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Abstract001

In recent research advancements within the002
community, large language models (LLMs)003
have sparked great interest in creating au-004
tonomous agents. However, current prompt-005
based agents often heavily rely on large-006
scale LLMs. Meanwhile, although fine-tuning007
methods significantly enhance the capabilities008
of smaller LLMs, the fine-tuned agents of-009
ten lack the potential for self-reflection and010
self-improvement. To address these chal-011
lenges, we introduce a novel agent framework012
named RetroAct, which is a framework that013
jointly optimizes both task-planning and self-014
reflective evolution capabilities in language015
agents. Specifically, we develop a two-stage016
joint optimization process that integrates imita-017
tion learning and reinforcement learning, and018
design an off-policy joint policy gradient op-019
timization algorithm with imitation learning020
regularization to enhance the data efficiency021
and training stability in agent tasks. RetroAct022
significantly improves the performance of open-023
source models, reduces dependency on closed-024
source LLMs, and enables fine-tuned agents025
to learn and evolve continuously. We con-026
duct extensive experiments across various test-027
ing environments, demonstrating RetroAct has028
substantial improvements in task performance029
and decision-making processes. To benefit030
the research community, we have released our031
data and code at https://anonymous.4open.032
science/r/RetroAct-04E8.033

1 Introduction034

Achieving independent, autonomous agents capa-035

ble of thinking, reasoning, and dynamically in-036

teracting with their environment has long been a037

fundamental goal for researchers in the field of038

artificial intelligence. In recent years, with the039

emergence of the powerful capabilities of Large040

Language Models (LLMs) (Zhao et al., 2023), re-041

searchers have started to utilize these models in042

building advanced intelligent agents (Wang et al.,043

Env

Reflector Planner

Reflection Tool Calling

Differential Reward

Feedback Reward

Interact with Env

Joint Policy Gradient Optimization

Figure 1: Overview of retrospective language agent.
The planner analyzes task requirements, calls external
tools, and gathers feedback. If planning fails, the re-
flector intervenes to adjust the strategy until the issue is
resolved. Through joint strategy optimization, RetroAct
continually enhances both the planner and reflector to
tackle complex tasks more effectively.

2024; Yao et al., 2023a; Shinn et al., 2024). These 044

agents demonstrate advanced capabilities in under- 045

standing complex language inputs, engaging in in- 046

tricate planning (Ahn et al., 2022; Wei et al., 2022; 047

Wang et al., 2022; Huang et al., 2022; Yao et al., 048

2024) and utilizing tools (Qin et al., 2023; Schick 049

et al., 2024; Shen et al., 2023; Kong et al., 2023). 050

Since LLMs are not initially intended for agent 051

tasks, they need to be adjusted to carry out such 052

tasks efficiently. Currently, there are two primary 053

adaptation paradigms: (1) Prompt-based Agent: 054

In this paradigm, LLMs leverage their in-context 055

learning abilities to adapt to new environments 056

(Brown et al., 2020). Many researchers have de- 057

signed self-reflection mechanisms, allowing agents 058

to explicitly reflect on feedback from the environ- 059

ment and incorporate these reflections into subse- 060

quent trials for iterative self-improvement (Shinn 061

et al., 2024; Madaan et al., 2024; Yao et al., 2023b). 062

However, these methods typically rely on large- 063

scale LLMs, leading to substantial costs and delays. 064
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Planner Reflector

Name Prompt IL RL Prompt IL RL

ReAct (Yao et al., 2023a) " % % % % %

Self-Refine (Madaan et al., 2024) " % % " % %

Reflexion (Shinn et al., 2024) " % % " % %

Retroformer (Yao et al., 2023b) " % % " " "

FireAct (Chen et al., 2023a) " " % % % %

ArCHer (Xi et al., 2024) " " " % % %

RetroAct " " " " " "

Table 1: Related work on Language Agent. Prompt, IL, RL stand for Prompt-based Method, Imitation Learning-
based Method, and Reinforcement Learning-based Method.

Moreover, most smaller LLMs often exhibit insuf-065

ficient performance and robustness when deployed066

as agents (Chen et al., 2023a). (2) Agent Fine-067

tuning. This paradigm primarily includes using068

imitation learning to fine-tune smaller LLMs with069

expert datasets, enabling agents to learn specific070

tasks from the data (Zeng et al., 2023; Chen et al.,071

2023a), as well as employing reinforcement learn-072

ing to allow agents to explore and learn on train-073

ing sets (Zhou et al., 2024). However, these fine-074

tuned agents depend on the knowledge acquired075

through fine-tuning and lack the ability to contin-076

uously learn new information and self-improve in077

testing environments without updating parameters.078

As shown in Table 1, there is no research on how to079

simultaneously enhance an agent’s task-planning080

abilities and self-reflection capabilities from fail-081

ures, nor is there a comprehensive framework that082

combines IL and RL to jointly fine-tune these two083

capabilities of the agent.084

In this work, we propose a novel agent frame-085

work called RetroAct, which jointly optimizes the086

task-planning and self-reflection capabilities of087

open-source LLMs. This approach eliminates the088

dependency on closed-source models during infer-089

ence while retaining the ability for continuous re-090

flection and evolution. Specifically, we developed091

a two-phase joint optimization process that inte-092

grates imitation learning and reinforcement learn-093

ing. First, we use imitation learning to distill the094

planning and reflection capabilities of large-scale095

LLMs into smaller LLMs. Then, we propose an096

off-policy joint policy gradient optimization algo-097

rithm with imitation learning regularization to en-098

hance data efficiency and training stability in the099

reinforcement learning process. During the joint100

optimization process, the planner and reflector can101

mutually facilitate each other and collectively im-102

prove the overall performance of the agent, show-103

casing the unique advantages of joint optimization. 104

We conduct experiments on three represen- 105

tative agent tasks: Complex Reasoning (Hot- 106

potQA (Yang et al., 2018)), Embodied Decision 107

(ALFWorld (Shridhar et al., 2020)), and Interac- 108

tive Programming (InterCode (Yang et al., 2023)), 109

based on the Llama-7b and Llama-13b (Touvron 110

et al., 2023). Through joint optimization, our model 111

achieves performance improvements ranging from 112

22.3% to 348.3% on these tasks, attaining perfor- 113

mance comparable to or exceeding that of Chat- 114

GPT (OpenAI, 2022). Moreover, we further val- 115

idate the mutual promotion between the planner 116

and reflector. We also demonstrate that a single 117

model can concurrently learn both planning and 118

reflection capabilities, albeit with a slight decrease 119

in performance. Finally, we conduct systematic 120

ablation studies to demonstrate the importance of 121

each module in our approach. 122

To summarize, our contributions are shown in 123

the following: 124

• We propose a language agent framework 125

that jointly optimizes task-planning and self- 126

reflective evolution capabilities. This frame- 127

work enables agents built on open-source 128

models to improve performance through fine- 129

tuning and empowers them to continuously 130

learn and adapt to the environment. 131

• We design an off-policy joint policy gradient 132

algorithm with an imitation learning regular- 133

ization term, which improves data efficiency 134

and training stability. 135

• We validate the effectiveness of our proposed 136

methods through extensive experiments across 137

multiple representative testing environments, 138

demonstrating substantial improvements in 139

task performance and decision-making pro- 140

cesses. 141
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2 Approach142

Existing methods for agent-tuning primarily rely143

on knowledge acquired during the fine-tuning pro-144

cess, lacking the ability for real-time self-reflection145

and self-improvement. To address these limitations,146

we propose RetroAct, a novel approach that jointly147

optimizes LLMs’ task-planning and self-reflection148

capabilities. Our approach significantly enhances149

the performance of open-source LLMs through a150

combination of imitation learning (IL) and rein-151

forcement learning (RL). This eliminates the de-152

pendency on large-scale LLMs in agent tasks and153

retains the potential to evolve in new environments154

without parameter updates. Figure 2 illustrates the155

overall framework of our RetroAct. In this section,156

we frame the process of LLM-based agent task-157

solving as a Markov Decision Process (MDP) and158

construct our method within this MDP framework.159

2.1 Preliminaries: LLM-based Agent for160

Task-Solving161

In this study, we frame LLM-based agent task-162

solving within the Markov Decision Process163

(MDP) framework, represented as the tuple164

(S,A, P,O,R). Here, S denotes the set of states,165

A represents the available actions for the agent,166

P : S × A × S defines transition probabilities167

between states given action, O is the environmen-168

tal feedback, and R : S × A → R is the reward169

function, which assigns values to actions taken in170

different states. The LLM-based agent π(a|s) aims171

to choose actions that maximize rewards. Notably,172

s ∈ S, a ∈ A, and o ∈ O are all represented173

in natural language. Typically, r ∈ R is sparse,174

with values mostly zero except for specific states,175

where rewards are obtained upon the conclusion176

of particular trajectories, such as success or failure.177

With a slight abuse of notation, a typical execu-178

tion trajectory, consisting of n steps, is denoted as179

τ = {s0, a0, o0, . . . , sn, an, on, r}.180

2.2 Agent Architecture181

The RetroAct agent architecture is comprised of182

two language model components: a planner LLM183

denoted as π and a reflector LLM denoted as µ.184

The planner directly interacts with the environment185

and generates thoughts and actions, while the reflec-186

tor generates verbal reflections to help the planner187

iteratively improve the plan. It is similar to the188

Reflexion (Shinn et al., 2024).189

Planner Model The planner model π resem-190

bles a policy model in reinforcement learning, em- 191

ployed to generate an action at at a specified step 192

t and given state st. The state st is textual, com- 193

posed of task prompts, environmental descriptions, 194

and historical interactions. The action at comprises 195

two distinct components: Thought and Action (Yao 196

et al., 2023a). Thought denotes the agent’s explicit 197

thought process about the task; Action refers to the 198

actual interactive responses of the agent, such as 199

utilizing tools and executing tasks. The planner can 200

be formulated as follows: 201

at ∼ π(·|st) (1) 202

Reflector Model The reflector model µ resem- 203

bles a reward model in reinforcement learning. 204

When facing complex tasks, LLM-based agent of- 205

ten engages in multiple interactions with the envi- 206

ronment to accomplish them. Tasks may fail either 207

due to execution errors or upon encountering spe- 208

cific constraints. When the agent fails in the k-th 209

(0 ≤ k ≤ n) trial, the unsuccessful trajectory τk is 210

presented to the reflector µ to produce verbal reflec- 211

tions denoted as fk. These verbal reflections act as 212

semantic gradient signals to improve the planner 213

model without parameter updates. The reflector 214

can be formulated as: 215

fk ∼ µ(·|τk) (2) 216

The initial state of the new trial is adjusted based on 217

the initial state of the previous trial and the received 218

feedback, i.e., sk+1
0 = sk0 + fk. Consequently, 219

the trajectory for trial k + 1 becomes τk+1 = 220

{sk+1
0 , ak+1

0 , ok+1
0 , . . . , sk+1

n , ak+1
n , ok+1

n , rk+1}. 221

The overall goal is to iteratively refine the policy 222

model π through the feedback provided by µ, 223

aiming to optimize decisions and maximize 224

cumulative rewards across trials. 225

2.3 Imitation Learning 226

Despite the ability of few-shot examples and self- 227

reflection mechanisms to adapt agents to particular 228

tasks, these methods heavily rely on more pow- 229

erful LLMs and often underperform with smaller 230

LLMs. To overcome this issue, we first create ex- 231

pert datasets using large-scale LLMs. Then, we use 232

these datasets to fine-tune the planner and reflector 233

components of smaller LLMs. This approach en- 234

ables smaller LLMs to enhance their performance 235

by learning from the demonstrations of the larger 236

LLMs, facilitating rapid adaptation to new tasks. 237
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Figure 2: Schematic of Joint Policy Gradient Optimization for Retrospective Language Agent. Our approach is
divided into two stages: (a) Imitation Learning: We use expert models to generate expert trajectories, employ
evaluators to filter out these trajectories, and then use them to fine-tune the student models. (b) Reinforcement
Learning: The planner and reflector are jointly optimized through the off-policy reinforcement learning algorithm
with the imitation learning regularizer.

Expert Data Collection We utilize a powerful238

LLM, Mixtral-8*7b (Jiang et al., 2024) with few-239

shot examples, serving as the teacher agents, which240

is denoted as πexpert and µexpert. These teacher241

agents engage extensively with various environ-242

ments in the training sets to generate expert tra-243

jectories for fine-tuning. We implement different244

rule-based evaluators for planner and reflector tra-245

jectories across multiple datasets (see Appendix246

C.5 for more information). These evaluators help247

us filter out positive examples from the expert data248

to create fine-tuning datasets DIL
planner and DIL

reflector.249

Imitation Learning The training objective is to250

closely align the distribution π(a|s) of the planner251

and the distribution µ(f |τ) of the reflector with the252

expert model’s action distribution. This optimiza-253

tion objective can be expressed as:254

LIL
planner = Es∼DIL

planner

[
−πexpert(a|s) log πθ(a|s)

]
,

(3)

255

LIL
reflector = Es∼DIL

reflector

[
−µexpert(f |τ) logµϕ(f |τ)

]
.

(4)
256

2.4 Joint Policy Gradient Optimization257

Although IL has demonstrated notable efficacy, it258

still has several limitations. Firstly, IL relies on259

expert demonstrations, meaning the agent can only 260

learn behaviors in datasets, making it difficult to 261

surpass expert performance. Secondly, IL lacks 262

the ability to learn from broader reward signals, 263

such as negative feedback, which results in subop- 264

timal outcomes when dealing with complex tasks. 265

To this end, we use a joint policy gradient algo- 266

rithm to simultaneously optimize both the plan- 267

ner and reflector. Leveraging trial-and-error and 268

broad reward signals to learn environmental infor- 269

mation, the planner and reflector could surpass ex- 270

pert demonstrations and achieve superior policies. 271

Reward Shaping The reward function for the 272

planner Rπ is the environment-provided reward 273

Rτ , which is defined according to the datasets, e.g., 274

task completion rate (more details are in Appendix 275

C.5). Moreover, following the Retroformer (Yao 276

et al., 2023b), we design a reward function Rµ for 277

the reflector, defined as the difference in environ- 278

mental rewards between the trial conducted after 279

reflection by the reflector and the last failed trial. 280

In conclusion, the reward functions of the planner 281

and reflector in the k-th trial are as follows: 282

Rπk
= Rτk , (5) 283

Rµk
= (Rτk+1

−Rτk). (6) 284
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Off-Policy Joint Policy Gradient Optimiza-285

tion In LLM-based agent tasks, online RL algo-286

rithms like Policy Gradient often suffer from poor287

performance due to low sample efficiency and train-288

ing instability, while the training process is further289

hindered by high inference costs and significant290

latency. To address these issues, we design an off-291

policy joint policy gradient algorithm inspired by292

PPO-Clip (Schulman et al., 2017). Specifically, we293

construct replay buffers to store historical trajecto-294

ries and use these data in each iteration to perform295

off-policy optimization. The optimization objective296

is formulated as follows:297

LRL
planner = Es∼DRL

planner

[
−
∑
a

wπ(s, a)Rπ(s, a)

]
,

(7)

298

LRL
reflector = Es∼DRL

reflector

[
−
∑
a

wµ(τ, f)Rµ(τ, f)

]
,

(8)

299

where wπ and wµ are important sampling weights300

to adjust for the difference between the policies301

under parameters updating and the behavior poli-302

cies πbeh, µbeh that generate the data, which can be303

used to mitigate the distribution shift in off-policy304

data (Chen et al., 2021). Given that the importance305

sampling coefficient can introduce significant vari-306

ance (Schulman et al., 2017), we mitigate this by307

applying a clipping function, which limits the im-308

portance sampling term to the interval {1−ϵ, 1+ϵ}.309

Additionally, the knowledge acquired during RL310

may conflict with the knowledge learned during IL,311

causing the model to forget previous knowledge312

and leading to a performance decrease. Therefore,313

we introduce a regularizer based on imitation learn-314

ing to mitigate this effect and stabilize the training315

process. The resulting augmented RL loss func-316

tions for the planner and the reflector can be written317

as:318

LRL
planner, augmented = LRL

planner + λπLIL
planner, (9)319

LRL
reflector, augmented = LRL

reflector + λµLIL
reflector, (10)320

where λπ and λµ are regularization weights that321

balance the influence of the RL objectives and the322

imitation learning objectives.323

1Here, wπ(s, a) and wµ(τ, f) are importance sam-

pling weights defined as wπ(s, a) = Clip
(

πθ(a|s)
πbeh(a|s)

)
and

wµ(τ, f) = Clip
(

µϕ(f |τ)
µbeh(f |τ)

)
.

3 Experiments 324

In this section, we systematically explore the per- 325

formance of our proposed method. Our experimen- 326

tal design revolves around four key questions: Q1: 327

How does RetroAct perform compared with the ex- 328

isting prompt-based and fine-tuning method? What 329

are the benefits of joint optimization in improving 330

the learning process of both the planner and reflec- 331

tor? Q2: How about integrating the planner and 332

reflector within the same open-source model? Can 333

the model effectively learn both planning and self- 334

reflection capabilities simultaneously? Q3: How 335

do the optimized planner and reflector respectively 336

influence the behavior of RetroAct? Q4&Q5: How 337

does the reinforcement learning process and imita- 338

tion learning regularization impact RetroAct? 339

3.1 Environmental Settings 340

We select three representative agent environments: 341

(1) Complex Reasoning: HotpotQA (Yang et al., 342

2018) is a multi-turn QA dataset. Following Re- 343

Act (Yao et al., 2023a) and ChatCoT (Chen et al., 344

2023b), we reconstruct the HotpotQA environ- 345

ments. The agent needs to call an external retriever 346

based on SimCSE (Gao et al., 2021) multiple times 347

to obtain the necessary information for answer- 348

ing complex questions. (2) Embodied Decision: 349

ALFWorld (Shridhar et al., 2020) is a text-based 350

environment designed to simulate real-world in- 351

teractions through embodied agents. In this set- 352

ting, agents are tasked with executing a sequence 353

of natural language actions informed by surround- 354

ing environment feedback to accomplish complex 355

goals. (3) Interactive Coding: InterCode (Yang 356

et al., 2023) is a framework for evaluating language 357

agents capable of interactive coding. In this work, 358

we utilize the InterCode-SQL to thoroughly assess 359

the agent’s interactive SQL query generation capa- 360

bility. Moreover, We discuss in detail the selection 361

criteria and configuration settings of the baselines 362

and evaluation metrics in Appendix C. 363

3.2 Main Experiment on Multi-Agent (Q1) 364

In this section, we implement the planner and re- 365

flector as two different LLMs, thereby instanti- 366

ating RetroAct as a multi-agent framework. We 367

then compare it with baseline agents based on 368

prompts and fine-tuning, respectively. Compari- 369

son of RetroAct agents with other baseline agents 370

across three environments and two base LLMs are 371

shown in Table 2. Overall, our method demon- 372
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Model Method HotpotQA ALFWorld InterCode Avg
IR FR AR IR FR AR IR FR AR

Llama-7b

ReAct 39.7 39.7 39.7 8.96 8.96 8.96 14.24 14.24 14.24 21.15
Reflexion 39.7 58.49 54.39 8.96 21.64 18.28 14.24 32.16 28.40 30.14

SFT 55.58 55.58 55.58 72.39 72.39 72.39 30.67 30.67 30.67 52.65
SFT+EI 58.22 58.22 58.22 68.66 68.66 68.66 34.86 34.86 34.86 53.91
SFT+RL 60.70 60.70 60.70 80.60 80.60 80.60 39.42 39.42 39.42 60.24

Ours 60.92 71.51 67.90 82.84 97.01 93.28 41.12 54.17 51.46 68.91

Llama-13b

ReAct 43.99 43.99 43.99 28.36 28.36 28.36 26.83 26.83 26.83 32.94
Reflexion 43.99 62.39 59.73 28.36 46.27 39.70 26.83 43.00 38.79 43.01

SFT 58.99 58.99 58.99 79.10 79.10 79.10 43.17 43.17 43.17 60.75
SFT+EI 60.23 60.23 60.23 71.64 71.64 71.64 47.01 47.01 47.01 59.63
SFT+RL 61.90 61.90 61.90 77.61 77.61 77.61 42.25 42.25 42.25 60.59

Ours 57.99 70.11 66.58 78.36 91.04 87.39 44.30 61.83 58.38 68.11

ChatGPT
ReAct 41.84 41.84 41.84 52.24 52.24 52.24 62.47 62.47 62.47 52.32

Reflexion 41.84 68.61 62.12 52.24 79.10 71.04 62.47 69.00 68.63 63.34

Table 2: Experimental results on HotpotQA, ALFWorld, InterCode. Avg is the average accuracy of all tasks. IR,
FR, and AR stand for initial reward, final reward, and average reward, respectively. The best results and second best
results are bold and underlined, respectively.

strates significant advantages compared to baseline373

methods. Additionally, there is mutual facilitation374

between the reflector and the planner during the375

joint optimization process.376

Baseline Analysis (1) For prompt-based meth-377

ods, ChatGPT agents outperform Llama agents in378

all environments, demonstrating that agents based379

on open-source LLMs perform significantly worse380

than those based on closed-source LLMs, indicat-381

ing that current open-source LLMs are not yet382

sufficient for handling complex agent tasks; (2)383

Reflexion-based agents significantly improve both384

average and final rewards, even with the same ini-385

tial reward. Fine-tuning methods show clear advan-386

tages over prompt-based methods, underscoring the387

potential of self-reflection to enhance agent perfor-388

mance. However, current fine-tuning approaches389

rarely consider the joint optimization of task plan-390

ning and self-reflection capabilities; (3) Benefiting391

from self-exploration, EI and RL methods, particu-392

larly in the 7b model, achieve better performance393

than SFT, with broader reward signals making RL394

algorithms more effective in agent tasks. Addi-395

tionally, we demonstrate in the Appendix D.1 our396

specifically designed off-policy RL is better suited397

for agent tasks than the standard PPO algorithm.398

RetroAct Result Compared to prompt-based399

baselines, our approach significantly enhances the400

agent performance based on the same size LLMs.401

More notably, RetroAct based on Llama-7b ex-402

ceeds the reflexion agent based on ChatGPT by an403

average of 8%. The sustained superior performance 404

of RetroAct demonstrates its effectiveness in en- 405

hancing task planning and self-reflection capabili- 406

ties through the knowledge gained from fine-tuning. 407

Compared to the best fine-tuning baseline meth- 408

ods, RetroAct achieves a 13.4% performance im- 409

provement on average. Specifically, existing fine- 410

tuning baseline methods do not include a reflector 411

and cannot continuously self-improve. As a result, 412

after multiple iterations of trials and reflections, 413

RetroAct shows significant advantages in both final 414

rewards and average rewards. Furthermore, even in 415

terms of initial rewards, RetroAct slightly outper- 416

forms the RL baseline that optimizes the planner 417

alone. This result underscores the mutual facilita- 418

tion between the reflector and the planner dur- 419

ing the joint optimization process. Interestingly, 420

our approach brings more significant improvements 421

to lower-performing base LLMs. This could be at- 422

tributed to the fact that larger base models have 423

already developed more advanced planning and re- 424

flection abilities during the pre-training phase. As 425

a result, larger models derive less benefit from fur- 426

ther training through supervised fine-tuning and 427

reinforcement learning with expert or exploratory 428

samples. This phenomenon is similar to what was 429

observed in (Yuan et al., 2023). 430

3.3 Comparison of Multi-Agent and 431

Single-Agent (Q2) 432

In the last experiment, we validate the effective- 433

ness of instantiating RetroAct as a multi-agent 434
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Figure 3: Multi-Agent vs Single Agent (Q2)
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Figure 4: Effectiveness of Optimized Planner and Reflector (Q3)

framework. In this section, we will further ex-435

plore whether a single agent can simultaneously436

learn task-planning and self-reflection through fine-437

tuning. The results in Figure 3 show that in Hot-438

potQA, the single agent has almost no performance439

loss. In ALFWorld and InterCode, although our440

method is still effective, it has about 10% perfor-441

mance loss compared to the multi-agent method.442

We posit that these findings are due to the differ-443

ence in trajectories consistency between the plan-444

ner and reflector. In HotpotQA, there is a high sim-445

ilarity between the planning and reflection tasks, as446

both involve standard natural language processing447

tasks. Consequently, the single agent is capable448

of effectively managing these tasks simultaneously.449

However, the ALFWorld and InterCode environ-450

ments exhibit significant differences in task types:451

the planner in ALFWorld primarily utilizes spe-452

cific natural language instruction sets, whereas the453

planner in InterCode involves SQL commands (we454

provide some trajectories in the appendix D.4, C.4).455

Meanwhile, reflection tasks in both environments456

are executed using conventional natural language.457

Compared to the multi-agent, the single-agent may458

lead to specific knowledge conflicts when learn-459

ing task planning and self-reflection, resulting in460

decreased performance.461

3.4 Effectiveness of Optimized Planner and 462

Reflector (Q3) 463

In this section, we explore how the optimized plan- 464

ner and reflector respectively influence the behavior 465

of RetroAct. Specifically, we separately removed 466

the optimization from the planner and the reflector, 467

which allowed us to study the interaction between 468

the optimized planner and the unoptimized reflec- 469

tor, and vice versa. The experimental results are 470

shown in Figure 4. Overall, removing the optimiza- 471

tion from either the planner or the reflector nega- 472

tively impacts performance. If the planner is not 473

optimized, the agent’s performance in the first trial 474

will degrade to the base model level. Although the 475

optimized reflector can generally help the planner 476

improve through trial and error, this initial perfor- 477

mance loss is significant and cannot be recovered 478

through self-reflection. When the reflector is not 479

optimized, the well-optimized planner performs 480

well in the first trial. However, due to the reflector 481

not being sufficiently compelling, the potential for 482

performance improvement through self-reflection 483

is less than with our jointly optimized agent. 484

Notably, compared to the base model, optimiz- 485

ing the planner alone is more efficient than opti- 486

mizing the reflector. We attribute this to two main 487
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Figure 5: Effectiveness of Reinforcement Learning (Q4)

reasons. First, the optimization of the planner is488

a direct optimization of the tasks, making it more489

straightforward and effective. In contrast, the op-490

timization of the reflector is essentially tuning the491

planner’s prompts, which is less advantageous com-492

pared to directly updating the parameters. Second,493

there is an imbalance in the amount of data avail-494

able for the planner and the reflector (we provide a495

comparison of effective data amounts for imitation496

learning in the Appendix C), leading to the planner497

often being better trained.498

Therefore, we conclude that for smaller LLMs,499

simultaneously optimizing the planner and the re-500

flector is optimal. Additionally, optimizing the501

planner alone is more effective than optimizing the502

reflector alone. Optimizing the reflector alone is503

preferable when the planner cannot be optimized504

or the cost is too high. This finding supports the505

claims made in previous studies (Chen et al., 2023a;506

Yao et al., 2023b). To more specifically describe507

how the optimized planner and reflector work to-508

gether to better complete tasks, we provide several509

cases in Appendix D.4.510

3.5 Effectiveness of Reinforcement Learning511

and Regularization (Q4&Q5)512

In this section, we explore how each component of513

our proposed off-policy joint reinforcement learn-514

ing impacts the overall performance of RetroAct.515

Effectiveness of RL phase Overall, as shown516

in Figure 5, we find that our RL algorithm out-517

performed IL in three different environments. We518

attribute these performance improvements to the519
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Figure 6: Effectiveness of Imitation Learning Regular-
ization (Q5)

agent’s ability in RL to discover optimal behav- 520

iors beyond the constraints of the imitation learn- 521

ing dataset through exploration. Additionally, the 522

performance improvements are more pronounced 523

in HotpotQA and InterCode, likely because these 524

datasets provide broader reward signals, whereas 525

the binary reward signals in ALFWorld limit the 526

effectiveness of RL. These findings underscore the 527

importance of reward signal design in RL, suggest- 528

ing that broader reward signals can better aid the 529

agent in learning environmental information. 530

Effectiveness of IL Regularization By setting 531

λ to 0, we remove the imitation learning regulariza- 532

tion from the RL phase. As shown in Figure 6, elim- 533

inating this regularization objective led to some per- 534

formance degradation, which demonstrates the role 535

of regularization to retain the knowledge acquired 536

during the imitation learning phase. Moreover, us- 537

ing the RL objective independently still resulted in 538

acceptable performance, confirming the effective- 539

ness of the RL objective. 540

4 Conclusion 541

In this work, we introduce RetroAct, an agent 542

framework that utilizes imitation learning and off- 543

policy reinforcement learning to jointly optimize 544

the task-planning and self-reflective capabilities 545

of open-source LLMs. RetroAct significantly en- 546

hances the performance of these models, reduc- 547

ing the reliance on closed-source LLMs in agent 548

tasks. We conduct extensive experiments across 549

various agent environments, demonstrating the sub- 550

stantial improvements over existing baselines. Fu- 551

ture work may involve designing more complex 552

reinforcement learning systems, such as training 553

reward models for the planner and reflector to pro- 554

vide more fine-grained reward signals. 555

8



5 Ethical Considerations and Limitations556

Ethical Considerations Our work leverages the557

powerful capabilities of Large Language Models558

(LLMs) to build advanced intelligent agents. While559

the potential benefits of these advancements are560

substantial, it is crucial to consider their broader561

impact and ethical implications. We summarize the562

broader impact and ethics statement of our research563

as follows:564

• Bias and Fairness: We utilize reinforcement565

learning to enable open-source LLMs to learn566

and adapt to domain-specific agent tasks. If567

there are biases and discrimination in specific568

tasks, the agent may exacerbate these issues.569

Therefore, ensuring fairness in the application570

field is vitally important.571

• Safety: Despite significant efforts to align572

LLMs with safety standards, their deployment573

as agents raises additional safety concerns.574

Agents must avoid invoking harmful tools575

when interacting with external systems. Im-576

plementing constrained reinforcement learn-577

ing can help ensure that agents do not engage578

in harmful actions, thereby enhancing their579

safety and reliability.580

• Data Security: Although we have made ev-581

ery effort to review and verify the data we582

release, some security concerns may still re-583

main. Ensuring the integrity and security of584

the data is crucial to prevent potential misuse585

or vulnerabilities.586

Limitation Our current approach is the reliance587

on rewards directly provided by the environment.588

While this method is straightforward and effective589

to a certain extent, it may not always provide the590

most granular and informative feedback necessary591

for optimal performance. A more sophisticated ap-592

proach would involve training separate reward mod-593

els for the planner and the reflector, which could594

offer more detailed and tailored reward informa-595

tion for each component. This could potentially en-596

hance the agent’s ability to fine-tune its actions and597

reflections, leading to better overall performance598

and adaptability in complex tasks. We encourage599

future work to explore the development and inte-600

gration of these reward models to further improve601

the effectiveness of our proposed approach.602
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A Algorithm 868

Algorithm 1 Practical Framework
1: Initialize parameters θ, ϕ, λ, α
2: Initialize replay buffer DIL

planner, D
IL
reflector, D

RL
planner, D

RL
reflector

3: ## IL Data Collection
4: Initialize Expert Language Agent πexpert, µexpert
5: for each environment in trainset do
6: for each trial do
7: Update the initial state
8: Generate τk = {sk0, ak0, ok0, . . . , skn, akn, okn} using πexpert
9: Generate verbal reward fk ∼ µexpert(·|τk)

10: end for
11: Filter expert trajectories using evaluators and add to DIL

planner, D
IL
reflector

12: end for
13: ## IL training
14: Supervised Fine-tuning of πθ and µϕ using DIL

planner and DIL
reflector, respectively (Eq. 3 and 4)

15: for each iteration do
16: ## RL exploration
17: for each environment in trainset do
18: for each trial do
19: Update the initial state
20: Generate τk = {sk0, ak0, ok0, . . . , skn, akn, okn} using πθ, add to replay buffer DRL

planner

21: Generate verbal reward fk ∼ µϕ(·|τk), add to replay buffer DRL
reflector

22: end for
23: end for
24: ## RL training
25: Update θ and ϕ using off-policy policy gradient optimization (Eq. 9 and 10)
26: end for

The algorithm for RetroAct method is shown in Algorithm 1. 869

B Related Works 870

Retrospective language agent Benefitting from the LLMs’ in-context learning capabilities, they can 871

summarize environmental feedback into natural language-based reflections and use these reflections to 872

improve performance in subsequent trials. Self-Refine (Madaan et al., 2024) processes results from 873

environmental interactions, using these outcomes to improve performance. Reflexion (Shinn et al., 874

2024) involves introspection about feedback from the environment, generating reflective experiences 875

that enhance reasoning abilities. Retroformer (Yao et al., 2023b) introduces a framework by learning a 876

retrospective model to enhance LLM-based agents, which automatically adjusts language agent prompts 877

based on environmental feedback through policy gradient. Nonetheless, these approaches typically rely 878

on large-scale LLMs, resulting in significant costs and delays. Moreover, most smaller LLMs typically 879

exhibit insufficient performance and robustness when deployed as agents. 880

Language Agent Fine-tuning To address the reliance of agent tasks on large-scale LLMs, the agent- 881

tuning method is a standard solution. Researchers leverage powerful closed-source LLMs or human experts 882

to generate expert trajectories, acting as a dataset for fine-tuning smaller open-source LLMs through 883

imitation learning (Ho et al., 2022; Chen et al., 2023a; Zeng et al., 2023; Gou et al., 2023; Yang et al., 884

2024). Moreover, AutoAct (Qiao et al., 2024) enhances the planning, reflection and action capabilities of 885

multi-agent systems through self-synthetic trajectories. However, its reflection is only a summary of the 886

current situation and does not have the ability to continue learning and evolution. Compared to imitation 887

learning, reinforcement learning aims to learn through self-exploration and trial-and-error without relying 888
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on the guidance of external experts. Archer (Xi et al., 2024) employs a hierarchical RL approach with889

two parallel RL algorithms to enhance the planning ability of LLM-based agents. Several other works890

(Lightman et al., 2023; Chen et al., 2024; Havrilla et al., 2024a) propose intricate reward models with891

more fine-grained reward signals to improve performance. In summary, these methods focus on training892

planner models through fine-tuning, but the fine-tuned agents usually struggle to retain their capability for893

learning and adaptation to the environment.894

In summary, while these methods enhance planning models through fine-tuning, this process often895

diminishes the agent’s ability for self-reflection.896

C More Detailed Experimental Settings897

C.1 Evaluation Detials898

For HotpotQA and InterCode, we select 100 tasks as the test environments. For ALFWorld, we use 134899

“out-of-distribution” tasks as the test environments. In all environments, we conduct ten rounds of trials900

and reflections. In terms of evaluation metrics, we report the F1 Score for HotpotQA, the Success Rate901

for ALFWorld, and the Reward Score (IoU) for InterCode in the main text. Additionally, we provide the902

Exact Match Score for HotpotQA and the Success Rate data for InterCode as supplementary experiments903

in the Appendix D. In tables, we report the initial reward (IR) to measure the planner’s performance on904

the first trial, as well as the final reward (FR) and average reward (AR) to evaluate the performance of905

both the planner and reflector comprehensively.906

C.2 Baselines907

ReAct (Yao et al., 2023a) is a method that combines reasoning and action in language models, enhancing908

performance in understanding and decision-making tasks by alternately generating reasoning trajectories909

and task-specific actions.910

Reflexion (Shinn et al., 2024) builds on the ReAct framework, allowing language agents to learn from911

past errors by converting feedback into textual summaries, providing context for future tasks to improve912

performance through self-reflection.913

SFT (Chen et al., 2023a) is a fine-tuning method for language agents that enhances performance by914

utilizing expert trajectories, significantly improving efficiency and accuracy compared to prompt-based915

models. We use the FireAct method to fine-tune the language agent separately on each dataset.916

EI (Havrilla et al., 2024b)(Expert Iteration) is a strong baseline that involves using a model initialized917

with SFT to generate data, filtering successful samples, and then using them to further fine-tune the model918

RL In Archer (Zhou et al., 2024), due to limitations in model size and computational resources, they919

did not evaluate their approach on standard agent tasks that require repeated interactions with tools such920

as databases and retrievers. However, all of our evaluations are focused on such standard agent tasks.921

Therefore, we chose to design a reinforcement learning (RL) algorithm as a baseline. This alternative922

approach is not only more suitable for our computational budget but also provides reliable performance923

evaluation and benchmarking in these tasks.924

Specifically, we design an off-policy policy gradient algorithm to fine-tune the planner model. This925

algorithm is the same as the RL algorithm used in RetroAct, involving off-policy reinforcement learning926

with imitation learning regularization, but we applied it exclusively to fine-tune the planner. In Appendix927

??, we provide a detailed comparison between this algorithm and the standard PPO algorithm, validating928

the rationale for selecting this baseline.929

C.3 Expert Dataset930

In our research, we collect an imitation learning dataset using expert models. The dataset encompasses931

three different environments. We employ our custom evaluator to retain the positive examples from932

this dataset. Detailed information is provided in Table 3 and the dataset is publicly available at: https:933

//anonymous.4open.science/r/RetroAct-04E8.934
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Environment and Dataset Positive Examples (Planner) Positive Examples (Reflector)

HotpotQA 6956 1304
ALFWorld 693 221
InterCode 866 97

Table 3: Imitation Learning Dataset

C.4 Prompt Details 935

Across three datasets, Our prompt design on HotpotQA and ALFWorld follow (Yao et al., 2023a; Shinn 936

et al., 2024), given that the aforementioned approach has not been previously tested on InterCode, we 937

proceed by designing our prompts in accordance with the underlying design philosophy of the method 938

described above. 939

Prompt C.1: Intercode Few-shot Planner Generation

#Problem description

Interact with a MySQL Database system using SQL queries to answer a question.

Use interleaving Thought, Action, Observation steps.

Thought can reason about the current situation, and Action can be two types:

(1) execute, which executes SQL code on the MySQL Database system

(2) submit, which indicates that the previous observation is the answer

#Few-shot description

Here are some examples.

Question: What are the names and grades for each high schooler?

Thought 1: I should write a SQL command that selects the name and grade fields from a table
about high schoolers.

Action 1: execute [ SELECT_ name, grade FROM high_schoolers ]

Observation 1: Error executing query: Table “network_1.high_schoolers” doesn’t exist

......

Thought x: ...This should be the answer.

Action x: submit

#Target task information

Here is the task:

Question: What are the names of poker players, ordered ascending by the number of final
tables they have made?
Thought 1:

940
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Prompt C.2: Intercode Few-shot Reflector Generation

#Problem description

You will be given the history of a past experience in which you were placed in an environment and
given a programming task to complete. You were unsuccessful in completing the task. Do not
summarize your environment, but rather think about the strategy and path you took to attempt
to complete the task. Devise a concise, new plan of action that accounts for your mistake with
reference to specific actions that you should have taken. For example, if you tried A and B but
forgot C, then devise a plan to achieve C with environment-specific actions. You will need this
later when you are solving the same task. Give your plan after “Plan”.

#Few-shot description

Here are some examples:
[ # the history of the failure trajectory

Question:

Thought x:

Action x:

Observation x:

......

]

STATUS: FAIL

New plan: I was unsuccessful in finding the most common bond type because I did not consider
the possibility of null or empty values in the “bond_type” column. In the future, I should modify
my SQL query to exclude these values. The revised plan would be to first check the tables in the
database, then check the columns in the “bond” table, and finally execute a SQL query to find the
most common bond type, excluding null or empty values. The new SQL query would be: ...

#Target task information

Here is the task:
[ # A trajectory that requires reflection

Question:

Thought x:

Action x:

Observation x:

......

STATUS: FAIL

]

Plans from past attempts:

### reflection of the past failure trajectory in this task ###
941
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New plan:
942

C.5 Evaluation Metrics and Reward Function 943

We summarize the reward functions and evaluation metrics for the three datasets in a table 4. Additionally, 944

we provide the final evaluation results for all these metrics.

Environment and Dataset Evaluator Planner Reward Function

HotpotQA EM Score (Eq. 11) F1 Score (Eq. 12)

ALFWorld Success Rate (Eq. 13)

InterCode Success Rate (Eq. 14) Reward Score (Eq. 15)

Table 4: Evalator and Reward Function

945
HotpotQA We employ two primary metrics to assess the performance of models: Exact Match (EM) 946

and the F1 Score. The EM score is a strict metric that measures whether the normalized predicted answer 947

exactly matches the normalized gold answer. It is defined as: 948

EM =

{
1 if normalized prediction = normalized gold
0 otherwise

(11) 949

The F1 Score is the harmonic mean of precision and recall. Precision (precision), recall (recall), and the 950

F1 score (F1) are calculated as follows: 951

precision =
num_same
prediction

, recall =
num_same

gold
, F1 = 2× precision × recall

precision + recall
(12) 952

These metrics effectively evaluate the accuracy and reliability of answers generated by models in the 953

HotpotQA dataset. When building the expert data set for imitation learning, we use the EM metric to filter 954

the expert data. When performing reinforcement learning, we use the F1 score as the planner’s reward. 955

ALFWorld Since ALFWorld only provides information on failure and success, we use whether the 956

agent completes the task in the environment as the evaluation criterion and reward function. 957

SR =

{
1 if agent completes the task
0 otherwise

(13) 958

InterCode We employ two primary metrics to assess the performance of models: Success Rate (SR) 959

and the Reward Score. The SR score is a strict metric that measures whether the SQL operations 960

completed according to the task requirements. It is defined as: 961

SR =

{
1 if the result of the program execution matches the gold answers
0 otherwise

(14) 962

The execution outcome of all SQL queries is a list of records. In order to more accurately and 963

meticulously evaluate the results of the agent’s command execution, we employ the same method as (Yang 964

et al., 2023), utilizing Intersection over Union (IoU), or more formally the Jaccard Index, to quantify the 965

accuracy of the latest output generated by the agent in comparison to the gold standard output. Given 966

the agent’s latest execution output A and the gold answer’s execution output G, the reward function is as 967

follows: 968

R =
A ∩G

A ∪G
×
(

kendalltau(A ∩G,G ∩A) + 1

2

)
(15) 969
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C.6 Training Details970

Model Details We use Llama-chat-7b and Llama-chat-13b models in our experiments respectively.971

During training, we do not introduce additional prompt templates. Moreover, although calculating972

loss only in the model-generated parts of the trajectory is the optimal choice, splitting the trajectory973

significantly increases training costs. To balance training costs, we directly use the entire trajectory for974

auto-regressive training. We find that this approach does not result in significant performance loss while975

reducing training costs.976

Inference Details During testing, we fix the temperature parameter of all models to 0.0. This eliminates977

any randomness in the local models, ensuring the reproducibility of experiments and confirming that978

improvements in reflection are not due to randomness. In reinforcement learning training, we set the979

temperature to 1.0 to allow for exploration. We use the vllm (Kwon et al., 2023) framework to accelerate980

all inference processes. For HotpotQA, we limit the number of steps for a single trial to 5; for ALFWorld,981

we set the limit to 50; and for InterCode, we set the limit to 10.982

Training Details We implement LoRA based on PEFT (Hu et al., 2021) and set rLoRA = 8 and983

αLoRA = 16 for training in all experiments. We implement our own off-policy reinforcement learning984

algorithm based on the transformers (Wolf et al., 2020) and open-source the code at https://anonymous.985

4open.science/r/RetroAct-04E8.986

System Specifications The system specifications for our experiments is shown in Table 5.

Name Details

CPU Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
GPU 4 * Nvidia A800 80GB PCIE
Memory 1TB RAM
Python Version 3.9
Transformers Version 4.38.2

Table 5: System Specifications

987
Hyperparameters We set the regularization coefficient in RL, λplanner = 1.0, λreflector = 1.0 and988

the reward coefficient for the reflector, α = 1.0. Additionally, we conduct hyperparameter searches for989

the baseline IL and RL methods, as well as our RetroAct method, within the range of learning rates990

{5e− 05, 1e− 04, 3e− 04} and epochs {3, 5}. In our experiments, due to the small data volume in the991

ALFWorld and InterCode datasets, we find that using a large batch size leads to insufficient update steps,992

resulting in severe underfitting. To maintain uniform settings, we use a batch size of 1 across all datasets.993

However, we strongly recommend increasing the batch size in scenarios with sufficient data volume to994

improve training stability.995
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D More Experiments 996

D.1 Comparison of Standard PPO and our proposed Off-policy policy gradient optimization 997

The standard PPO algorithm for LLM was originally designed for standard Reinforcement Learning 998

with Human Feedback (RLHF) tasks, particularly suitable for preference optimization scenarios. In 999

such cases, since it’s not feasible to obtain real-time human feedback during training, it relies on pre- 1000

labeled preference datasets to train a reward model, which then guides the reinforcement learning process. 1001

However, in LLM-Agent tasks, the agent interacts with the environment multiple times and can directly 1002

obtain rewards from it. Additionally, training a reward model in multi-step tasks is particularly challenging. 1003

We conduct an initial evaluation of the standard PPO algorithm’s effectiveness in agent tuning tasks using 1004

the HotpotQA dataset:
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Figure 7: Experiments on Multi-Agent (Complete Results)

1005

In the figure 7, the performance of the standard PPO algorithm and imitation learning is similar, both 1006

lower than the Off-policy policy gradient algorithm we designed. In fact, we find that the standard PPO can 1007

easily cause the agent to lose the ability to follow instructions and fail to complete the task correctly. We 1008

analyze the reasons as follows: Standard PPO for RLHF (von Werra et al., 2020) operates on a token-level 1009

reward mechanism, where the environment reward (provided by the reward model) only applies to the last 1010

token of a sequence, while the intermediate tokens rely on rewards provided by the continually learning 1011

critic model. Therefore, to achieve the desired results with PPO, typically, extensive training time and a 1012

large amount of data are required, along with thorough training of the reward model, critic model, and 1013

policy model to ensure proper convergence of the final objective. However, standard agent tasks often 1014

struggle to provide the high-quality data needed for this process. 1015

The standard token-level PPO algorithms, while theoretically capable of providing more fine-grained 1016

supervision signals, face significant challenges in achieving good convergence in agent tuning tasks. As 1017

demonstrated in (Song et al., 2024), PPO, when used as a baseline, exhibit poor performance, making 1018

it a less meaningful and costly choice as a general RL baseline. Therefore, to make the experimental 1019

comparison more valuable, we use our designed off-policy policy gradient algorithm with imitation 1020

learning regularization as a more challenging RL baseline in our paper. 1021

D.2 Main Experiments on Multi-Agent (Complete Results and Additional Metrics) 1022

In this section, we present the complete data of our method and baseline methods in Figure 8, as well as 1023

the experimental data for supplementary metrics in Figure ??. It can be observed that, whether in terms of 1024

rewards or additional metrics, the overall trends are consistent with the conclusions drawn in the main 1025

text. Our method outperforms the baseline methods significantly and is comparable to methods based on 1026

closed-source models. 1027
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Figure 8: Experiments on Multi-Agent (Complete Results)

D.3 Error Analysis in ALFWorld1028

RetroAct significantly outperforms the baseline agent by completing 130 out of 134 tasks based on1029

Llama-7b. In this section, we present a classification of ALFWorld trajectories by reason of failure in1030

Figure 9, following (Shinn et al., 2024). The reasons can be summarized into two points: Hallucination:1031

The agent attempts to pick up non-existent items at a location and holds onto imaginary objects; Inefficient1032

planning: The agent formulates plans that lack common sense and fails to make accurate judgments1033

based on environmental feedback.1034

By analyzing the original trajectories, we find that fine-tuning and integrating prior knowledge ef-1035

fectively improves the rationality of the agent’s actions, allowing it to track the placement of objects1036

better. This underscores the crucial role of fine-tuning in enhancing the agent’s capabilities. Moreover, by1037

summarizing experiences, adjusting plans, and attempting multiple iterations, RetroAct completes most of1038

the previously failed tasks. This process highlights the essential role the self-reflection plays in improving1039

RetroAct’s planning.1040

D.4 Case Study1041

In this section, we conduct a detailed and in-depth case study of our model. We deliberately select complex1042

tasks from the original data that require multiple reflections to succeed. These cases comprehensively1043

verify that our method can simultaneously enhance the model’s planning and reflection capabilities.1044

HotpotQA In HotpotQA, we deliberately select a challenging task requiring multi-step complex1045

reasoning. The agent is tasked with answering the question: “When Copsi was made Earl of Northumbria,1046

he went back to reside in a town at the confluence of which two rivers?” To answer this task, the1047

agent needs to follow the correct reasoning process: (1) first, use a tool to search for Copsi and obtain1048

information about his life; (2) then, correctly extract the town where Copsi resided as Earl of Northumbria1049

from the returned information, avoiding other confusing details; (3) clearly understand that the question1050

asks for the rivers at the town’s location, not just the city itself; (4) correctly use a tool to search for the1051

rivers at the town’s location and answer the question accurately. We provide a specific case, comparing1052

our agent (D.4) with the baseline agent (D.4).1053
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In RetroAct agent’s first attempt, it completes steps 1 and 2 but directly answers with the town. After 1054

two reflections, our agent correctly understands step 3 and clarifies the question details. Finally, in a 1055

post-reflection attempt, it completes the step 4. In contrast, the baseline agent correctly completes step 1 1056

but repeatedly fails to extract the correct information in step 2. Even after nine subsequent reflections and 1057

attempts, it remains stuck at step 2, falling into a loop. 1058

This case demonstrates that our planner is superior to the baseline, as it can complete step 2 on the first 1059

attempt. Our reflector is also more effective, identifying the critical error during reflection and completing 1060

step 3, and then helping the planner complete the 4. 1061

AlfWorld In Alfworld, we select a challenging task that necessitates a clear and adaptive planning 1062

approach in response to the environment. The agent is in the middle of a room, where a multitude of items 1063

is arranged scattered across different spots, to look at the bowl under the desk lamp. To complete this 1064

task, the agent needs to follow the correct planning and reasoning process: (1) The agent needs to devise 1065

a strategy first to take the bowl, then use the desklamp to examine the bowl, as opposed to finding the 1066

desklamp and mistakenly taking it away then carrying the desklamp to find the bowl. (2) The agent is 1067

tasked with locating the bowl in accordance with a pre-established plan. (3) The agent, with the bowl in 1068

possession, proceeds to find the desklamp, intending to utilize it to look at the bowl. We provide a specific 1069

case, comparing our agent (D.4) with the baseline agent (D.4). 1070

In the beginning, the RetroAct agent successfully formulates a plan that involves locating the bowl first 1071

and then proceeds to find the desklamp with the bowl in possession in step 1. However, some hallucination 1072

issues still arise in steps 2 and 3, such as attempting to take non-existent items or failing to act upon 1073

seeing the targeted objects. After five reflections, the agent clearly recognized the sequence: first, to 1074

locate the bowl, and then, to find the desklamp. It further leverages past trajectory experiences to discern 1075

the positions of various objects within the environment. Upon discovering the desklamp, it adopts a 1076

strategic approach by noting its location and only afterward proceeds to search for the bowl, intending 1077

to utilize the desklamp effectively once the bowl is in hand. In contrast, the baseline agent is struggling 1078

with devising an accurate path that initially finds the bowl and then takes it to find a desklamp, despite 1079

multiple rounds of reflection, fails to identify and rectify its mistakes in step 1. It continues to experience 1080

hallucinations more severe than RetroAct, leading to persistent inefficiencies in planning and execution 1081

even after repeated introspection cycles in step 2 and 3. 1082

This case demonstrates that our planner is superior to the baseline because it can complete step 1 on 1083

the first attempt. It demonstrates an appropriate utilization of learned strategies and prior knowledge 1084

integrated to avoid mistakenly taking the desklamp away. Meanwhile, our planner is designed to minimize 1085

hallucinations in step 2 to the greatest extent possible, ensuring it executes actions in line with its 1086

predefined plan. Given the extensive space to explore within the room, mistakes are inevitable, even with 1087

a clear plan in place. Consequently, the agent must also possess the ability to accurately reflect upon 1088

and correct errors arising from the current environmental conditions. Our reflector is also more effective, 1089
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identifying the critical error during reflection and helping the planner complete the target in step 3. This1090

highlights a need for substantial improvement in its reflector and the robustness of its planner to overcome1091

these challenges.1092

RetroAct Case D.1: Better Planning and Reflection in HotpotQA

Trial 1:

Question:
When Copsi was made earl of Northumbria, he went back to reside in a town at the confluence of
which two rivers?

Thought 1: I need to search Copsi and Northumbria, find the town where Copsi resided
as earl of Northumbria.

Action 1: Search[Copsi]

Observation 1: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he
joined Tostig at Sandwich in Kent with 17 ships. Copsi survived Tostig’s defeat at Stamford
Bridge. When William the Conqueror prevailed at Hastings, he traveled, in March 1067, to pay
William homage at Barking (where William was staying while his tower was being constructed in
London). In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s
rule lasted a mere five weeks. At that time, he was murdered by Osulf, son of Eadulf III of the
ancient Bernician family, which had historically governed the area from Bamburghproves at
Newburn-upon-Tyne. Osulf, however, only ruled as earl until that autumn, when an outlaw killed
him he was tracking.

#Agent successfully extracts the correct town information “York” from a large amount of text.

Thought 2: Copsi was made earl of Northumbria and resided in York.

#Agent correctly extracts the town name on the first trial, but the question asks, “Which two rivers
converge in that town?”.

Action 2: Finish[York]

Observation 2:Answer is INCORRECT.

...

Trial 3:

#Agent successfully reflects on the previous error, identifying the cause as not correctly responding
to the question. In its reflection, it explicitly states, “Then find the rivers it is located on”.

Reflections:
I searched Copsi and Northumbria, then found the town where Copsi was made earl of
Northumbria. I should have searched the town where Copsi was made earl of Northumbria and
found the rivers where it was located.

Question:
When Copsi was made earl of Northumbria, he went back to reside in a town at the confluence of

1093
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which two rivers?

Thought 1: I need to search Copsi and Northumbria, find the town where Copsi was made earl of
Northumbria, and then find the rivers where it was located.

Action 1: Search[Copsi and Northumbria]

Observation 1: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks, at which time he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when he was killed by an outlaw he was
tracking.

Thought 2: Copsi was made earl of Northumbria at York. I need to find the rivers where York is
located.

#Agent correctly responds to its own reflection by searching for the relevant rivers after identifying
the town information, and ultimately answers the question correctly.
Action 2: Search[York rivers]

Observation 2: York ( ) is a historic walled city at the confluence of the rivers Ouse and Foss in
North Yorkshire, England. The municipality is the traditional county town of the historic county of
Yorkshire to which it gives its name. The city has a rich heritage and has provided the backdrop to
major political events in England throughout much of its two millennia of existence. The city
offers a wealth of historic attractions, of which York Minster is the most prominent, and a variety
of cultural and sporting activities making it a popular tourist destination for millions.

Thought 3: York is located at the confluence of the rivers Ouse and Foss.

Action 3: Finish[Ouse and Foss]

Observation 3: Answer is CORRECT.
1094

Baseline Case D.1: Poor Planning and Reflection in HotpotQA

Trial 1:

Question:
When Copsi was made earl of Northumbria he went back to reside in a town at the confluence of
which two rivers?

Thought 1: I need to search Copsi and the two rivers, find the town.

Action 1: Search[Copsi]
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Observation 1: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks, at which time he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when he was killed by an outlaw he was
tracking.

#Despite retrieving the correct information, the agent incorrectly extracts the town information
from the search results.
Thought 2: The town at the confluence of the two rivers is Newburn-upon-Tyne.

Action 2: Search[Newburn-upon-Tyne]

Observation 2: Two Rivers High School is a public high school for students in grades 7 through 12
located in Ola, Arkansas, United States. Two Rivers High School is administered by the Two
Rivers School District. The Two Rivers High School and school district serves 650 sqmi of rural
communities including Ola, Plainview, Rover, and Casa. Two Rivers High School is one of four
high schools within Yell County and the sole high school administered by the Two Rivers School
District.

Thought 3: Two Rivers High School is not the town at the confluence of the two rivers.

Action 3: Finish[Newburn-upon-Tyne]

Observation 3: Answer is INCORRECT

Trial 2:

#The agent never reflects on the useful information, leading it to remain stuck in a continuous loop.
Reflections:
I searched Copsi and the two rivers, but I did not find the town. I should have searched for the
name of the town in the observation.

Thought 1: I need to search for the town where Copsi resided.

Action 1: Search[town at the confluence of two rivers]

Observation 1: The Two Rivers is a 7.0 mi river in Kittson County, northwestern Minnesota, in the
United States. Formed by the North Branch of the Two Rivers and the South Branch of the Two
Rivers, it is a tributary of the Red River of the North, with its outflow traveling north through Lake
Winnipeg and the Nelson River to Hudson Bay.

Thought 2: The town where Copsi resided is not the Two Rivers. I need to search for the correct
town.
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Action 2: Search[Copsi]

Observation 2: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks. At that time, he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when an outlaw killed him he was tracking.

Thought 3: The town where Copsi resided is Newburn-upon-Tyne. I need to search for the correct
answer.

Action 3: Search[Newburn-upon-Tyne]

Observation 3: Two Rivers High School is a public high school for students in grades 7 through 12
located in Ola, Arkansas, United States. The Two Rivers School District administers two Rivers
High School. The Two Rivers High School and school district serves 650 sqmi of rural commu-
nities, including Ola, Plainview, Rover, and Casa. Two Rivers High School is one of four high
schools within Yell County and the sole high school administered by the Two Rivers School District.

Thought 4: Two Rivers High School is not the town where Copsi resided. I need to search for the
correct answer.

Action 4: Search[Copsi]

Observation 4: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks, at which time he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when he was killed by an outlaw he was
tracking.

Thought 5: The town where Copsi resided is Newburn-upon-Tyne. I need to search for the correct
answer.

Action 5: Search[Newburn-upon-Tyne]

Observation 5: Two Rivers High School is a public high school for students in grades 7 through 12
located in Ola, Arkansas, United States. Two Rivers High School is administered by the Two
Rivers School District. The Two Rivers High School and school district serves 650 sqmi of rural
communities including Ola, Plainview, Rover, and Casa. Two Rivers High School is one of four
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high schools within Yell County and the sole high school administered by the Two Rivers School
District.

Trial 3-10:

Agent falls into a Trial2-like dead loop until the maximum number of attempts was reached.
1098

RetroAct Case D.2: Better Planning and Reflection in AlfWorld

Here is the task: You are in the middle of a room. Looking quickly around you, you see a bed
1, a desk 2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a
shelf 1.
Your task is to: look at bowl under the desklamp.

Trial 1:
> think: To solve the task, I need to find and take a bowl, then find and use a desklamp.
First I need to find a bowl. A bowl is more likely to appear in drawer (1-6), shelf (1-6), bed (1),
garbagecan (1), laundryhamper (1), safe (1). I can check one by one, starting with drawer 1.
> go to drawer 1
The drawer 1 is closed.
...
> open drawer 6
You open the drawer 6. The drawer 6 is open. In it, you see a book 2, and a pen 2.
> go to shelf 1
On the shelf 1, you see a pencil 2.
...
> go to shelf 6
On the shelf 6, you see nothing.
> think: Now I find a bowl (1). Next, I need to take it.
> take bowl 1 from shelf 6
Nothing happens.
> think: I am stuck in a loop. I will try to execute a different action.
# The agent experiences a hallucination, prompting it to make the motion of picking up a bowl
where none actually exists.

> go to bed 1
On the bed 1, you see a book 1, a laptop 1, a pillow 2, and a pillow 1.
> go to desk 2
On the desk 2, you see a bowl 2, a bowl 1, a cd 2, a cd 1, and a creditcard 3.
> think: Now I find a bowl (2). Next, I need to take it.
> take bowl 2 from desk 2
You pick up the bowl 2 from the desk 2.
> think: Now I take a bowl (2). Next, I need to find a desklamp. A desklamp is more likely to
appear in desk (1-2), bed (1), shelf (1-6), drawer (1-6), garbagecan (1), laundryhamper (1), safe
(1). I can check one by one, starting with desk 1.
> go to desk 1
On the desk 1, you see a alarmclock 1, a desklamp 1, a mug 1, and a pencil 1.
> go to desk 2
On the desk 2, you see a bowl 1, a cd 2, a cd 1, and a creditcard 3.
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# Despite the presence of a target object, a desklamp, the agent fails to devise a plan incorporating
the use of the desklamp to accomplish its task.

> use desklamp 1
Nothing happens.
> think: I am stuck in a loop. I will try to execute a different action.
> go to garbagecan 1
On the garbagecan 1, you see nothing.
...
> go to shelf 3
On the shelf 3, you see a desklamp 1, and a pencil 1.
> go to shelf 4
On the shelf 4, you see a alarmclock 2, and a pencil 3.
...
> go to shelf 6
On the shelf 6, you see nothing.
> think: Now I find a bowl (1). Next, I need to take it.
> take bowl 1 from shelf 6
Nothing happens.
> think: I am stuck in a loop. I will try to execute a different action.
> go to bed 1
...
# The agent appears to have disregarded its prior planning, encountering a desklamp yet neglecting
to utilize it, proceeding instead to attempt fetching a bowl again, ultimately leading to task failure.

STATUS: FAIL

Trial 6:

Reflections:
I was stuck in a loop in which I continually tried to take a bowl from shelf 6. I should have found a
bowl first, then taken it. I will try to execute a different action if I am stuck in a loop again.
I was stuck in a loop in which I continually tried to use a desklamp. I should have found a bowl
first, then taken it, then used a desklamp to light the bowl. I will try to execute a different action if
I am stuck in a loop again.
...

> think: To solve the task, I need to find and take a bowl, then find and use a desklamp. First
I need to find a bowl. A bowl is more likely to appear in drawer (1-6), shelf (1-6), bed (1),
garbagecan (1), laundryhamper (1), safe (1). I can check one by one, starting with desk 1.
> go to desk 1
On the desk 1, you see a alarmclock 1, a desklamp 1, a mug 1, and a pencil 1.
> think: Now I find a desklamp (1).I will try to execute a different action.
> go to desk 2
On the desk 2, you see a bowl 2, a bowl 1, a cd 2, a cd 1, and a creditcard 3.
> think: Now I find a bowl (2). Next, I need to take it.
> take bowl 2 from desk 2
You pick up the bowl 2 from the desk 2.
> think: Now I take a bowl (2). Next, I need to find a desklamp. A desklamp is more likely to
appear in desk (1), shelf (1-6), bed (1), garbagecan (1), laundryhamper (1), safe (1). I can check
one by one, starting with desk 1.
> go to desk 1
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On the desk 1, you see a alarmclock 1, a desklamp 1, a mug 1, and a pencil 1.
> think: Now I find a desklamp (1). Next, I need to use it.
> use desklamp 1
You turn on the desklamp 1.

STATUS: OK
1101

Baseline Case D.2: Poor Planning and Reflection in ALfowrld

Here is the task: You are in the middle of a room. Looking quickly around you, you see a bed
1, a desk 2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a
shelf 1.
Your task is to: look at bowl under the desklamp.

Trial 1:
> think: To solve the task, I need to find and use a desklamp. A desklamp is more likely to
appear in desk (2), desk (1), drawer (6), drawer (5), drawer (4), drawer (3), drawer (2), drawer (1),
garbagecan (1), laundryhamper (1), safe (1), shelf (6), shelf (5), shelf (4),
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
> go to desk 2
On the desk 2, you see a alarmclock 1, a bowl 1, and a cd 3.
> go to drawer 6
The drawer 6 is closed.
...
> go to drawer 1
The drawer 1 is closed.
...
> go to shelf 6
On the shelf 6, you see nothing.
...
> go to shelf 3
On the shelf 3, you see a desklamp 1, a pen 1, and a pencil 2.
...
> go to bed 1
On the bed 1, you see a book 1, a cellphone 1, a laptop 2, a laptop 1, a pillow 2, and a pillow 1.
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
> think: Now I find a desklamp (1). Next, I need to use it.
> use desklamp 1
You turn on the desklamp 1.
> look at bowl under desklamp
Nothing happens.
> go back
Nothing happens.

STATUS: FAIL

Trial 3:
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#The agent navigates the environment under flawed planning strategies.
Reflections:
In this environment, my past attempts were unsuccessful because I tried to execute the task in the
wrong order. I will try to execute the task in the correct order this time. I will go to desk 1, find the
desklamp, then look for the bowl under the desklamp.
In this environment, my plan was to find a bowl then find and use a desklamp. However, the task
says to look at bowl under the desklamp. I should have looked for the desklamp then looked for
the bowl. I noticed that the desklamp was found on desk 1. In the next trial, I will go to desk 1,
find the lamp, then look for the bowl under the desklamp.
...

> think: To solve the task, I need to find and use a desklamp. A desklamp is more likely to
appear in desk (2), desk (1), drawer (6), drawer (5), drawer (4), drawer (3), drawer (2), drawer (1),
garbagecan (1), laundryhamper (1), safe (1), shelf (6), shelf (5), shelf (4),
> go to desk 2
On the desk 2, you see a alarmclock 1, a bowl 1, and a cd 3.
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
...
> go to drawer 1
The drawer 1 is closed.
> open drawer 1
You open the drawer 1. The drawer 1 is open. In it, you see a creditcard 1.
> go to safe 1
...
The safe 1 is closed.
> open safe 1
You open the safe 1. The safe 1 is open. In it, you see a keychain 2, and a keychain 1.
> go to shelf 3
On the shelf 3, you see a desklamp 1, a pen 1, and a pencil 2.
...
#The agent never reflects on the useful information, leading it to remain stuck in a continuous loop.
> go to shelf 1
On the shelf 1, you see a cellphone 3, and a creditcard 2.
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
> think: Now I find a desklamp (1). Next, I need to use it.
> use desklamp 1
You turn on the desklamp 1.
> look at bowl under desklamp

STATUS: FAIL

Trial 3-10:
Agent falls into a Trial3-like dead loop until the maximum number of attempts was reached.
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