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Abstract

As an important problem of causal inference, we discuss the identification and1

estimation of treatment effects (TEs) under weak overlap, i.e., subjects with certain2

features all belong to a single treatment group. We use a latent variable to model3

a prognostic score (PGS), which is widely used in biostatistics and sufficient for4

TEs, i.e., we build a generative prognostic model. We prove that the latent variable5

recovers a PGS, and the model identifies individualized treatment effects. The6

model is then learned as the Intact-VAE, a new type of variational autoencoder7

(VAE). We derive counterfactual generalization bounds which motivate represen-8

tation balanced for treatment groups conditioned on individualized features. The9

proposed method is compared with recent methods using (semi-)synthetic datasets.10

1 Introduction11

Causal inference [21, 34], i.e, inferring causal effects of interventions, is a fundamental problem. In12

this work, we focus on treatment effects (TEs), such as effects of public policies or a new drug, based13

on a set of observations consisting of binary labels for treatment / control (non-treated), outcome, and14

other covariates (e.g, patients’ personal records). The fundamental difficulty of causal inference is15

that we never observe counterfactual outcomes, which would have been if we had made the other16

decision (treatment or control). While the ideal protocol for causal inference is randomized controlled17

trials (RCTs), they often have ethical and practical issues, or suffer from prohibitive costs. Thus,18

causal inference from observational data is indispensable. It introduces other challenges, however.19

The most crucial one is confounding: there may be variables (called confounders) that causally affect20

both the treatment and the outcome, and spurious correlation follows.21

A large majority of works, including this work, rely on the unconfoundedness, which means that22

appropriate covariates are collected so that the confounding can be controlled by conditioning on23

covariates. That is, all the confounders are in essence observed. This is still challenging, due to24

systematic imbalance (difference) of the distributions of the covariates between the treatment and25

control groups, introducing bias in estimation. Among classical ways of dealing with imbalance26

are matching and re-weighting [44, 35]. Machine learning methods are also exploited; there are27

semi-parametric methods, e.g, [48, TMLE], which have better finite sample performance, and also28

non-parametric, tree-based methods, e.g., [49, Causal Forests (CF)]. Notably, starting from [23], there29

is a recent rise of interest in learning representation of covariates, which is independent of treatment30

groups, i.e., balanced representation learning (BRL) .31

The most serious form of imbalance is that sample points with certain values of covariate are all32

belong to a single treatment group, which is called weak overlap of the covariate. Causal effects are33

not directly estimable at non-overlapped covariate values. There are lines of work that give robustness34

to weak overlap [3], trim non-overlapped sample points [52], or study convergence rate depending35

on overlap [19]. Weak overlap is particularly relevant to machine learning methods exploiting rich36

covariates, because, with higher-dimensional covariates, overlap is harder to satisfy and verify [10].37
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Our approach to the weak overlap issue is based on the prognostic score (PGS) [14], which is among38

the important concepts of sufficient scores. While the most well-known score is the propensity score39

(PPS) [36], PGSs have also long been known to improve methods using PPS [37, 5], and interests last40

in biostatistics [45, 2]. Prognostic modeling can benefit more from predictive systems and exploit41

richer literature than propensity modeling, particularly in Medicine and Health. A comparative study42

in [13] shows PGS-based methods perform better, or as well as, PPS methods. Thus, it is promising43

to combine the predictive powers of prognostic modeling and machine learning.44

To solve the inverse problem of recovering PGSs, our method exploits also the recent advance45

of identifiable representation, particularly of VAE [26, iVAE]. Identification means parameters of46

interest (for us, representation function and causal effects) are uniquely determined and given by47

true observational distribution. Identification logically precedes estimation and inference. Without48

identification there is no hope of a consistent estimator, and a model would fail silently; it may fit49

perfectly but return an estimator that converges to the wrong one or does not converge [29, particularly50

Sec. 8]. Identification is even more important for causal inference, because, unlike usual (non-causal)51

model misspecification, causal assumptions are often unverifiable through observables [50]. Thus, it52

is critical to specify theoretical conditions for identification, and then the applicability of methods53

can be judged by knowledge of an application domain.54

In this work, we study identification (Sec. 3) and estimation (Sec. 4) of TEs under weak overlap. We55

particularly discuss individualized treatment effects, conditioned on the covariates. Code and proofs56

are in Supplementary Materials. The main contributions of this paper are:57

1) theory of TE identification under weak overlap of covariates, using PGS and identifiable model;58

2) counterfactual generalization bounds on TE error, which motivates our conditional BRL;59

3) a new regularized VAE to estimate TEs, with connections to identification and balancing;60

4) experimental comparison to state-of-the-art methods on (semi-)synthetic datasets.61

2 Setup and motivation62

2.1 Counterfactuals, treatment effects, and identification63

Following [21], we introduce potential outcomes (POs, or counterfactual outcomes) y(t) ∈ Rd, t ∈64

{0, 1}. y(t) is the outcome that would have been observed, if treatment value t = t had been applied.65

Formally, this is the consistency of counterfactuals: y = y(t) if t = t, or simply y = y(t). We see66

y(t) as the hidden variables that give factual y under factual assignment t = t. The fundamental67

problem of causal inference is that, for a unit under research, we could observe only one of y(0) or68

y(1), corresponding the treatment value applied. That is, “factual” refers to y or t that is in principle69

observable in data, or statistical entities (e.g, estimators) built on them. We also observe relevant70

covariate(s) x ∈ X ⊆ Rm, which is associated with individuals, with distribution D ∼ p(x,y, t).71

Note, we use Roman fonts for random variables (e.g., t) and italic for realization (e.g., t).72

The expected PO is denoted by µt(x) = E(y(t)|x = x), conditioned on x = x. The estimands in73

this work are the Conditional Average TE (CATE) and Average TE (ATE), defined respectively by74

τ(x) = µ1(x)− µ0(x), ν = E(τ(x)). (1)

CATE is an individual-level, personalized, treatment effect, given highly discriminative covariate.75

Standard results [38][16, Ch. 3] give sufficient conditions for identification under general setting.76

They are Exchangeability: y(t) |= t|x, and Overlap: p(t|x) > 0 for any x ∈ X . Both are required for77

t ∈ {0, 1}. When t appears in a statement without quantification, we always mean “for both t”. Often,78

Consistency is also listed, but, as above, it is better known as well-definedness of counterfactuals.79

Exchangeability means, just as in RCTs but additionally given x, that there is no correlation between80

factual treatment t and counterfactual outcomes y(t). Overlap means that the supports of p(x|t = 0)81

and p(x|t = 1) should be the same, and this ensures it is valid to condition on any (x, t).82

We relax overlapped covariate in Sec. 3.2, to allow some non-overlapped values x, i.e., covariate x is83

weakly overlapped. In Sec. 2.2, we introduce a condition which gives exchangeability (and PGSs). In84

this paper, we also discuss overlap of variables other than x (e.g. PGSs), and we give a definition for85

any random variable v with support V as following.86

Definition 1. Overlap of v means p(t|v) > 0 for all t ∈ {0, 1},v ∈ V . We also say v is overlapped.87

If the condition is violated at some value v, then v is non-overlapped and v is weakly overlapped.88
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2.2 Prognostic scores89

Our method is motivated by PGSs [14], adapted as Pt-score and P-score in Definition 2 in this paper,90

related to balancing scores b(x), which is defined by t |= x|b(x) [36]. The PPS p(t = 1|x) is a special91

case of this. Both are sufficient scores for identification; PGSs are sufficient statistics of outcome92

predictors and b(x) is for the treatment (see Appendix for details).93

Definition 2. A Pt-score (PtS) is two functions Pt(x) (t = 0, 1) such that y(t) |= x|Pt(x). A PtS is94

called a P-score (PS) if P0 = P1.95

Note that, a PtS is by definition two functions, thus overlapped Pt(x) means both P0(x) and P1(x)96

are overlapped. Why PtS (PGS)? PtS is more applicable than balancing score b(x) under weak97

overlap. Overlapped b(x) implies overlapped x, which in turn implies overlapped PGS [10]. Lower-98

dimensional than x, PtS is likely more overlapped than x, and, moreover, there is evidence that PtS99

maximizes overlap among all sufficient scores for ATE [9].100

Below is a direct corollary of Proposition 5 in [14]. Both of PtS and PS give CATE, but, as we will101

see, PS is better as a conditionally balanced representation, since Pt(x) |= t|x only when P0 = P1.102

Proposition 1 (CATE by PtS). If Pt is a PtS, then CATE can be given by103

µt(x) = E(E(y(t)|Pt,x)) = E(E(y|Pt(x), t = t)) =
∫
p(y|Pt = Pt(x), t)ydy (2)

With the knowledge of Pt, we choose one of P0,P1 corresponding to the counterfactual outcome of104

interest. This ability of counterfactual assignment resolves the problem of non-overlap at x.105

PtSs exist under general settings when y(t) follows an additive noise model (ANM).106

(G1) (ANM) the data generating process (DGP) for y is y = f∗(M(x), t) + e where f∗,M are107

functions and e is a zero-mean exogenous (external) noise.108

The DGP defines y(t) by setting t = t in the equation. And it also specifies how other variables109

causally affect y. For example, x affects y through M, so M(x) is the effect modifier [14], which is110

often components of x affecting y directly. Note (G1) also implies exchangeability given x, through111

y(t) |= t|M(x). ANMs are also commonly used in nonparametric regression methods for TEs [6].112

Under (G1), 1) Pt := f∗t (M(x)) = µt(x)
1 is a PtS2 but not PS, 2) M is a PS (x is a trivial PS), and113

3) P := (µ0(x), µ1(x)) is a PS. We use the same symbol to denote a PtS and the random variable114

defined by it, when appropriate.115

3 Identification under generative prognostic model116

Figure 1: Graphical models
of the decoders. From top:
CVAE, iVAE, and Intact-
VAE. The encoders are sim-
ilar, taking all observables
and build approximate pos-
teriors, and thus are omitted.

In Sec. 3.1, we introduce our generative prognostic model and VAE based117

on p(y, z|x, t) and prove identifiability of our model. In Sec. 3.2, we prove118

identification of CATEs, one of our main contributions. The theoretical119

analysis involves only our generative model (i.e., prior and decoder), but120

not encoder, because model identifiability is a property of model, and121

causal identification is about DGP and model. The encoder is involved122

in estimation which is studied in Sec. 4.123

3.1 Intact-VAE: model, architecture, and identifiability124

Generative models are useful to solve the inverse problem of recovering125

Pt-score. Our goal is to build a model that can be learned by VAE from126

observational data to obtain a PtS, or more ideally PS, via the latent127

variable z. That is, a generative prognostic model.128

With the above goal, the generative model of our VAE is built as129

p(y, z|x, t) = p(y|z, t)p(z|x, t). (3)

The first factor is our decoder which models p(y|Pt, t) in (2), and the130

second factor is our conditional prior which models Pt(x). Conditioning on x in the joint model131

1We often write t of function argument in subscript, which indicates possible counterfactual assignment.
2µt is the most common PGS, to the extent that some call it the PGS (e.g, [39, 9, 47]), even without ANMs.
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p(y, z|x, t) reflects that our estimand is CATE given x. Modeling the score by a conditional distri-132

bution rather than a deterministic function is more flexible. We parameterize our model by ANM133

outcome and factorized Gaussian prior as134

pf (y|z, t) = pε(y − ft(z)); pλ(z|x, t) ∼ N (z;ht(x),diag(kt(x))) (4)

where θ = (f ,h,k) are functional parameters and ε is a noise. λ(x) := diag(k−1t (x))(h(x),− 1
2 )
T135

is the natural parameter of the Gaussian prior, and we also use it as a shorthand for both h,k.136

The ELBO of our model can be derived from standard variational lower bound137

log p(y|x, t) ≥ log p(y|x, t)−DKL(q(z|x,y, t)‖p(z|x,y, t))
= Ez∼q log p(y|z, t)−DKL(q(z|x,y, t)‖p(z|x, t)).

(5)

Our encoder q, which conditions on all the observables, is standard, and we will see its importance138

later. We name this architecture Intact-VAE (Identifiable treatment-conditional VAE).139

We naturally have an identifiable conditional VAE (CVAE), as the name suggests. Note that (3) has a140

similar factorization with the generative model of iVAE [26], that is p(y, z|x) = p(y|z)p(z|x); the141

first factor does not depend on x. Further, since we have the conditioning on t in both the factors of142

(3), our VAE architecture is a combination of iVAE and CVAE [42, 28], with t as the conditioning143

variable. See Figure 1 for the comparison in terms of graphical models. The core idea of iVAE is144

reflected in our model identifiability (Lemma 1 below). See Appendix for the basics of VAEs.145

The following conditions on the model are used in theoretical analysis.146

(M1) i) ft is injective, ii) ft is differentiable, and iii) n := dim(z) = d(= dim(y)).147

Lemma 1 (Model identifiability). Given model (3) and (4) under (M1) i) and ii), for t = t, assume148

(D1) (Linear independence of λ) there exist 2n+1 points x0, ...,x2n ∈ X such that the 2n-square149

matrix Lt := [γt,1, ...,γt,2n] is invertible, where γt,k := λt(xk)− λt(x0).150

Then, given t = t, the family is identifiable up to an equivalence class. That is, if pθ(y|x, t = t) =151

pθ′(y|x, t = t), we have the relation between parameters: for any yt in the image of ft,152

f−1t (yt) = diag(a)f ′t
−1

(yt) + b =: A(f ′t
−1

(yt)) (6)
where diag(a) is an invertible n-diagonal matrix and b is a n-vector, both depend on λt.153

The conditions are inherited from iVAE. (D1) holds easily in practice, if the components of λt(x)154

are linearly independent; if (D1) fails, then the support of λt(x) is in a (2n− 1)-dimensional space.155

The essence of the result is f ′t = ft ◦ At, that is, ft can be identified (learned) up to an affine156

transformation defined by λt. This is achieved by combining the techniques from [26] and [43], and157

essentially the same results can be proved for other exponential family priors [43]. In this paper,158

symbol ′ (prime) always indicates another parameter (variable, etc.).159

3.2 Nonparametric identifications under weakly-overlapped covariate160

In this subsection, we give two identification results based on (partial) recovery of PS or PtS,161

respectively. Since PtSs are functions of x, the recovery is achieved by a noiseless prior, that is,162

k(x) = 0; the prior zλ,t ∼ pλ(z|x, t = t) degenerates to deterministic function ht(x).163

PtSs with dimensionality lower than or equal to y are essential to work for weak overlap of x, to the164

extent that, from now on, we simply say PSs / PtSs when referring to this kind of low-dimensional165

PSs / PtSs, unless particularly indicated. (M1) iii), i.e. n = d, is not restrictive because µt is a PtS of166

the same dimension as y under (G1). Also, in practice, n = d means that we seek a low-dimensional167

representation of x. In fact, to make the dimensionality explicit in (G1), we introduce an alternative168

(G1’) which includes (G1) with Pt = µt and jt is identity.169

(G1’) (Low-dimensional PtS) Under (G1), µt(x) = jt(Pt(x)) for some Pt and injective jt.170

We use (G1’) afterwards. Clearly, Pt in (G1’) is a PtS, and injectivity and n = d ensure n =171

dim(y) ≥ dim(Pt). Similarly, the next (G2) reduces unverifiable n ≥ dim(P) to n = d, for PS.172

(G2) (Low-dimensional PS) Under (G1), µt(x) = jt(P(x)) for some P and injective jt.173

(G2) means that CATEs are given by µ0 and an invertible function i := j1 ◦ j−10 . See Appendix for174

more discussion and a (closely related) real world example. In Sec. 4.1, we argue that there often175

exist equivalent PSs under (G1’), at least approximately.176
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With (G1’) or (G2), overlapped x can be relaxed to overlapped P(t)S plus the following.177

(M2) (Score partition preserving) For any x,x′ ∈ X , Pt(x) = Pt(x′) =⇒ ht(x) = ht(x
′).178

Note that (M2) is in fact required for optimal h, in the sense specified in Proposition 1 and Theorem 1179

below. The intuition is that, Pt maps non-overlapped x to an overlapped value, and ht preserves this180

property, through learning. In fact, (M2) is trivially satisfied if Pt and ht are linear, and this is still181

challenging and considered by many works [32, 9], or some with linear outcome models [11, 39].182

Our first identification, Proposition 2, relies on (G2) and our generative model, without model183

identifiability (so differentiable ft is not needed). This is a nonparametric3 identification under shape184

restriction [7], because f ,h are functional parameters, and injectivity is monotonicity if jt is on R.185

Proposition 2 (Identification with PS). Given (G2) and model (3) and (4) under (M1) i) and iii),186

and (M3) (PS matching) h0(x) = h1(x) and k(x) = 0. Then, if Epθ (y|x, t) = E(y|x, t), we have4187

1) (Recovery of PS) zλ,t = ht(x) = v(P(x)) on overlapped x,188

where v : P → Rn is an injective function and P := {P(x)|overlapped x}189

2) (Identification) if P in (G2) is overlapped, and (M2) is satisfied, then µt(x) = µ̂t(x)190

for any t ∈ {0, 1},x ∈ X , where µ̂t(x) := Epλ(z|x,t)Epf (y|z, t) = ft(ht(x)).191

The essence is, i) the true DGP is identified up to an invertible mapping v, so that ft = jt ◦ v−1 and192

ht = v ◦ Pt, and ii) Pt is recovered up to v and y(t) |= x|Pt is preserved, with same v for both t.193

PS is preferred since it satisfies overlap more easily and (M2) than PtS which refers to two functions.194

However, the existence of low-dimensional PS is uncertain in practice when our knowledge of the195

DGP is limited. Thus, we need Theorem 1 to work under PtS which generally exists.196

Theorem 1 (Identification with PtS). Given the DGP (G1’) and model (3)&(4) under (M1) and197

(M3’) (Noise matching) pε = pe and k(x) = kk′(x), k → 0, assume (D1) and198

(D2) (Spontaneous balance) There exist 2n + 1 points x0, ...,x2n ∈ X , 2n-square matrix C,199

and 2n-vector d, such that L−10 L1 = C and β0 − C−Tβ1 = d/k for optimal λt (see200

below), where Lt is defined in (D1), βt := (αt(x1)−αt(x0), ..., αt(x2n)−αt(x0))
T , and201

αt(x;λt) is the log-partition function of the prior in (4).202

Then, if pθ(y|x, t) = p(y|x, t), conclusions 1) and 2) in Proposition 2 hold with P replaced with Pt203

in (G1’), and the domain of v becomes P := P0 ∪ P1,Pt := {Pt(x)|overlapped x}.204

Theorem 1 also achieves the two essential points, but in different and complementary ways. Proposi-205

tion 2 starts from the prior by P0 = P1 and setting h0 = h1. Conversely, Theorem 1 starts from the206

decoder with pε = pe and strengthens model identifiability (6) by (D2). (D2) restricts the discrepancy207

between λ0,λ1 on 2n+ 1 points of x, thus is relatively easy to satisfy with high-dimensional x.208

We see more reasons to prefer PS. In general, to identify the mean function µt(x), a regression is209

enough, and pε = pe is unnecessary as in Proposition 2. Also, (D2) is trivial if we have PS and set210

λ0 = λ1. See Appendix for more on the complementarity between the two identifications.211

4 Estimation by β-Intact-VAE212

4.1 Prior as PS, posterior as PtS, and β as regularization strength213

In this subsection, we discuss our focus on balanced PtSs and give an estimation method to realize it.214

In learning the Intact VAE with data, we assume that there is a PtS and the decomposition of (G1’)215

holds. Such a decomposition is not unique in general, however. Among possible PtSs, we wish to216

learn a balanced PtS, which is close to PS. This is based on the observations in Sec. 3.2: we saw217

that existence of PS is preferable in identifying the true DGP up to equivalent expression. Here, we218

introduce the notion of balanced PtS in a non-rigorous way: a PtS Pt is called balanced if the value of219

some measure for the conditional independence Pt(x) |= t|x is small. The idea is common in practice.220

For example, in a real-world nutrition study, [20] reduces 11 covariates to a 1-dimensional linear PS.221

3Some references (e.g, [16]) only refer to identification without models as “nonparametric”. However, with
recent advances, we have identification under nonparametric models [29], also the case in this paper.

4Same results hold without “under (G1)” in (G2) (or (G1’) for Theorem 1), except that zλ,t is not necessarily
a PS (or PtS for Theorem 1). This is because (G1) is required to ensure µt is a PtS.
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Assuming that there is a balanced PtS, we consider two ways for estimating it with Intact VAE. One222

is to exploit a prior that does not depend on t. Namely, we set λ0 = λ1 =: λ in (4). The other is223

to introduce a hyperparameter β in the ELBO as in β-VAE [17]. More specifically, with the prior224

pλ(z|x), we use factorized Gaussian for the decoder and encoder:225

pf ,g(y|z, t) ∼ N (y;ft(z),diag(gt(z))); qφ(z|x,y, t) ∼ N (z; rt(x,y),diag(st(x,y))). (7)

The modified ELBO with β, up to additive constant, is derived as226

ED{−βDKL(qφ(z|x,y, t)‖pλ(z|x))− Ez∼q[(y − ft(z))
2/2g2t (z)]− Ez∼q log |gt(z)|}. (8)

Here, for convenience, we omit the summation (also in Lf in Sec. 4.2), as if y was univariate. The227

approximate posterior (or encoder) qφ(z|x,y, t) depends on t, which can realize a PtS. With β, we228

control the trade-off between the first and second term: the former is the divergence of the posterior229

from the balanced prior, and the latter is the reconstruction of the outcome. By choosing β in an230

appropriate way, such as by validation, the ELBO can find a solution that explains the outcome while231

keeping the balancedness of the posterior. Also note that, the parameters g and k, which models the232

outcome noise and expresses uncertainty of the prior, respectively, are both learned by the ELBO.233

This deviates from the theoretical conditions in Sec. 3.2, but is more practical and gives better results234

in experiments. See Appendix for much more on ideas and connections behind the ELBO.235

Once the encoder qφ is learned5, the estimate of the expected POs is given by236

µ̂t̂(x) = Eq(z|x=x)ft̂(z) = ED|x∼p(y,t|x)Ezft̂(z)qφ(z|x,y, t), t̂ ∈ {0, 1}, (9)

where q(z|x) := Ep(y,t|x)qφ(z|x,y, t) is the aggregated posterior and D ∼ p(x,y, t). In estimation,237

we consider the case where x is observed in the data, and the sample of (y, t) are taken from the238

data given x = x (when x is not in the data, we replace qφ with pλ in (9), see Appendix for details239

and results). Note that t̂ in (9) indicates counterfactual assignment which may not be the same as240

factual t = t in the data. That is, we set t = t̂ in the decoder. The assignment is not applied to the241

encoder, but it is learned from factual x,y (see also Sec. 4.2, the explanation for εCF,t). The overall242

algorithm steps are i) we train VAE by (8), ii) infer CATE τ̂(x) = µ̂1(x)− µ̂0(x) by (9).243

4.2 Conditional balanced representation learning244

We formally justify our ELBO (8) from the viewpoint of BRL. Usually, particularly in ATE estimation,245

balance means covariate balance, i.e., x |= t [44]. Influenced by this, most BRL methods learn balanced246

covariate representation z such that z |= t [40, 31] and usually z is a function of x. From Sec. 4.1, we247

understand that larger β in ELBO (8) encourages z |= t|x which is given by the prior, corresponding248

to Pt(x) |= t|x for a balanced PtS. Here, we show that, this conditional balance of representation z249

is natural for CATE estimation, and CATE error due to bad recovery of jt in (G1’) is controlled by250

ELBO (8). In Appendix, we detail novel implications of our bounds, compared to those in [40, 31].251

Using (9) to estimate CATE, τ̂f (z) = f1(z)− f0(z) is marginalized on q(z|x). The bounds below252

motivate both prior and posterior balancing. Let us first consider errors defined by the aggregated253

prior p(z|x) :=
∑
t p(t|x)pt(z|x) (denote pt(z|x) := pλ(z|x, t = t)), and q(z|x) afterwards. We254

introduce the objective we bound. The true CATE, given covariate x = x or score z, is255

τ(x) = m1(P1(x))−m0(P0(x)); τm(z) = m1(z)−m0(z) (10)

where mt(z) := E(y(t)|Pt = z) and Pt is a balanced PtS in (G1’). Accordingly, given x, the error256

of prior CATE, with or without knowing Pt, is naturally defined as257

ε∗,pf (x) := Ep(z|x)(τ̂f (z)− τ(x))2; εpf (x) := Ep(z|x)(τ̂f (z)− τm(z))2. (11)

We bound εpf instead of ε∗,pf because the error between τ(x) and τm(z) is small if balanced Pt is258

recovered (then z ≈ P0(x) ≈ P1(x) in (10), see Appendix for details). Instead, we consider the error259

between τ̂f and τm below. We define the risks of outcome regression, into which εp is decomposed.260

Definition 3 (PO Risks). The expected loss of PO at (z, t), factual risk, and counterfactual risk are261

Lf (z, t) := g−2t Ep(y(t)|Pt=z)(y(t)− ft(z))
2 = gt(z)

−2 ∫ (y − ft(z))2p(y(t) = y|Pt = z)dy;
εpF,t(x) := Ept(z|x)Lf (z, t); εpCF,t(x) := Ep1−t(z|x)Lf (z, t) =

∫
Lf (z, t)p1−t(z|x)dz.

5As usual, we expect variational inference and optimization procedure are (near) optimal, i.e., Consistency of
VAE (see Appendix for formal statement). Consistent estimation using the prior is a direct corollary of consistent
VAE. Under Gaussian models, it is possible to prove consistency of posterior estimation, as shown in [4].

6



With y(t) involved, Lf is a PO error of f weighted by g. Factual and counterfactual counterparts are262

defined accordingly, w.r.t factual pt learned from data. Note, in εF,t, unit u = (x,y, t) involves in263

the learning of pt(z|x) (and qt(z|x) afterwards), and also in Lf (z, t) since y(t) = y for the unit. In264

εCF,t, however, y(t) 6= y′ = y(1− t) for u′ = (x,y′, 1− t) (particularly relevant for the posterior).265

Thus, the regression error (second) term in ELBO (8) controls εpF,t via factual data. On the other266

hand, εpCF,t is not estimable due to unobservable y(1− t), but is bounded as below.267

Lemma 2 (Counterfactual risk bound). Assume |Lf (z, t)| ≤M , we have268

εpCF (x) ≤
∑
t p(1− t|x)ε

p
F,t(x) +MDp(x) (12)

where εpCF (x) :=
∑
t p(1− t|x)ε

p
CF,t(x), and Dp(x) :=

∑
t

√
DKL(pt‖p1−t)/2.269

εpCF (x) is bounded by εpF,t plus MDp(x), which measures the imbalance between pt(z|x) and is270

symmetric for t. We can implicitly control εpCF by making Dp small. Again, this means PS is preferred271

as a conditional balanced representation, and justifies our balanced prior pλ(z|x). Moreover, the272

results (including Theorem 2 below) also hold for posterior estimation, that is, replace pt(z|x) with273

qt(z|x) := q(z|x, t = t) = Ep(y|x,t)qφ(z|x,y, t) , the results and proofs hold as it was. This implies274

that the imbalance between qt should also be controlled. Correspondingly, the symmetric KL term in275

ELBO (8) balances qt(z|x) by encouraging z |= t|x for the posterior.276

Theorem 2 in turn bounds εpf , by decomposing it to εpF,t, ε
p
CF,t, and Vpy.277

Theorem 2 (Generalization bound). Assume |Lf (z, t)| ≤M and |gt(z)| ≤ G, then,278

εf (x) ≤ 2(G2(εF,0(x) + εF,1(x)) +MD(x)− Vy(x)|p (13)

where Vpy(x) := Ep(z|x)
∑
t Ep(y(t)|Pt=z)(y(t)−mt(z))

2, and “|p” collects all superscripts q.279

The new term Vpy(x) reflects the intrinsic variance in the DGP and can not be controlled, and it is280

negative because εpf is defined by mean functions ft and mt, not y(t). The other two terms, as we281

indicated, is estimated by our ELBO.282

Estimating G,M is nontrivial. Instead, similarly to [40], we rely on β in the ELBO to weight the283

two terms in (13). We do not need two hyperparameters since G is implicitly controlled by the third284

term in ELBO (8), which is a norm constraint. As in matching methods, β is a trade-off between285

conditional balance of learned PtS (affected by ft) and precision / effective sample size of outcome286

regression, and can be seen as the probabilistic counterpart of [47, 25].287

Finally, we note the bounds do not directly address non-overlap; in Lemma 2, when p(1− t|x) = 0,288

εpF,1−t in the r.h.s is unbounded since p1−t(z|x) can not be learned from data. However, as we argued289

in Sec. 3.2, with more balanced Pt recovered as representation, overlap is more easily satisfied.290

5 Related work291

Weak overlap. Under (respective versions of) weak overlap, [32] estimates ATE by reducing292

covariates to a linear PGS, [11] estimates homogeneous (constant) TE under partial linear outcome293

model, and [9] studies identification of ATE by a general class of scores, given (linear) PPS and PGS.294

In machine learning, current focus is on finding overlap regions [33, 8], or indicating possible failure295

under weak overlap [22], but not remedies. An exception is [24] which provides bounds without296

overlap. [40, 31] are in line of [24] and have similar bounds to ours, without relating to overlap. Our297

method is the first in machine learning that gives identification without overlap.298

Prognostic scores are recently combined with machine learning, mainly in biostatistics. For example,299

[39] trains a flexible PGS and fits a linear regression on the PGS among others, for constant TEs, and300

[12] models PGS in its Bayesian regression tree for CATE. More related, [20] estimates CATE by301

reducing covariates to a linear score that is a joint PPS and PGS, and [47] uses SVM to minimize302

the worst-case bias due to PGS imbalance. However, in machine learning, few methods consider303

PGSs; [55, 15] learn outcome predictors, without connection to PGS, while [24] conceptually, but304

not formally, connects BRL to PGS. Our work follows the recent boom in biostatistics and is the first305

to formally connect generative learning, PGS, and BRL (see below on BRL) for TE estimation.306

Identifiable representation. Recently, independent component analysis (ICA) and representation307

learning, both ill-posed inverse problems, meet together to give nonlinear ICA and identifiable308
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representation, e.g., using VAEs [26], and energy models [27]. The results are exploited in causal309

discovery [51] and out-of-distribution generalization [46]. This work is the first to explore identifiable310

representations in TE identification.311

BRL and related methods amount to a major direction. Early BRL methods are BLR/BNN [23]312

and TARnet/CFR [40]. Adding to this, [53] also exploits the local similarity of between data points.313

[41] uses similar architecture to TARnet, considering the importance of treatment probability. There314

are also methods using GAN [54, GANITE] and Gaussian process [1]. Our method shares the idea of315

BRL, and further extends to conditional balancing more suitable for CATE.316

Our work hopefully lays conceptual and theoretical foundations of VAE methods for TEs (e.g.,317

[30, 31]), under unconfoundedness. Also, monotonicity, which is injectivity on R, is important in318

causal inference, and some works consider it together with overlap [24, 56]. See Appendix for details.319

6 Experiments320

We compare the proposed method with existing methods on three types of datasets. Here we present321

two experiments, and the rest one, on the Pokec social network dataset, can be found in Appendix. As322

in previous works [40, 30], we report the absolute error of ATE εATE := |ED(y(1)−y(0))−ED τ̂(x)|,323

and, as a surrogate of CATE, the empirical PEHE [18] εPEHE := ED((y(1)− y(0))− τ̂(x))2.324

Unless otherwise indicated, for each function f ,h,k, r, s in (4)(7), we use a multilayer perceptron325

(MLP) that has 3*200 hidden units with ReLU activation, and λ = (h,k) depends only on x. We fix326

g(x) = 1 because the datasets have fixed noise scale, and results with learned g on synthetic dataset327

with dependent noise is in Appendix. The Adam optimizer with initial learning rate 10−4 and batch328

size 100 is employed. All experiments use early-stopping of training by evaluating the ELBO on a329

validation set, and results are reported on a testing set. Each set of running on synthetic dataset (a line330

in the figure) is within 1 hour on an 8-CPU machine, and it is within a day for IHDP. More details on331

hyper-parameters and settings are given in each experiment and Appendix.332

6.1 Synthetic dataset333

We generate synthetic datasets following (14). Both x,w are factorized Gaussians. µ,σ are randomly334

sampled. The functions h,k, l are linear. Outcome models f0, f1 are built by NNs with invertible335

activations. y is univariate, dim(x) = 30, and dim(w) ranges from 1 to 5. w is a PS, but is not336

low-dimensional when dim(w) > 1. We control overlap by ω which multiplies the logit value, and337

have 5 different overlap levels from strong overlap to very weak overlap. See Appendix for details.338

x ∼ N (µ,σ);w|x ∼ N (h(x),k(x)); t|x ∼ Bern(Logi(ωl(x))); y|w, t ∼ N (ft(w), 1). (14)

6 10 14 18 22
non-overlap (omega)
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1 2 3 4 5
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0.8
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Figure 2:
√
εPEHE on synthetic dataset. Er-

ror bar on 10 random DGPs.

With the same (dim(w), ω), we evaluate our method and339

CFR on 10 random DGPs, with different sets of functions340

f,h,k, l in (14). For each DGP, we sample 1500 data341

points, and split them into 3 equal sets for training, val-342

idation, and testing. We show our results for different343

hyperparameter β. For CFR, we try different balancing344

parameters and present the best results (see Appendix for345

details). We report εPEHE , see Appendix for ATE results.346

In each panel of Figure 2, we adjust one of ω,dim(w)347

respectively, with the other fixed to the lowest. In the left348

panel, both our method and CFR are quite robust to overlap349

level, supporting respective theories ([24] gives bounds for350

CFR under weak overlap). Too large β seems to worsen351

the results, possibly because we already have an apparent352

PS (w with dim(w) = 1) and large β incurs sub-optimal ELBO with no gain.353

In the right panel, when dim(w) > 1, ft in (14) is non-injecitve and learning of PtS is necessary.354

Thus, larger β has a negative effect, and particularly, β = 1 is significantly better than β = 3. The355

drop of error for dim(w) > 3 is due to the randomness of f in (14). In Sec. 2.2, we saw that the356

2-dimsensional PS P := (µ0(x), µ1(x)) always exists under ANMs. Thus, when dim(w) > 2, our357

method tries to recover that P, and generally performs not worse than under dim(w) = 2, but still358

not better than under dim(w) = 1.359
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Figure 3: Plots of recovered - true latent.
Blue: t = 0, Orange: t = 1.

Our method is much robuster against different DGPs than360

CFR (see error bars), though it is worse than CFR when361

dim(w) > 1. This is unsurprising because our model362

has 1-dimensional z, while CFR uses 200-dimensional363

representation. Thus, the results already show the power of364

identification and recovery of scores (see Figure 3 also). In365

fact, we observed that our method outperforms or matches366

CFR with higher-dimensional z (see Appendix). Thus, we367

believe the performance gap with dim(z) = 1 is due to the capacity of NNs in Intact-VAE.368

When dim(w) = 1, there are no better PSs than w, because ft is invertible and no information369

can be dropped from w. Thus, as shown in Figure 3, our method learns z as an approximate affine370

transformation of the true w, showing identification. For comparison, we run [30, CEVAE] which371

is also based on VAE but without identification, and it shows much lower quality of recovery. As372

expected, both recovery and estimation are better with balanced prior pλ(z|x), and we can see an373

example of bad recovery using pλ(z|x, t) in Appendix. More latent plots can also be found there.374

6.2 IHDP benchmark dataset375

This experiment shows our conditional balancing matches state-of-the-art BRL methods, and does not376

overfit to PEHE. The IHDP dataset [18] is widely used to evaluate machine learning based methods,377

e.g. [40, 41]. It is also used in [24] which considers weak overlap, because the covariates are weakly378

overlapped due to their correlation to the artificial treatment assignment. Finally, there is a linear PS379

(linear combination of the covariates). See Appendix for details.380

Note, most of covariates are binary, so the support of the PS is often on small and separated intervals381

and is possibly discrete. Thus, Gaussian latent z is misspecified. We use multivariate z in model382

to address this, similarly to [30]. We set β = 1 since it works well on synthetic dataset with weak383

overlap. To see our balancing property clearly, we modify our method and add two components for384

unconditional balancing from [40] (see Appendix), and compare this modified version to the original.385

Table 1: Errors on IHDP over 1000 random DGPs. We report results with dim(z) = 10. Bold indicates
method(s) that are significantly better. The results are taken from [40], except GANITE [54] and CEVAE [30].

Method TMLE BNN CFR CF CEVAE GANITE Ours Ours Mod.

εATE .30±.01 .37±.03 .25±.01 .18±.01 .34±.01 .43±.05 .178±.006 .167±.005

√
εPEHE 5.0±.2 2.2±.1 .71±.02 3.8±.2 2.7±.1 1.9±.4 .859±.033 .777±.026

As shown in Table 1, Intact-VAE outperforms or matches the state-of-the-art methods. Particularly,386

our method has the best ATE estimation, and is slightly worse than CFR for PEHE. This is possibly387

due to the fitting capacity (recall Sec. 6.1), and also we do not tune β. Notably, our method388

outperforms other generative models (CEVAE and GANITE) by large margins. The modified389

version is slightly improved, but we should note that the improvement for εATE is barely significant.390

This indicates overfitting to PEHE. In fact, PEHE estimates the marginalized error Eε(x) where391

ε(x) = (τ(x)− τ̂(x))2, and, compared with εATE , it focuses on values x with high probability and392

/ or large ε(x). The balancing in [40] is based on bounding Eε(x), and thus tends to overly focus on393

the above values of x, resulting in sub-optimal estimation of CATE and even of ATE. This tendency394

is more apparent with sub-optimal hyperparameter for the unconditional balancing (see Appendix).395

7 Conclusion396

In this work, we proposed a method for CATE estimation, under weak overlap. Our method exploits397

identifiable VAE, a recent advance in generative models, and is fully motivated and theoretically398

justified by causal considerations: identification, PGS, and balancing. We show that VAEs are399

suitable for principled causal inference thanks to its probabilistic nature, if not compromised by ad400

hoc heuristics. We believe it is possible to extend the bounds in Sec. 4.2 to weak overlap, just as401

[24] extends [40] to weak overlap, and leave this for future. Experiments show evidence that the402

injectivity of f in our model is possibly unnecessary because dim(z) > dim(y) often gives better403

results. Theoretical study of this is an interesting future direction. To avoid potential negative societal404

impact (e.g, bad prescriptions), practitioners should judge the conditions of the proposed method by405

their domain expertise, and careful trials are always recommended.406
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(a) Did you include the full text of instructions given to participants and screenshots, if581

applicable? [N/A]582

(b) Did you describe any potential participant risks, with links to Institutional Review583

Board (IRB) approvals, if applicable? [N/A]584

(c) Did you include the estimated hourly wage paid to participants and the total amount585

spent on participant compensation? [N/A]586
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