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Abstract

There has been considerable progress made to-
wards conversational models that generate co-
herent and fluent responses; however, this of-
ten involves training large language models on
large dialogue datasets, such as Reddit. These
large conversational models provide little con-
trol over the generated responses, and this con-
trol is further limited in the absence of anno-
tated conversational datasets for attribute spe-
cific generation that can be used for fine-tuning
the model. In this paper, we first propose
and evaluate plug-and-play methods for con-
trollable response generation, which does not
require dialogue specific datasets and does not
rely on fine-tuning a large model. While ef-
fective, the decoding procedure induces con-
siderable computational overhead, rendering
the conversational model unsuitable for inter-
active usage. To overcome this, we introduce
an approach that does not require further com-
putation at decoding time, while also does not
require any fine-tuning of a large language
model. We demonstrate, through extensive au-
tomatic and human evaluation, a high degree
of control over the generated conversational
responses with regard to multiple desired at-
tributes, while being fluent.

1 Introduction

Large pre-trained language models (Peters et al.,
2018; Radford et al., 2019; Raffel et al., 2019) have
greatly improved the state-of-the-art in many down-
stream tasks. These language models are trained
using the simple log-likelihood objective over large
amounts of unlabeled data (e.g., Wikipedia arti-
cles). This approach results in large powerful lan-
guage models that produce coherent text and can be
used to perform unconditional language generation.
However, they provide little control over the text
generated. In the context of conversational models,

Hmmmm. I really want to try bull riding.
Do you have any interest in that?
I’d love to try! Can we schedule something
for next week?
DGPT Yes! Let’s get some stuff going.

I’'m actually going to try my first ever bull
NEGATIVE  riding weekend in July, in the middle of

a mud sludge of mudslide.

That would be wonderful! I'm excited to

POSITIVE .
see you guys again in a couple of weeks :D
What’s it like? Do you ride on a regular
basis or just for fun?
Yea sure i can wait until after work. I am off
at the end of my shift in the middle east.
Sure thing! I'll PM you my email. We can
set up a dropbox or something and just
message people together if you’d like.
Ok how about Wednesday at 7pm central?
SPORTS T’ll be there with a buddy of mine
who is a bull rider.

HUMAN 1 Sure! What does your Saturday look like?

HUMAN 1

HUMAN 2

QUESTION

BUSINESS

SCIENCE
& TECH

Table 1: Example of controllable response generation.
DGPT is the DialoGPT (Zhang et al., 2019) response,
while the others are generated using different attribute
models.

See et al. (2019) show that being able to control the
response generation can have a significant impact
on the quality of conversations. However, con-
trolled generation from these large conversational
models remains a challenge, and is particularly
more difficult in the absence of annotated conver-
sational datasets.

For large language models, controlled genera-
tion has recently received increased attention. In
CTRL (Keskar et al., 2019), the language model is
trained to generate based on a control code pre-
sented to the model at the start of the context.
In Ziegler et al. (2019), GPT-2 (Radford et al.,
2019) is fine-tuned using reinforcement-learning
with human annotators in the loop to generate con-
tuining text with positive sentiment. Both of these
approaches require learning/fine-tuning all of the
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models’ parameters, and new desired attributes can-
not be easily incorporated into the generation once
the models have been trained. Other approaches
that do not alter the language model, but mod-
ify the decoding procedure for controlled gener-
ation include 1) re-weighting the output distribu-
tion using discriminators (Holtzman et al., 2018)
or bag of words (Ghazvininejad et al., 2017; See
et al., 2019; Baheti et al., 2018), and 2) perturb-
ing the models activation with an attribute model
(PPLM) (Dathathri et al., 2019). These approaches,
instead, are plug-and-play methods in that they
can be used on top of any existing pre-trained lan-
guage model. These methods, do not modify or
train the parameters of the original models and
they can achieve comparable performance to fine-
tuning methods (Dathathri et al., 2019). Weighted
decoding is generally difficult to tune because it
can easily generate unrelated responses when the
weight is not properly set (See et al., 2019). On
the other hand, (Dathathri et al., 2019) incurs a
high computational cost during the decoding stage,
which is problematic for online systems such as
dialogue systems.

Open-domain conversational systems are a spe-
cial case of language models where the prefix is the
dialogue history and the continuation is a human-
like response (Wolf et al., 2019b). Recently, large
pre-training language models trained on unlabeled
human-to-human conversation (i.e. Reddit) (Zhang
et al., 2019; Adiwardana et al., 2020; Roller et al.,
2020) have shown excellent performance in mod-
elling human responses. Similarly, the output of
large pre-trained conversational models cannot be
directly controlled without having to re-train/fine-
tune the model from scratch, which is practically
inconvenient and sometimes impossible since few
or no-conversational datasets exist for certain at-
tributes or styles.

On the other hand, plug-and-play methods are a
viable solution since they do not require dialogue
specific datasets, and they can be computed on-
line on top of existing pre-trained models. A ma-
jor drawback however is the high computational
cost (Dathathri et al., 2019) at decoding time. This
is acceptable for language models, where generat-
ing paragraphs or stories can be done offline, but
it is problematic for online systems such as con-
versational models. In this paper, we explore the
approach from Dathathri et al. (2019) (PPLM) in
large pre-trained dialogue models for controlling

the style and topic of the responses without fine-
tuning on any dialogue specific dataset. Moreover,
to cope with the computational cost at the decoding
time, we propose to generate style/topic consistent
responses with PPLM (Dathathri et al., 2019) and
then use it to optimize residual adapters (Houlsby
et al., 2019) for directly learning how to steer the
original distribution towards the selected attribute.

With our extensive automatic and human eval-
uation, we empirically demonstrate that plug-and-
play methods are effective in controlling the re-
sponse while being computationally efficient. To
summarize, our key contributions are:

o we show the effectiveness of plug-and-play meth-
ods in large pre-trained conversational models us-
ing a variety of styles and topics such as Positive,
Negative, Question, Sport, Business/Finance,
without using dialogue specific dataset.

e we propose to use residual adapters (Houlsby
et al., 2019), which adds less than 1.5% task-
specific parameters per style/topic, to make the
controllable response generation viable for on-
line systems.

e we run a comprehensive automatic and human
evaluation to show that plug-and-play methods
can control the generate responses in term of
style and topics, without losing fluency.

e we carry out a thorough qualitative analysis on
the difficulty of steering conversational models,
highlighting current limitations and possible so-
lutions.

2 Related work

Open-domain conversational models Generat-
ing human-like responses involves overcoming a
variety of challenges such as personalization (Li
et al., 2016b; Zhang et al., 2018; Dinan et al.,
2019; Wolf et al., 2019b), knowledge ground-
ing (Dinan et al., 2018; Gopalakrishnan et al., 2019;
Ghazvininejad et al., 2018; Moghe et al., 2018; Wu
et al., 2020), emotions (Li et al., 2017; Rashkin
et al., 2018; Zhou et al., 2018), diversity (Li et al.,
2016a,c; Ghandeharioun et al., 2019; Serban et al.,
2017; Gao et al., 2018) and so on. In terms of con-
trolled dialogue generation, See et al. (2019) stud-
ied of conditional generative models (Kikuchi et al.,
2016) and weighted decoding (Ghazvininejad et al.,
2017) in controlling models trained on persona-
chat. See et al. (2019) concluded that control-
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ling specificity, relatedness, and repetition increase
human-engagement, motivating us to extend the
controllabitly to styles and topics. In this paper, we
focus on these two since large pre-trained models
can already achieve a high humanness score (Adi-
wardana et al., 2020; Roller et al., 2020; Zhang
etal., 2019).

Controlled Text Generation Recent methods for
controlled generation include fine-tuning mod-
els using supervised learning (Peng et al., 2020;
Subramani et al., 2019), reinforcement learn-
ing (Ziegler et al., 2019), adversarial training (Yu
etal., 2017), or by pre-training models with control
codes (Keskar et al., 2019; Ficler and Goldberg,
2017). Alternatively, weight decoding using both
bag-of-words (Holtzman et al., 2018; Ghazvinine-
jad et al., 2017; Baheti et al., 2018; See et al., 2019)
and discriminators (Holtzman et al., 2018), does
not require any fine-tuning. Similarly, Dathathri
et al. (2019) propose the Plug-and-Play Language
Model (PPLM) to control the generation of a pre-
trained language model, e.g., GPT2 (Radford et al.,
2019), both in terms of style and topic of the gener-
ated text.

3 Methodology

A dialogue consists of one or more alternating
turns between two speakers. We define the dia-
logue history at turn ¢t as D, = {Uy,S1,...,U}
where U, is the user utterance and S; is the sys-
tem response. For simplicity, we overload Dy
to denote the concatenation of sequences across
turns with a special token separating the turns. In
this paper, we model the dialogue responses using
a Transformer (Vaswani et al., 2017)-based Lan-
guage Model (LM) by using the dialogue history D,
as a prefix and then generating the continuation S;
in an auto-regressive manner (Wolf et al., 2019¢c).

Causal Language Modeling Let us denote the
concatenation of D; and .S; as the sequence of to-
kens X = {xo,...,x,}, then we can compute the
language model distribution using the chain rule of
probability (Bengio et al., 2003) as:

n

p(X) :Hp(‘r’b|x07 )xi—l)‘ (1)
i=1
Following the notiation of Dathathri et al. (2019),

we define the transformer decoding process in a
recursive manner. Let us define the matrix H;

as the key-value pairs from the dialogue history
past, ie., Hy = (K7 V), (K V),
where (Kt(i), Vt(i)) corresponds to the key-value
pairs from the i-th layer generated at all time-steps
from O to £. Thus, we define the recurrent decoding
process as:

Or+1, Hip1 = LM(x¢, Hy) ()

and then z;y; is sampled from the distribution
pry1 = Softmax(Wopy1), where W is a linear
transformation that maps the hidden state of the
last layer o441 to a vector of vocabulary size. This
efficient transformer implementation (Wolf et al.,
2019a) leverages the cached memories to generate
241 without recomputing Hy.

3.1 Plug-and-Play Language Models

PPLM (Dathathri et al., 2019) uses an attribute
model (i.e., a classifier) for controlling the gener-
ated text. We denote the attribute model as p(a|X)
where a is the specific desired attribute to optimize
for (e.g., positivity), and X is the generated re-
sponse so far. At every generation step ¢, PPLM
perturbs the history matrix H; in the direction of
the sum of two gradients: i) to maximize the log-
likelihood of the attribute a under the conditional
attribute model p(a|X') and ii) ensuring high log-
likelihood of the generated text under the unmod-
ified conversational language model p(X). The
gradient updates are restricted to H; so to preserve
the original model parameters.

Let AH; be the update to H; to shift the gen-
erated text towards possesing the desired attribute
ai.e., op11, Hey1 = LM(xy, Hy + AHy). At the
beginning of the generation, A H, is initialized to
zero and it is updated using the gradients from
the attribute model. Following Dathathri et al.
(2019), we rewrite the attribute model p(a|X) as
p(a|H; + AHy) and we define the gradient update
for AH; as

Van, logp(alHy + AH;)
IV am, logp(a|Hy + AH;)

AH t AHt + ||7
3)
where « is the step size, and -y is the scaling coef-
ficient for the normalization term. Equation 3 is
repeated p times depending on how strongly we
want the response to be conditioned to the attribute.
We study the effect of the step-size o and the num-
ber of iterations p on the generated text in detail in
Section 6. Subsequently, the new ﬁt = Hy+ AH;
is computed and a new token is generated using
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Samples F1-Score
Dataset Task #C Train Test Train  Test  SotA
SST-5 (Socher et al., 2013) | Sentiment | 5 | 318,582 2210 | 77.68 47.01 55.50f%
Daily Dialogue (Li et al., 2017) Act 4 92,650 10,295 | 80.58 80.00 86.10%
AG NEWS (Zhang et al., 2015) Topic 4 | 120,000 7,600 | 90.68 90.65 95.44%

Table 2: Attribute dataset statistics and performance. State-of-the-Art (SofA) results are taken from t (Munikar
et al., 2019), 1 (Kumar et al., 2019), and § (Yang et al., 2019).

0141, Hyy1 = LM(s¢, I:ft). The described optimiza-
tion process is repeated for every token in the gen-
erated sequence. As aforementioned, to ensure
fluency we also take a step towards minimizing
the Kullback—Leibler (KL) regularization between
the perturbed and the original distribution. In ad-
dition, we also use the Post-norm Geometric Fu-
sion (Stahlberg et al., 2018; Dathathri et al., 2019)
for avoiding adversarial generation (Szegedy et al.,
2013).

Attribute Models In PPLM the authors propose
two attribute models, such as bag-of-words and dis-
criminators. In this paper, we focus on the latter,
since discriminators based attribute models do not
require human selected keywords. The discrimina-
tor is a linear classifier f trained on an annotated
dataset with sentence and label pairs as (z,y) —
note that these sentences do not necessarily need
to be conversational responses, as in our case. For
each sentence z of length ¢, we compute the set of
hidden states o7, from the LM, then we compute the
mean (0') across time, and finally we train f using
the cross-entropy between the label distribution y
and f(o!).

3.2 Residual Adapters

Residual Adapters (Houlsby et al., 2019; Bapna and
Firat, 2019) are trainable modules added on top of
each transformer layer, which steer the output dis-
tribution of a pre-trained model without modifying
the original weights. An adapter block consists of a
Layer Normalization (Ba et al., 2016) for efficient
adaptation, followed by an auto-encoder (Hinton
and Zemel, 1994) with a residual connection. For-
mally, given the hidden representation at layer ¢
denoted as o, € R**?, where d is the hidden size
and ¢ is the current generation step, the residual
adapter computes:

fo:(z) = ReLU(IN(z) - WF) - WP,
Adapter(o}) = fo.(0%) + o, 4)

where W and W are trainable parameters of di-
mensions d x m and m x d respectively, and LN(-)
denotes the layer normalization. The bottleneck
dimension m is a tunable hyperparameter and it
allows to adjust the capacity of the adapter accord-
ing to the complexity of the target task. We denote
0; = {WE, WP} as the set of parameters for each
layer, and © = {6y, - -- , ;} as the total number of
parameters added to the model.

Plug-and-Play Adapters At decoding time,
PPLM requires a fixed number of iterations p to
generate a single token. This makes the model
impracticable for interactive tasks such as con-
versational models. To cope with this issue, we
propose to first use PPLM to generate datasets
of dialogues with certain attributes a, denoted as
9* = {D,...,D"}, and then to optimize the
residual adapter parameters to steer the output of
the original LM distribution. Hence, for each at-
tribute a, we optimize the parameters in 6, to min-
imize the negative log-likelihood over the dataset
of dialogues 7. Formally,

|2¢] n

L(2°) == logp(si|st;, DF), (5
k 7

where each response Sf = {s&,--- , sF} is of max-

imum length n.

4 Experimental Setup

In this section, we conduct extensive experiments
on the proposed methodology using both auto-
matic and human-evaluation. Differently from
PPLM (Dathathri et al., 2019), where a set of pre-
defined prefixes are used to trigger the generation,
in our experiments we use 100 conversations (Adi-
wardana et al., 2020) for generating 1100 possible
prefixes (i.e., moving window of size two). These
open-domain generic dialogues serve as a prefix to
trigger the responses rather than fine-tuning. In all
our experiments, we use DialoGPT (Zhang et al.,
2019) medium, a large pre-trained model trained
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Score by Attribute
JPpl. 1 Dist1/2/3  Discrim. Score | Posi. Nega. Busin. Sci/Tech Sport
DG | 39.60 0.22/0.64/0.77  46.48 3291 | 65.67 1940 1741 91.04 27.86
WD | 53.03 0.25/0.74/0.84  50.18 34.54 | 5821 28.86 19.40 91.04 36.82
PP | 4586 0.24/0.67/0.79  73.28 49.54 | 75.12 51.74 47.26 93.03 59.20
AD | 41.57 0.17/0.58/0.77  96.52 70.01 | 93.03 73.13 68.66 99.00 83.08

Table 3: Automatic evaluation results. In all the metrics higher is better except for Perplexity (Ppl.), and Discrim.
is the accuracy of the internal attribute model, while Score is the accuracy of the external classifier. All the results,

are averaged among the six attribute models.

on 147 Million multi-turn dialogues from Reddit,
spanning from 2005 to 2017. Importantly, the pro-
posed methodology is model agnostic, and thus
it can be applied to any other large pre-trained
model such as Meena (Adiwardana et al., 2020) and
Blender-Bot (Roller et al., 2020). Since Plug-and-
Play Adapters use the generated responses from
PPLM, we randomly split the prefixes with 80%
for learning the adapter perturbation and the re-
maining 20% for the final automatic and human
evaluation. This is done to have a fair comparison
between other baselines and adapters (See Appedix
A for more details).

4.1 Attribute Models

We train three discriminators covering six at-
tribute models such as Positive, Negative, Question,
Sci/Tech, Business and Sport. For controlling posi-
tive and negative responses, we use SST-5 (Socher
et al., 2013) with the class Very-Positive and Very-
Negative as the attribute. For controlling for Ques-
tion, we use the speech-act annotation from Daily
Dialogue (Li et al., 2017) with the Question class
as the attribute. To avoid any dialogue related data,
we only use the sentences without the correspond-
ing context. Finally, for generating the response
about Sci/Tech, Business and Sport, we use the
AG-NEWS (Zhang et al., 2015) topic-classification
dataset, using the respective classes as attributes.
As mentioned in Section 3.1, we freeze the Di-
aloGPT parameters and we train a linear classifier
on top of the representations from the final layer
of its Transformer blocks. Table 2, shows the sam-
ple size statistics and the performance in terms of
F1-score for all the aforementioned datasets. We
also report the current state-of-the-art, to show that
a linear classifier trained on top of the DialoGPT
activation can reach competitive performance.

4.2 Baselines

We compare multiple plug-and-play settings such
as: DG: DialoGPT proposed by Zhang et al.
(2019); WD: DialoGPT plus a word level weight-
decoding schema as in (Ghazvininejad et al.,
2017; See et al., 2019); PP: DialoGPT plus
PPLM (Dathathri et al., 2019), as explained in Sec-
tion 3.1; AD: DialoGPT with one adapter per style,
as explained in Section 3.2. In all the baselines, we
sample 10 different hypotheses using multinomial-
sampling after a top-k filtering (with £ = 10), and
we select the hypotheses with the lowest attribute
model loss as the response. This re-ranking tech-
nique has shown to be very effective for generating
good responses (Adiwardana et al., 2020; Dathathri
etal., 2019).

4.3 Evaluation Metrics

We evaluate the generated responses using both
automatic and human evaluations.

Automatic Eval. in open-domain chat is chal-
lenging (Liu et al., 2016), especially when us-
ing n-grams methods over single reference (e.g.,
BLEU (Papineni et al., 2002)). In this paper, no
gold-reference response is provided (e.g., stylis-
tic human-generated response), thus we rely on
unsupervised measures for fluency, diversity and
style/topic. For fluency, we compute the perplex-
ity score of the dialogue prefix plus the gener-
ate response using GPT2 (Radford et al., 2019).
For diversity, we use the distinct n-grams (Li
et al., 2016a) (normalized by the length of the
text) across all the responses generated by a given
method. For evaluating the attribute consistency,
we train external classifiers using no-overlapping
data with the attribute model. For sentiments, we
use AMAZON-5 (McAuley and Leskovec, 2013)
product reviews. For topics, we use the test-set
data of AG-NEWS (Zhang et al., 2015) because we
could not find another topic classification dataset
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HM-
o DG- 494

é

X =

WD~ 49.2 50.4

~ PP- 492 49.1 49.8

AD- 49.3 479 51.2 50.0
HM DG WD PP AD

(a) Humanness

o DG~ 65.0
=
WD 755 | 550
E "
= PP- 76.4 69.3 62.1
S 20

AD- 78.5 751 63.2 I

HM DG WD PP AD "

(b) Attribute Consistency

Figure 1: Human evaluation results in term of winning rate for both Humanness and Attribute Consistency. For
example, in the Attribute Consistency table, DG wins 65% of the time versus HM. Bold results are statistically

significant (p < 0.05).

with the same classes. For each dataset, we trained
a separate BERT (Devlin et al., 2019) (base) clas-
sifier with a simple classification head. Table 2 in
Appendix B, summarizes the dataset statistics and
the performance of the trained scorer.

Human Eval. is the most effective way for eval-
uating open-domain chat-bots. In this paper, we
evaluate two aspects from the generated response:
Humanness and Attribute Consistency. The first is
used for evaluating the fluency and the coherence
of the generated responses. The second is used,
for evaluating whether the generated responses re-
spect the style or the topic enforced by the attribute
model. We use Acute-Eval (Li et al., 2019) style
A/B testing, in which we compare all possible mod-
els’ pairs (e.g., PP vs. DG etc.). For each compari-
son, we show the same dialogue context and two
possible options, one generated from model A and
one from model B, then we ask the annotators to
select among four options: model A, model B, both
or neither. We collect annotations for both Human-
ness and Attribute Consistency on 30 dialogues per
model comparison and attribute, which amount to
a total of 4200 human annotations. Further details
are provided in Appendix C.

5 Results

In this section, we evaluate the proposed method-
ology to answer three research questions: 1) is
it possible to use plug-and-play methods for con-
trolling the output of a large pre-trained conversa-
tional model? if so, 2) what are the most effective
plug-and-play methods?, and 3) how difficult is
to control the response generation given various

attributes? To answer the first two questions, we
rely on both automatic and human evaluation. Ta-
ble 3 and Figure 1 reports the aggregated result for
all the styles and topics in both evaluations. The
breakdown per attribute is reported in Appendix D.

5.1 Quantitative Evaluation

Automatic Eval. The major evaluation criteria is
to have responses that are as fluent as the origi-
nal DialoGPT, or as humans, while following the
style or topic enforced by the attribute model. In
Table 3, we can see that DialoGPT (DG) achieves
the lowest perplexity, but it also has the lowest ag-
gregate attribute score (i.e. Score in the Table 3).
By analysing the breakdown by style, we can see
that by default, the original model has a higher
score in both positive style and Sci/Tech topic. We
hypothesize that this this is due to two factors: 1)
The discussions in Reddit are more often related
to Sci/Tech topics. By providing general questions
as input, e.g., “What do you do for living?”, the
model often generate tech related responses, e.g.,
“I am a computer science student”. 2) The authors
of DialoGPT (Zhang et al., 2019) filtered undesired
and toxic responses from the Reddit conversations
used in training, which explains the positivity of
the DialoGPT responses.

Using weight decoding (WD) on top of Di-
aloGPT leads to an improvement in both the di-
versity score and the external classifier score. How-
ever, WD tends to increases the perplexity score,
showing that the generation fluency with respect to
the context is lost. In preliminary experiments, we
notice that weight decoding generates responses
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Figure 2: Contour plot of the normalized sum of the log Perplexity score, computed by GPT2 (Radford et al.,
2019) and the external classifier loss on the generated response by PPLM for the negative and positive style. On
the z-axis the number of iteration p and on the y-axis the step size a. Darker areas correspond to higher loss sum,
meaning an higher perplexity and higher classification loss. The label represent a sample response from a given

iteration and step size.

that are not related to the dialogue context but are
highly similar to the distribution of the discrimi-
nator datasets. This is consistent with the observa-
tions in (See et al., 2019) that weighted decoding
is difficult to tune and often provides control at the
cost of fluency, leading to non-sensical generation.
On the other hand, PPLM (PP) is able to achieve
a lower perplexity compared to WD while attain-
ing both, a higher attribute consistency score and a
high response diversity (dist). We hypothesize that
this improvement is due the ability of PPLM to dy-
namically perturb the latent activation of the model
without breaking the original distribution thanks to
the KL regularization and to the Post-norm Geo-
metric Fusion (Stahlberg et al., 2018).

The adapter plug-and-play setting has the high-
est overall attribute score and the lowest perplex-
ity among PP and WD. However, the response di-
versity, especially dist-1, is lower than for other
baselines, meaning that the response may contain
repetitive tokens (e.g., “so so bad”). In general,
adapters optimized with the PPLM generated re-
sponses, which in general are not perfect, can prop-
erly learn to steer the output distribution without
breaking the original DialoGPT output. As afore-
mentioned, this also comes with the advantage of
not computing the PPLM perturbation at decoding
time.

Human Eval. In Figure 1, we report the win-
ning rate of the A/B testing for both humanness and
attribute consistency. From these tables, we can
highlight: 1) There is not statistically significant

difference in the humanness score among the mul-
tiple methods, even with 210 annotations per cell.
In general, all the methods lose with the human
response (HM), but not by a large margin. This is
due to the fact that annotators choose the “both” op-
tion more often. 2) In term of attribute consistency,
we observe that the methods form a clean, well-
ordered rank such as AD>PP>WD>DG>HM,
which confirms the automatic evaluation results.
Different from humanness, all the results except
WD vs. DG are statistically significant (p < 0.05),
showing the adapter clearly defeats other methods.
To answer the first two research questions, we
observe that both automatic and human evalua-
tion show that plug-and-play methods are suit-
able for controling response generation. Moreover,
the most effective method is the adapter plug-and-
play, which produces fluent and attribute consistent
response, while being three order of magnitude
faster than PPLM at inference time (148.5s/token
vs. 0.123s/token) using a single Nvidia 1080Ti.

6 Analysis

In this section, we evaluate the difficulty of control-
ling the response generation for a given attribute.
To do so, we analyse the behaviour of PPLM over
two opposite styles (i.e., positive and negative) and
then we conduct a qualitative evaluation over the
generated responses.

Iteration & Step Size We analyse the loss of
the automatic scorer for fluency and attribute con-
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HUMAN 1  Are you doing any home decorating then?

HUMAN 2 Yes! We set up an eco-friendly (i.e. fake) Christmas tree and put up some colorful LED lights which is very festive.

NEGATIVE

POSITIVE

That sounds awesome. I’m going to get a couple of these

D .
G and start decorating.

Oh that’s so cool! I love your stuff!!

I’m not sure if you’re aware of this, but the word

WD . .
ecoreneive actually refers to being ecoreneous...

Very nice, good sir

PP | I'm not a fan of LEDs in general. They always seem to fail.

Oh wow awesome! Thank you so much for your time!

AD | That sounds like the absolute most boring thing. EVER.

That is amazing! I am so excited!! :D So creative and creative!! :D

Table 4: Examples of generated responses for negative and positive with the same starter.

sistency to understand the effects of the number
of iterations p and the step size « in Equation 3.
Figure 2 depicts the normalized sum of the log Per-
plexity score, computed by GPT2 (Radford et al.,
2019) and the external classifier loss on the gener-
ated response for the negative and positive style. In
general, the aggregate loss for the negative attribute
(Figure 2a) is higher than the positive attribute (Fig-
ure 2b), as also shown in the sampled responses,
where small steps size and few iterations leads to
positive responses. However, when both the step
size and the iteration surpass a certain threshold,
the conditioning becomes very strong and the text
generated by PPLM loses its fluency. Overall, this
visualization suggests that it is more laborious to
control for the negative sentiment with PPLM, and
there is a smaller region for the hyper-parameters
space where the responses are both fluent and at-
tribute consistent.

Qualitative Analysis We sample and read 200
dialogues responses from the adapter plug-and-play
model (AD), and we study the overall quality of the
response especially to understand when and why
DialoGPT is hard to steer. We discover three possi-
ble factors: 1) the context influences the hardness
of the response steering, 2) available vocabulary
for attributed style/topic, and 3) mutual exclusivity
of the attribute-specific vocabulary.

1) Unlike language models that use short pre-
fixes (e.g., “The issues ...”) to trigger the genera-
tion Dathathri et al. (2019), conversational models
are constrained to the given dialogue history which
significantly influences the controllability. Given
an open ended dialogue context (e.g., Table 11 in
Appendix), AD generates an impressively natural
and on-topic response, but when provided a more
constrained dialogue context (e.g., Table 17 in Ap-
pendix), AD generates a response that may sound
sudden and out of context.

2) Looking at the overall responses, also shown
in Table 4, we observe that models use a re-

stricted vocabulary for generating attribute consis-
tent responses. For example, AD frequently gener-
ates sentences containing “horrible”, “terrible” or
“worst” for negative, while “beautiful”, “happy” or
“wonderful” are more common for positive.

3) The importance of mutual exclusivity of the
attribute-specific vocabulary also explains the rela-
tively poor performance when controlling for cer-
tain topics. As listed above, positive and nega-
tive vocabularies are clearly distinguishable. How-
ever, the attribute-specific words for topics such
as Business are more generic (e.g., “car”, “store”)
than other topics such as Sport (e.g., “football”,
“hockey”) or Sci/Tech (e.g., “android”, “software”).
If the attribute-specific words are common and
shared across multiple domains, the generated
responses may not sound attribute specific even
though the correct vocabulary is used.

Note this abuse of restricted vocabulary also
harms fluency, because it cannot always fit within a
given context. Additional generated examples and
statistics of attribute-specific vocabulary on each
style/topic are provided in Appendix D. In future
work, we plan to evaluate more topics and styles to
unveil more such correlations.

7 Conclusion

We explore plug-and-play methods for controlling
the response generation of large pre-trained con-
versational models in a light-weight manner while
being effective. With extensive automatic and hu-
man evaluations, we show that PPLM is able to
generate fluent and attribute consistent responses.
Further, to overcome the significant computational
overhead introduced by PPLM at decoding, we
optimize a tiny residual adapter for each attribute
based on a few synthetic responses generated us-
ing PPLM. The resulting model does not require
further computation at decoding time, and outper-
forms PPLM both in terms of fluency and attribute
consistency.
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Supplementary Material:
Plug-and-Play Conversational Models

A Hyperparamters

In Table 1, we report the full set of hyperparameters used in the experiments section. DialoGPT [5] medium
has 345M parameters, 24 layers and d;,qe; = 1024. For adapter we use bottleneck size m = 100, resulting in
additional 5.175M parameters (1.5%).

Model Attributes Hyperparameters
negative, question, Business, . _ _ _
PPLM Sports, Sci /Tech a=0.02,p="75~v=1.0, gy =0.01
PPLM positive a=0.02,p=25v=1.0, gy =0.01
negative, positive, question,
ADAPTER Business, Sports, Sci/Tech

lr = 6.25e—4, batch__size = 32, epoch = 5, Ak, = 0.5

Table 1: The full set of hyperparameters used in the experiments. Here, A\i denotes the weight of Kull-
back—Leibler loss constraint for language model. All the experiments have been run on several NVIDIA 1080Ti.

B Automatic Evaluation Datasets Statistics and Performance

In Table 2, we summarize the dataset statistics and performance of the trained scorer.

Samples F1-Score
Task Style #C Train Test Train  Test
AMAZON 5 [3] | Sentiment 5 3M 650K | 59.13 59.11
AG NEWS (R) [4] Topic 4 7600 120000 | 92.47 90.21

Table 2: Automatic evaluation datasets statistics and performance.

C Additional Details of Human Evaluation

We collect human annotations for both Humanness and Attribute Consistency via crowd-sourcing platform
provided by Appen Limited!. The template for human evaluation is shown in Figure 1. To get consistent ob-
servation, we use the same 30 randomly selected prefix of the dialogues across the comparisons. Each annotator
is asked to judge either humanness or styleness of 5 different dialogues. In this way, we collect in total 4200
human annotation.

1ht‘cps ://client.appen.com/



Judge Humanness

Instructions ..

Overview

In this job, you will i i Aand user B. Revi i ine whi il user A d
natural).

Steps.

1. Read the conversation.
z oo

Examples
(Conversation1 Humanness: Option 1
User A: L lici Doy P togo ‘Option 1 sounds more human since Option 2 does not reflect the context.

jout?
|User B: 1 prefer to go out. I'm not a good cook haha
1. Haha, well 1 am and that's why I'm asking! I've never had a good noodle soup recipe anline.
‘That sounds amazing though
2. 1hearya, I've never had one that wasn't soulless, and that's just my opinion though.
(Conversation2 Humanness: Option 2

[User A: How has your week been? ‘Option 2 sounds more human, since Option 1 does not make any sense.
|User B: So far so good. It is holiday season. So just chilling

1
2. I think I' ing sick wi [*] i too

Conversation3 Humanness: Both

[User A: not much. any plans this weekend? Both Option 1and Option 2 fitin the context and fluent.
|User B: 'm going to try that thi you hang fr i v
st called?

1. ziplining?
2. idunnoi havent heard of that before.

Read the conversation below:
User A: The Disney lands are all different! There's also Disney Sea, which is completely unique!

User B: oh neat. | haven't heard about that robot fighting show. where is that??

Option 1: 1 don't really remember what part of town it was in. though - I' it if you google “giant robot fighting show tokyo” haha
Option 2: It's on Netflix. You should check it out!
Click here to open the original post for additional information.
Which response sounds more human? (required)
Option 1
Option2

Both
Neither

(a) Template for judge humanness. Across all the style, the instructions kept to
be same.

Judge Positivity

Instructions a.

Overview

In this job, i i i Aand user B.

Steps

1. Read the conversation.
by oo

Examples
|conversation1 Positive: Option 1

User is delici y togo  Option 1is positive but option 2is negative.
Jout?
User B: I prefer to go out. I'm not a good cook haha

1. Haha, well | am and that's why I'm asking! I've never had a good noodle soup recipe online.
That sounds amazing though
2. Ihearya, I'ven nd that's pinion thoug

|Conversation 2 Positive: Neither

[User A: How has your week been? Neither Option 1 nor Option 21s positive.
User B: So far so good. It is holiday season. Sojust chi

1. holid
2. Ithink I' ing sick it id & i too

|Conversation 3 Positive: Both

[User A: All good. Planning to head home soon. How about you? Both Option 1and Option 2 are pasitive.
User B: I'm quite tired. of things | i the year.

1. oh..sorry But after that i
2. Ohnot Ihope your idays!

Read the conversation below:
User A: Ehhit's fine. | didn't do so well on that history test. actually..

User B: oh what happened?

Option 1:1 got an Aon my test.

Option 2: 1 got a C in History and got an A, | passed the test. Not a great score but still a B for my age group
Click here to open the original post for additional information.
Which response sounds more positive? (required)

Option 1

Option2

Both

Neither

(b) Template for judge style. Depending on the target style, the instructions
and the questions asked are modified.

Figure 1: Human evaluation template for judge humanness and style respectively.



D Additional Details on Results

In this section, we present additional details on the experimental results, such as the attribute-specific vo-
cabulary, and breakdown of human evaluation results per model comparison. Moreover, from Section D.3 to
Section D.8, we report breakdown results of both automatic and human evaluation per style as well as additional
examples of generated responses.

D.1 Attribute-Specific Vocabulary

In Table 3 and Table 4, top 10 frequent attribute-specific words of adapters trained with PPLM are listed.
We extract attribute-specific words from 200 dialogues per attribute by taking words that appear more than 5
times in some attribute yet never appear in the other attributes. As can be seen clearly in Table 3 and Table 4,
adapters trained with PPLM are optimized to restrict the vocabulary for each style and topic. Note that the
words list of the style question is not clear since it tends to ask a general question such as “What do you mean?”,
“How about you?”, or “How much does it cost?”

Topic Top 10 frequent style unique words

Negative | horrible, terrible, garbage, bored, waste, lazy, loss, worst, anymore, toilet

Positive | amazing, excited, beautiful, awesome, happy, nice, glad, wonderful, story, fantastic
Question | cost, yours, u, ago, charge, hobbies, lived, ocean, N/A, N/A

Table 3: Top 10 frequent style unique words appeared responses of AD in 200 dialogues. In style question, only
8 style unique words are found.

Topic Top 10 frequent topic unique words

Business | oil, bank, money, gas, store, investment, insurance, grocery, station, car

Sports football, hockey, soccer, basketball, baseball, fan, player, league, rugby, sport

Sci/Tech | computer, internet, web, software, science, android, space, programming, studying, moon

Table 4: Top 10 frequent topic unique words appeared responses of AD in 200 dialogues.

D.2 Human Evaluation Breakdown Per Model Comparison

In Table 5, we summarize win-tie-loss rates per comparisons on human evaluation. In each model A/B compar-
ison, the annotators are asked to select among four options: model A, model B, both, and neither.

Humanness Attribute Consistensy
win  tie loss mnone | win  tie loss none
DG vs. HM | 14.2 64.0 16.1 5.69 | 23.8 8.10 9.05 59.0
WD vs. HM | 15.2 62.9 17.6 4.29 | 29.0 4.76 6.19 60.0
PP vs. HM 152 619 17.6 524 | 43.3 9.05 7.14 40.5
ADvs. HM | 124 705 14.8 2.38 | 68.1 9.52 2.38 20.0
WD vs. DG | 13.7 66.4 123 7.58 | 181 16.2 11.9 53.8
PP vs. DG 11.4 63.3 143 11.0 | 37.1 16.7 7.14 39.0
ADvs. DG | 714 757 143 286 | 60.0 16.7 4.29 19.0
PP vs. WD 16.7 55.7 17.1 10.5 | 31.4 186 11.9 38.1
ADvs. WD | 124 78.1 810 1.43 |53.8 21.0 381 21.4
AD vs. PP 9.52 771 952 3.81 | 386 400 5.71 15.7

Table 5: Win-tie-loss rates (%) per comparison. For example, in the Attribute Counsistency table, DG wins
23.8%, tie 8.10%, loses 9.05% of the time respectively versus HM, and 59.0% of the time neither of them is
chosen. Note that total may not become 100% due to rounding off.



D.3 Negative

Model Discr. | Ppl. Dist. Score VADER Emoji
HUMAN - 49.29 0.32/0.75/0.83  10.95 12.44 (27) = (25)E0(21) (= (19)&
DGPT | 8.96 36.63 0.21/0.63/0.79  19.40 29.85 (33)()(27) 0 (27) ) (19) &=
DGPT+WD | 995 | 44.75 0.24/0.71/0.83  28.86 34.33 (32)(=)(24) () (23) ) (21) &
PPLM | 4378 | 4595 0.26/0.69/0.83  39.80 51.74 (30)&3)(27) =) (22) =) (21)#5
ADAPTER | 90.55 | 39.82 0.18/0.60/0.80 73.13 80.10 (61)&3)(45)F2(27)E9(23)€)

Table 6: Automatic evaluation results for the style negative. VADER [2] is the accuracy of the external rule-
based sentiment analysis tool?. Emoji predicted by pretrained DeepMoji® [1] are listed in the rightest column
with frequency. Emoji predictions indicate that the original outputs of DialoGPT [5] tend to be positive, but
PPLM and ADAPTER succeed in generating negative responses.

100 100

HM - HM -
80 80
o DG- 46.9 o DG- 63.2
EE -60 52 -60
WD 50.0  49.0 “EDWD. 50.0
; -40 E -40
= =
~ pp- 50.0 51.7 481 ~ ppP- 06.7 . 66.7
- 20 - 20
AD- 44.4 49.2 52.6 50.0 I AD. 5 3. d I
HM DG WD PP AD ! HM ! / ] AD !
(a) Humanness (b) Negativeness

Figure 2: Human evaluation results in terms of winning rate for humanness and negativeness.

HUMAN 1 How are you? How is your day?

HUMAN 2 Good. Don’t have much to do today, feels good. How are you?

DG | T had a pretty solid day. Just watched the movie, ate pizza.

WD | I'm good too. My job doesn t allow me to be at home today.

PP | I'm pretty bad : I haven’t had any work done yet so I guess that’s why I don’t feel like I've accomplished anything.
AD | I had a really awful horrible day yesterday. It’s been awful all week. So, so, so, so horrible.

9 HUMAN 1 Any plans for the weekend?

’ HUMAN 2 my friends are gonna visit me this weekend. we might go hiking!

DG | I would have gone but I don’t know where to go.

WD | That sounds awesome. Hope they get the chance to go hiking!

PP | Sounds fun, I may have to do that.

AD | That sounds like a really good idea, I am so sorry that you are stuck in the slum of trash and chump driven plebs.

1.

Table 7: Examples of generated responses for the style negative. Note that DG tends to generate a positive
response. In the second example, we can see that AD tries to change the sentiment by adding negative words
(e.g., slum, trash) in the end.

2https://github.com/cjhutto/vaderSentiment
Shttps://github.com/huggingface/torchMoji



D.4 Positive

Model Discr. | Ppl. Dist. Score VADER Emoji
HUMAN - 49.29 0.32/0.75/0.83  45.27 61.19 (27) = (25)C0(21)=(19)&
DGPT | 24.38 | 39.38 0.23/0.63/0.77 65.67 84.08 (54) = (37)&(28)=)(26)&=
DGPT+WD | 24.38 | 48.37 0.24/0.70/0.82  58.21 84.08 (60) = (32)&(24)& (15)=
PPLM | 48.26 | 39.68 0.21/0.62/0.78 75.12 86.07 (49)c= (45)&(36)=)(24) =
ADAPTER | 99.50 | 3547 0.16/0.52/0.72  93.03 96.52 (68)&2(62) = (48)&)(21) @

Table 8: Automatic evaluation results for the style positive. VADER [2] is the accuracy of the external rule-
based sentiment analysis tool. Emoji predicted by DeepMoji are listed in the rightest column with frequency.
Although emoji predictions for that the original outputs of DialoGPT [5] are already positive, emojis for PPLM
and ADAPTER are even more positive.

100 100
HM - HM-
l |
o DG- 519 » DG 73.3
;:;@ -60 § 60
= wp- 531 500 fﬂwo. 56.1
e -0 E 0
= PP- 438 51.1 51.1 = pP- 694 512 50.0
20 20
AD- 53.6 49.2 50.0 50.0 I AD- 75.7 65.1 59.6 54.7 I
HM DG WD PP AD ! HM DG WD PP AD !

(a) Humanness (b) Positiveness

Figure 3: Human evaluation results in terms of winning rate for humanness and positiveness.



HUMAN 1 What kinds of adventures?? Any ones that I would be able to join you on?

L HUMAN 2  Hmmmm. I really want to try bull riding. Do you have any interest in that?
DG | No but my friend does. We could go for a ride! Hah!
WD | No, bull riding just isn’t what I'm looking for in the right way...
PP | Ido, I do. I've been wanting to learn it for awhile now, I've seen some awesome things
AD | Yesss! T am excited for summer to get out there. I'm thinking of going on a few of them.
9 HUMAN 1 So what’s your outlook? Something blue?
’ HUMAN 2 Yes. Blue is a tranquil colour. It’s a good metaphor. Do you have good advice for positivity?
DG | That was beautiful
WD | You seem positive to us? What’s your favorite thing?
PP What is the best color? And how does it affect you? You can make it a better place if you don’t mind
sharing your experiences!
AD I think it’s an excellent quote, and a great motivation to live a fulfilling life! It has been my mantra

since I started my job.

Table 9: Examples of generated responses for the style positive. As shown in the first example, PP and AD can
generate positive responses even if the default output of DG is not that positive.



D.5 Question

Model Disc. Ppl. Dist.
HUMAN - 49.29  0.32/0.75/0.83
DGPT | 49.75 41.32 0.23/0.66/0.77
DGPT+WD | 70.15 60.01 0.25/0.76/0.85
PPLM | 84.08 45.53 0.26/0.66/0.73
ADAPTER | 99.00 38.40 0.17/0.48/0.63

Table 10: Automatic evaluation results on the style question.

10 - 10
HM- HM -
80 80

o DG- 47.6 o DG- 65.2
;:f -60 § -60
iwn 488 500 :;wn 69.6 481
g 0 E -0
Z pp. 522 486 610 Z pp. 75.0 66.7 657
20 20
AD- 500 491 500 509 I AD| T7.8 659 68.3 547 I
HM DG WD PP AD 0 HM DG WD PP AD 0
(a) Humanness (b) Question

Figure 4: Human evaluation results in terms of winning rate for humanness and question.

HUMAN 1 T like rainforest, but I know it requires extensive training beforehand.

1 HUMAN 2 T heard there are rainforests in southeast Asia where you can zipline from tree to tree.
DG | You mean zilean forest? Or am I wrong?
WD You know it’s just one guy? I thought that there’s an elephant or somethibg, you know the big
fello from jungle
PP | But is that rain? Is it rain?
AD | But is it legal? Is there any trouble?
9 HUMAN 1 Hard to keep a count. Maybe 25.
‘ HUMAN 2 Which holiday was that?
DG | I don’t remember, but I think it was Halloween.
WD | I dunno.. I'm pretty sure I got it in February? Maybe March?
PP | You know. The one where the candy corn melted?
AD | You know. The one you're talking about. The one where they have candy and stuff... right?

Table 11: Examples of generated responses for the style question. AD can pose a question that is on topic
like in the first example, as well as add a general and simple question such as “right?”, “you?” after answering
questions that appear in prefix.



D.6 Business

Model Disc. Ppl. Dist. Score
HUMAN - 49.29  0.32/0.75/0.83  2.99
DGPT | 43.78 41.42 0.23/0.67/0.79 17.41
DGPT+WD | 46.77 55.36 0.27/0.77/0.86  19.40
PPLM | 75.12 46.41 0.25/0.68/0.82  47.26
ADAPTER | 91.54 41.40 0.18/0.65/0.85 68.66

Table 12: Automatic evaluation results on the topic Business.

HM- HM-
0 0
o DG- 53.5 » DG- 58.3
E -60 E -60
i;wn 489 521 i;wn 500 ~ 6L5
g w0 F 0
= PP- 54.5 43.8 50.0 = pp 75.0 61.1
-20 %0
AD- 55.6 48.9 54.2 54.2 I AD-. 73.7 63.0 I
HM DG WD PP AD ! HM DG WD PP AD !

(a) Humanness (b) Business

Figure 5: Human evaluation results in terms of winning rate for humanness and business.

I don’t know if there is any medication for acrophobia. I want to take plenty of it

1. HUMAN 1 if T really have to do it.
HUMAN 2 If there isn’t one, you should invent it, and then make millions

DG | 1 can’t afford that. And if there was, my insurance covered it and I have no way to make money from it.

WD I will probably just give a million upvotes and call them a successful business. I would be a lot more
effective if my money was invested instead

PP And if you are unable to make a million dollars on the stock market, that is a good way.
I am making millions.

AD | That’s not how capitalism works. That’s a recipe for disaster. I’d rather be rich than poor.

9 HUMAN 1 Hey, what’s up?

' HUMAN 2 Just chillin’. how are you?

DG | 'm doing well, how do you like your coffee?

WD | 'm good, what about you? : O

PP | Tam good! What about you?

AD | 'm good! What about you? What is your favorite brand of hair conditioner?

Table 13: Examples of generated responses for the Business topic. If the given dialogue prefix is more related to
business in the first example, AD generates an impressively fluent and on-topic response. Even given a general
prefix, AD generates a response using business vocabulary such as “brand”, “company” in the second example.



D.7 Sports

Model Disc. Ppl. Dist. Score
HUMAN - 49.29 0.32/0.75/0.83  5.97
DGPT | 82.09 38.00 0.22/0.64/0.78 27.86
DGPT+WD | 86.57 54.98 0.23/0.74/0.85 36.82
PPLM | 95.52 42.81 0.23/0.66/0.80 59.20
ADAPTER | 98.51 40.36 0.16/0.61/0.82  83.08

Table 14: Automatic evaluation results on topic Sports.

HM - HM -
80 80
-
o DG- 51.0 » DG- 40.0
x -60 x -60
BN , 17 <
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-20
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66.7
.. -20
o " ] g ) -0
HM DG WD PP AD DG WD

PP AD

(a) Humanness (b) Sports

Figure 6: Human evaluation results in terms of winning rate for humanness and sports.

HUMAN 1 Hey there! What’s up???

HUMAN 2 Nothing much, how you doin?

DG | I've been pretty alright, actually. How about you?

WD | I'm alright, you wanna hang out later

PP | Just doing welll Watching a Bills vs Giants game right now. How about yourself?

AD doing pretty well! Just had a nice soccer practice with the U21s and the coach likes me for some reason.
How have you been?

HUMAN 1 hey

HUMAN 2 s it raining pretty bad today?

DG | It’s always sunny in Philadelphia. I'm from PA, but I've lived in Philly my entire life.

WD | It rained all through college but we have the same rain. So... kinda, yes, kinda?

PP | It’s sunny. The weatherman is wrong, but I think the rain will be okay for the rest of us.

AD | The track is dry but the racing is still pretty rough in some tracks and the racing on the track is not as good.

1.

2.

Table 15: Generated responses for Sports topic. In both examples, Sports vocabulary such as “soccer” or
“racing” can be observed in AD.



D.8 Science & Technology

Model Disc. Ppl Dist. Score
HUMAN - 49.29 0.32/0.75/0.83  91.04
DGPT | 99.00 39.25 0.23/0.65/0.78 91.04
DGPT+WD | 99.50 58.60 0.25/0.77/0.87 91.04
PPLM | 100.00 44.43 0.26/0.72/0.82  93.03
ADAPTER | 100.00 41.11 0.19/0.66/0.84  99.00

Table 16: Automatic evaluation results on the topic Science & Technology.

- 10

HM- HM
80 80
» DG- 49.0 ©
~ -60 ~ -60
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(a) Humanness (b) Sm/ Tech

Figure 7: Human evaluation results in terms of winning rate for humanness and Sci/Tech.

1 HUMAN 1 Hi!
' HUMAN 2  Oh hello. Long time no talk. How’s the day going for yuo?
DG | Well, i got home and watched an episode of the IT crowd. What about you?
WD | T've gotten some work done, but not done much else today.
PP | Good, working, studying and gaming,
AD Good, working, studying and gaming. How is yours? What are you studying for? I love computer
science and computer engineering.
9 HUMAN 1 is it raining pretty bad today?
' HUMAN 2 yeah, can walk too far to see all the foodtruck options
DG | T wish there was more variety in the weather. I live right next to the beach.
WD | I've heard they have free pizza. That counts right?
PP | igot my own netflix. i love this sub, lol!
AD i just use my laptop and play video games. i don’t use my phone to stream music or anything though

because that would be a net loss

Table 17: Generated responses for Sci/Tech topic. Given a general starter, DG generates a response containing

techy words by default as in the first example.

Since the provided context is less natural for the Sci/Tech

attribute in the second example, AD generates a response that gives off an erratic impression.
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