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Abstract

Aligning large language models to human preferences is inherently multidimen-
sional, yet most large language model alignment pipelines reduce diverse human
preferences to a single objective. We address simultaneous alignment across do-
mains with verifiable rewards, non-verifiable subjective preferences, and complex
interactions. Our framework unifies process reward model (PRM) training across
these settings, applies Multi-Action-Head DPO (MAH-DPO) with a vectorized
reward to capture multiple objectives, and enables fine-grained user control at
inference time. Our experiments show improved multi-objective performance with
reduced trade-offs and enhanced controllability.

1 Introduction

The success and widespread deployment of large language models (LLMs) has enabled Al assistance
in tasks from mathematical problem solving to educational tutoring [6} [18}|19}136 141} 42]]. Such ap-
plications often demand that models meet multiple objectives simultaneously, showing that alignment
to human preferences is inherently multi-dimensional 3} 4, 29]. We focus on three categories: verifi-
able rewards (e.g., mathematical accuracy), non-verifiable preferences (e.g., helpfulness, honesty,
truthfulness), and interactive scenarios (e.g., multi-turn Al tutoring).

Current pipelines struggle to represent such structure. RLHF [10, 42]] reduces comparisons to
a scalar reward, and DPO [44] optimizes a single preference axis. Both collapse rich feedback
into one dimension, discarding trade-off information. Multi-objective variants based on linear
scalarization [17} 24} 131,57, [71]] or post-hoc merging of specialized models [27, 45]] are costly and
require retraining to change objectives or weights. Test-time steering with reward models offers
adaptability but often suffers from granularity mismatch between reward definition and generation
decisions [13} 128, 130, 162]]. Process reward models (PRMs) mitigate this by providing step-level
signals [23} (34} 138,154} [61]], but most work focuses on verifiable domains where intermediate steps
are checkable [69,70]; extending PRMs to non-verifiable settings remains challenging.

We present a framework that addresses these limitations. First, we standardize PRM training across
verifiable and non-verifiable domains. For verifiable settings, we combine rollouts with hindsight
credit assignment. For non-verifiable settings, we use majority voting evaluation, direct step judgment,
and step reward approximation, chosen by task properties. Second, we introduce Multi-Action-
Head DPO (MAH-DPO), which retains the multi-dimensional structure by placing lightweight,
objective-specific action heads on a shared backbone and optimizing head-wise DPO losses while
updating shared parameters across dimensions. Third, we use PRM-guided decoding with continuing
hidden state to provide fine-grained inference-time user control. Across math reasoning, human
value alignment, and multi-turn Al tutoring, this combination improves multi-objective performance,
reduces cross-objective trade-offs, and enables flexible inference-time control.
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2 Background

To understand the challenges and opportunities in multi-objective alignment, we examine three
representative domains.

Mathematics. Mathematics represents a typical verifiable domain where ground truth can be
automatically determined with datasets such as GSM8K [11], MATH [22], GaoKao [68]], and
OlympiadBench [21]]. The verifiable nature of mathematical correctness enables automatic reward
assignment at both outcome and process levels. Recent work has demonstrated the effectiveness of
process reward models [34} 511 54] that provide step-by-step supervision to validate intermediate
reasoning steps. Mathematical problem-solving can also involve dimensions beyond accuracy,
including explanation clarity for diverse user expertise levels and pedagogical engagement in practical
applications.

Human Values. Unlike mathematical correctness, human values include a broad range of subjective
preferences that cannot be automatically verified, including aspects such as helpfulness, harmlessness,
and honesty [3H5,42]]. These qualities require human judgment and are subjective, context-dependent,
and sometimes conflicting. Recent work such as HelpSteer [55,156] and UltraFeedback [12] provides
multi-dimensional annotations and reference comparisons across multiple criteria including helpful-
ness, coherence, and truthfulness. The challenge lies in the subjectivity and multi-dimensionality
of human preferences, while the lack of automatic verification makes it difficult to provide more
fine-grained supervision.

Interactive AI Tutoring. Interactive Al tutoring represents another challenging domain that combines
objective and subjective evaluation within multi-turn dialogues, where success depends not only on
correctness but also on pedagogical effectiveness, engagement, and scaffolding strategies. Datasets in
this domain include educational dialogue corpora [7},139,|50] and socratic questioning collections [2}
14, 148]]. Unlike static domains, the quality of a tutor’s response should be evaluated based on its
impact on subsequent student responses and learning trajectories. We provide an example Al tutoring
dialogue in Appendix [K]

3 Process Reward Model Training

3.1 Verifiable Domains

For tasks with objective correctness criteria, e.g., math, we augment the step-level supervision with
outcome signals with a value target estimator to train PRMs that both validate current intermediate
step and predict future correctness. Given a trajectory y1.x = (y1,¥2, - - -, YN ), the step level reward
signals textual validity and local coherence at step y; [34,138]. Labels commonly come from multi
stage sampling and annotation [34} 54} 61]], for example Math Shepherd [54] marks a step correct if
any completion reaches a correct final answer. We add hindsight relabeling [[1,20]: from each step
ye, roll out to ys11. = (Y1, - - -, Yn) to get a terminal reward z € {0, 1}, blend it with the annotated
r¢, average over M rollouts, and train with mean squared error:

M
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Here v € (0, 1) discounts by temporal distance, which helps the PRM score local reasoning and
forecast final correctness.

3.2 Non-verifiable Domains

For domains lacking objective correctness measures, we adapt our PRM training framework based on
the availability of clear process structure and rollout difficulty.

Case A: Clear Process Structure with Efficient Rollout. When the task has clearly-defined
intermediate steps that can be meaningfully evaluated, e.g. engagement in math reasoning process,
we employ a rollout-based labeling strategy similarly to our verifiable domain approach. We first

calibrate an LLM-as-Judge J using a few human annotated ratings R to approximate the expected

human judgment, J(y.;) ~ E[R)]. Then we sample M completions from each step y; and evaluate



the resulting full trajectories using our calibrated LLM-as-Judge J. We label the step y, as positive
when the majority of completions are judged as positive by J:

1 M
=1 [(M mzz:l Loositive [(J(ym, yﬁl:n)]) > é] : 2

This majority voting criterion reflects the inherent subjectivity in non-verifiable domains, where a
reasoning step’s quality is measured by its tendency to lead to generally acceptable outcomes rather
than definite correctness.

Case B: Clear Process Structure with Costly Rollout. When generating rollouts is costly or
difficult, for example multi-turn dialogue which requires real user interactions, we directly query
the LLM-as-Judge J on observed trajectory prefixes to otain the training label: r; = J(y1.¢).
This approach trades the robustness of rollout-based evaluation for computational efficiency. One
can mitigate the increased label noise inherent in this approach through careful judge calibration,
ensemble methods, and multi annotator agreement when feasible.

Case C: Unclear Process Structure. For domains where step wise decomposition lacks clear
structures, for example general question answering tasks, we approximate the process modeling
through directly evaluating the partial response with a reward model trained with complete responses.
For example, one may collect or reuse available pairwise preference data {(y*, y')} to train a Bradley-
Terry model to score the process generation Ry4(y1..) — R. The trained reward model provides
holistic quality assessment that serves as guidance during decoding, approximating the intermediate
process supervision even when the process structure is not well defined.

4 Alignment: Training and Decoding

4.1 Training-Time Optimization: Multi-Action-Head DPO

Multi-Action-Head LLM. To optimize H objectives efficiently, we
extend a shared LLM backbone 6, with H lightweight output heads, ’

one per objective. Let hg, (7,y1.1) € R? be the hidden state from the [ Shared LLM Backbone 0, ]
shared backbone for prefix (z,y1..). Each objective i € {1,..., H} has I I I

projection matrix WW; € R%*IVl producing logits and token probabilities:  (Head 1] (Hesa2 ) - (Head i)

To,.w; (Yt | T, y1.¢) = softmax(W," he, (2, y1.¢))- A3

The shared backbone captures general language ability, while heads
encode objective-specific preferences. During inference, users can select
a single head ¢ or ensemble multiple heads with flexible weights w; > 0:

Figure 1: Multi-Action-
Head LLM.

mvan (Yt | T, y<t) Zwﬂeb (Y| z, y<t)- “

Multi-Action-Head DPO Objective. We curate H preference datasets

{D;}H |, each tailored to objective i and labeled by PRMs or human annotations. All heads W; are
initialized from the SFT language modeling head of 7y, with small perturbations and the reference
Tret Uses the unperturbed SFT head. For each (z,y%,y') € D;, routed to head 4, the per-head DPO
loss is
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Let a mini-batch during training be partitioned as B = |_|fi1 B; where B, gathers the examples
assigned to head ¢. The combined loss we are minimizing is

Lyianoro (0, {W:}) = Zaz Do Li(b Wiz, y®, o), 6)
(z,y,y')EB;

where a; > 0 are objective weights with ) . «; = 1. More details including gradient analyasis can
be found in Appendix



Table 1: Alignment performances of training-time methods across three datasets.

Method Acc Eng Method Help  Honmest Truth  Method Acc Eng

Base 0.7107 0.5007 Base 05800 0.3042  0.1888  pBuee 0.6560  0.3220

SFT 07300 05920 SFT . 0'55:6 0.2998 0'1992 SFT 0.6793 03473

Single-Head DPO 07253 07160 Sinele-Head DPO 0604303055 0.2014 1 1 Head DPO 07040  0.4460
MODPO 0.6175 0.3477 0.2325

MODPO 0.7280  0.7367 == MODPO 0.7047  0.3600

MAH-DPO HelpHead ~ 0.6309 03465 0.2239
MAH-DPO Acc Head  0.7353  0.8667  \AH.DPO Honest Head  0.6257 03516 02303 MAH-DPO Acc Head 0.7007 0.4447

MAH-DPO Eng Head 0.7267 0.8840  MAH-DPO Truth Head  0.6257 03461 02286 MAH-DPO Eng Head 0.6953  0.4480
MAH-DPO Ensemble  0.7247 0.8733 ~ MAH-DPO Ensemble 0.6389 0.3687 0.2478 MAH-DPO Ensemble  0.6893  0.4513

(a) Math (b) Human Values (¢) Socratic Mind

Table 2: Alignment performances of test-time methods across three datasets.

Method Acc Eng Method Help  Honest  Truth Method Acc Eng
Base 0.6853 0.5133  Base ‘ 0.5750  0.3036 0.1904 Base 0.6400 0.3380
Accuracy PRM-guided  0.7633 0.4720  Helpful PRM-guided  0.6706 0.4050 0.2791 )

Accuracy Value-guided 07993 04553  Honesty PRM-guided 06448 0.4693 03383  Accuracy PRM-guided  0.7127  0.2660
Engaging PRM-guided  0.7013 0.7187  Truthful PRM-guided 0.6350 04394 03296 Engaging PRM-guided 0.6507 0.4663

(a) Math (b) Human Values (c) Socratic Mind

4.2 Test-Time Optimization: PRM-Guided Decoding with Continuing Hidden State

We also explore PRM guided decoding with continuing hidden state for test time search, contrasting
it with prior methods that rebuild the prompt at every step [28} 33| 143]], which can alter hidden
representations due to tokenization and special token placement, leading to performance drops
observed in Appendix [H] Our appraoch maintain a running key value cache initialized with a single
forward pass on the chat formatted prompt. At each step we sample K candidates from the current
cache, score them with a PRM P given the current prefix, select the best candidate, update the cache,
and continue until an end of sequence token appears or the budget is reached. More details can be
found in Appendix [D]and Algorithm[I] summarizes the procedure.

5 Experiments

In this section, we evaluate our multi-objective alignment framework across three domains.

Datasets, Evaluation, and PRM Training. We evaluate across three domains: Math using MATH
[22]], Human Values using UltraFeedback [12], and AI Tutoring Dialogues using Socratic Mind [25]].
In mathematics we measure Accuracy by final answers and Engagement with calibrated LLM as
Judge with human annotations; in human values we score Helpfulness, Honesty, and Truthfulness
with trained reward models; in tutoring dialogues we estimate accuracy and engagement by simulating
the student’s next turn after the aligned assistant response and scoring it with a trained PRM. We train
PRMs per domain using the standardized pipeline in Section [3] with full details in Appendix [F]

5.1 Training-Time Alignment

We first evaluate our MAH-DPO approach across the above described three domains to validate its
advantages. The baseline and implementation detail can be found in Appendix [E]

Finding 1 - MAH-DPO yields the best multi-objective alignment performance. We present in
Table E] the main alignment results across Math, Human Values, and Socratic Mind for all compared
training-time methods. Specialized heads lead on their target metrics without collapsing others, and
the equal weight ensemble head in MAH-DPO aggregates these gains to deliver the strongest overall
alignment across domains, including higher engagement in Socratic Mind with usable accuracy, while
removing the need for objective specific selection at inference time.

Finding 2 - Head weighting provides smooth control with limited interference. We also show
in Figure [3]and [ further results on varying head weighting of MAH-DPO models during inference.
Adjusting head weights at inference time traces a stable accuracy and engagement tradeoff in Math
and improves combined outcomes in Human Values, delivering smooth gains in the emphasized
dimension with only modest losses elsewhere and enabling practical weight choices that meet targets
without retraining or manual selection.



Table 3: Alignment performances of synergizing training and test-time methods.

Method Acc Eng Method Help ~ Honest ~ Truth  Method Acc Eng

Single-Head DPO 07253 07160  Single-Head DPO 0.6043 03055 02014 gingle-Head DPO 0.7040  0.4460

MODPO 07280 07367 MODPO 06175 0.3477°0.2325 15y 0.7047 03600
MAH-DPO 0.6389 03687 0.2478

MAH-DPO 07247 08733 MAH-DPO 0.6893 04513

MAH-DPO + Help PRM  0.7165 0.4554 (0.3800
MAH-DPO + Accuracy Value = 0.8000 08553  MAH-DPO + Honest PRM  0.6968 0.5196 0.4107 ~MAH-DPO + Accuracy PRM  0.7160  0.3800

MAH-DPO + Engaging PRM ~ 0.7207 0.9060 MAH-DPO + Truth PRM  0.6834 0.4872 0.3630 ~ MAH-DPO + Engaging PRM  0.7120  0.5420
(a) Math (b) Human Values (c) Socratic Mind

0763 0.719 0.730 Base
0.685 0.699 0.671 0.675 Unified PRM
0.558 0.575 Specialized PRM
0513
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Figure 2: Alignment performances of a unified PRM trained across 7 dimensions in three domains
compared with base model and the specialized PRM trained on each dimension per domain.

5.2 Test-Time Alignment

We evaluate PRM guided decoding with continuing hidden state across all three domains. The
baseline and implementation detail can be found in Appendix [E]

Finding 3 - PRM-guided decoding effectively improves the targeted objective. We report in
Table 2] results across three datasets and observe that PRM guidance reliably raises the chosen metric
while keeping non target metrics near base levels. In Math and Socratic Mind, accuracy focused
or engagement focused guidance lifts its target with limited tradeoffs, and in Human Values, per
dimension guidance reaches the best or second best scores on its axis, enabling smooth movement
along objective fronts without retraining.

Finding 4 - Unified PRM trained on mixture of data shows cross-domain effectiveness. As
shown in Figure 2] a single PRM trained on a seven dimension mixture improves all objectives over
the base in Math, Human Values, and Socratic Mind, typically close to but below the best specialist
on each axis. This unified model transfers across domains and provides a balanced improvement
profile without domain specific retraining or serving multiple models, with details in Appendix [F]

5.3 Synergizing Training and Test-Time Alignment

Finding 5 - Training and test-time methods complement each other in alignment. In Table[3|
we pair MAH-DPO with an Ensemble head and PRM guidance at inference, which consistently
improves the joint profile across Math, Human Values, and Socratic Mind over training only baselines.
Accuracy focused and engagement focused selection shift outcomes along the expected tradeoff in
Math and Socratic Mind, while in Human Values per dimension PRMs set the best axis scores and an
ensemble PRM gives a balanced profile with positive transfer, all without retraining.

Finding 6 - Reward verifiability guides whether test-time or training-time method selection.
From Tables|T] 2} and 3] verifiable rewards like Math accuracy see modest training gains, while PRM
guided decoding at test time yields larger improvements using precise step level signals. For less
verifiable goals such as helpfulness, honesty, truth, and engagement, multi head training provides the
main lift and test time guidance then rebalances with minimal tradeoffs.

6 Conclusion

In this paper, we introduce a unified framework for multi-objective alignment at both training and
inference, standardizing PRM training for verifiable and non-verifiable settings, using Multi-Action-
Head DPO with vectorized rewards, and pairing it with PRM guided decoding with continuing hidden
state. Experiments on math reasoning, value alignment, and multi-turn tutoring domains demonstrate
the effectiveness of our framework for multi-objective alignment as well as fine-grained and flexible
user control for alignment dimensions.
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Appendix

A Ethics Statement

This work uses three data sources. For Socratic Mind tutoring dialogues, human subjects procedures
were reviewed and approved by the authors’ Institutional Review Board, and only students who gave
explicit written consent were included. Participation was voluntary with no academic consequences,
and students could withdraw at any time. Dialogues were deidentified, stored with encryption, and
accessed only by approved researchers. Public datasets MATH and UltraFeedback were used under
their licenses, and we cite the sources. We applied content filters and safety checks to reduce risks,
avoided sensitive advice, and report remaining limitations. We will share code and configurations
that do not compromise privacy or licensing.

B Related Work

Process Reward Model. Process supervision addresses a core limitation of outcome-only evaluation
by giving rewards on intermediate reasoning steps, helping systems avoid trajectories that look correct
but contain logical errors. The foundational approach involves collecting step-level human annotations
for mathematical reasoning tasks and training process reward models on these dense supervision
signals [3459]. Follow-up work scales supervision with automated or weakly supervised labels,
for example per-step Monte Carlo rollouts or self-generated labels [38]54]. Beyond standard PRMs,
recent variants introduce progress or verifier signals that score both partial correctness and future
success, improving search and ranking during decoding [9, 146]. There are also training objectives
that regularize PRMs to improve stability [67]. Practical studies discuss data generation, evaluation
pitfalls, and how PRMs differ from value functions that predict eventual solvability from partial
traces [69]. Process-level search with step-wise scoring has further been shown to beat outcome-level
test-time compute baselines in several setups, including controlled decoding, tree-structured search,
and value/verification-guided search [37 140, 146} 49,153} 1635].

Multi-Objective Alignment. Multi-objective alignment trains or steers language models for multiple,
potentially conflicting objectives such as helpfulness, harmlessness, and honesty [60]. Standard
RLHF pipelines fit a scalar reward and fine-tune with PPO, or use scalarized preference optimization
[L5} 42, 1441 158 |66], but they collapse trade-offs into one score. Two lines of work relax this
restriction. Training-time approaches adapt multi-objective ideas, such as multi-objective RLHF
and multi-objective direct preference optimization, or parameter mixing to balance different rewards
[321 145,147,152, 163 [71]]. Complementing these training-based methods, test-time alignment enables
dynamic objective balancing without model retraining. These approaches modify token probability
distributions using reward guidance and perform search under composite objectives, achieving
improvements on preference benchmarks while supporting per-user customization [8}128}35,164]]. This
paradigm offers particular promise for multi-objective alignment where individual user preferences
vary significantly.

C Training-Time Optimization: Multi-Action-Head DPO

Direct Preference Optimization. DPO [44] optimizes a policy 7y against a fixed reference policy
Tret Using preference pairs D = {(x,y™,y')}, where 3 is the preferred response to prompt 2 and
y! is the dispreferred one. The DPO loss is:

w l
Lppo(7e; Tref) = —E(z yw yt)oD {loga (6 <log M — log W))] , (D

Tref (Y | ) 71'ref(yl | )

where o(+) is the sigmoid and 8 > 0 is a temperature parameter controlling the strength of the
preference signal.

Multi-Action-Head LLM. To jointly optimize for H distinct objectives while maintaining computa-
tional efficiency, we propose the multi-action-head LLM that extends the base LLM with specialized
output layers. We maintain a single shared LLM backbone 6, while introducing H distinct linear
projection heads, one for each alignment objective. This is more efficient than training H separate
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models, which would require H times the computational resources and fail to leverage cross objective
synergies.

Specifically, let hg, (z,91.¢) € R? denote the d-dimensional hidden state produced by the shared LLM
backbone 6y, for input prefix (z, y1.¢). Each objective ¢ € {1, ..., H} has a dedicated projection head
parameterized by matrix W; € RV to produce objective-specific logits z; and token probability
distribution:

Z’i(‘xaylrt) = WiTth($7y1:t)7 ﬂ-ethi (yt | ‘raylzt) = SOftmaX(Zi(xayl:t)) (8)
where |V| is the vocabulary size. The shared LLM backbone captures general language understanding
and generation capabilities, while specialized heads can encode objective-specific preferences. During
inference, our multi-action-head architecture supports flexible objective control by either selecting
a specific head ¢ for targeted behavior or ensembling logits from multiple heads for balanced
performance:

mvan (Yt | T, y<t) Zwﬂeb (Ye| z, y<t), &)

where w; > 0 are ensemble weights with ), w; = 1. This flexibility enables the model to be adapted
for different downstream applications and user preferences without requiring separate training runs
for each objective combination.

Multi-Action-Head DPO Objective. We first curate H preference datasets {D ML, where each
D; contains preference pairs specifically designed for objective ¢ labeled using our trained PRM
or from annotated labels. All heads W; are initialized from the same language modeling head
from the supervised fine-tuned (SFT) LLM mp, with small random perturbations to encourage
specialization. The reference model 7, retains the unperturbed SFT head. During training, examples
(x,y™,y") € D; are routed to head 7, and we compute the objective-specific DPO loss:

w l
Li(0y, W) = By gy, [bga (5 (log MW L) o Moy ; )))] .10y

Tret (Y| @) Tref (yl | @

Let a mini-batch during training be partitioned as B = |_|fi1 B; where B, gathers the examples
assigned to head ¢. The combined loss we are minimizing is

Lyvian-opo (0, {Wi}) = Zaz' Z ﬁi(9b7Wi§l’,yw,yl)7 (11)

[
| (z,yv,yt)eB;

where «; > 0 are objective weights with >, a; = 1.

Gradient Analysis. The gradients for parameters of each head j are isolated by routing, while the
backbone LLM gradients accumulate across heads:

H
1
ijﬁzzai'ﬁ Y Vw, L0 Wi, y,y') = a;-Es [Vw, L], (12)

=1 RCOERDE 2 —0if j£i

1 w
Vo, £ = Zai Bl > Vo, Li(0n, Wisz, ", y'). (13)

(z,y*,y)eB;

Therefore, a single backward pass through Equation [[T]updates the backbone and every active action
heads simultaneously. To achieve more stable training and balanced gradient propagation, we can
construct mini-batches with similar number of examples |B;| from each objective i or by tuning
the weights a;; when the dataset sizes differ. Since every head consumes the same hidden states
for its logits, the computation requires only one backbone forward per input and parallel per-head
projections, leveraging cross objective synergies without introducing excessive extra training cost.

D Test-Time Optimization: PRM-Guided Decoding with Continuing Hidden
State

We also explore the use of our trained PRM during test-time directly via step-level reward guided
decoding. Existing reward-guided decoding or test-time search methods [28} 133}, 143] typically rebuild
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Algorithm 1: PRM-Guided Decoding with Continuing Hidden State

Input: policy mg; PRM P; boundary detection criteria Q; number of candidates K; token budget
Tinax; prompt .
Qutput: response y.
kvo + Fwdy, (2); y1.0 < 0;¢ + 0.
while |y1.;| < Thax and EOS ¢ yy.; do
for k =1to K do
kv < kv g < 0.
while Q(7) = 0 do
Sample next token z ~ (- | kv );
kv < Fwd,,(kv,2); § < 7 || 2.

Record end-state cache kvi€ Wy kv;
Record candidate next step ny — 9
| Score with PRM 7, <= P(z, y1.¢, y").

k* € arg maxy, ri;

Update running cache kv kvffrl;
Update response y1.1+1 < Y1t || Y¥1;
| t<t+ 1

the prompt each step by concatenating the newly selected next generation with previous steps.
However, rebuilding and re-encoding the textual prompt each step can change how the prior context
is represented within the hidden state, e.g., small differences in tokenization around whitespace and
newline merges, shifts in relative positions, and the placement of special tokens from chat templates.
As a result, the next-token distribution after re-encoding can differ from the one obtained by directly
continuing from the previous step and such discontinuity can lead to performance degradation as
observed in our experiments presented in Appendix [H]

Therefore, to preserve the generation continuity at hidden state level, we utilize a running past
key—value cache during our PRM-guided decoding. The same hidden state is carried forward, so the
continuation distribution follows the true incremental decoding rather than a fresh prompt re-encoding
approximation. We provide an overview of our PRM-guided decoding in Algorithm |l{and describe
details as follows.

Cache Initialization and Candidate Proposal. Given a chat-formatted prompt x, we run a single
forward pass with the policy model 7y to obtain the initial past key—value cache kv, and the first
next-token distribution. We set response 1.0 = () and generation step index ¢ = 0. This avoids
re-encoding x in later steps and provides the reference state from which all continuations proceed.
Then, for each step ¢, we proposal K candidates from the current running cache kv,. For each
candidate k, we clone kv, to a local copy and sample the next token from policy model 7y while
carrying that local cache forward. Sampling stops when the boundary detection criteria Q triggers.
This yields a step generation y* ° 1 with its end-state cache kvF 1

Candidate Selection with PRM and Cache Update. Each sampled candidate is then evaluated
by a PRM P. Given the current prefix y;.¢, the score for candidate & is r, = P(x, y1.¢, yfﬂ) We

select k* = arg maxy, r, append the chosen step generation to the response y1.441 = y1:¢ | yfﬂ,

and update the current running cache as kvy;; = kvfjrl. This commit keeps decoding stateful
across segments rather than re-encoding the prompt with textual concatenations. We repeat the
above candidate proposal with 7y starting from kv;, PRM scoring, and cache update until an end-
of-sequence token appears or a token budget is reached. With every iteration advancing from the
running cache, the generation remains continuous with respect to model’s internal hidden state.

Computational Analysis. Besides keeping the generation continuity at hidden-state level, our cache-
carrying PRM-guided decoding also reduce the computational cost compared to re-encode-per-step
baselines. Let |x| be the prompt length, 7' the committed output tokens, N the number of steps,
i.e., detected boundaries, K the candidates per step, and L the average candidate length such that
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T =~ NL. A re-encode-per-step policy costs O(K (|z|N + NT)) while our cache-carrying policy
costs O(|z| + KNL) = O(|z| + KT). Thus the factor N that multiplies T" is removed, enabling
better test-time scaling by shifting compute from repeated re-encodings to candidate rollout or longer
outputs.

E Baseline and Implementation Details

E.1 Training-Time Alignment

Baselines and Variants. We report results of the following baselines as well as our MAH-DPO
variants. Base is the original based LLM without any post-training or alignment. SFT applies
supervised fine-tuning using only the preferred responses from preference pairs. Single-Head DPO
directly applies DPO to one primary objective by pooling all dimension-specific preference data.
MODPO [71]] is a multi-objective extension of DPO that optimizes multiple alignment objectives in
an RL-free manner by combining objectives with weights during training. MAH-DPO Individual
Head reports the performance of each specialized head when used independently, reflecting objective-
specific capabilitiecs. MAH-DPO Ensemble uses an equal-weight combination of all head logits,
representing our balanced multi-objective approach. We also analyze MAH-DPO inference with
varying weights in Figure[3]and ]

Implementation Details. We build paired preference datasets with our trained PRM or annota-
tions in three domains as follows: Math (contrasting correct vs. incorrect rollouts and engaging
vs. non-engaging solutions), Human Values (UltraFeedback subsets for helpfulness, honesty, and
truthfulness), and Socratic Mind (simulated tutoring dialogues scored by trained PRMs). We train
MAH-DPO on Qwen2.5-7B-Instruct for Math and Socratic Mind (SFT then MAH-DPO), and
on meta-1llama/Llama-3.1-8B-Instruct for Human Values. Models use domain-appropriate
learning rates, batch sizes, and context windows. Full data construction and hyperparameters are
in provided in Appendix [G] All experimental results are averaged over 3 independent runs and we
report standard deviations in Appendix [J|

E.2 Test-Time Alignment

Baselines and Variants. We report results of the following baselines as well as our PRM-guided
decoding variants. Base utilizes the base model directly for step-wise generation without candidate
sampling or selection. Individual PRM-guided Decoding applies an individual PRM trained for
each objective dimension to guide the base model generation step by step following the candidate
sampling-then-selection pipeline.

Implementation Details. We apply the same decoding strategy across all domains using the same
base models as in training. In Math, we treat natural reasoning boundaries marked by \n\n as step
boundary, and we use our trained accuracy and engagement PRMs to guide step-level generation.
In Human Values, where responses are nonverifiable and lack fixed process structure, we impose
boundaries at sentence terminators and paragraph breaks, and use our trained reward models to score
helpfulness, honesty, and truthfulness under step-level computational budgets of 256 tokens per chunk
and 1,024 total tokens. In Socratic Mind, each turn is treated as a step and scored with our trained
engagement and accuracy PRMs. Across all domains we sample K = 5 candidates at each step. All
decoding runs use temperature=1.0, top-p=1.0, and top-k=50 to ensure diversity while maintaining
consistent selection under reward guidance. We provide further results validating the effectiveness of
our use of continuing hidden state for PRM-guided decoding in Appendix [H| All experimental results
are averaged over 3 independent runs and we report standard deviations in Appendix [J|

F PRM Training Details

F.1 Math PRM Training

Accuracy PRM Training. We implement our rollout approach with hindsight relabeling to train
a process reward model for mathematical accuracy following Section ??. Our method leverages
an existing well-trained PRM, specifically Qwen/Qwen2.5-Math-PRM-7B, to provide intermediate
step-level rewards that we combine with terminal outcome signals through our principled framework.
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For each candidate reasoning step, we generate 5 independent rollouts using sampling to completion.
Step values are computed by combining intermediate PRM rewards with binary final outcome rewards,
where correct solutions receive a reward of 1 and incorrect solutions receive 0. These rewards are
weighted by a temporal discount factor and averaged across all rollouts to obtain reliable step-level
supervision signals for step selection and trajectory extension. The iterative generation process
continues until either a final boxed answer is produced or the maximum step limit of 20 is reached,
yielding step values within the range [0, 2]. Given that the average mathematical problem requires
9-12 reasoning steps, we set the discount rate v = 0.9 to appropriately balance immediate step quality
assessment with long-term credit assignment.

We also swept the discount factor when turning per-step PRM rewards into value targets and repeated
both value-head training and guided decoding. Concretely, for a step prefix s<; we formed discounted
returns Gy = ) £>0 'ykr“rk. with v € {0.9,0.95}, trained the same frozen-backbone + MLP value
head to regress G; via MSE, then used the learned value to steer generation: at each step we propose
candidate continuations and pick the one maximizing a blended objective o V' (s<;+cand) 4 (1 —
«) log P(cand | s<;). Lower + favors short-term gains, while higher  encourages longer-horizon
reasoning during decoding.

Table 4: Comparison of math step-level guided decoding methods and their accuracy.

Guided Decoding Method

Accuracy

Engagingness

Baseline step-by-step
PRM-guided

Value head guided with v = 0.90
Value head guided with v = 0.95

0.6853 +0.0163
0.7633 + 0.0050
0.7993 +0.0172
0.7993 + 0.0081

0.5133 £ 0.0543
0.7187 £ 0.0266
0.4553 +0.0221
0.5053 £ 0.0050

MAH-DPO Ensemble Head + Accuracy PRM-guided with v = 0.90  0.8000 + 0.0231  0.8553 +0.0136
MAH-DPO Ensemble Head + Accuracy PRM-guided with v = 0.95 0.7800 +0.0197  0.8470 + 0.0098

Our PRM architecture follows the design from Qwen/Qwen2.5-Math-PRM-7B [69], where we re-
place the standard language modeling head with a two-layer scalar value head that produces step-level
quality scores. Reasoning steps are serialized using the special separator token <extra_0> in chat-
format input, with the transformer’s hidden state at each separator token position marking step
boundaries. These boundary representations feed into a compact MLP for per-step value predic-
tion. During training, we freeze the PRM backbone parameters from Qwen/Qwen2.5-Math-PRM-7B
and optimize only the value head using mean squared error loss against the soft step-value targets.
Training proceeds for 2 epochs with a batch size of 32 and learning rate of Se-5.

Engagement PRM Training. To evaluate our approach on subjective quality dimensions, we con-
struct an engagement-focused dataset. We sample 50 problems from the MATH training split and gen-
erate 4 solution rollouts per problem using the base model. These rollouts use an even mix of engaging
and non-engaging reasoning style system prompts to ensure balanced representation (see Appendix [l).
Human annotators label all 200 responses for engagement quality, providing ground truth supervision
for this subjective dimension. We calibrate an LLM-as-Judge using Qwen/Qwen2.5-72B-Instruct
to evaluate engagement levels, achieving 75.8% classification accuracy against human-labeled so-
lutions. This calibrated judge enables scalable engagement evaluation during PRM training (see
Appendix [[| for calibrated system prompt).

For each problem, we generate one initial reasoning step, then create eight diverse completions
continuing from the current state using generation temperature 1.0. The calibrated LLM-as-Judge
scores engagement for every completion batch per step. Following our Case A methodology for
non-verifiable domains in Section[3.2] we label a step as engaging if more than four out of eight
rollouts continuing from that step are deemed engaging, otherwise it receives a non-engaging
label. This process yields 11.8k step-level engagement annotations. We then convert the training
data into incremental reasoning sequences, where each step accumulates the solution path from
problem statement through progressive reasoning chains. The base model for the PRM training is
meta-1llama/Llama-3.1-8B configured for binary classification. We train for 2 epochs using batch
size 128, learning rate le-5 which achieves an evaluation accuracy of 92.5%.
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F.2 Human Values PRM Training

Human values represent a non-verifiable domain with no clear process structure. Rather than forcing
artificial step-level decomposition, we follow our Case C methodology in Section [3.2] and train
reward model for holistic quality assessment. We train Bradley-Terry reward models on top of the
SFT model with base model as meta-1lama/Llama-3.1-8B following the RLHFlow recipe [[16]
with learning rate le-5 and batch size 32 for 3 epochs. The reward model learns to capture human
preferences across the helpfulness, honesty, and truthfulness dimensions through pairwise preference
optimization, providing dense guidance signals for fine-grained decoding without requiring artificial
process supervision.

F.3 Socratic Mind PRM Training

Students complete post-interaction surveys rating their experience on a 0-6 scale regarding how
the Socratic Mind approach enhanced their understanding, serving as our engagement dimension
ground truth. We classify ratings > 4 as engaging interactions. Student dialogues are collected with
engagement ratings, and conversations are randomly truncated after assistant turns to create training
samples with varying trajectory lengths. We establish calibration datasets with 80 training and 80
test samples to calibrate an LLM-as-judge using GPT-40 [26], achieving 0.8 training accuracy and
0.66 test accuracy for engagement prediction. We additionally curate a specialized judge for accuracy
evaluation where system prompt for both objectives can be found in Appendix |} The calibrated
LLM-as-judge labels approximately 5k engagement samples and 8k accuracy samples for PRM
training, achieving 0.81 test accuracy for engagement and 0.7 for accuracy using classification on
Llama-3.1-8B.

F.4 Unified PRM Training

We constructed a unified binary-classification corpus by combining all 7 objective dimensions from
the domain datasets used in our experiments and formatting each example as a “User:”/“Assistant:”
dialogue with blank-line spacing. Math engagement conversations yield incremental stepwise
instances labeled from +/—. Human value preference pairs are mapped to chosen = 1 and rejected =
0. Math value scores are normalized per example and thresholded (> 0.85 — 1, otherwise 0).
Socratic Mind engagement and accuracy retain only multi-turn dialogues, with accuracy excluding
the last turn. This pipeline produced a total of 168,514 examples with 47.4% positives. We then
fine-tuned a pre-trained L1ama-3. 1-8B model with a 2-class classification head using cross-entropy.
Training used a batch size of 128, a learning rate of 1 x 10~°, and ran for 2 epochs.

G Training-time Alignment Details

G.1 Math Training Details

Mathematical reasoning presents a natural testbed for multi-objective alignment, as effective tutoring
requires balancing computational accuracy with pedagogical engagement. We design our experimental
setup to capture this fundamental trade-off in educational Al systems.

Preference Data Construction. We construct two complementary preference datasets using the
MATH training dataset (12k problems) to target distinct but interrelated aspects of mathematical
competence:

* Accuracy-focused pairs: For each problem, we generate up to 30 response rollouts using Qwen2.5-
7B-Instruct, extract boxed numerical answers, and compare against ground truth solutions. We pair
the first correct solution with the first incorrect one encountered, creating 5,574 preference pairs
that emphasize computational precision and mathematical correctness.

» Engagement-focused pairs: Using the same problem set, we generate 10 rollouts per question and
employ LLM-as-Judge evaluation (Qwen2.5-72B-Instruct, temperature=0.1) to assess pedagogical
quality. We identify responses that provide clear explanations, intuitive reasoning, and educational
insights versus those offering terse or mechanical solutions, yielding 7,930 preference pairs that
prioritize learning effectiveness over mere correctness.
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This dual construction allows us to examine whether MAH-DPO can simultaneously optimize for
mathematical rigor and educational value—objectives that often compete in practice.

Training Configuration. We establish a consistent training pipeline across all mathematical experi-
ments. Starting from Qwen2.5-7B-Instruct, we first perform supervised fine-tuning (learning rate
5 x 1076, 2 epochs) to adapt the model to mathematical domains. We then initialize MAH-DPO
with small random perturbations (scale=0.001) applied to each head to encourage objective-specific
specialization while maintaining shared representations. The multi-head training uses learning rate
1 x 1075, batch size 128, and B = 0.1, with sequences truncated to 512 prompt tokens and extended
to 1536 total tokens to accommodate detailed mathematical reasoning over 2 epochs.

G.2 Human Values Training Details

Human values alignment represents a more abstract but equally critical challenge, where models must
navigate competing ethical principles. We focus on three fundamental dimensions that frequently
conflict in real-world applications: helpfulness, truthfulness, and honesty.

Preference Data Construction. We leverage the UltraFeedback dataset’s rich dimensional annota-
tions to create three targeted preference datasets:

* Helpfulness: 59.2k preference pairs contrasting responses that provide comprehensive, actionable
guidance versus those offering minimal or irrelevant information.

* Truthfulness: 50.8k pairs emphasizing factual accuracy and evidence-based reasoning versus
responses containing inaccuracies or unsupported claims.

* Honesty: 57.3k pairs focusing on transparent acknowledgment of uncertainty and limitations versus
responses that overstate confidence or mask knowledge gaps.

For each dimension, we pair responses with the highest and lowest annotated scores while excluding
cases with identical ratings, ensuring clear preference signals. We reserve 2k examples per dimension
for comprehensive evaluation across all three values simultaneously.

Training Configuration. To maintain experimental consistency while adapting to the distinct
characteristics of values alignment, we modify our training approach accordingly. We perform
supervised fine-tuning on Llama-3.1-8B using UltraFeedback’s preferred responses (learning rate
5 x 1077, 1 epoch, batch size 192) to establish a strong foundation for ethical reasoning. MAH-DPO
training employs slightly larger perturbations (scale=0.005) to account for the more nuanced nature
of value judgments, with learning rate 5 x 10~7, batch size 120, and sequences limited to 256 prompt
tokens and 768 total tokens to focus on concise value-aligned responses over 1 epoch.

G.3 Socratic Mind Training Details

Socratic tutoring epitomizes the challenge of multi-objective alignment in educational settings,
requiring models to maintain factual accuracy while fostering student engagement through strategic
questioning and explanation. This domain tests our approach’s ability to handle dynamic, context-
dependent trade-offs.

Preference Data Construction. We simulate realistic tutoring interactions by randomly sampling
1,000 educational dialogues and introducing natural conversation breakpoints. At each dialogue
state, we generate 5 potential assistant responses representing different tutoring strategies—f{rom
direct instruction to guided discovery. We then employ trained PRMs specialized for accuracy and
engagement assessment to evaluate each candidate response. By selecting the highest and lowest
scoring responses for each objective, we create 1,000 preference pairs per dimension that capture the
nuanced balance between providing correct information and maintaining pedagogical effectiveness in
conversational contexts.

Training Configuration. Given the complexity of dialogue understanding, we adopt our mathemati-
cal domain configuration while extending context capabilities. We fine-tune Qwen2.5-7B-Instruct
(learning rate 5 x 1075, 2 epochs) and apply MAH-DPO with perturbation scale 0.001 to preserve
dialogue coherence across heads. Training employs learning rate 1 x 1075, batch size 256, and
B = 0.1, with extended context windows (1336 prompt tokens, 1536 total tokens) to accommodate
full dialogue history while maintaining computational efficiency over 2 epochs.
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These three experimental domains collectively span the spectrum from concrete mathematical reason-
ing to abstract value judgments to dynamic conversational interaction, providing a comprehensive
testbed for evaluating MAH-DPO’s multi-objective alignment capabilities across diverse Al applica-
tions.

H Continuing Hidden State Ablation

In this section, we provide further results for validating the effectiveness of continuing hidden state in
our PRM-guided decoding for alignment. We present comparisons between our continuing hidden
state approach with classic text chunk concatenation approach and the results are in Table [5] and
[6l From Table[5] we observe that in Human Values where there is not a clear process structure,
step-wise generation using text chunk concatenation leads to performance degradation compared
to the one-pass generation. Meanwhile, our continuing hidden state approach achieve comparable
performance with one-pass generation when no guidance from PRMs is used, and also consistent
improvements over text chunk method when guided by PRMs. This demonstrates that text chunk
concatenation which requires iterative re-encoding can break the generation continuity while our
hidden state approach preserve such continuity for response generation. In Table[6] there is no major
performance difference between text chunk method and our hidden state method, which indicates
the text chunk methods does not break generation continuity when the process structure is clear and
well-defined such as in Math domain.

Table 5: Further results of PRM-guided decoding in Human Values: continuing text chunk vs.
continuing hidden state.

Method Help Honest Truth

One-pass generation without guided decoding 0.5800 +0.0066  0.3042 £ 0.0066  0.1888 + 0.0028
(reference)

Step-wise generation without guided decoding 0.4688 +£0.0033  0.1857 £0.0016  0.1182 £ 0.0031
(text chunk)

Step-wise generation without guided decoding 0.5750 £0.0107  0.3036 £ 0.0015  0.1904 £ 0.0036
(hidden state)

Step-wise generation + Helpful PRM guided 0.6140 £ 0.0099  0.3273 £0.0069  0.2099 + 0.0060
(text chunk)

Step-wise generation + Helpful PRM guided 0.6706 £ 0.0093  0.4050 £ 0.0035 0.2791 £ 0.0023
(hidden state)

Step-wise generation + Honest PRM guided 0.6148 +0.0150  0.3860 £ 0.0106  0.2544 + 0.0062
(text chunk)
Step-wise generation + Honest PRM guided 0.6448 £ 0.0050  0.4693 +0.0045 0.3383 £ 0.0025

(hidden state)

Step-wise generation + Truth PRM guided (text  0.5775 £0.0155 0.3165 £0.0028  0.2500 + 0.0062
chunk)

Step-wise generation + Truth PRM guided 0.6350 +£0.0032  0.4394 £0.0036  0.3296 = 0.0056
(hidden state)

18



Table 6: Further results of PRM-guided decoding in Math: continuing text chunk vs. continuing

hidden state.

Method Accuracy Engagement
One-pass generation without guided decoding (reference) 0.7107 £0.0090  0.5007 + 0.0289
Step-wise generation without guided decoding (text chunk) 0.7040 £ 0.0092  0.4907 £ 0.0358

Step-wise generation without guided decoding (hidden-state)

0.6853 +0.0163

0.5133 +0.0543

Step-wise generation + Engaging PRM guided (text-chunk)
Step-wise generation + Engaging PRM guided (hidden-state)

0.7187 £ 0.0147
0.7013 +0.0352

0.6353 + 0.0099
0.7187 + 0.0266

Step-wise generation + Accuray PRM guided (text-chunk)
Step-wise generation + Accuracy PRM guided (hidden-state)

0.7973 + 0.0083
0.7993 +0.0172

0.4807 + 0.0205
0.4553 +0.0221

I System Prompts

In this section, we provide the system prompts used for response generation and LLM-as-Judge. Apart
from the domains or alignment objective dimensions specified as follows, no system prompt is used.
For example, we do not use system prompt for response generation in Human Values experiments.

I.1 Math System Prompts

Response Generation System Prompt in Math

Normal
Please reason step by step, and put your final answer within \\boxed{}.

Engaging
Please reason step by step using intuitive explanations, relatable examples, and clear language that helps
deepen understanding of the underlying concepts, and put your final answer within \\boxed{}.

Non-Engaging

Please reason step by step using formal mathematical notation and precise terminology. Minimize
explanatory content, focus exclusively on necessary calculations and logical steps, and put your final
answer within \\boxed{}.
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Engagement LL.M-as-Judge System Prompt in Math

You are an expert evaluator of mathematical explanations. Your task is to determine whether the
mathematical content presented is ENGAGING or NOT ENGAGING.

ENGAGING mathematical content has some or most of these characteristics:
» Uses intuitive explanations and relatable examples

* Provides clear language that helps deepen understanding

* Makes abstract concepts accessible and interesting

¢ Includes explanatory content that builds conceptual understanding

* Presents reasoning that is easy to follow

» Balances formal notation with helpful explanations

NOT ENGAGING mathematical content typically has these characteristics:
* Uses primarily formal mathematical notation and terminology

* Provides minimal explanations beyond the calculations

» Focuses exclusively on necessary calculations and logical steps

» Lacks intuitive explanations or relatable examples

» Uses dense, technical language that may be harder to follow

* Prioritizes brevity and formality over accessibility

Evaluate only the engagingness of the content, not its correctness.

Your evaluation must be in JSON format with two fields:

{"analysis": "<specific reasons why the content is or is not engaging>",
"judgment": "<ENGAGING or NOT ENGAGING>"}

Please evaluate the following mathematical content:

PROBLEM:
{problem}

SOLUTION:

{solution}
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LI.2 Socratic Mind System Prompts

Accuracy LLM-as-Judge System Prompt in Socratic Mind

You are an evaluator of tutoring dialogues. Your task is to judge the ACCURACY of the ASSISTANT’S
LAST MESSAGE. Use the student’s immediate reply only as a probe. The label will train a reward
model that must also work when only the assistant message is present.

Goal

Decide whether the assistant’s last message is factually correct, specific, and checkable so that a
competent student could reach a correct answer without extra unstated information. Use the student
reply to test this, but base the label on the assistant message itself.

Scope

Read only the final assistant message and the immediately following student reply. Consult earlier
turns only to decode terms, variable meanings, or given values when strictly needed. Do not judge
engagement, style, or tone.

Strict Criteria (all must hold for ACCURATE)

* Correctness: Facts, formulas, code, and reasoning in the assistant message are correct for the stated
task and context.

 Sufficiency: The message includes the key inputs, units, constraints, and acceptance criteria needed
to verify a result. It does not rely on hidden assumptions.

¢ Checkability: The message sets a clear target or procedure that can be judged right or wrong (for
example a numeric result, runnable code with defined variables, or a well-specified step list).

» Consistency: The message does not conflict with earlier defined variables, values, or conditions.

Stricter Default
If there is reasonable doubt about correctness or checkability, choose INACCURATE. Praise, summaries,
or meta talk that do not set a checkable target are INACCURATE for this accuracy task.

How to Use the Student Reply

Use it only as evidence of whether the assistant message was clear and correct. If the reply is wrong or
a non-answer and the assistant message was underspecified, ambiguous, misleading, or used wrong
facts/code, label INACCURATE. If the reply is wrong but the assistant message was fully correct and
checkable, you may still label ACCURATE. If there is no reply, judge the assistant message alone by
the strict criteria.

Concrete Failure Patterns that Require INACCURATE

* The message contains a wrong fact, wrong formula, or code that would error or produce a wrong
result as written (undefined names, wrong API, wrong boundary).

The task depends on data or tools not provided and the message does not state allowed assumptions.

The target is not objectively checkable (for example “share your thoughts”) or key constraints/units
are missing so multiple incompatible answers fit.

* The message conflicts with established context (for example uses 2.5 when 3.0 was specified) or
repeats a question already answered without adding a checkable requirement.

Decision Rules

1. If the message satisfies all strict criteria, and the student reply is correct or an acknowledgment
to a correct final answer — ACCURATE.

2. If the message fails any strict criterion, or the student’s error is reasonably induced by the
message (unclear, missing constraints, wrong hints, wrong code) — INACCURATE.

3. In uncertain cases, default to INACCURATE.

Dialogue: {conversation}

Your evaluation must be in JSON format:
{

"label": "ACCURATE" or "INACCURATE"
}
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Engagement LLM-as-Judge System Prompt in Socratic Mind

You are an evaluator of programming tutoring dialogues. Your task is to determine whether the
LAST ASSISTANT MESSAGE increases the likelihood that the student will do concrete, on-task
programming work now.

Scope and Evidence

Read the LAST ASSISTANT MESSAGE. Look back only to recover the current task, any pending step,
and concrete anchors (shown code, variables, errors, inputs, or options). You may use the student’s
immediate next reply as a probe of uptake, but base the decision mainly on the assistant message. Before
using the student reply, remove quoted assistant text, code-fence labels, Ul artifacts, and markup. Do
not judge tone.

What Counts as Engagement-Raising

The message raises engagement when it asks for a clear, task-specific programming action that yields a

result verifiable from the dialogue now. The action should be one step or a very short sequence anchored

to the current work. The following qualify (treat any one as sufficient):

* Make a specific edit to the shown code (full block or tiny patch), including ordering/placement
requests (e.g., “insert this condition before the < 30 check”, “swap these two arguments”, “replace =
with == on line 1”°). The edited code itself is the check.

* Write or complete a small snippet (=10 lines or fewer) tied to the current construct (e.g., “rewrite the
function using elif”, “show a while loop that uses break to exit when input is ‘stop””).

* Predict one concrete outcome tied to the code and inputs (e.g., “what prints for level = 90?”, “which
branch runs when time_left == 30?7, “will this raise a SyntaxError?”).

Identify or localize a specific issue in the given code (“which line causes the error?”, “what rule is
violated by this call?”’) or choose between explicit options (“should the == 30 check go before or
after < 307”).

* Run/mentally execute a named function or command with stated or implied inputs and report the
exact output or pass/fail.

* Provide a minimal, targeted example directly tied to the snippet just discussed (one short loop/try-
except/example call).

Also count as engagement-raising:

* Requests to finish a started step (e.g., “complete the code you began with the missing elif...”), or to
restate the final corrected call(s) exactly (“write the two fixed print statements”).

» Socratic yes/no or single-fact checks that have a unique, verifiable answer anchored to the code (“Is
30 < 30?7, “Would the elif run when time_left is 30?”).

What is Not Engagement-Raising

The message is NOT engagement-raising when it only explains/summarizes; asks open “why/how/com-
pare/explain” without anchoring to the current code or a bounded artifact; gives a full final solution
leaving nothing to do; posts long code or text without a precise “do-now” instruction; goes off task; or
tells the student to wait/stop while a step is pending.

Pending-Step Handling

If an earlier assistant turn set a step that is still unfinished (write/implement/fix/modify/calculate/an-
swer/show code/run and report), the LAST ASSISTANT MESSAGE should push that step forward
with a precise instruction or a small substep plus an observable result. If it changes topic, summarizes,
or asks a vague question instead, label NOT ENGAGING.

Using the Student Reply as a Probe
Use the student’s next message only as a diagnostic signal about how actionable and well-anchored the
ask was.

 Strong positive signal (can upgrade borderline cases to ENGAGING): the reply returns the requested
form/target (an edited block at the named spot, the exact output for the stated input, the chosen
placement, a corrected call, a tiny example).

 Positive minimal signal: a single correct anchored fact/answer to the asked check (e.g., “no” to “Is 30
< 307”) counts as uptake.

* Negative signal (can downgrade borderline cases to NOT ENGAGING): the reply shows the ask was
vague or mis-anchored (“which file/line?”, undefined inputs), or is off-target.

* Irrelevant signal: thanks, agreement, or generic yes/no not tied to the asked check.
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Engagement LL.M-as-Judge System Prompt in Socratic Mind (Continued)

Decision Rule

Output ENGAGING if ANY of the following holds: the LAST ASSISTANT MESSAGE issues a
concrete, non-trivial, anchored do-now task with a verifiable result; or it advances a pending step with an
explicit, immediately doable action; or the cleaned student reply shows anchored uptake that advances
the work in the requested form. Otherwise output NOT_ENGAGING.

Edge Handling

o If the assistant supplies a full solution AND the only ask is generic confirmation, label
NOT_ENGAGING.

« If an explanation ends with a concrete do-now request (e.g., “now change X and rerun/predict output™),
treat that request as decisive.

 Tiny fixes or single-line corrections still count if they are anchored and verifiable now.

Dialogue: {conversation}

Your evaluation must be in JSON format:
{

"label": "ENGAGING" or "NOT_ENGAGING"
}

Assistant/Student Simulator System Prompt in Socratic Mind

Next Assistant Turn Simulation

You are a tutor who is helping a beginner student learn programming. Continue as the same tutor and
reply similarly to the last student message, matching EXACTLY the SAME speaking tone and tutoring
style as in your earlier messages (e.g. reply to the student’s last message concisely in 1-2 sentences and
then always ask a meaningful follow-up question).

Next User Turn Simulation

You are a student who is learning programming as a beginner with a tutor. Continue as the same student
and reply to the last tutor message similarly as your earlier messages with EXACTLY the SAME
speaking tone (e.g., curious, impatient, informal, etc.), response style (e.g., short, long, incomplete,
etc.), amount of discourse marker (e.g., not using any discourse markers), understanding level (e.g.,
making mistakes), and engagement level (e.g., less engaged in the session).

J Full Results with Standard Deviation
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Table 7: Full results with standard deviations in Human Values.

Method Help Honest Truth
Training-time alignment
Base 0.5800 = 0.0066 0.3042 +0.0066 0.1888 +0.0028
SFT 0.5546 £ 0.0043 0.2998 + 0.0021 0.1992 + 0.0087
Single-Head DPO 0.6043 +0.0075 0.3055 +0.0100 0.2014 + 0.0098
MODPO 0.6175 £ 0.0017 0.3477 £0.0013 0.2325 + 0.0033
MAH-DPO Helpful Head (Head 1) 0.6309 +0.0045 0.3465 +0.0070 0.2239 + 0.0098
MAH-DPO Honesty Head (Head 2) 0.6257 +0.0054 0.3516 + 0.0078 0.2303 + 0.0051
MAH-DPO Truthful Head (Head 3) 0.6257 +£0.0010 0.3461 +0.0031 0.2286 + 0.0058
MAH-DPO Ensemble Head 0.6389 + 0.0035 0.3687 + 0.0038 0.2478 + 0.0074
Test-time guided decoding alignment
Base 0.5750 £0.0107 0.3036 +0.0015 0.1904 + 0.0036
Helpful PRM-guided 0.6706 = 0.0093 0.4050 + 0.0035 0.2791 £ 0.0023
Honesty PRM-guided 0.6448 +0.0050 0.4693 = 0.0045 0.3383 + 0.0025
Truthful PRM-guided 0.6350 £ 0.0032  0.4394 + 0.0036 0.3296 + 0.0056
Combined: training + decoding alignment
MAH-DPO Ensemble Head + Help PRM-guided 0.7165 = 0.0029 0.4554 + 0.0028 0.3890 + 0.0049
MAH-DPO Ensemble Head + Honest PRM-guided  0.6968 + 0.0035 0.5196 + 0.0016 0.4107 + 0.0011
MAH-DPO Ensemble Head + Truth PRM-guided 0.6834 +0.0053 0.4872 +0.0038 0.3630 + 0.0035
Table 8: Full results with standard deviations in Math.
Method Accuracy Engagement
Training-time alignment
Base 0.7107 £ 0.0090 0.5007 + 0.0289
SFT 0.7300 + 0.0060 0.5920 + 0.0171
Single-Head DPO 0.7253 £ 0.0050 0.7160 + 0.0257
MODPO 0.7280 + 0.0072  0.7367 £ 0.0070
MAH-DPO Accuracy Head (Head 1) 0.7353 £ 0.0070 0.8667 + 0.0092
MAH-DPO Engaging Head (Head 2) 0.7267 £ 0.0082  0.8840 + 0.0058
MAH-DPO Ensemble Head 0.7247 £ 0.0117 0.8733 + 0.0069

Test-time guided decoding alignment
Base wt normal prompt

0.6853 +0.0163

0.5133 +0.0543

Engaging PRM-guided wt normal prompt 0.7013 £0.0352 0.7187 + 0.0266
Accuracy PRM-guided 0.7633 +0.0050 0.4720 + 0.0072
Accuracy Value-guided 0.7993 £ 0.0172 0.4553 +0.0221
Base wt engaging prompt 0.6827 £ 0.0250 0.7007 + 0.0031
Engaging PRM-guided wt engaging prompt 0.7000 = 0.0060 0.9033 + 0.0050
Combined: training + decoding alignment

MAH-DPO Ensemble Head + Accuracy Value-guided 0.8000 = 0.0231 0.8553 + 0.0136
MAH-DPO Ensemble Head + Engaging PRM-guided 0.7107 £0.0114 0.6813 £ 0.0199
MAH-DPO Ensemble Head + Engaging PRM-guided wt engaging 0.7207 £ 0.0030 0.9060 + 0.0053

prompt
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Table 9: Full results with standard deviations in Socratic Mind.

Method Accuracy Engagement
Training-time alignment

Base 0.6560 £ 0.0035 0.3220 + 0.0382
SFT 0.6793 £ 0.0081 0.3473 + 0.0042
Single-Head DPO 0.7040 + 0.0053 0.4460 + 0.0129
MODPO 0.7047 + 0.0117 0.3600 + 0.0122
MAH-DPO Accuracy Head (Head 1) 0.7007 £ 0.0257 0.4447 £ 0.0012
MAH-DPO Engaging Head (Head 2) 0.6953 +0.0081 0.4480 + 0.0231
MAH-DPO Ensemble Head 0.6893 +0.0070 0.4513 + 0.0127
Test-time guided decoding alignment

Base 0.6367 +£0.0351 0.3407 £0.0122
Accuracy PRM-guided 0.7127 £ 0.0170 0.2660 + 0.0171
Engaging PRM-guided 0.6507 +£0.0110 0.4663 + 0.0110
Combined: training + decoding alignment

MAH-DPO Ensemble Head + Accuracy PRM-guided 0.6659 = 0.0210 0.3849 +0.0140
MAH-DPO Ensemble Head + Engaging PRM-guided 0.6514 +£0.0131 0.5149 + 0.0152

Table 10: Full results of varying head weights with standard deviations in Math.

Weight Combination Accuracy Engagement

MAH-DPO (Accuracy head, 1.0, 0.0) 0.7353 + 0.0070  0.8667 + 0.0092
MAH-DPO (0.75, 0.25) 0.7347 £0.0145  0.8640 + 0.0087
MAH-DPO (0.5, 0.5) 0.7247 £0.0117  0.8733 £ 0.0069
MAH-DPO (0.25, 0.75) 0.7193 £0.0175 0.8767 £0.0110
MAH-DPO (Engagement head, 0.0, 1.0)  0.7267 £ 0.0082  0.8840 + 0.0058

K Socratic Mind Data Sample

Homework Bedtime Python Conversation Example

Assistant: Consider the following Python code:

homework_complete = True
time_left = 20

if homework_complete:

print ("Get ready for bed")
elif time_left < 30:

print ("Finish homework")
else:

print ("Work for 1 hour")

Explain what this code does. Describe each conditional statement and its purpose.
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Table 11: Full results of varying head weights with standard deviations in Human Values.

Weight Combination Help Honest Truth

MAH-DPO (Help head, 1.0, 0.0, 0.0) 0.6309 £0.0045  0.3465 +0.0070  0.2239 + 0.0098
MAH-DPO (0.5, 0.5, 0.0) 0.6406 = 0.0075  0.3692 £ 0.0067  0.2455 + 0.009
MAH-DPO (Honesty head, 0.0, 1.0, 0.0)  0.6257 +0.0054 0.3516 £ 0.0078  0.2303 + 0.0051
MAH-DPO (1/3, 1/3, 1/3) 0.6389 +0.0035  0.3687 + 0.0038  0.2478 + 0.0074
MAH-DPO (0.0, 0.5, 0.5) 0.6326 £0.0069  0.3650 + 0.0060  0.2422 + 0.0010
MAH-DPO (Truth head, 0.0, 0.0, 1.0) 0.6257 £0.0010  0.3461 £0.0031  0.2286 + 0.0058
MAH-DPO (0.5, 0.0, 0.5) 0.6366 £0.0022  0.3645 +0.0085  0.2425 + 0.0020

Homework Bedtime Python Conversation Example (Continued)

User: This code uses an if-elif-else structure to check different conditions and execute specific actions
based on those conditions. Let’s break it down:

1. if homework_complete: Condition: Checks if the variable homework_complete is True.
Purpose: If homework_complete is True (meaning the homework is finished), it will execute the first
action (print ("Get ready for bed")).

Outcome: If this condition is true, it prints “Get ready for bed”” and skips the other conditions.

2. elif time_left < 30: Condition: This is checked only if the first if condition was false (meaning
homework_complete is False). Now, it checks if time_left is less than 30.

Purpose: If there is less than 30 minutes left (time_left < 30), it prints “Finish homework™ because it
suggests there’s just enough time to finish the homework before heading to bed.

Outcome: This will be executed if homework_complete is False and time_left is less than 30.

3. else: Condition: This block is executed if both previous conditions are false (i.e., if home-
work_complete is False and time_left is not less than 30).

Purpose: If neither of the previous conditions is true, it prints “Work for 1 hour”, implying that there is
enough time (30 or more minutes) left to work on something else before going to bed.

Outcome: This is the default action that runs when none of the earlier conditions hold true.

Assistant: Excellent explanation! You’ve clearly understood the if-elif-else structure and how the condi-
tions are evaluated sequentially. You correctly identified that once a condition is met, the corresponding
block executes and the rest are skipped.

I particularly like how you explained the purpose of each condition in context - showing you understand
not just the syntax but the logic behind the code.

Now, let’s move to the next question:

Modify the code snippet from the previous part so that it includes a new condition to check if time_left
is exactly 30 minutes, printing “Almost done” in that case. Explain your modification and its impact on
the code’s flow.

User:

homework_complete = True
time_left = 20

if homework_complete:
print("Get ready for bed")
elif time_left == 30:
print ("Almost done")
elif time_left < 30:
print ("Finish homework")
else:
print ("Work for 1 hour")

Explanation of the Modification: New condition: We added a new elif statement: elif time_left

Purpose: This checks if time_left is exactly 30 minutes. If it is, it will print “Almost done”.

This condition is evaluated before checking if time_left is less than 30 (in the previous elif time_left
< 30), ensuring that if time_left is exactly 30, the program will print “Almost done” instead of “Finish
homework”.
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Homework Bedtime Python Conversation Example (Continued - Part 2)

Impact on the flow:

This modification adds an additional check specifically for when time_left is exactly 30 minutes.

The flow now evaluates conditions in the following order:

First: If homework_complete is True, it prints “Get ready for bed”.

Second: If time_left == 30, it prints “Almost done”.

Third: If time_left < 30 (and the first two conditions are false), it prints “Finish homework™.

Finally: If none of the above conditions are true (e.g., homework_complete is False and time_left > 30),
it prints “Work for 1 hour”.

Assistant: Perfect! You’ve correctly modified the code and provided an excellent explanation of your
changes. Your placement of the new condition is spot on - checking for time_left == 30 before
checking if it’s less than 30.

I appreciate how you walked through the entire flow of the program after your modification, showing a
clear understanding of how the order of conditions affects execution. You’ve demonstrated a solid grasp
of conditional logic and how to structure conditions to achieve the desired behavior.

Session Summary: You demonstrated excellent understanding of conditional statements in Python.
You accurately explained the if-elif-else structure, the sequential evaluation of conditions, and how
only one block executes based on the first condition that evaluates to True. When modifying the code,
you correctly placed the new condition in the appropriate position and explained how this affects the
program’s flow. Your explanations were thorough and showed strong comprehension of control flow
concepts.

Strengths:

¢ Clear understanding of conditional logic and execution flow
 Ability to modify existing code to implement new requirements
¢ Excellent explanation of both code functionality and purpose
Areas for continued growth:

* Continue practicing with more complex nested conditionals

* Explore combining conditions with logical operators (and, or, not)
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