations can be
applied: Teacher operation: A copy of the corresponding baseline layer, requiring no knowledge
distillation. Identity layer: Essentially a skip-layer, propagating the input of the block to the output,
also not requiring knowledge distillation. Linear layer: Replacing an Attention or MLP block with a
linear layer of size N x N. This candidate, along with the Identity layer, is the most computationally
efficient but may significantly affect model accuracy. Some of the candidates are layer-type dependent,
meaning they can only replace either Attention or MLP layers, representing the same layer type with
different parameters. The first such candidate is downsized Attention layer with lower number of
heads or number of channels. Here, we do layer-wise distillation from the teacher Attention layers
to the candidates with lower parameters. The symmetrical candidate for MLP is a downsized MLP
layer with lower hidden expansion.

Knowledge distillation. The success of the UNAST approach depends on the quality of candidates.
To get strong candidates we perform per-layer distillation with the goal of mimicking teacher layers.
We pre-train separate candidates for Attention and ML layers. In Figure 3] we show the dependency
of LM score on latency for various candidates. In this evaluation we replace all teachers of the
corresponding type with the pre-trained layer candidates.

UNAST necessitates estimating per-candidate scores regarding how well they mimic their teacher.
Detailed ablations led us to consider the Mean Squared Error (MSE) between teacher and candidate
activations as a score. We showcase per-layer scores for various candidates in Figure [4]

Knowledge distillation loss. We ablate multiple loss functions for the per-layer distillation in the
Table|l] The metric is global MSE for the layers in the head, middle, tail of the model body. Total
model row represents LM score of the model where all layers of the corresponding type are replaced
with the distilled candidates. Attention layer candidate: attention layer with 16 heads and 128
channels. MLP candidate: MLP layer with expansion factor 2. We conclude that SquareHead |[Kurtic
et al.| (2023b) allows the students to better track the teacher, as shown by the lower MSE loss, and
leads to better models overall, as shown by the better LM score.

We can see that MLP layers are more sensitive to down-sizing than Attention layers, as an equivalent
removal of channels in the Attention layer damages the model accuracy slightly less than MLP. As
expected, the most sensitive layer is the last one as it has the highest impact on the model output and
there are no layers after it to recover the possible inaccuracies.

Performance metric. A key performance metric we aim to improve in UNAST is latency. This
metric naturally depends on various deployment settings, such as the regime in which a model is used
or its parameters (e.g. batch size or input sequence size). Our approach works with any deployment
setting. We build a timing lookup table for any setup, which is then used in the search phase. We note
that it does not require any re-training of the candidates. We argue that the main body (Transformer
blocks) consumes most of compute in the pre-fill stage. We analyse costs in Appendix B}

Lookup Table. Accurate latency estimation is crucial for model performance optimization, as the
resulting model depends on the measurement regime. It’s essential to assess latency in the deployment
regime. Our experiments measure latency only in the pre-fill regime. We leave the auto-regressive
regime for future work. A hardware-specific lookup table is computed in the pre-fill phase with batch
size 1 and sequence length 4096.
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Figure 3: Latency vs LM loss trade-off
of different candidates used in UNAST.
Size represents the relative ratio of the
parameter count.

Method L1Loss| L2Loss| SquareHead|
Attention, head 2.9e-3 2.8e-3 2.5e-3
Attention, middle 1.14e-2 1.15¢-2 1.02¢-2
Attention, tail 1.20e-2 9.0e-3 8.9¢-3

Total model ATT, LM score 2.120 2.098 2.094

MLP, head 2.12e-2 1.70e-2 1.65e-2

MLP, middle 2.67e-2 2.63e-2 2.64e-2

MLP, tail 2.38e-1 2.30e-1  2.29e-1

Total model MLP, LM score 2.790 2.760 2.750

Table 1: Study of different knowledge-
distillation losses. We report the teacher-
student MSE for each loss, as well as the
resulting LM score.

5 EXPERIMENTAL RESULTS

Compression  Candidate Architecture  Final Validation
Finetuning Perplexity

33% No 2.57

33% Yes 2.41

50% No 2.32

50% Yes 2.25

Table 3: Evaluation of the impact of running
short fine-tuning on architecture candidates
before selecting the final architecture.

5.1 ABLATION STUDIES

Normalized MSE Across Different Attention Configurations
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Figure 4: Per-layer normalized MSE loss in-
duced by replacing a single teacher layer with
specified operator.

Pool Budget LM-eval| Wikippl |
Baseline 100% 63.46 7.28
Only Attention  80% 62.01 7.49
Only MLP 80% 61.84 7.78
Only Linear 80% 60.78 7.89
Only skip 80% 60.34 8.18
Full pool 80% 62.31 7.44

Table 2: Ablation results with limited pool of
operators. Evaluation results for the UNAST
architectures built from various partitions of
the candidates pool.

We study various candidate operations (layers) in more details in this section. Particularly, we are
interested in ablating compression with: (i) only Attention candidates; (ii) only MLP layers; (iii)
identity candidates (layer skip); (iv) linear layer candidates (cheap linear layer instead of original
layers); (v) all candidate layers with the full pool. We target budgets 33%-80%. All ablations are
summarized in Table 2] The full pool of candidates shows the best overall result.
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Model Budget ARC-E LAMBADA PIQA WinoGrande Average  wiki-103 Non-emb  Through-
params, B put

GPT3 8B 100% 73.4 70.4 78.0 69.6 729 7.28 6.4 3060
GPT3 8B 80% 71.9 69.9 71.0 67.6 71.6 7.44 55 3764
GPT3 8B 75% 69.9 68.7 712 68.0 71.0 7.66 5.0 3960
GPT3 8B 60% 69.4 67.0 77.1 65.7 69.8 7.99 4.4 4455
GPT3 8B 50% 68.7 65.5 76.9 67.5 69.6 8.10 37 4961
GPT3 8B 33% 63.9 58.1 76.0 59.3 64.3 9.26 24 5992
GPT3 8B depth 50% 66.7 63.2 753 63.1 67.1 10.3 32 5520
GPT3 2B 100% 63.2 60.9 759 61.7 65.4 9.35 1.2 7421
GPT3 2B 50% 56.6 48.7 72.8 52.6 577 115 0.7 10915
GPT3 2B 33% 54.8 38.8 70.5 51.4 53.8 13.4 0.5 13479
GPT3 843M 100% 532 50.2 70.0 54.3 56.9 12.4 0.3 11692
Model Budget ARC-E LAMBADA PIQA WinoGrande MMLU HellaSwag Non-emb  Through-
5 shot 10 shot params, B put

LLaMa 7b|Touvron et al.|(2023) 100% 71.0 67.6 78.1 68.4 45 76.2 6.7 3138
OpenLLaMa-7Bv2|Geng & Liu|(2023) - 69.5 63.8 79.9 66.0 40 76.6 7.0 -
Pythia-6.9B|Biderman et al.|(2023) - 60.2 47.1 752 59.9 26 64.4 6.4 -
LLaMa 7b - UNAST 75% 72.7 68.2 76.8 67.8 38 75.1 53 3775
Compresso|Guo et al.|(2023) - 66.0 - 729 63.4 26 - 45 -
LLM-Pruner|Ma et al.|(2023a) - 59.2 - 73.4 63.4 24 56.5 4.5 -
LLaMa 7b - UNAST 60% 68.5 65.8 74.5 66.5 45 - 42 4423
Pythia-2.8B 579 50.1 73.8 58.6 27 - 25 -
OpenLLaMa-3Bv2 - 63.7 59.1 78.1 63.3 26 - 32 -
ShearedLLaMa-2.7B - 67.0 68.4 75.8 64.2 26 - 25 -
LLaMa 7b - UNAST 40% 63.5 55.8 72.4 61.0 38 - 2.8 -

Table 4: Evaluation results for various baseline and

UNAST models. Non-embedding parameter count

stands for number of parameters in the backbone, without embedding and output layers. LM-harness
average: ARC-easy, LAMBADA, PIQA and WinoGrande in zero-shot. For techniques other than
ours, we report numbers from the original or overview papers, we do not replicate them.

Finding 2. Layer skipping under full model

replacing an entire layer with a simple linear one yields better results.

finetuning exhibits the poorest performance;

expansion factor, proves to be the most effectivi

Finding 3. Opting for smaller alternatives, such as reducing the number of heads or the MLP

€ strategy.

Architecture evaluation step. Recall that, during ILP, we identify 100 architectures and rank them

by a score proxy, which does not fully represent t
these models for a minimal 100M tokens, corres
them based on the final LM loss. To evaluate this

he model’s performance. We propose fine-tuning
ponding to 50 training iterations, and re-ranking
step’s importance, Figure 5] shows the correlation

between LM loss before and after fine-tuning. We observe no correlation in ranking, underscoring
the critical nature of this step for UNAST. Similarly, Figure [3] shows the importance of running

fine-tuning before selecting the final architecture.

5.2 DISCUSSION OF COMPRESSION RESULTS

Depth pruning. Depth pruning is popular for
its simplicity, relying on importance estimation
of blocks, followed by trimming and finetuning.
We implement the Shortened LLaMA method
Kim et al.|(2024)) at the layer level, comparing
it with UNAST. For UNAST, we use two set-
tings: (i) the same scoring technique with ILP
search and architecture evaluation, and (ii) the
full UNAST pipeline. In (i), there’s no local
distillation, making it a simple improvement on
depth pruning.

Implementing this is straightforward, as we can
create a pool with two candidates: the teacher
layer and the identity layer. The ILP provides
multiple architecture candidates, with the best

The original LANA algorithm omits this step.

LM Score After Short Finetuning of Top-100 Archs
2375 e L

Linear fit (Pearson corr=0.48)
@ Best before finetuning
@ Best after finetuning

LM score after 50 iterations

3.4 3.6 3.8 4.0 4.2 4.6

LM score after 0 iterations

4.4

Figure 5: Architectures evaluation results for GPT 8B,
50% latency budget. X axis represents Im score of an
architecture without fine-tuning, Y axis - Im score of the
architecture after 50 steps (25k samples) of fine-tuning.

in terms of cumulative accuracy (Mean Squared Error) chosen for finetuning. We see that the ILP

improves LM eval from 47.9 to 57.8 (see compari

son against ShortenedLlama in Appendix [C)). Full

UNAST produces better final architecture with LM eval at 60.3.
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GPT3-8B LLaMa7B
Method Size  Wikil03 LM Speed Param Method Size  Wikil03 LM Speed Param
GB PPL eval up GB PPL eval up
Baseline 159 7.28 634  1.0x 6.4 12.55 5.48 62 1.0x 6.7
Quantization*® Quantization®
GPTQ|Frantar et al.[(2022] 3b 6.10 11.8 323 - 6.4 GPTQ 3b 2.75 8.13 473 - 6.7
UNAST 50% + 4b 5.63 9.44 578 1.6x 3.7 U60% 4b 2.33 6.66 588 14x 4.5
GPTQ 4b 6.80 9.31 51.6 - 6.4 GPTQ 4b 3.50 5.78 60.4 - 6.7
RTN |Dettmers et al.|4b 6.80 16507 30.1 - 6.4 RTN 4b 3.50 10557 32.1 - 6.7
UNAST75% +4b 6.23 9.06 581 1.3x 50  U75%4b 2.94 6.01 60.8 1.2 5.0
Sparsity Sparsity

SparseGPT [Frantar & Alistarh|(2023) 1:4 ~ 6.90 1427 302 14x 1.6 SparseGPT 1:4 3.50 1262 303 14x 1.6
SparseGPT 25% 6.90 246 31.5 - 1.6 SparseGPT 25%  3.50 224 314 - 1.6
UNAST 50% s50% 7.36 9.36 58.0 1.6x 1.9 U60% s40% 3.64 7.83 550  l4x 1.6
SparseGPT 2:4 9.90 12.0 54.7 1.4 32 SparseGPT 2:4 6.50 224 526  1l4x 32
SparseGPT 50% 9.90 8.87 60.3 - 32 SparseGPT 50%  6.50 6.90 58.7 - 35
Depth pruning|Kim et al.|(2024} 10.38 11.70 479 1.7 35 - - - - - -
UNAST 50%_d 9.88 1033 578 1.7 32 U60% 8.34 6.38 594 1l4x 4.2
UNAST 50% 10.80 8.10 60.3  1.6x 3.7 U75% s50% 5.39 6.01 61.1 1.2x 2.6

Table 5: Comparison of UNAST with SOTA post-training compression techniques. UNAST allows
to apply the same compression methods on top of the resulting architectures resulting in even more
succinct models. GPT 8b. * We assume no speed up from quantization to 3 or 4 bits, for lack of
suitable hardware implementations. SliceGPT model includes finetuning. Speed up is computed as a
ratio to the base model in BF16 with BS=32, input/output length is 16/512 tokens. The speed up from
UNAST+Ampere 2:4 is not supported at this time and we only report the speed up from UNAST.
UNAST 50%_d stands for UNAST with layer skipping as candidates only, sX% for unstructured
sparsity with X%.

Memory footprint target. UNAST also supports minimizing the final number of parameters. In
Appendix [l we compare the performance of these models. We find that optimizing for fewer
parameters improves latency but slightly reduces accuracy compared to latency-targeted architectures.

Full model compression. Main results of compressing GPT3-2B, GPT3-8B and LLaMa2-7B as
well as comparisons to other models and efficiency methods are summarized in Table d] From these
comparisons, it is clear that UNAST enables the creation of multiple models constrained to different
target latencies, while maintaining reasonable accuracy reductions. The results show that UNAST
produces efficient models that outperform other models, such as OpenLLaMa and Pythia, in terms of
accuracy, despite having fewer parameters.

5.3 COMBINING WITH OTHER PTO TECHNIQUES

UNAST is a new Post-Training Optimization (PTO) approach, orthogonal to popular techniques
like quantization and sparsity. In this section, we illustrate that these techniques complement each
other well. Furthermore, combining UNAST with quantization/pruning yields markedly superior
results compared to using a single technique. Specifically, UNAST focuses on replacing layers with
more efficient candidates emulating the behavior of the original layer, while quantization reduces
the bit-width of model parameters and sparsity removes redundant parameters. As shown in Table 5}
combining UNAST with quantization or pruning results in significantly improved accuracy and
efficiency compared to models of the same size compressed using a single technique. For instance,
the UNAST 50% + 4 bits quantization for the GPT 8B model yields a smaller resulting model size
than the baseline compressed to 3 bits, with higher accuracy.

Finding 4. Combining UNAST with other PTO techniques is significantly better than individual
PTO techniques.

6 DISCUSSION ON RESULTING MODEL STRUCTURES

In this section we describe the insights on the model structure we can infer from the UNAST resulting
models. We focus on GPT 8B model.

General Observations. First, we discuss the models with restricted latency budget and the layer
operator candidates are taken from all available distilled candidates. The figures with structures
of the resulting models are presented in Appendix [G| From the model structures we can make the
following observations: 1. The method tends to compress Attention layers rather than MLP, and 2.
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The algorithm prefers to achieve speedup by removing channels rather than Attention heads. However,
reducing the number of heads or channels has a similar effect on latency: the latency of the layer
with 16 heads and 128 channels is equal to the latency of the layer with 32 heads and 64 channels.
This means that reducing the number of heads affects accuracy more than reducing channels.

This finding is confirmed for other budget latency models as well. (See Appendix [G).

Finding 5. Compressing Attention layers has a lower effect on model accuracy than MLP
compression.

Finding 6. Opting for a reduction in the number of heads rather than number of channels in the
Attention layer has a positive effect on the model accuracy.

Attention vs MLP. To delve deeper into the impact of compression on the two types of basic
layers within Transformer models, we conducted experiments where we restricted the search of
potential candidates to one type of layer: Attention or MLP, while keeping all other layers the same
as the teacher. This approach forces UNAST to achieve speedup solely from one type of layer. The
accuracy results are presented in Table[2] For model structure illustrations, please refer to Appendix[G]
reinforcing our assertion about the importance of heads in the attention layer over channels. From
the results of isolated MLP layer compression search, we observe that layers in the first half of the
model body are more readily compressed than those in the second half. A similar trend is noticed for
Attention layers. However, UNAST decides to apply high compression on the last 5 MLP layers.

Finding 7. Layers in the first half of the model are more amenable to compression compared to
those in the second half.

Depth pruning. Next we study the affect of skipping the layers, where the evaluation results are
presented in the Table[d] We can see (Appendix [G) that it is preferable to remove more attention
layers rather than MLPs. Moreover, it chooses to remove the layers in the middle of the model and
keep a large group of MLP layers in the tail.

Finding 8. Depth pruning tends to prune both types of layers around the middle of the model.

Relationship to LANA LANA |Molchanov et al.|(2022) explores layer-wise distillation by focusing
on CNN architectures in vision. Our work extends this study to the transformer architecture and
language models. This involves studying different sets of operators, including attention and MLP.
Besides, the scale of LLMs imposes implementation constraints and the use of tensor and pipeline
parallelism. Our work studies different pre-training losses, which were not discussed in the LANA
work. An additional contribution of our work is the introduction of a short fine-tuning stage for
candidate architectures. The experimental results in Table [3|highlight the advantages of this approach.

7 CONCLUSION AND LIMITATIONS

In this paper, we introduce a novel NAS approach for Transformer-based Large Language Models,
facilitating adaptable model tuning to accommodate various performance and resource constraints.
UNAST enhances both performance and efficiency, making it essential for creating high-performing,
resource-efficient models. Our analysis of layer sensitivity to compression—especially structured
pruning—identifies components prone to degradation, guiding the development of effective compres-
sion strategies.
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Table 6: Hyperparameters for Knowledge- Table 7: Hyperparameters for Fine-tuning
Distillation
Parameter Value
Parameter Value Optimizer Adam
Optimizer Adam Global batch size 256
Global batch size 256 Momentum 0.1
Momentum 0.0 Max/Min LR Se-4/5e-5
Max/Min LR Se-4/5e-5 LR decay Cosine
LR decay Cosine Iterations 10k
Iterations S5k
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A TRAINING PARAMETERS

In tables[6] and [7] we present the hyperparameters for knowledge distillation training and fine-tuning
(final training of the best architecture) respectively. In the short training of the top-k candidates for
their ranking we used the same hyperparameters as in the fine-tuning.

B MODEL PERFORMANCE METRICS

In table [§] we profile the inference of GPT3-8B model under two workloads: pre-fill and auto-
regressive. We can see that most of the time in both regimes is taken by the Transformer blocks, more
than 80%. However, in terms of parameter count main body takes 76%.

C DEPTH PRUNING

In Table[9] we compare our implementation of ShortenedLlamaKim et al.| (2024) applied to GPT3
8B vs full UNAST pipeline. In our ShortenedL.lama implementation we basically pick the best
architecture in terms of sum of global MSEs and then run the finetuning. In UNAST on contrary we
first run short fine-tuning and pick the best model based on evaluation and then start the finetuning
for the chosen architechture. We can see than UNAST approach outperform the ShortenedLlama
approach in accuracy and speedup.
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Params, M _ _ AlnCy,s Method Wiki-103PPL LM eval Speedup
prefill ~ zero-shot -
- Depth pruning 11.70 47.9 1.7
Embedding 1048 15% 0% UNAST depth 10.33 57.8 1.7
Mainbody 6425 85%  99% UNAST 81 €03 16

Output 1048 0% 1%

Table 8: Performance metrics different stages Table ,9: CgmpreSSIHg the quel to 50% bud-
of GPT3-8B model. The main body, trans- get with original Depth pruning, UNAST ap-
former decoder blocks, consume 76% param- prqach to depth pruning and full UNAST al-
eters and 94% compute and are selected for gorithm.

compression with UNAST.
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Figure 6: Evaluation of LLaMa 7B 60% latency budget model. X axis stands for the metric we use in
ILP, lower is better. Y axis is Im score of a model after 50 steps of the finetuning.

D MODEL SIZE COMPUTATION

We compute the models sizes in table [5 the following way. The embedding and output layers are
always uncompressed and stored in float16 precision. The main body parameters can be compressed
in different ways. For the UNAST compression we compute the total number of main body parameters
in the resulting architecture. For GPTQ compression we assume that each element takes certain
number of bits. For SparseGPT we compute the number of non-zero parameters. For example, to
compute model size of UNAST 50% + GPTQ 4b for GPT 8B model, we consider 2.1B embedding +
output parameters, add 3.7B parameters compressed to 4 bits and as result we get (2.1B * 16 bits
+ 3.7B * 4 bits) = 5.63 GB. For UNAST 50% + SparseGPT 50%, the formula is following (2.1B +
3.7B *0.5) * 16 bits = 7.36GB.

E EFFECT OF SHORT FINETUNING

To validate the effect of the short finetuning on the choice of the best model we compare the metric
we use in the ILP - sum of the layer-wise global MSE against the evaluation score after 50 steps of
the finetuning for each of 100 models that ILP outputs. The result is shown in Figure[6] We can see
that the top-1 model after ILP might be in the cluster of the worst models after the finetuning. It
means that short finetuning helps to properly rank the sampled models.

F PARAMETERS CONSTRAINT

UNAST supports various types of model efficiency targets. In Table [I0] we compare latency and
memory footprint targets. We can see that UNAST with memory footprint constraint results in more
faster and succinct models which in its turn negatively affects the model accuracy.
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Objective =~ LM-eval Wiki latency Params
PPL ratio ratio

Baseline 63.4 7.28 1.0 1.0
80% latency  62.3 7.44 .86 .89
80% params ~ 62.3 7.52 .83 .85
50% latency  60.3 8.10 .62 .68
50% params ~ 57.8 8.61 .59 .62

Table 10: Optimization objective ablation.
Latency and number of parameters include
uncompressed embedding and output layers.

G MODEL STRUCTURE

In Figures[7} 8| 0] [T0]structure for Attention and MLP layers for GPT3 8B with constrained latency
budget. In Figurdl | we see the structures of the models which gain latency profits from only one
type of the layers whereas the layers of the other type are same as in the teacher. We can see which
layers UNAST suggests to remove in Figures [12)and [I3] Figure [T4]shows the structure of the model
with constrained parameters count.

In Figures[I5] [I6] we can see structures of GPT3 2B model. Figures[T7]and [I§|represent UNAST
resulting architectures of Llama 7B model with constrained latency budget.

Based on the figures, we can confirm the statements we did in the Section [6}

1. Attention layers are less sensitive to compression than MLP.

2. Reducing number of heads in Attention layer has less affect on the model accuracy than
reducing number of channels

3. Layers in the first half of the model are easier to compress than the layers in the second half

. mEm Teacher
e Linear 4

Number of heads
&
2
g
Number of channels
o

Hidden size expansion

0 5 10 15 20 25 30 o : o 15 20 25 30
Layer Layer

(a) Attention layers (b) MLP layers

Figure 7: Layers parameters for a single architecture with latency budget 33%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.

H PRUNED LAYERS IN THE CANDIDATES POOL

As ablation study we created two possible candidates: 2:4 pruned layer and quantized layer. Using
these candidates we can get some insights which layers are more sensitive to different types of
compression. For that we pruned the original model using SparseGPT (2:4 sparsity) or GPTQ (with
4 and 8 bits). Then. for each Attention or MLP layer we created three candidates: 1. Candidate
with compressed linear module (QKV or FC1) 2. Candidate with compressed second linear module
(attention output or FC2). 3. Both linear modules are compressed. Then we evaluated each candidates
the same way we do after the pretraining, in this case we didn’t do any knowledge distillation.
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(a) Attention layers (b) MLP layers

Figure 8: Layers parameters for a single architecture with latency budget 50%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.

164 [ 64 N
0 5 10 15 20 25 30 0 5 10 15 20 25 30
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(a) Attention layers (b) MLP layers
Figure 9: Layers parameters for a single architecture with latency budget 60%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.

Number of heads
~

Number of channels
Hidden size expansion

We added each of the candidate operators to the original pool of candidates. Turns out that the best
model (see Figure[I9) was chosen to use mostly quantized candidates, and quantize both modules
inside each of the layers. When we removed the quantize candidates from the pool to see the effect of
pruned operations, the best model was designed like in Figure[20} Here, we can see that UNAST
mostly decides to prune both modules in MLP layers but it prefers to use downsized candidates in
case of Attention layers.
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Figure 10: Layers parameters for a single architecture with latency budget 80%. Hatched bars stand for the
layers that are identical to the corresponding teacher (baseline) layers.
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Figure 11: Layers parameters for 2 different result architectures with only Attention (left) and only MLP (right).
The latency budget for both candidates is 80%. The layers of the other type are uncompressed. Hatched bars
stand for the layers that are identical to the corresponding baseline layers.
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Figure 12: Layers of the UNAST architecture with 50% latency budget from skip layers pool.
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Figure 13: Layers of the UNAST architecture with 75% latency budget from skip layers pool.
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Figure 14: Layers parameters for a single architecture with parameters count budget 80%. Hatched bars stand
for the layers that are identical to the corresponding teacher(baseline) layers.
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Figure 15: GPT-2B. Layers parameters for a single architecture with latency budget 50%. Hatched bars stand
for the layers that are identical to the corresponding teacher(baseline) layers.
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Figure 16: GPT-2B. Layers parameters for a single architecture with latency budget 80%.Hatched bars stand
for the layers that are identical to the corresponding teacher(baseline) layers.
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Figure 17: LLaMa 7B. Layers parameters for a single architecture with latency budget 60%.
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Figure 18: LLaMa 7B. Layers parameters for a single architecture with latency budget 75%.
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Figure 19: Layers parameters for a single architecture with parameters budget 50%. Includes quantized layers
as candidates.
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