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ABSTRACT

Scaling multi-dimensional transformers to long sequences is indispensable across
various domains. However, the challenges of large memory requirements and
slow speeds of such sequences necessitate sequence parallelism. All existing
approaches fall under the category of embedded sequence parallelism, which are
limited to shard along a single sequence dimension, thereby introducing significant
communication overhead. However, the nature of multi-dimensional transformers
involves independent calculations across multiple sequence dimensions. To this
end, we propose Dynamic Sequence Parallelism (DSP) as a novel abstraction of
sequence parallelism. DSP dynamically switches the parallel dimension among
all sequences according to the computation stage with efficient resharding strategy.
DSP offers significant reductions in communication costs, adaptability across
modules, and ease of implementation with minimal constraints. Experimental
evaluations demonstrate DSP’s superiority over state-of-the-art embedded sequence
parallelism methods by remarkable throughput improvements ranging from 32.2%
to 10x, with at least 50% communication volume reduction.

1 INTRODUCTION

Efficiently scaling multi-dimensional transformers to accommodate long sequences is necessary
across diverse domains, including video generation (Singer et al., 2022; Blattmann et al., 2023; Ma
et al., 2024), image generation (Ramesh et al., 2021; Rombach et al., 2022; Liu et al., 2024), protein
structure prediction (Jumper et al., 2021), spatial-temporal information processing (Cong et al., 2021),
and beyond. The long length of sequences in these applications entails substantial activation memory
costs and a notable slowdown in processing speeds, underscoring the need for employing sequence
parallelism.

Current methods for sequence parallelism, such as Megatron-SP (Korthikanti et al., 2022), Megatron-
LM (Shoeybi et al., 2019), DeepSpeed-Ulysses (Jacobs et al., 2023), and Ring-Attention (Li et al.,
2021; Liu et al., 2023a) are all embedded sequence parallelism methods. As shown in Figure 1,
these embedded methods shard along a single sequence dimension, which are tailored to the task-
specific pattern of modules and introduce intricate communication and complex code modification.
However, multi-dimensional neural networks often operate independent computations across multiple
sequence dimensions. For instance, for video generation models like OpenSora (Zangwei Zheng,
2024) and Latte (Ma et al., 2024), Spatial-Temporal Attention (Yan et al., 2021) is favored over full
Self-Attention (Vaswani et al., 2017), facilitating separate attention computations for temporal and
spatial dimensions.

Therefore, there exists an explorable space for a general sequence parallelism abstraction. To adapt to
the flexible patterns of multi-dimensional transformers, we introduce Dynamic Sequence Parallelism
(DSP) as a novel abstraction of sequence parallelism, characterized by its elegance, high effectiveness,
and excellent compatibility with popular transformers. Unlike embedded sequence parallelism, DSP
dynamically switches the parallel dimension of sequences during the computation stage with an
efficient resharding strategy, a process completely decoupled from the computation module.

DSP offers several advantages over embedded sequence parallelism: 1) Efficient Communication:
DSP incurs significantly lower communication costs due to its simplified communication patterns and
reduced frequency of exchanges. 2) Adaptability: DSP seamlessly adapts to most modules without
necessitating specific modifications and imposes few limitations on its usage. 3) Ease of Use: DSP is
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Figure 1: Comparison of Embedded and Dynamic Sequence Parallelism. Reshard means the
communication to change sequence parallel layout. The blue arrow represents communication. The
number and width of the arrows indicate the volume and frequency of communication, respectively.

remarkably easy to implement, and also provides a simple API shown in Appendix A.4 for users to
enable it effortlessly.

Our experiments yield promising results, showcasing DSP’s superiority over state-of-the-art embed-
ded sequence parallelism methods. It achieves an end-to-end throughput improvement ranging from
32.2% to 10x and reduces communication volume by at least 75%.

‘We summarize our contributions as follows:

* We introduce DSP as a novel abstraction of sequence parallelism aimed at effectively
scaling multi-dimensional transformers. DSP dynamically switches the parallel dimension
of sequences during the computation stage, offering high effectiveness, elegant formalism,
and excellent compatibility.

* By significantly reducing communication volume and frequency, DSP improves end-to-end
throughput by 32.2% to 10x and reduces communication volume by at least 50% compared
to state-of-the-art methods.

* DSP seamlessly integrates with various modifications without requiring specific modifi-
cations and imposes few limitations. Its ease of use is highlighted by the minimal code
changes needed to incorporate it into existing frameworks with our high-level API.

2 BACKGROUND AND RELATED WORK

Table 1: Meanings of the symbols that are used in this paper.

B The number of batch sizes N The number of GPUs
C'  The size of hidden states n The n-th GPU
S;  The i-th sequence dimension X The a multi-dimensional sequence
s;  The status that sequence is sharded from tensor
dimension S; Xp,n  The partition of X assigned to GPU n
5 The status that sequence is not sharded for sequence parallel
M  The volume of a sequence tensor

2.1 BACKGROUND

Transformer Architecture. Transformer (Vaswani et al., 2017) is a type of neural network ar-
chitecture that has become highly influential in natural language processing (Devlin et al., 2018;
Brown et al., 2020; Reid et al., 2024) and other domains (Dosovitskiy et al., 2020; Jumper et al.,
2021; Peebles & Xie, 2023). The Transformer is composed of a stack of layers, each consisting of a
multi-head attention (MHA) and a position-wise feed-forward network (FFN). Specifically, the MHA
comprises H independently parameterized attention heads, formulated as:

MHA () = Concat(heady, ..., heady)W?, head; = Att(Q;, K;, V), 1
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Figure 2: Illustration of Multi-Dimensional (2D) Transformer.

+
Att(Q, K, V) = softmax <QK> V, aumua = LayerNorm(z + MHA(x)), 2)
Vi
where Att(-) denotes the scaled dot-product attention, Q, K, V are query, key, value projections, and
LayerNorm is the layer normalization. The output x4 is fed into the FEN, which consists of two
linear transformations with a ReL.U activation in between, computed as:

FFN(z) = max(0,2W1 + b1)Ws2 + by,  zou = LayerNorm(zypa + FFEN(zyua)),  (3)
where W1, Wy, by, by are the parameters of the FFN.

Multi-Dimensional Transformer. Multi-dimensional transformers (Ho et al., 2019; Yang et al.,
2022) extend the self-attention mechanism of standard transformers to operate over multiple dimen-
sions beyond just one sequence. An example of 2D-Transformer is shown in Figure 2. Let the
input multi-dimensional sequence be denoted as X € RIB:51:92:-55.C] where B is the batch size,

51,59, ..., Sk are the sequence lengths along K different sequence dimensions, and C' is the hidden
size. Multi-dimensional transformer can be formatted as:
X eshape = Reshape(X, [B X H S;,S:, ). )
J#i

The transformer block operation is then applied along the i-th sequence dimension of X .cshape-
Xout = transformer_block(Xeshape)- %)

After applying the transformer block operation along all N dimensions, the final output tensor
Xout has the same shape as the input tensor X. Multi-dimensional Transformer is widely used for
applications with multi-dimensional inputs including video data (Xu et al., 2020; He et al., 2021;
Geng et al., 2022; Ma et al., 2024), 3D data (Zheng et al., 2021; Chen et al., 2023), protein structure
prediction (Jumper et al., 2021; Mirdita et al., 2022), time-series data (Pan et al., 2022; Huang et al.,
2022; Deihim et al., 2023) and beyond.

2.2 RELATED WORK

In this section, we discuss the four main parallelism techniques employed in deep learning: data
parallelism, tensor parallelism, pipeline parallelism, and sequence parallelism.

Data parallelism (Hillis & Steele Jr, 1986; Li et al., 2020) is one of the most widely adopted parallelism
techniques. The input data is partitioned across devices, each processing a subset. Model parameters
are replicated, and gradients are summed. ZeRO (Rajbhandari et al., 2019; 2021) optimizes memory
by partitioning parameters, states, and gradients across devices, enabling the training of larger models.
Tensor parallelism (Shazeer et al., 2018; Shoeybi et al., 2019), or model parallelism, partitions
model parameters across devices. Different model parts are assigned to different devices. Pipeline
parallelism (Huang et al., 2019; Narayanan et al., 2019; Li & Hoefler, 2021; Liu et al., 2023b)
partitions the model into stages executed in parallel across devices. Activations are passed between
devices in a pipeline style.

Unlike parameter parallelism discussed earlier, sequence parallelism is a technique specifically
designed for distributing long sequences and activation across multiple devices. Here are three main
methods of sequence parallelism:

Ring Attention (Li et al., 2021) employs an innovative approach to partitioning the sequence di-
mension using a ring-style peer-to-peer (P2P) communication pattern to transfer keys and values
across GPUs. (Liu et al., 2023a) enhance this method with an online softmax mechanism, allow-
ing for the computation of attention scores without retaining the full sequence length. However,
Ring Attention’s reliance on P2P communication can be less efficient in high-latency environments.
Megatron-SP (Korthikanti et al., 2022) further optimizes activation usage in the attention based on
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Figure 3: System overview of Dynamic Sequence Parallelism.

tensor parallelism. To transit between tensor parallelism and sequence parallelism in the Transformer
block, additional all-gather and reduce-scatter operations are introduced. And it’s constrained by the
number of attention heads, as self-attention relies on the parallelism of the head dimension of the
sequence. DeepSpeed-Ulysses (Jacobs et al., 2023) introduces an innovative approach for training
long sequences by utilizing all-to-all collective communication. This method partitions the query,
key, and value matrices across attention heads while preserving the original attention computation
structure. The process is facilitated by two sets of all-to-all communications that alternate between
sequence splitting and attention head splitting. Nevertheless, it is constrained by the number of
attention heads as well.

Moreover, these sequence parallelism methods are designed for parallelism within a single sequence
dimension. For multi-dimensional transformers, this strategy becomes inefficient due to unnecessary
communication. While specialized parallelism for multi-dimensional sequences has been explored in
specific domains (Cheng et al., 2024), their applicability remains limited.

3 DYNAMIC SEQUENCE PARALLELISM

3.1 OVERVIEW

In the realm of multi-dimensional transformers, computation occurs independently for each se-
quence dimension. To harness this inherent feature, we introduce Dynamic Sequence Parallelism
(DSP), an efficient, adaptive and ease-of-use sequence parallelism abstraction for multi-dimensional
transformers.

To ensure correct computation logic with sequence parallelism, embedded methods typically require
complex and time-consuming communications within computation modules to change the parallel
dimension. However, as illustrated in Figure 3, the key feature of DSP is its dynamic switch
of parallel dimension at the intersections of computation stages. By resharding only between
computation stages dynamically, rather than within them, this approach allows DSP to remain
independent of the computation logic within the module. Therefore, DSP eliminates numerous
unnecessary communications within modules, and is able to utilize efficient all-to-all operations to
switch parallelism dimensions for the intermediate sequence.

For operations involving all sequence dimensions, including the beginning and end of the model, DSP
handles them by split and gather operation. Furthermore, we also propose a high-level, user-friendly
implementation of DSP compatible with all distributed frameworks based on PyTorch, details in
Appendix A.4.

3.2 PROBLEM DEFINITION

In sequence parallelism, the objective is to distribute activation computations across multiple GPUs
to reduce the memory overhead caused by long sequences. This approach, however, incurs additional
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Table 2: Definition of Dynamic Primitives for DSP. s; denotes the sequence sharded from dimension
i, while § indicates the sequence is not sharded. M represents the sequence size, and N signifies the
sequence parallel size.

Source | Target Primitives Comm Comm Fre
Shard | Shard Operation | Volume 4
5 5 / / / /
5 55 Switch all-to-all | M/N | High
] i Split / 0 Low
Si 5 Gather all-gather M Low

Dynﬂmic Switch Computation
s2 s3 74 Dimension
AN /
s L |all-to-all L7
[SI/N, 52, 53] [S1, 52, 53/N]

Figure 4: Illustration of dynamic switch.

communication costs between GPUs. Our goal is to optimize this trade-off in the context of multi-
dimensional transformers.

Given a multi-dimensional sequence X € RIP-51:52,-:5%.C1 and a set of N GPUs, where St ..., Sk
are the sequence along K different sequence dimensions, we aim to partition the computation such
that the memory usage per GPU is under capacity while maintaining acceptable communication costs.
Let X, ,, denote the partition of X assigned to GPU n, where p represents the partition strategy. The
optimization problem is formulated as:

N

minz CommCost(X, ) s.t. Memory(X,.,,) < Capacity. (©)
P

n=1
Here, Memory(Xp, n) denotes the memory usage of partition X,, ,, on GPU n, CommCost(X, )
represents the communication cost. We aim to achieve a balance that minimizes the overall computa-
tional overhead while optimizing GPU resource utilization.

3.3 DYNAMIC PRIMITIVES

In this section, we introduce the key dynamic primitives of DSP, as outlined in Table 2. These
three primitives form the cornerstone for implementing DSP across a spectrum of multi-dimensional
transformers.

The first condition is that when there is no need to alter sequence parallelism between computation
stages, we maintain the shard status of the sequence. This approach significantly reduces unnecessary
communication overhead. However, when it becomes necessary to transit parallelism between
dimensions, we employ dynamic switch to efficiently transform parallelism. Specifically, as depicted
in Figure 4, dynamic switching adjusts the parallelism to a dimension unrelated to the ongoing
computation, utilizing highly efficient all-to-all operations.

Assume X € RI[B:51,8i/N.....8j,.,81.C] represents the input. The current parallel dimension is i so
its sequence length is S; /N on each device, where N is sequence parallel size. If we want to switch
the shard dimension from i to j, the operation can be formulated as follows:

Y = DynamicSwitch(X, 1, j), @)
where the resulting tensor Y has the shape R[Z:51:56:-:8i/N....51,C1 - Fyrthermore, Split and
Gather operations facilitate smooth transitions between sharded and non-sharded states. Although
these operations may involve increased communication compared to Switch operations, they are
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primarily utilized at the onset and conclusion of most networks, and also for some global operations
in very rare conditions, rendering their costs negligible.

3.4 ADAPTABILITY AND FLEXIBILITY

Given its decoupling from the computation of modules, DSP exhibits remarkable adaptability, making
it compatible with a wide array of transformer variants such as Cross Attention (Hertz et al., 2022; Ma
et al., 2024); specialized kernels like FlashAttention (Dao et al., 2022); special attention mechanisms
including multi-query attention (Shazeer, 2019) and grouped-query attention (Ainslie et al., 2023);
and even beyond like Mamba (Gu & Dao, 2023) and RWKYV (Peng et al., 2023). This inherent
flexibility enables DSP to seamlessly integrate into diverse transformers without specific modification.
Furthermore, while DeepSpeed-Ulysses and Megatron-SP necessitate attention head splitting, DSP’s
scalability is significantly better because it shards on sequence length, which much larger especially
when scaling sequences.

Moreover, DSP’s adaptability extends beyond module compatibility to encompass various parallelism
methodologies. From conventional data parallelism to more sophisticated approaches like ZeRO and
pipeline parallelism, DSP effortlessly integrates with diverse parallel computing paradigms, thereby
enhancing scalability and performance across distributed computing environments.

As shown in Appendix A.4, we demonstrate the API usage of DSP. By calling just four functions
without knowing the detailed implementation, DSP can be enabled on PyTorch and is compatible
with various distributed frameworks, including FSDP (Zhao et al., 2023), Accelerate (Gugger et al.,
2022), DeepSpeed (Rasley et al., 2020), and Megatron-LM (Shoeybi et al., 2019).

4 THEORETICAL ANALYSIS

We choose 2D-Transformer as described in Equation 5 as our base model, which is widely employed
in real-world applications. To be specific, we use the OpenSora (Zangwei Zheng, 2024) variant of
2D-Transformer, an open-source video generation model, where there are two transformer blocks
for two sequence dimensions separately. More details can be found in Appendix A.1. We choose
DeepSpeed-Ulysses (Jacobs et al., 2023), Megatron-SP (Korthikanti et al., 2022) and RingAttention
(Liu et al., 2023a) as baselines, which represent the state-of-the-art sequence parallelism methods
employed for processing long sequences with transformers.

4.1 COMMUNICATION ANALYSIS

The primary advantage of DSP lies in its ability to minimize communication costs and enable
scalable communication operations. DSP exploits the inherent characteristics of multi-dimensional
transformers to eliminate unnecessary communication, compared with embedded approaches such as
Megatron-LM (Shoeybi et al., 2019), Megatron-SP (Korthikanti et al., 2022), RingAttention (Liu
et al., 2023a) and DeepSpeed-Ulysses (Jacobs et al., 2023). Consider an activation size of M and a
sequence parallel size of N. In a 2D-Transformer, there is one transformer block for each sequence
dimension per layer, resulting in two transformer blocks per layer (two 1D blocks). More details of
the implementation of each method are demonstrated in Appendix A.2.

Both Megatron-SP and DeepSpeed-Ulysses require transforming sequence parallelism from a
sequence-shard to a head-shard layout. Megatron-SP employs 2 all-gather operations to aggre-
gate the entire sequence and 2 reduce-scatter operations to distribute results in the attention and
MLP layers for one transformer block. This results in a total of 8 collective communication opera-
tions, leading to a total per-device communication volume of 8 /. Conversely, DeepSpeed-Ulysses
incurs 4 communication operations in temporal block for the query, key, value, and output layout
transformations. Consequently, the communication volume transmitted per device for an all-to-all
communication of size M across N GPUs is 4M/N. Ring-Attention needs to communicate the
entire key and value in the temporal as well, resulting in a total communication volume of 2M.

In contrast, DSP mitigates communication cost by employing only two all-to-all operations in total
two blocks per layer. As shown in Table 4.1, it reduces the communication volume to 2M /N,
significantly outperforming other sequence parallelism techniques. Notably, with merely two all-to-
all operations, DSP exhibits efficient scalability even in super-large clusters for training and inference
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Table 3: Comparison of DSP with other sequence parallelism methods for 2D-Transformer archi-
tectures. M denotes the activation size, and N represents the number of devices. Communication
volume refers to the per-layer (two 1D blocks) volume per device.

Method Communication | Activation | Parameter | Ease
Volume Memory Memory | of Use
Ring Attention 2M R (@] (&) iR
Megatron-LM SM @ g (&) ip
Megatron-SP SM g g O L ]
DeepSpeed-Ulysses | 4M/N (@] (@] (&)
DSP (ours) 2M/N xy Oy (@] (66]

on extremely long sequences because the communication volume decreases as the number of nodes
increases, rendering DSP an exceptional choice for large-scale distributed training and inference
tasks involving extreme long sequences.

4.2 MEMORY ANALYSIS

Regarding activation memory, since we shard every tensor in the transformer, we are theoretically
able to achieve the minimum activation cost, similar to DeepSpeed-Ulysses and Ring Attention. In
practice, however, our approach requires less shape transformation and communication overhead,
allowing us to further reduce intermediate activation memory compared to other methods. Megatron-
SP, on the other hand, needs to hold the entire activation after the all-gather operation, resulting in
higher memory requirements for hosting the activation.

As for parameter memory, as discussed in Section 3.4, DSP is compatible with most parameter
parallelism strategies. In this analysis, we utilize the ZeRO technique (Rajbhandari et al., 2019) to
evenly shard all parameters across different devices. Consequently, our parameter memory footprint
can be kept low.

5 EXPERIMENTS

Experiments are conducted on 128 NVIDIA H100 GPUs, interconnected via NVLink within nodes
and InfiniBand across nodes. Our methods and implementations are not dependent on specific
hardware architectures and can generalize to other devices, particularly those with less efficient
interconnects. We follow the same baseline and settings as discussed in Section 4, utilizing 720M and
3B size Transformer-2D models in our experiments. Despite the existence of various 2D-Transformer
variants, their architectures are fundamentally similar. Consequently, we select one base model
similar to OpenSora (Zangwei Zheng, 2024), an open-source video generation model, for our study.
The code is implemented using PyTorch (Paszke et al., 2019).

In the following evaluations, we focus on addressing the following questions: 1) How is DSP’s
end-to-end performance compared with other SOTA sequence parallelism? 2) How is DSP’s scaling
ability when scale to many GPUs? 3) What is DSP’s memory consumption like in practice?

5.1 END-TO-END PERFORMANCE

In this section, we compare the end-to-end performance of different sequence parallelism methods
on 128 NVIDIA H100 GPUs. We use a combination of sequence parallelism and data parallelism,
with the sequence parallelism set to the minimum size for each method. We evaluate across different
sequence lengths ranging from 0.5 million to 4 million tokens, which are common usages for video
generation. Details can be found in Appendix A.3.2. As shown in Figure 5, DSP is able to outperform
DeepSpeed-Ulysses by 32% to 75%, and other methods by up to 10x due to its communication
efficiency. As the sequence length becomes longer and the sequence parallel size increases, as DSP’s
communication volume decreases as the device number increases, our performance’s advantage over
the baselines becomes even more pronounced. When scaling from 0.5M to 4M tokens, our FLOPS
drops by at most 23%, while other methods experience at least a 40% drop.
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Figure 5: End-to-end performance comparison of different sequence parallel methods combined with
data parallel on 128 H100 GPUs. The sequence parallel size is set to minimum for each method.
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Figure 6: Weak scaling ability evaluation of different methods with sequence parallelism only. “x
denotes out of memory or head. Black boxes represent linear scaling.

5.2 SCALING ABILITY

This section evaluates the scaling ability of DSP from two perspectives: weak scaling and strong
scaling. Weak scaling refers to scenarios where the computational workload per device remains
constant while incrementally increasing the number of devices. This setup is analogous to the training
stage, where the goal is to scale longer sequences over more GPUs. Strong scaling, on the other
hand, is more challenging as it requires keeping the total computational workload constant while
incrementally increasing the number of devices. In this case, the computation becomes more sparse
on each device. Strong scaling is often employed when the objective is to infer an input sequence
rapidly across many GPUs for low-latency applications. The experiments are divided into intra-node
and inter-node evaluations due to the different interconnection conditions. Intra-node experiments
leverage NVLink interconnect for communication, while inter-node experiments utilize a combination
of NVLink and InfiniBand interconnect. More details can be found in Appendix A.3.3.

Weak Scaling. In the weak scaling experiments, to maintain a consistent computational workload for
each GPU, the batch size is linearly increased proportional to the number of GPUs, while the sequence
length is fixed. As shown in Figures 6, DSP significantly outperforms other methods by more than
80.7%. Moreover, DSP can scale up to 64 GPUs without being limited by the number of attention
heads, unlike DeepSpeed-Ulysses and Megatron-SP. Despite scaling to 64 GPUs, DSP maintains
an almost linear throughput increase, with only a 15% performance loss from 8 GPUs to 64 GPUs.
Additionally, DSP can achieve super-linear scaling for intra-node due to efficient communication.

Strong Scaling. In the strong scaling experiments, both batch size and sequence length are fixed.
As shown in Figure 7, DSP can maintain linear scalability when scaling up to 8 GPUs for 720M
model and 4 GPUs for 3B model, which covers most practical scenarios. To evaluate the extreme
performance capabilities of DSP, we further scale up to 64 GPUs with very little workload per device.
Although there is an inevitable performance drop, DSP’s throughput remains significantly better than
the baselines. As shown in Figure 8, our work can significantly reduce inference latency compared
with baselines with the same workload.
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5.3 MEMORY CONSUMPTION

Figure 9 demonstrates the memory consumption comparison of different baselines in the weak scaling
setting. The semi-transparent bar represents the cache memory, while the solid bar represents the allo-
cated memory. The total memory usage is the sum of them. Our approach exhibits the lowest memory
usage, scaling efficiently for longer sequences. Furthermore, DSP’s memory usage is compact
without excessive cache memory bloat, unlike Ring-Attention, Megatron-LM and Megatron-SP.

6 CONCLUSION AND DISCUSSION

In this work, we introduce Dynamic Sequence Parallelism (DSP), a novel sequence parallel abstraction
for effectively scaling multi-dimensional transformers to long sequences. Unlike current embedded
sequence parallel methods that only shard on single sequence dimension and are tailored to specific
patterns, DSP offers a general and elegant solution by dynamically switching the parallel dimension
during computation, decoupled from the computation module.

The key advantages of DSP are: 1) substantially reduced communication costs, 2) adaptability across
modules without specialized modifications, and 3) remarkable ease of implementation enabled by
a simple high-level API. Our experiments demonstrated DSP’s superiority, achieving from 32.2%
to 10x higher end-to-end throughput and at least 75% lower communication volume compared to
state-of-the-art methods. Its elegance and ease of use make it a promising solution for efficient
sequence parallelism across a wide range of applications.

Limitations. One limitation of this work is that DSP is specifically designed for multi-dimensional
transformers and may not adapt well to single-dimensional ones like language models. Additionally,
while there are global operations that involve all sequence dimensions, which are rare in transformer,
DSP may not be of optimal efficiency.

Future works. In the future, DSP could expand its scope beyond transformer architectures to
architectures including convolution, recurrent, and graph neural networks to utilize its potential across
various tasks. Furthermore, automated optimization techniques could enable DSP to dynamically and
autonomously determine the most effective switching strategy based on network analysis, thereby
optimizing overall system efficiency and efficacy.
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A APPENDIX

A.1 MODEL DETAILS

In the theoretical analyses and evaluation section, we use a Transformer-2D model as our base model,
similar to OpenSora (Zangwei Zheng, 2024). However, it is not exactly OpenSora; we have removed
its specific cross-attention module to ensure that the performance can be generalized to other models.
Therefore, in each layer, there are only two transformer blocks that process two sequence dimensions
separately, as shown in Figure 10. Specifically, the two dimensions are temporal ¢ and spatial s for a
sequence. Each dimension is processed by a corresponding transformer block, which is a common
strategy in many applications.

A.2 PARALLELISM IMPLEMENTATION

In Figure 10, we demonstrate the detailed implementation of different sequence parallel methods on
2D-Transformer. The implementation of DeepSpeed-Ulysses (Rasley et al., 2020) is directly adopted
from the official OpenSora (Zangwei Zheng, 2024) implementation, while Megatron-SP (Korthikanti
et al., 2022) is adopted based on its official implementation. For Ring-Attention (Liu et al., 2023a),
we adopt an unofficial implementation for the 2D-Transformer.

Megatron-SP employs four resource-intensive collective communication operations per transformer
block. Specifically, it initiates an AllGather operation to aggregate the entire input x, succeeded by
ReduceScatter operations at the output for both attention and MLP modules, culminating in a total
communication volume of 8 M for one layer (two 1D blocks). Note that the communication volume
is calculated per device.

Similarly, Megatron-LM employs 2 all-reduce per transformer block, culminating 4 all-reduces, in a
total communication volume of 8M.

DeepSpeed-Ulysses adopts the more efficient AlltoAll approach. It leverages all-to-all for query, key,
value to transform their shard dimension before attention, and a all-to-all for output after attention.
And it only need to communicate in temporal transformer block. Consequently, the communication
volume transmitted per device for an AlltoAll communication of size M across N GPUs is 4M/N.

Ring-Attention is not shown in the figure because it does not require resharding. We implement
sequence communication in the temporal transformer as the time axis is split. In the attention module,
it needs to pass the key and value to all other devices, resulting in a total communication volume of
2M.

DSP applies dynamic switching between stages to switch the parallel dimension, which involves two
AlltoAll operations, totaling 2M /N communication.

A.3 EXPERIMENT SETTINGS
A.3.1 MODEL SIZE

In the experiments, we use 720M and 3B size for 2D-Transformer. There specific model settings are
shown in Table 4.

Table 4: Model settings of 720M and 3B 2D-Transformer.

Model Name | Layers | Hidden States | Attention Heads | Patch Size

720M 28 1152 16 (1,2,2)
3B 36 2038 32 1,2,2)

A.3.2 END-TO-END PERFORMANCE

Here is the polished text in a more formal format without using bullet points: In end-to-end per-
formance experiments, 128 GPUs were utilized for all methods. For each method, the minimum
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Figure 10: Overview of different sequence parallelism methods for 2D-Transformer.

sequence parallel size that would not result in out-of-memory errors was employed to reduce commu-
nication overhead, with data parallelism employed for the remaining size. ZeRO-2 was used for all
methods except Megatron-SP. The specific parallel size is detailed in Table 5.
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The accumulated sequence length ranged from 0.5M to 4M, which appears significantly larger than
typical text lengths. However, such lengths are common for multi-dimensional tasks. In this case, we
followed the workload of video generation. The spatial sequence, representing video resolution, was
fixed at 1024x1024. After applying the Variational Autoencoder (VAE) and Patch Embedding, the
final length for the spatial sequence was 4096. The temporal sequence, representing video length,
scales linearly in the test.

Table 5: End-to-end performance parallel settings. Tuple for methods denotes (sequence_parallel _size,
data_parallel _size).

Model | Sequence | Temporal | Spatial | DeepSpeed | Megatron Ring DSP
Size Length | Sequence | Sequence Ulysses SP Attention

0.5M 128 4096 (2,64) (2,64) (2,46) | (2,64)
720M IM 256 4096 4, 32) (4,32) 4,32) | 4,32
2M 512 4096 (8, 16) (16,8) 8,16) | (8,16)
4M 1024 4096 (16, 8) / (16,8) | (16,8)
0.5M 128 4096 4, 32) 4,32) 4,32) | 4,32
3B IM 256 4096 (8, 16) (16,8) 8,16) | (8,16)
2M 512 4096 (16, 8) / (16,8) | (16,8)
4M 1024 4096 (32,4) / 32,4 | 32,4

A.3.3 SCALING ABILITY

Table 6: Strong scaling experiment settings.

Model Size | Type | Batch Size | Temporal | Spatial

Intra-Node 1 64 4096

720M ‘ Inter-Node 1 256 | 4096
3B Intra-Node 1 16 4096
Inter-Node 1 128 4096

Table 7: Weak scaling experiment settings.

Model Size | Type | GPU Number | Batch Size | Temporal | Spatial

1 1 64 4096

2 2 64 4096

Intra-Node 4 4 64 4096

720M 8 8 64 4096
8 1 256 4096

Inter-Node 16 2 256 4096

32 4 256 4096

1 1 16 4096

2 2 16 4096

Intra-Node 4 4 16 4096

8 8 16 4096

3B 8 1 128 4096
16 2 128 4096

Inter-Node 32 4 128 4096

64 8 128 4096

In weak scaling experiments, as shown in Figure 7 we fix the sequence length and linearly increase
the batch size, ensuring that the workload on each device remains constant as the number of devices
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scales. In strong scaling experiments, as shown in Figure 6, we fix both the sequence length and
batch size, keeping the total computation constant. For each experiment, we set the sequence length
to the maximum for the least GPU case to fully utilize the computational resources. Specifically, we
use the same spatial sequence length and adjust the temporal sequence length to its maximum for
each test and sequence parallel size is set to GPU number.

A4 API

from dsp import dsp_dataloader, split, gather, dynamic_switch

# Preprocess dataloader for sequence parallel
dataloader = dsp_dataloader(dataloader)

Forward pass
= split(x, tgt_shard=1)

= f1(x)

= f2(x)

Dynamic switch between computation stages

= dynamic_switch(x, cur_shard=1, tgt_shard=2)
= f3(x)

Dynamic switch between computation stages

= dynamic_switch(x, cur_shard=2, tgt_shard=0)

X #H X X #H X X X #

x = gather(x, cur_shard=0)

Figure 11: An example to demonstrate DSP’s API for Pytorch. Developers can use only four functions
to enable DSP. shard refers to the sequence parallel dimension.

In the API, as illustrated in Figure 11, we provide four functions for users: dsp_dataloader, split,
gather, and dynamic_switch. The dynamic_switch function will reshard sequences between the
computation stages. Users only need to input the source shard dimension and target shard dimension.
The split and gather functions assist users in distributing and retrieving the entire sequence when
needed. The dsp_dataloader function helps users process their dataloader for sequence parallelism,
which requires the same data within a single sequence parallel group.
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