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ABSTRACT

Gradient-based meta-learning (GBML) algorithms are able to fast adapt to new
tasks by transferring the learned meta-knowledge, while assuming that all tasks
come from the same distribution (in-distribution, ID). However, in the real world,
they often suffer from an out-of-distribution (OOD) generalization problem, where
tasks come from different distributions. OOD exacerbates inconsistencies in mag-
nitudes and directions of task gradients, which brings challenges for GBML to
optimize the meta-knowledge by minimizing the sum of task gradients in each
minibatch. To address this problem, we propose RotoGBML, a novel approach to
homogenize OOD task gradients. RotoGBML uses reweighted vectors to dynami-
cally balance diverse magnitudes to a common scale and uses rotation matrixes to
rotate conflicting directions close to each other. To reduce overhead, we homoge-
nize gradients with the features rather than the network parameters. On this basis, to
avoid the intervention of non-causal features (e.g., backgrounds), we also propose
an invariant self-information (ISI) module to extract invariant causal features (e.g.,
the outlines of objects). Finally, task gradients are homogenized based on these
invariant causal features. Experiments show that RotoGBML outperforms other
state-of-the-art methods on various few-shot image classification benchmarks.

1 INTRODUCTION

Deep learning has achieved great success in many real-world applications such as visual recog-
nition (Krizhevsky et al., 2012; Wang et al., 2020; Srinivas et al., 2021) and natural language
processing (Vaswani et al., 2017; Devlin et al., 2018; Wu et al., 2016). However, deep learning relies
heavily on large-scale training data, showing the limitation of not being able to effectively generalize
to small data regimes. To overcome this limitation, researchers have explored and developed a variety
of meta-learning algorithms (Vanschoren, 2019; Wang, 2021; Raghu et al., 2020; Thrun & Pratt,
2012; Schmidhuber, 1987), whose goal is to extract the meta-knowledge over the distribution of tasks
rather than instances, and hence compensate for the lack of training data. Among the two dominant
strands of meta-learning algorithms, we prefer gradient-based (Finn et al., 2017; Yoon et al., 2018;
Yin et al., 2020; Lee et al., 2019a) over metric-based (Snell et al., 2017; Vinyals et al., 2016) for their
flexibility and effectiveness. Unfortunately, most of these researches have a restrictive assumption
that each task comes from the same distribution (in-distribution, ID). However, distribution shifts
among tasks are usually inevitable in real-world scenarios (Shen et al., 2021; Amrith et al., 2021).

In this paper, we consider a realistic scenario, where each minibatch is constructed of tasks from differ-
ent distributions or datasets (out-of-distribution, OOD). Surprisingly, through repeated experiments,
we found that the OOD tasks seriously affect the performance of GBML, e.g., the performance of
MAML drops from 75.75% to 54.29% with CUB dataset under the 5-way 5-shot setting. Intuitively,
we explain the possible reason from the optimization objective of the meta-knowledge. Specifically,
GBML algorithms learn the meta-knowledge by minimizing the sum of gradients for each minibatch
of tasks (see equation (1)). If task gradients have a significant inconsistency, it may cause the learned
meta-knowledge to be dominated by certain tasks with large gradient values and fail to generalize
to new tasks, affecting the performance of GBML algorithms. The OOD generalization problem
exacerbates the phenomenon, where task gradients are inconsistent. To demonstrate the impact of the
OOD problem on task gradients in each minibatch, we next give an illustrative example.
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(a) Task space of GBML (b) Meta space of GBML (c) Task space of Ours (d) Meta space of Ours

Figure 1: Visualization OOD task-gradient magnitudes and directions for GBML and RotoGBML
(Ours) in task and meta spaces. ψ = (θ, φ) and ψ∗ are initial and updated meta parameters,
respectively. g1 and g2 are task gradients with task parameters ψτ1 and ψτ2 in outer loop, respectively.

We take two different distributions to evaluate the impact in Figure 1. The optimization process of
meta-knowledge in GBML has two loops: an inner-loop at task space (Figure 1 (a) and (c)) and an
outer loop at meta space (Figure 1 (b) and (d)). We randomly sample two OOD tasks (task1 and
task2) from the two different distributions and represent them using green and gray contour lines,
respectively. First, in the task space, each task learns a task-specific parameter ψτ1 or ψτ2 using the
same meta-knowledge ψ. Then, in the meta space, the losses of two OOD tasks are calculated using
ψτ1 and ψτ2 and are summed in turn to optimize the meta-knowledge from ψ to ψ∗. From Figure 1 (a),
it clearly shows that in the whole optimization process, task2 has a large gradient value (the length of
‖g2‖ > ‖g1‖) and the large gradient dominates the learning process, i.e., the updated meta-knowledge
ψ∗ is close to task2 in Figure 1 (b). This causes the learning of meta-knowledge to be dominated
by task2 and ignore the existence of task1, and eventually GBML cannot fast adapt to new tasks
using the learning meta-knowledge. When the gradient directions of OOD tasks are conflicting, the
meta-knowledge optimized by summing two task gradients may counteract each other.

In this paper, to solve inconsistencies in task-gradient magnitudes and directions, we propose a simple
yet effective framework, RotoGBML, to simultaneously homogenize magnitudes and directions and
boost the learning of meta-knowledge in GBML. Specifically, (1) RotoGBML solves the gradient
magnitudes by dynamically reweighting task gradients at each step of the learning process, while
encouraging the learning of ignored tasks. (2) Instead of directly modifying gradient directions,
RotoGBML smoothly rotates each task space, seamlessly aligning gradient directions in the long
run (see Figure 1 (c)). (3) To reduce overhead, we use the features instead of network parameters to
homogenize task gradients, see Section 3.2 for details. Furthermore, we also propose an invariant
self-information (ISI) module to extract invariant causal features (e.g., object outline), which are used
for homogenization. The introduction of ISI is mainly because of the fact that the features learned by
neural networks are inevitably interfered with by some non-causal features (e.g., image backgrounds),
which in turn affects the homogeneity of task gradients. We theoretically demonstrate that OOD
affects meta-knowledge learning. The main contributions could be briefly summarized as follows:

• We consider a real-world OOD scenario and propose a general RotoGBML algorithm to
solve the OOD generalization problem. RotoGBML helps GBML algorithms learn good
meta-knowledge by homogenizing task-gradient magnitudes and directions.
• To reduce memory, we homogenize task gradients at a feature level. Also, we design an

invariant self-information module to extract the invariant causal features. Homogenizing gra-
dients using these features provides further guarantees for learning robust meta-knowledge.
• We theoretically evaluate our motivation and experimentally demonstrate the effectiveness

of our RotoGBML algorithm in various few-shot image classification benchmarks.

2 PRELIMINARIES

Task formulation in GBML. In this paper, a supervised learning setting is considered, where
each data point is denoted by (x, y) with x ∈ X being the input and y ∈ Y being its corresponding
label. GBML assumes N training tasks {Ti}Ni=1 ∼ Ttr in each minibatch to be sampled, and an
arbitrary testing task Ti ∼ Tte is picked. Formally, each n-way k-shot task Ti consists of a support
set Si = (xsi , y

s
i ) and a query set Qi = (xqi , y

q
i ). xsi ∈ Rns×d, xqi ∈ Rnq×d, ysi ∈ Rns×n and

yqi ∈ Rnq×n, where d = c × h × w indicates the image size, ns and nq denote the number of
support and query examples, respectively. The label spaces of training, validation and testing tasks
are different, i.e., Ytr ∩ Yval ∩ Yte = ∅. Most GBML algorithms have a strict assumption for tasks as:
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Assumption 2.1. In-distribution (ID): each task is randomly sampled from the same distribution
P(T ), i.e., Ti ∼ P(T ) comes from the task set {Ttr, Tval, Tte} with ∀i.

The assumption indicates a highly restrictive setting due to the following reasons: (1) It is contradic-
tory that tasks with disjoint classes come from the same distribution. (2) The data collection process
is susceptible to some unobservable variables, which can cause distribution shifts even from the same
dataset. Improving the generalization of GBML algorithms in the real world is very important.

Task optimization in GBML. GBML aims to learn a good meta-knowledge and fast adapts to new
tasks using two optimization loops (inner loop and outer loop). Generally, the network architectures
of GBML contain a feature encoder fθ parameterized by θ, which is used to extracted features
fθ : Rd → Rm, and a classifier cφ parameterized by φ, which is used to output predict labels
cφ : Rm → Rn. In the inner loop, the model is grounded to an initialization (or meta-knowledge),
i.e., (φ, θ), which is adapted to the i-th task in a few gradient steps τ (typically 1 ∼ 10 steps) by its
support set Si. In the outer loop, the performance of the adapted model, i.e. (φτi , θ

τ
i ), is measured on

the query set Qi, and in turn used to optimize the initialization from (φ, θ) to (φ∗, θ∗). Let L denotes
the loss function and the above interleaved process is formulated as a bi-level optimization problem,

(φ∗, θ∗) := min
(φ,θ)

1

N

∑N

i=1
E(xq

i ,y
q
i )∼Qi

Li(φτi (θτi (xqi )), y
q
i ), (1)

s.t. (φτi , θ
τ
i )← min

(φ0
i ,θ

0
i )
E(xs

i ,y
s
i )∼SiLi(φ

0
i (θ

0
i (x

s
i )), y

s
i ), (2)

where equations (1) and (2) are the outer-loop and inner-loop, respectively. (φ0i , θ
0
i ) = (φ, θ) is the

initial parameters for the i-th task. The learning of meta-knowledge uses the summed and averaged
gradients over all tasks in current batch. We introduce detailed derivations for GBML in Appendix B.

3 METHODOLOGY

To improve the generalization ability of GBML algorithms in real-world scenarios, in this paper, we
consider an out-of-distribution (OOD) setting, i.e., all tasks randomly sampled from a distribution set
{Pi(T )}Ni=1. A new assumption on the OOD task distributions is proposed as follows:
Assumption 3.1. Out-of-distribution (OOD): each task comes from the different distributions
{Pi(T )}Ni=1, i.e., Ti ∼ Pi(T ) and Tj ∼ Pj(T ) with ∀i, j, i 6= j and Pi(T ) 6= Pj(T ).

To solve the problem that OOD exacerbates the inconsistencies of task-gradient magnitudes and
directions, we introduce RotoGBML, a novel algorithm that consists of two building blocks: (1)
Reweighting OOD task-gradient magnitudes. A reweighted vector set wω = {ωi}Ni=1 parameterized
by ω is used to normalize the magnitudes to a common scale (see Section 3.1); (2) Rotating OOD
task-gradient directions. A rotation matrix set Rγ = {γi}Ni=1 parameterized by γ is used to rotate the
directions close to each other (see Section 3.2). The two blocks complement each other and facilitate
meta-knowledge to learn common information of all tasks in each minibatch, thereby fast adapting to
new tasks with only a few samples. The optimization of RotoGBML is re-defined as follows:

(φ∗, θ∗) := min
(φ,θ)

1

N

∑N

i=1
E(xq

i ,y
q
i )∼Qi

ωiLi(φτi (γiθ
τ
i (xqi )), y

q
i ), (3)

s.t. (φτi , θ
τ
i )← min

(φ0
i ,θ

0
i )
E(xs

i ,y
s
i )∼SiLi(φ

0
i (θ

0
i (x

s
i )), y

s
i ). (4)

We use red to annotate the differences between the generic GBML and RotoGBML. It clearly shows
that a set of corresponding ωi and γi for each task at each batch is used to homogenize gradients in the
outer loop optimization process. And, if task-gradient magnitudes and directions are consistent, the
equation (3) degenerates into the equation (1). It is worth mentioning that our RotoGBML algorithm
is a model-agnostic method that can be equipped with arbitrary GBML algorithms (see Section 6).

3.1 REWEIGHTING OOD TASK-GRADIENT MAGNITUDES

How to determine the value of wω? This is a key challenge for reweighting OOD task-gradient
magnitudes. Most previous works on multi-task learning use static approaches, such as hyperparame-
ters or prior assignment (Kendall et al., 2018; Crawshaw, 2020). However, these methods are difficult
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to adapt to the learning process due to the use of fixed values wω = {ωi}Ni=1 for each task. In Table 3,
the experiments of static reweighted vector evaluate the phenomenon. Instead, we dynamically adjust
ωi to adapt task distribution shifts by using an optimization strategy over the training iterative process.

Specifically, we initialize {ωi = 1|i ∈ N} for each task in each batch Tb = {Ti|i ∈ N}, which aims
to treat each task equally at the beginning. Then, the reweighted vector set is dynamically adjusted by
using average gradient norms for the current batch during training. The optimization objective is as:

ω∗ := min
ω

∑N

i=1
E(xq

i ,y
q
i )∼Qi

Lωi
(θτi , x

q
i , y

q
i ), s.t. Lωi

= ‖gwi − ḡwb × [Ii]
β‖1, (5)

where ‖ · ‖1 is the `1-norm. gwi = ‖∇θωiLi(θτi (xqi ), y
q
i )‖2 is the `2-norm of the gradients for each

reweighted task loss ωiLi in outer loop. ḡwb = 1
N

∑N
i=1 gwi is the average gradient for Tb. To save

compute costs, we only use the gradients of feature encoder θ since the feature knowledge can be
reused (Raghu et al., 2020). Ii is inverse learning rate to balance each task gradient as follows:

Ii = L̂i/
∑N

i=1
L̂i, s.t. L̂i = Li/L0

i , (6)

whereLi is the cross-entropy loss for query set in outer loop andL0
i is the initial loss to be determineed

by using a theoretical initial, i.e., L0
i = log(n), n is classes. Concretely, the higher the value of Ii,

the higher the gradient magnitudes should be for i-th task to encourage the task to train more quickly.

In equation (5), an additional hyperparameter β is introduced to pull tasks back to a common learning
rate. When tasks are very different in their distributions, a higher β should be used to enforce stronger
training rate balancing. Conversely, a lower β is appropriate for similar tasks. Note that β = 0 tries
to pin the backpropagated gradients of each task to be equal at network parameters. The dynamically
optimized ωi can be integrated into the learning process to homogenize task-gradient magnitudes. In
the next section, we describe how to resolve conflicts of task directions in each batch.

3.2 ROTATING OOD TASK-GRADIENT DIRECTIONS

How to define and learn the matrix of Rγ? This is a key challege for rotating OOD task-gradient
directions. (1) Definition. Motivated by previous work (Javaloy & Valera, 2022), we initialize
Rγ ∈ SO(M), where SO(M) is special orthogonal group to denote the set of all rotation matrix γi
with size M (the network parameters). Due to the large size of M , to reduce overhead, we adopt the
usual practice and focus on feature-level task gradients∇ẑqi Li (rather than∇θLi). This is reasonable
due to chain rule ∇θLi = ∇θ ẑqi · ∇ẑqi Li, where ẑqi = γiz

q
i , zqi = θτi (xqi ). Finally, Rγ ∈ SO(m)

is used, where m is the size of feature dimensions. (2) Learning. Rγ aims to reduce the direction
conflict of the task gradients in each batch by rotating the feature space. We optimize γi to make task
spaces closer to each other and the objective is to maximize the cosine similarity or to minimize

γ∗ := min
γ

∑N

i=1
E(xq

i ,y
q
i )∼Qi

Lγi(θτi , x
q
i , y

q
i ), s.t. Lγi = −〈γigi, ḡrb〉 , (7)

where gi = ∇θLi(θτi (xqi ), y
q
i ), gri = γigi = ∇ẑqi Li(γiθ

τ
i (xqi ), y

q
i ) and ḡrb = 1

N

∑
i∈N gri is the

average gradient for Tb. Solving equation (7) is a constrained optimization problem. While this
usually means using expensive algorithms like Riemannian gradient descent (Absil et al., 2009), we
can leverage recent work on manifold parametrization (Casado & Martı́nez-Rubio, 2019) and, instead,
apply unconstrained optimization methods, where Rγ is automatically parameterized via exponential
maps on the Lie algebra of SO(m). The optimization of the neural network in equation (3) and the
RotoGBML in equations (5) and (7) can be interpreted as a Stackelberg game: a two player-game
in which the leader and follower alternately move in order to minimize their respective losses, and
the leader knows what will be the follower’s response to their movements. Such an interpretation
allows us to derive simple guidelines to guarantee training convergence, i.e., the network loss does
not oscillate as a result of optimizing the two different objectives. More details in Appendix C and D.

3.3 INVARIANT SELF-INFORMATION

As mentioned above, we homogenize the task gradients from feature level. However, these features
learned by neural network are susceptible to some biases, e.g., image backgrounds or textures (Shi
et al., 2020; LeCun et al., 2015; Brendel & Bethge, 2019). For instance, given an image with a cat’s
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shape filled with an elephant’s skin texture, CNN tends to classify it as an elephant instead of a cat.
Geirhos et al. (Geirhos et al., 2018) find that shape-biased neural network trained on stylized images
are more robust to random image distortions. In this section, we further introduce the invariant
self-information (ISI) module to extract the robust shape features as invariant causal features. We
homogenize OOD task gradients based on these invariant causal features, which helps the reweighted
vector set and the rotation matrix set avoid being affected by these biases (e.g., texture features).

How to extract the robust shape features? Since there are no existing corresponding shape labels,
this is a challenging problem. Given an image, we observe that the shape regions tend to be more
pronounced and carry a high information compared with neighboring regions. Therefore, at each
layer of the neural network, we learn shape features by saving neurons that extract high-informative
regions and zeroing out neurons in low-informative regions. Specifically, we first extract features
zli ∈ Rcl×k×k from input data xi ∈ Rc×h×w in i-th task Ti, where l is the l-th layer of the neural
network. Then a drop coefficient d is proposed to drop these less-information regions as follows:

d(zli,c) ∝ e
−I(pl−1

i,k )/T , s.t. I(pl−1i,k ) = −log ql−1i,k (pl−1i,k ), (8)

where pl−1i,k is the k-th region for c-th channel’s in zl−1i and pl−1i,k ∈ Rcl−1×k×k. pl−1i,k is sampled from
the defined distribution ql−1i,k . I denotes self-information and T is temperature. When the value of I
is low, the corresponding neuron is likely to be dropped, and the network tends to rely less on pl−1i,k .

To approximate ql−1i,k , we assume that pl−1i,k and other regions in its neighbourhood N l−1
i,k come from

the same distribution. Here the neighbourhood means a local region centered at pl−1i,k , with Manhattan
radius C, i.e., the neighbourhood contains (2C + 1)2 regions. Then, with neighbouring regions as
samples, we approximate ql−1i,k (·) with its kernel density estimator q̂l−1i,k , the representation is:

q̂l−1i,k (p) =
1

(2C + 1)2

∑
p′∈N l−1

i,k

K(p, p
′
), (9)

where K(·, ·) is kernel function. A Gaussian kernel is used, i.e., K(p, p
′
) = 1√

2πh
exp(− 1

2h2 ‖p−
p
′‖2), where h is the bandwidth. Then the information of pl−1i,k is estimated by

Î(pl−1i,k ) = −log {
∑

p′∈N l−1
i,k

e−
1

2h2 ‖p
l−1
i,k −p

′
‖2}. (10)

It can be observed that the more different pl−1i,k is from neighboring patches, the more information it
contains. In other words, shapes are more unique in their surroundings and thus more informative.

3.4 IMPLEMENTATION

We summarize the overall proposed approach in Algorithm 1 of Appendix C. In this paper, we
consider a more challenging and real-world setting, i.e., tasks are randomly sampled from different
distributions during training and testing. In the training phase, we first use the invariant self-
information (ISI) module to extract the invariant causal features. Then, based on these invariant
features, we use the reweighted vector set wω to reweight task-gradient magnitudes and the rotating
matrix Rγ to rotate task-gradient directions. Finally, these homogenized task gradients are used to
optimize the meta-knowledge in equation 3. In the testing phase, invariant self-information (ISI)
module is removed to examine whether our network has truly learned invariant features. We also
remove wω and Rγ to evaluate the performance of meta-knowledge learned by GBML algorithms.

4 THEORETICAL ANALYSIS

In this section, we first theoretically investigate why OOD acerbates inconsistencies in task-gradient
magnitudes and directions. We sample two tasks from different distributions, where Ti = (Si,Qi) ∼
Pi(T ) and Tj = (Sj ,Qj) ∼ Pj(T ) with i 6= j. In outer loop, the gradient difference is calculated as:

dij = ‖∇(φ,θ)Li(φτi (θτi (xqi )), y
q
i )−∇(φ,θ)Lj(φτj (θτj (xqj)), y

q
j )‖, (11)

where gi = ∇(φ,θ)Li(φτi (θτi (xqi )), y
q
i ) and gj = ∇(φ,θ)Lj(φτj (θτj (xqj)), y

q
j ) are gradients of task Ti

and Tj , respectively. To bridge the connections of task distributions and task gradients, we introduce
Total Variation Distance (TVD) to re-estimate dij on the task distribution. TVD is defined as follows:
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Definition 4.1. (Total Variation Distance (TVD)) For two distributions P and Q, defined over the
sample space Ω and σ−field F , the TVD is defined as ‖P −Q‖TV := supA∈F |P (A)−Q(A)|.

It is well-known that the total variation distance (TVD) admits the following characterization

‖P −Q‖TV = sup
f :0≤f≤1

Ex∼P [f(x)]− Ex∼Q[f(x)]. (12)

Theorem 4.1. The difference of task gradients dij = ‖gi − gj‖ can be bounded by the TVD as:

dij ≤ 4ηbaseGL ‖Pi(T )− Pj(T )‖TV , (13)

Reweighting

Rotating

𝑔∗

𝑔∗
𝑑∗

𝑔

𝑔

𝑑

Figure 2: The difference of two
OOD task gradients. (left) The task
gradients for GBML. (right) we short
the difference of d∗ij by homogeniz-
ing magnitudes and directions.

where ηbase is the learning rate of the inner loop. The G, L
and more proofs are introduced in Appendix D. When Pi(T ) 6=
Pj(T ), there is a gradient difference between Ti and Tj . Then, we
analyze that RotoGBML can narrow the difference between task
gradients from Cosine Theorem (Pickover, 2009). When viewing
gradients as a vector, the value of dij is simplified to calculate the
length of the third edge dij = ‖gi− gj‖ using Cosine Theorem in
Figure 2 (left). Based on Cosine Theorem, equation (11) can be re-
expressed as

√
‖gi‖2 + ‖gj‖2 − 2‖gi‖‖gj‖ cos 〈gi, gj〉, where

‖ · ‖ means the length of the vector and cos 〈·, ·〉 is the consine
angle between two vectors. RotoGBML homogenize task gra-
dients by reweighting task-gradient magnitudes from ‖gi‖, ‖gj‖
to ‖g∗i ‖, ‖g∗j ‖, respectively and rotating task-gradient directions from cos 〈gi, gj〉 to cos

〈
g∗i , g

∗
j

〉
to

narrow the task gradients difference from dij to d∗ij in Figure 2 (right).

5 RELATED WORK

GBML frameworks for few-shot image classification. A plethora of GBML algorithms have been
proposed to solve the few-shot image classification problem. The goal of these algorithms is to
fast adapt to new tasks with only a few samples by transferring the meta-knowledge acquired from
training tasks (Finn et al., 2017; Yoon et al., 2018; Zintgraf et al., 2019; Flennerhag et al., 2022; Lee
& Choi, 2018). However, these works have a strict assumption that training and testing (or new) tasks
come from the same distribution, which seriously violates the real world (see Appendix A).

Recently, some works (Lee et al., 2020; Jeong & Kim, 2020; Chen et al., 2019; Amrith et al., 2021)
have been proposed to study the OOD problem of GBML. However, they mainly focus on the shifts
caused by training and testing data (e.g., training from miniImageNet, testing from CUB). This setting
follows the definition of distribution shifts in traditional machine learning (Shen et al., 2021). They
do not consider the problem from the GBML optimization itself and proposed appropriate algorithms
for GBML frameworks. We consider the distribution shifts at the task level due to GBML uses task
information of each minibatch to optimize the meta-knowledge.

Task gradients homogenization in other fields. Homogenization of task-gradient magnitudes and
directions is also found in multi-task learning (Javaloy & Valera, 2022; Chen et al., 2018; Sener &
Koltun, 2018; Liu et al., 2021; Yu et al., 2020; Chen et al., 2020). Their goal is to simultaneously
learn K different tasks, that is, finding K mappings from a common input dataset to a task-specific
set of labels (generally K=2). Motivated by Javaloy & Valera (2022); Wang et al. (2021), we regard
GBML meta-knowledge learning as a multi-task optimization process and homogenize task gradients
from a multi-task perspective. Our work differ from these works in: (1) the input data is different for
different tasks in GBML, but the input data of different tasks in multi-task learning is the same. (2)
In multi-task learning, existing works on alleviating gradient conflicts usually assume that tasks come
from the same distribution. However, we address the problem of conflicting gradients in different
distributions. (3) We propose a new invariant self-information module to extract causal features.

6 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the effectiveness of RotoGBML
and compare it with state-of-the-art algorithms. Specifically, we consider two OOD generalization
problems in few-shot image classification: The weak OOD generalization problem is training and
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Table 1: Few-shot image classification average accuracy on the weak OOD generalization problem.

Model miniImageNet CUB
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Linear Chen et al. (2019) 42.11±0.71% 62.53±0.69% 47.12±0.74% 64.16±0.71%

ProtoNet Snell et al. (2017) 44.42±0.84% 64.24±0.72% 50.46±0.88% 76.39±0.64%

MetaOpt Lee et al. (2019b) 44.23±0.59% 63.51±0.48% 50.63±0.67% 77.11±0.59%

MTL Liu et al. (2018) 40.97±0.54% 57.12±0.68% 45.36±0.75% 74.21±0.79%

SKD-GEN1 Rajasegaran et al. (2020) 48.14±0.45% 66.36±0.36% 56.68±0.67% 76.92±0.91%

ANIL Raghu et al. (2020) 45.97±0.32% 62.10±0.45% 55.31±0.63% 75.73±0.64%

Reptile Nichol et al. (2018) 45.12±0.31% 58.92±0.41% 56.21±0.34% 72.56±0.43%

MAML Finn et al. (2017) 46.47±0.82% 62.71±0.71% 54.73±0.97% 75.75±0.76%

iMAML Rajeswaran et al. (2019) 49.30±1.88% 63.24±0.84% 56.14±0.31% 76.05±0.53%

MAML++ Antoniou et al. (2019) 47.42±0.32% 62.79±0.52% 55.19±0.34% 76.21±0.54%

ANIL-RotoGBML 46.42±0.33% 63.73±0.42% 56.42±0.32% 77.56±0.45%

Reptile-RotoGBML 47.34±0.31% 59.12±0.51% 57.87±0.32% 73.12±0.53%

MAML-RotoGBML 48.21±0.31% 65.19±0.42% 56.19±0.32% 76.21±0.45%

iMAML-RotoGBML 52.08±0.31% 66.89±0.47% 57.58±0.38% 80.98±0.44%

MAML++-RotoGBML 46.40±0.41% 63.08±0.51% 56.80±0.43% 78.72±0.52%

testing tasks from the same dataset but with disjoint classes (Triantafillou et al., 2021). The strong
OOD generalization problem is training and testing tasks from different datasets and has multiple
datasets in training data (Amrith et al., 2021; Wang & Deng, 2021; Tseng et al., 2020). Unlike these
works, we use a more difficult setting, i.e., each minibatch of tasks from different datasets.

We aim to answer the following questions: Q1: How does the proposed RotoGBML framework
perform for the few-shot image classification task on the weak OOD generalization problem (see
Section 6.1)? Q2: Can RotoGBML fast generalize to new tasks from new distributions when faced
with the strong OOD generalization problem (see Section 6.2)? Q3: How well each module (wω , Rγ
and ISI) in our proposed framework performs in learning the meta-knowledge (see Section 6.3)?

Datasets. For the weak OOD generalization problem, we adopt two popular benchmarks for image
classification, i.e., miniImageNet and CUB-200-2011 (abbr: CUB). For the strong OOD general-
ization problem, we adopt nine benchmarks, including miniImageNet, CUB, Cars, Places, Plantae,
CropDiseases, EuroSAT, ISIC and ChestX following prior works (Tseng et al., 2020; Sun et al., 2020;
Wang & Deng, 2021). In the strong OOD generalization, miniImageNet is used only as training data
because of its diversity, and evaluate the trained model on the other eight datasets using a leave-out-of
method, i.e., randomly sampled one dataset as testing data and other datasets as training data.

Backbone of GBML. Since our RotoGBML is model-agnostic and can be equipped with arbitrary
GBML algorithms, we use five representative and generic GBML algorithms as our GBML backbone
including MAML (Finn et al., 2017), MAML++ (Antoniou et al., 2019), ANIL (Raghu et al., 2020),
Reptile (Nichol et al., 2018), iMAML (Rajeswaran et al., 2019). More details and implementations
of these GBML algorithms are given in Appendix B. In all experimental results, iMAML is used as
our GBML backbone due to its good performance, unless otherwise stated.

Feature encoders. We follow previous works (Chen et al., 2019; Wang & Deng, 2021) using three
general networks as our feature encoder including, i.e. conv4 (filter:64), resnet10 and resnet18.
However, it is well known that GBML algorithms (e.g, MAML) under-perform when applied to large
networks (Mishra et al., 2018), so we use conv4 to show the main experimental results for the weak
OOD generalization. For a fair comparison with some cross-domain methods (Guo et al., 2020; Sun
et al., 2020; Wang & Deng, 2021; Tseng et al., 2020), we follow their setting using resnet10 for the
strong OOD generalization. We also show the performance of the three feature encoders in Figure 3.

Experimental setting. We use the Adam optimizer with the learning rate of inner loop ηbase = 0.01,
outer loop ηmeta = 0.001 and rotation matrix ηγ = 5e− 4. We set β = 0.1 for weak and β = 1.5
for strong OOD. We optimize all models from scratch and process datasets using data augmentation
following previous work (Chen et al., 2019). We evaluate the performance under two generic settings,
i.e., 5-way 1-shot and 5-shot and report the average accuracy as well as 95% confidence interval.

6.1 WEAK OOD GENERALIZATION PROBLEM

We conduct experiments on two representative few-shot image classification datasets: miniImageNet
and CUB. Table 1 reports the experimental results. From Table 1, we have some findings as follows:
(1) Compared to Vanilla GBML algorithms (2-nd block), the proposed RotoGBML framework
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Table 2: Few-shot image classification average accuracy on the strong OOD generalization problem.

Model CUB Cars Places Plantae Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Random Guo et al. (2020) 40.53% 53.76% 28.12% 39.21% 47.57% 61.68% 30.77% 40.45% 36.75% 48.78%
RelationNet Sung et al. (2018) 41.27% 56.77% 30.09% 40.46% 48.16% 64.25% 31.23% 42.71% 37.69% 51.05%
RelationNet-FT Tseng et al. (2020) 43.33% 59.77% 30.45% 40.18% 49.92% 65.55% 32.57% 44.29% 39.07% 52.45%
RelationNet-LRP Sun et al. (2020) 41.57% 57.70% 30.48% 41.21% 48.47% 65.35% 32.11% 43.70% 38.16% 51.99%
RelationNet-ATA Wang & Deng (2021) 43.02% 59.36% 31.79% 42.95% 51.16% 66.90% 33.72% 45.32% 39.92% 53.63%

MAML Finn et al. (2017) 40.66% 54.29% 30.02% 40.35% 45.93% 60.00% 31.35% 44.65% 36.99% 49.82%
iMAML Rajeswaran et al. (2019) 43.56% 57.98% 31.25% 41.65% 46.14% 61.52% 32.01% 43.65% 38.24% 51.20%
MAML++ Antoniou et al. (2019) 42.11% 58.72% 32.93% 43.55% 46.52% 62.61% 33.91% 42.77% 38.87% 51.91%
ANIL Raghu et al. (2020) 42.67% 55.58% 30.63% 41.77% 45.55% 61.72% 31.90% 45.95% 37.69% 51.26%

MAML-RotoGBML 41.38% 56.82% 39.19% 42.35% 46.12% 62.94% 34.21% 46.21% 40.23% 52.08%
iMAML-RotoGBML 46.12% 60.23% 35.81% 43.80% 52.65% 67.47% 35.24% 46.51% 42.46% 54.50%
MAML++-RotoGBML 44.38% 59.66% 33.66% 42.23% 50.14% 68.77% 34.14% 45.23% 40.58% 53.97%
ANIL-RotoGBML 45.86% 58.81% 31.68% 42.01% 47.20% 62.44% 32.38% 46.91% 39.28% 52.54%

Model ChestX CropDiseases EuroSAT ISIC Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Random Guo et al. (2020) 19.81% 21.80% 50.43% 69.68% 40.97% 58.00% 28.56% 37.91% 34.94% 46.85%
RelationNet Sung et al. (2018) 21.95% 24.07% 53.58% 72.86% 49.08% 65.56% 30.53% 38.60% 38.79% 50.27%
RelationNet-FT Tseng et al. (2020) 21.79% 23.95% 57.57% 75.78% 53.53% 69.13% 30.38% 38.68% 40.82% 51.89%
RelationNet-LRP Sun et al. (2020) 22.11% 24.28% 55.01% 74.21% 50.99% 67.54% 31.16% 39.97% 39.82% 51.50%
RelationNet-ATA Wang & Deng (2021) 22.14% 24.43% 61.17% 78.20% 55.69% 71.02% 31.13% 40.38% 42.53% 53.50%

MAML Finn et al. (2017) 21.72% 23.48% 52.54% 78.05% 48.10% 71.70% 28.58% 40.13% 37.74% 53.34%
iMAML Rajeswaran et al. (2019) 22.45% 24.14% 53.23% 79.23% 50.34% 71.89% 29.58% 45.65% 38.90% 55.23%
MAML++ Antoniou et al. (2019) 21.43% 22.67% 52.70% 76.45% 46.25% 72.83% 30.84% 44.51% 37.81% 54.12%
ANIL Raghu et al. (2020) 21.36% 21.83% 51.62% 77.30% 49.81% 70.67% 30.04% 45.30% 38.21% 53.78%

MAML-RotoGBML 22.92% 24.51% 57.72% 80.17% 51.93% 72.48% 30.94% 43.89% 40.88% 55.26%
iMAML-RotoGBML 24.12% 25.98% 58.34% 80.23% 55.78% 74.42% 31.25% 49.68% 42.37% 57.58%
MAML++-RotoGBML 22.97% 23.26% 55.25% 78.51% 48.44% 73.57% 32.48% 47.53% 39.79% 55.72%
ANIL-RotoGBML 23.55% 26.47% 54.88% 79.50% 50.21% 71.22% 31.21% 46.90% 39.96% 56.02%

consistently and significantly improves all performances by homogenizing task-gradient magnitudes
and directions. Moreover, compared to the 95% confidence interval, it is clear that RotoGBML
reduces the uncertainty of model predictions and further reduces the high variances of model learning,
thereby improving the robustness and generalization. (2) Compared to some state-of-the-art few-shot
image classification methods (1-st block), RotoGBML outperforms all methods, including metric-
based model (ProtoNet), fine-tuning model (Linear), pretrain-based model (MTL) and knowledge-
distillation-based model (SKD-GEN1). This further demonstrates the effectiveness of our RotoGBML,
while also providing a new solution for GBML to outperform metric-based meta-learning methods.

We also compare the performance of the model with different feature encoders (conv4, resnet10 and
resnet18) in Figure 3. We can find that (1) our RotoGBML outperforms all GBML algorithms in all
experimental settings with different network sizes. (2) It’s worth noting that RotoGBML can alleviate
the performance degradation problem of large networks. This is mainly because our ISI module can
extract invariant causal features (i.e., the shapes or outlines of objects), which avoid some non-causal
features to affect the generalization of large networks on some new tasks from new distributions.

6.2 STRONG OOD GENERALIZATION PROBLEM

In this section, we consider a more challenging OOD setting, i.e., each task of each minibatch
(typically the number of tasks N = 4) comes from different datasets. We compare our method
and some state-of-the-art methods with the strong OOD generalization problem in Table 2. From
Table 2, we have some significant findings as follows: (1) Compared to Vanilla GBML algorithms
(2-nd block), RotoGBML outperforms all algorithms on eight datasets with different performance
gains. These results again prove that our RotoGBML can learn robust meta-knowledge, which in
turn generalizes quickly to new tasks from new distributions. (2) Compared to some cross-domain
methods (1-st block), RotoGBML has a good performance in most settings, which demonstrates that
we can help GBML algorithms to achieve state of the art by homogenizing task-gradient magnitudes
and directions. (3) The improvement of the strong OOD setting is usually larger than that of the
weak OOD setting (Table 1). The phenomenon justifies our conclusion that the larger the distribution
difference, the more obvious inconsistencies in magnitudes and directions of task gradients.

In Figure 3, the performances of the strong OOD problem are shown with different network sizes. We
show the results on Cars and EuroSAT as we have similar observations on other datasets. Compared
to Vanilla GBML algorithms, iMAML has the best performance on the weak OOD problem, but
significantly degrades on the strong OOD problem. Because it uses a regularization to encourage task
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Table 3: Ablation study on all modules of RotoGBML framework. The first row represents the
performance of iMAML. Violet is the weak OOD and blue is the strong OOD experiments. hyper
means that a fixed reweighted vector set is used to reweight each task gradients in each minibatch.

Rγ wω ISI miniImageNet CUB Cars EuroSAT
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

% % % 49.30% 63.24% 56.14% 76.05% 31.25% 41.65% 50.34% 71.89%

% hyper % 48.25%(-1.1) 59.45%(-3.8) 56.78%(+0.6) 77.02%(+1.0) 30.14%(-1.1) 38.45%(-3.2) 48.46%(-1.9) 70.58%(-1.3)
% " % 50.45%(+1.2) 64.77%(+1.5) 56.98%(+0.8) 78.39%(+2.3) 33.36%(+2.1) 43.08%(+1.4) 53.81%(+3.5) 72.65%(+0.8)
" % % 50.42%(+1.1) 64.53%(+1.3) 57.16%(+1.0) 78.61%(+2.6) 33.59%(+2.3) 43.36%(+1.7) 53.62%(+3.3) 73.12%(+1.2)
% % " 51.56%(+2.3) 65.17%(+2.3) 57.05%(+0.9) 77.69%(+1.6) 31.69%(+0.9) 40.04%(+0.6) 51.18%(+0.8) 72.43%(+0.5)

" " % 50.84%(+1.5) 65.37%(+2.1) 57.47%(+1.3) 79.11%(+3.1) 34.41%(+3.2) 43.59%(+1.9) 54.21%(+3.9) 73.80%(+1.9)
% " " 51.81%(+2.5) 66.61%(+3.4) 57.38%(+1.2) 80.56%(+4.5) 33.88%(+2.6) 43.18%(+1.5) 54.49%(+4.2) 73.43%(+1.5)
" % " 51.95%(+2.7) 66.74%(+3.5) 57.23%(+1.1) 80.60%(+4.6) 35.01%(+3.8) 43.47%(+1.8) 54.85%(+4.5) 73.95%(+2.1)

" " " 52.08%(+2.8) 66.89%(+3.7) 57.58%(+1.4) 80.98%(+4.9) 35.81%(+4.6) 43.80%(+2.1) 55.78%(+5.4) 74.42%(+2.5)
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Figure 3: Few-shot image classification accuracy with different encoders for the weak and strong
OOD generalization problems. iMAML-RotoGBML has the best performance in all experiments.

parameters to close to meta parameters, large distribution shifts affect the learning of meta parameters.
Our RotoGBML can learn good meta parameters by homogenizing task gradients.

6.3 ABLATION STUDY

We use a hierarchical ablation study to evaluate the performance of each module for RotoGBML
under the weak and strong OOD problems in Table 3. The 1-st row represents the results of Vanilla
iMAML. The plus sign means performance increase and the minus sign means performance decrease,
where violet is the weak OOD and blue is the strong OOD experiments. To evaluate the performances
of a fixed reweighted vector set, e.g., [0.1,0.5,0.3,0.4] is used for the four tasks in each minibatch
in our experiments, the results are shown in the 2-nd row. From Table 3, the following findings:
(1) compared to Vanilla iMAML, the performances of hyperparameters have a significant drop in
most settings, but our dynamic adjustment strategy (3-rd row) has a clear improvement. This further
evaluates the effectiveness of our learning method to dynamically optimize the reweighted vectors.
(2) Each module has different performance gains (3∼5-th rows). Compared to the strong OOD
problem, the performances of ISI on the weak OOD problem have a large improvement, because even
if invariant features are learned, the strong inconsistencies of task gradients affect the learning of
meta-knowledge. (3) Arbitrary combination of two modules has good performance in 6∼8-th rows,
especially with ISI. This is because adjusting the gradients based on invariant robust information
from different distributions can learn better. We also give some visualization experiments of ISI
learning invariant features in Appendix E. And all modules are used to have the best performance.

7 CONCLUSION

In this paper, we address the challenging problem of learning a good meta-knowledge of gradient-
based meta-learning (GBML) algorithms under the OOD setting. We show that OOD generalization
exacerbates the inconsistencies in task-gradient magnitudes and directions. Therefore, we propose
RotoGBML, a general framework to dynamically reweight diverse magnitudes to a common scale
and rotate conflicting directions close to each other. Moreover, we also design an invariant self-
information (ISI) module to extract the invariant causal features. Homogenizing gradients using these
causal features provide further guarantees for learning robust meta-knowledge. Finally, we analyze
the feasibility of our method from the theoretical and experimental levels. We believe that our work
makes a meaningful step toward adjusting task gradients under the OOD problem for GBML.
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