
Settling the Maximin Share Fairness for Scheduling among Groups of Machines

Bo Li * 1 Fangxiao Wang * 1 Shiji Xing * 1

Abstract

We study the fair scheduling of jobs among groups
of (unrelated) machines and focus on the maximin
share (MMS) fairness at the group level. The prob-
lem was first introduced by Li et al. [NeurIPS
2023], where each group consists of a number
of identical machines (or identical up to different
speeds), and the cost of a group is determined by
the minimum makespan on completing all jobs
assigned to it. It is left as an open problem when
the machines within each group are unrelated. In
this paper, we first resolve this problem and de-
sign a polynomial-time algorithm that computes
a 2-approximate MMS allocation via linear pro-
gramming techniques. We complement this result
with a hard instance, showing that no algorithm
can be better than (2 − 1

n)-approximate MMS,
where n is the number of machines. Thus the ap-
proximation ratio 2 is asymptotically tight. When
the groups consist of identical machines, we im-
prove the approximation ratio to 4

3 .

1. Introduction
Fairness has long been a fundamental concern in social and
economic environments. In the recent decade, it has drawn
increasingly more attention from artificial intelligence, ma-
chine learning, and computer science due to the algorithmic
and computation issues. One particularly noteworthy setting
within the fairness discourse is resource allocation, which
is not only theoretically intriguing but also holds practical
importance. For an in-depth understanding of fair resource
allocation, we recommend handbooks (Wooldridge, 2009;
Brandt et al., 2016) and surveys (Moulin, 2019; Amanatidis
et al., 2023) for a comprehensive overview.

*Equal contribution 1Department of Computing, The Hong
Kong Polytechnic University, Hong Kong, China. Corre-
spondence to: Bo Li <comp-bo.li@polyu.edu.hk>, Fangxiao
Wang <fangxiao.wang@connect.polyu.hk>, Shiji Xing <shi-
ji.xing@connect.polyu.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

In this paper, we focus on a job scheduling problem among
groups of machines, which was first introduced in (Li et al.,
2023). There are two layers of objects, where a number of
indivisible jobs need to be first allocated to n groups (viewed
as super-agents). Each group controls a number of machines
(which can be viewed as atomic agents). Upon receiving
a set of jobs, the group should further assign these jobs to
its machines with the objective of completing all assigned
jobs as early as possible. Equivalently, we can define a cost
function for each group that equals the minimum makespan
of completing all jobs assigned to it. This setting is natural in
practice; for instance, a group’s workday can only conclude
when all members have completed their assigned duties
(e.g., facilitating the departure of a shuttle bus).

The fairness in this model is measured by the maximin
share (MMS), introduced by Budish (2011). The MMS
value of each group is the minimum cost it can ensure if the
group partitions all jobs into n bundles and always receives
the bundle with maximum cost. Li et al. (2023) proved
that if the machines in each group are identical (i.e., they
take the same time to complete a task), a 2-approximate
MMS allocation exists and can be found in polynomial time.
Although Li et al. (2023) extended their results to related
machines (i.e., the machines may have different speeds)
within groups, the general setting of unrelated machines
remains an open problem. In this work, we aim to resolve
this open problem and also improve the approximation ratio
for identical machines.

The above problem aligns two separate lines of research in
the literature, namely MMS fair allocation of chores and job
scheduling problem. The majority of research in MMS fair
allocation assumes additive valuations, which is a special
case of the setting in the current paper when each group
consists of a single machine (Huang & Lu, 2021; Huang
& Segal-Halevi, 2023). As proved in (Li et al., 2023), if
agents have general subadditive valuations, MMS fairness
does not admit a better than n approximation. Our work
presents a noteworthy class of valuations between additive
and subadditive for which we can design (efficient) constant
approximation algorithms.

On the other hand, the cost functions in our problem involve
solving the optimization problem of scheduling among un-
related machines – a well-known NP-hard problem. The

1

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

best-known approximation is 2− 1
m ,m being the number of

jobs, as proved in (Shchepin & Vakhania, 2005), and Lenstra
et al. (1990) showed that the problem does not admit better
than 3

2 polynomial-time approximation if P ̸= NP. The tight
approximation ratio remains unknown; see Open Problem
4 in (Schuurman & Woeginger, 1999). It is worth noting
that finding approximate MMS fair allocations itself does
not rely on the assumption of P vs NP, where the impossi-
bility is universal and obtained from hard instances. Our
work generalizes this model to scheduling among groups of
unrelated machines.

Our results are summarized in the following section.

1.1. Our Results

We consider the fair allocation problem among n asymmet-
ric groups, where each group i consists of gi (unrelated)
private machines who are referred to as agents. Each ma-
chine has an additive cost function (i.e., processing time)
over the jobs. The maximin share (MMS) (Budish, 2011)
of each group is defined as the smallest cost it can guar-
antee if it divides the jobs into n bundles but receives the
bundle with the largest cost. The cost of a bundle of jobs
for a group is the minimum makespan of completing these
jobs, i.e., the minimum of the longest processing time by
scheduling the jobs in this bundle to the machines within the
group. To indicate the further distribution of the jobs among
machines/agents within each group, we explicitly call this
share group MMS, abbreviated as GMMS. An allocation is
α-approximate GMMS fair (α-GMMS) to a group if its cost
is no greater than α times its GMMS cost. Our objective
is to understand to what extent we can allocate the jobs to
groups so that GMMS fairness is (approximately) satisfied.

We distinguish between two cases: if the machines within
each group are unrelated, we call it the heterogeneous set-
ting; if they are identical, we call it the homogeneous setting.

Our results can be summarized as follows.

Result 1 A 2-GMMS fair allocation can be computed in
polynomial time in the heterogeneous setting.

Our algorithm to compute 2-GMMS allocations relies on
LP rounding. We begin by constructing a fractional GMMS
allocation in which a machine is assigned a positive fraction
of a job only if the job’s cost does not exceed the GMMS
of the machine’s group. Our method generalizes the LP
techniques developed in (Lenstra et al., 1990) to accommo-
date multiple groups. Then, we give a rounding procedure
that converts the fractional allocation into an integral one,
where each machine will have at most one fractional item in
their bundle rounded up to integral, resulting in a 2-GMMS
allocation. To complement this result, we show that no
algorithm can be better than (2− 1

n)-GMMS.

Result 2 For any n ≥ 2, there is an instance with n groups
such that no allocation is better than (2− 1

n)-GMMS.

Finally, we improve the approximation ratio to 4
3 in the

homogeneous setting, which improves the approximation of
2 proved by Li et al. (2023).1

Result 3 A 4
3 -GMMS fair allocation exists in the homoge-

neous setting.

Generalizing the hard instance in (Kurokawa et al., 2018),
we can show that for any number of agents, exact GMMS
allocations may not exist, which is true even when each
group contains a single agent. In fact, in this case, the
problem degenerates to the case of chore allocation with
additive cost functions and thus does not admit better than
44
43 approximation when n = 3 (Feige et al., 2021).

1.2. Related Works

The MMS fair division has been widely studied in the past
years, with a particular focus on additive functions. For allo-
cating goods, Kurokawa et al. (2018) first observed instances
which do not admit MMS allocations, and proved the ex-
istence of 2

3 -MMS allocations. Amanatidis et al. (2017)
designed a polynomial time algorithm with same approxi-
mation ratio, which was later improved to 3

4 by Ghodsi et al.
(2018). Garg & Taki (2021),Akrami et al. (2023a),Akrami
& Garg (2024) further improved the approximation ratio to
slightly larger than 3

4 . Feige et al. (2021) proved that no
algorithm has an approximation ratio better than 39

40 . Re-
garding chores allocation, it is known that no algorithm
can guarantee an approximation ratio better than 44

43 (Feige
et al., 2021), and constant approximation algorithms are
given in (Aziz et al., 2017; Huang & Lu, 2021; Huang &
Segal-Halevi, 2023).

In many real-world cases, the functions are more compli-
cated. For instance, the functions appear in machine learn-
ing and artificial intelligence are often submodular (Bilmes,
2022). For goods, to approximate the MMS allocation,
Barman & Krishnamurthy (2020); Ghodsi et al. (2022); Uzi-
ahu & Feige (2023) and (Akrami et al., 2023b; Seddighin
& Seddighin, 2024) respectively gave constant approxima-
tion algorithms for submodular and XOS valuations. Gh-
odsi et al. (2022); Seddighin & Seddighin (2024); Feige
& Huang (2025) proved the existence of logarithmic ap-
proximations. For chores allocation, Li et al. (2023) proved
a lower bound of min{n, logm

log logm} for submodular cost
functions with binary margins. They also proved the exis-
tence of min{n, logm}-approximate MMS allocations, and
improved the approximations to constants in two special

1Li et al. (2023) extended their result to the setting of related
machines, where machines within a group have different speeds,
i.e., the processing times are identical up to different scales.

2

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

models, where the cost functions involve solving the bin
packing and job scheduling problems. Recently, Wang & Li
(2024) considered the vertex cover model and also proved
the existence of constant approximate MMS fair allocations.
In another line, Barman et al. (2023) proved the existence
of an exact MMS fair and Pareto optimal allocation under
binary supermodular cost functions.

2. Preliminaries
For any integer k ≥ 1, let [k] = {1, . . . , k}. In a
group fair allocation instance, there are n groups and m
indivisible chores, denoted by G = {G1, . . . , Gn} and
M = {e1, . . . , em}. Each group Gi contains gi machines
which are referred to as agents, i.e., Gi = {ai,1, . . . , ai,gi}
and gi = |Gi| ≥ 1. It is assumed that the groups do not over-
lap, i.e., Gi∩Gj = ∅ for all i ̸= j. Denote by g =

∑
i∈n gi

the total number of agents. Each individual agent ai,j has
a cost function ci,j : 2

M → R≥0, where ci,j(S) represents
her cost (or finishing time) on completing the chores in
S ⊆ M. For simplicity, denote ci,j(e) = ci,j({e}). In
this paper, the cost functions are assumed to be additive,
i.e., ci,j(S) =

∑
e∈S ci,j(e). Let ci = (ci,1, . . . , ci,gi) and

c = (c1, . . . , cn). We distinguish two cases. When agents
in a group have the same cost function, i.e., ci,j(e) = ci,l(e)
for all Gi ∈ G, e ∈ M and ai,j , ai,l ∈ Gi, we call it a ho-
mogeneous setting, and otherwise, a heterogeneous setting.

An allocation is denoted by A = (A1, . . . ,An), where
Ai = (Ai,1, . . . , Ai,gi) is the allocation to group Gi and
Ai,j is the allocation to agent ai,j . When there is no confu-
sion, we also denote Ai = Ai,1 ∪ · · · ∪Ai,gi . It is required
that all items are allocated and every item is allocated exactly
once, i.e,

⋃
i∈[n]

⋃
j∈[gi]

Ai,j =M and Ai1,l1 ∩Ai2,l2 = ∅
for (i1, l1) ̸= (i2, l2). Finally, we use I = (G,M, c) to
denote a group chore allocation instance.

The agents in the same group collaborate with each other
and have reached an agreement to complete their assigned
items together so as to minimize the maximum cost. There-
fore, they share the same fairness benchmark value which
depends on the largest individual cost. To formally define
the group maximin share, we first recall the original defini-
tion of maximin share (MMS). For any integer k ≥ 1 and
set S ⊆M, denote by Π(S, k) the set of all k-partitions of
S. When allocating items S among k agents, the MMS of
an agent with cost function c is defined as

MMS(S, k, c) = min
(S1,...,Sk)∈Π(S,k)

max
1≤j≤k

c(Sj).

The group maximin share (GMMS) of group Gi is the op-
timal worst-case individual share by partitioning the items
into gi bundles where each agent ai,k shares responsibility
of her bundle with the other n− 1 groups. That is

GMMSi = min
(S1,...,Sgi

)∈Π(M,gi)
max

1≤k≤gi
MMS(Sk, n, ci,k).

(1)
If a partition (S∗

1 , . . . , S
∗
gi) of M reaches the value of

GMMSi, i.e.,

max
1≤k≤gi

MMS(S∗
k , n, ci,k) = GMMSi,

it is called a GMMS-defining partition to group Gi.
Definition 2.1 (α-GMMS). Given α ≥ 1, an allocation A
is called α-approximate GMMS fair (α-GMMS), if

ci,j(Ai,j) ≤ α · GMMSi, for all j ∈ [gi] and i ∈ [n].

We have the following simple bound for GMMSi.
Lemma 2.2. GMMSi ≥ 1

n·gi
∑

e∈M min1≤k≤gi ci,k(e).

Alternatively, we can introduce a cost function for each
group to measure the collaborative cost of the agents in the
group, as in (Li et al., 2023). This is partly motivated by
the job scheduling problem, where the makespan decides
the overall cost of the group so that the agents in the group
share the same “actual” cost. Formally, the cost function
of group Gi is denoted by Ci : 2

M → R≥0 where for all
S ⊆M,

Ci(S) = min
(S1,...,Sgi

)∈Π(S,gi)
max

1≤j≤gi
ci,j(Sj).

Then we have the following lemma, which presents an equiv-
alent definition of GMMS.
Lemma 2.3.

GMMSi = min
(S1,...,Sn)∈Π(M,n)

max
1≤j≤n

Ci(Sj). (2)

Note that the group cost functions are subadditive, i.e.,
C(S1 ∪ S2) ≤ C(S1) + C(S2) for any S1 and S2. In
fact, the model in (Li et al., 2023) used Lemma 2.3 to study
the MMS allocation of subadditive cost functions. By their
results, we have an O(min{n, logm}) approximation. If
agents in each group have identical cost functions, the ap-
proximation ratio improves to 2, but it’s unknown if a better
approximation exists for the general heterogeneous case.

Our paper examines two case types: Section 3 covers cases
with heterogeneous agents, where agents in a group have
varied cost functions, while Section 4 addresses cases with
homogeneous agents where agents within a group share
identical cost functions.

3. Heterogeneous Agents
In this section, we present our main result. We first prove
that no algorithm can perform better than (2− 1

n)-GMMS by
constructing a hard instance and then design a polynomial-
time algorithm that always computes a 2-GMMS allocation
for all instances.

3

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

3.1. Lower Bound

Theorem 3.1. There is no algorithm that can perform better
than (2− 1

n)-GMMS, where n is the number of groups.

Proof. We construct the following instance with n groups
{G1, . . . , Gn}, 2n−1+n(n−1)2 agents and n+n2(n−1)
items. The items are divided into two types:

• Q = {el | l ∈ [n]};

• T = {el,p,k | l ∈ [n], p ∈ [n− 1], and k ∈ [n]},

where the items in T are ordered by their indices, as shown
in Figure 1. Note that |Q| = n and |T | = n2(n − 1).
We consider the following two different partitions of T ,
T =

⋃
p∈[n−1],k∈[n] Tp,k and T =

⋃
k∈[n] Tk, where

Tp,k = {el,p,k ∈ T | 1 ≤ l ≤ n}

and

Tk = {el,p,k ∈ T | 1 ≤ l ≤ n and 1 ≤ p ≤ n− 1}.

The above partitions of T are illustrated in Figure 1. The
green items correspond to one Tp,k (in fact, it is Tn−1,1)
and the orange items correspond to one Tk (in fact, it is T4).

Figure 1. The structure of items in T , where Tn−1,1 is marked in
green and T4 is marked in orange.

We next define the cost functions of the agents.

For i = 1, . . . , n−1, group Gi contains (n−1)n+1 agents
denoted by ai,1 and ai,(p,k) with p ∈ [n− 1] and k ∈ [n].

• For agent ai,1,

– ci,1(el) = 1 for all el ∈ Q,
– ci,1(el,p,k) =∞ for all el,p,k ∈ T .

• For each agent ai,(p,k) where p ∈ [n− 1] and k ∈ [n],

– ci,(p,k)(el,p,k) = 1 for all el,p,k ∈ Tp,k,
– ci,(p,k)(el,p′,k′) =∞ for all el,p′,k′ ∈ Tp′,k′ with
p′ ̸= p or k′ ̸= k,

– ci,(p,k)(el) =∞ for all el ∈ Q.

Claim 1. GMMSi = 1 for i = 1, . . . , n− 1.

Proof. It is easy to see that GMMSi ≥ 1 since the small-
est single-item cost of every agent is 1. Consider parti-
tion (B1, . . . , Bn) with Bl = {el} ∪ {el,p,k ∈ Tp,k | p ∈
[n − 1] and k ∈ [n]}. It can be verified that Ci(Bl) = 1
by allocating el to ai,1 and el,(p,k) to ai,(p,k), and thus
ci,1(el) = ci,(p,k)(el,(p,k)) = 1.

Group Gn contains n agents {an,1, . . . , an,n}. For each
agent an,k, 1 ≤ k ≤ n,

• cn,k(ek) = 1 for each ek ∈ Q,

• cn,k(el) =∞ for each el ∈ Q with l ̸= k,

• cn,k(el,p,k) =
1
n for each el,p,k ∈ Tk,

• cn,k(el,p,k′) =∞ for each el,p,k′ ∈ Tk′ with k′ ̸= k.

Figure 2. Partition (B1, . . . , Bn), where the illustration is Figure
1 projected on the l-axis. That is, each item (p, k) in Figure 2
represents a row of n items (p, k, l) with l = 1, . . . , n.

Claim 2. GMMSn = 1.

Proof. By Lemma 2.2,

GMMSn ≥
1

n2

∑
e∈M

min
1≤k≤n

cn,k(e)

=
1

n2

∑
1≤k≤n

cn,k(ek) +
∑

l∈[n],p∈[n−1]

cn,k(el,p,k)

 = 1.

Consider partition (B1, . . . , Bn) with

Bq = {eq} ∪ {el,q−1,k | k < q, 1 ≤ l ≤ n}
∪ {el,q,k | k > q, 1 ≤ l ≤ n},

where {el,0,k | 1 ≤ k < 1, l ≤ n} = ∅ and {el,n,k | 1 ≤
k > n, l ≤ n} = ∅, as shown in Figure 2. That is, bundle

4

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

Bq obtains n items on each column k ̸= q and nothing on
column k = q. To see group Gn’s cost is 1 for Bq, we
allocate eq to an,q, so an,q’s cost is 1; allocate {el,q−1,k |
1 ≤ l ≤ n} to an,k for k < q, and {el,q,k | 1 ≤ l ≤ n} to
an,k for k > q, so that every agent an,k for k ̸= q has n
items, each of which has cost 1

n .

Next we prove that for any allocation A = (A1, . . . ,An),
at least one of the groups has a makespan of at least 2− 1

n .
We start with two simple cases.

Case 1. If |Ai ∩Q| ≥ 2 for any group Gi, 1 ≤ i ≤ n− 1,
then Ci(Ai) ≥ 2. This is because only agent ai,1 has cost 1
on items in Q while all other agents have cost infinity.

Case 2. If |Ai∩Tp,k| ≥ 2 for any group Gi, 1 ≤ i ≤ n−1,
1 ≤ p ≤ n − 1 and 1 ≤ k ≤ n, then Ci(Ai) ≥ 2. This is
because only agent ai,(p,k) has cost 1 on items in Tp,k while
all other agents have cost infinity.

Case 3. If |An ∩ Q| ≥ 1 and |Ai ∩ Tp,k| ≤ 1 for all
1 ≤ i ≤ n − 1 and 1 ≤ p ≤ n − 1 and 1 ≤ k ≤ n, we
claim that Cn(An) ≥ 2 − 1

n . Suppose ek∗ ∈ An ∩ Q,
and thus ek∗ must be allocated to agent an,k∗ . We next
consider the allocation of Tk∗ . Since |Ai ∩ Tp,k∗ | ≤ 1
for all 1 ≤ i ≤ n − 1 and 1 ≤ p ≤ n − 1, we have
|Ai ∩ Tk∗ | ≤ n− 1, and thus

n∑
i=1

|Ai ∩ Tk∗ | ≤ (n− 1)2.

That is

|An ∩ Tk∗ | ≥ n(n− 1)− (n− 1)2 = n− 1.

Since cn,k(el,p,k∗) = ∞ for all k ̸= k∗, all items in An ∩
Tk∗ are allocated to agent an,k∗ . Therefore

Cn(An) ≥ cn,k∗(ek∗) + cn,k∗(An ∩ Tk∗)

1 +
1

n
(n− 1) = 2− 1

n
.

Combining Cases 1, 2 and 3 completes the proof.

3.2. Upper Bound: A 2-GMMS Algorithm

Theorem 3.2. A 2-GMMS allocation can be computed in
polynomial time for any instance.

Before showing our algorithm, we first introduce additional
definitions. We use x = (x1, . . . ,xn) to denote a frac-
tional allocation, where xi = (xi,1, . . . ,xj,gi) and xi,j =
(x1

i,j , . . . , x
m
i,j) such that each 0 ≤ xl

i,j ≤ 1 denotes the frac-
tion of item el ∈M that agent ai,j obtains. Thus, a feasible
allocation satisfies

∑
i∈[n],j∈[gi]

xl
i,j = 1 for all 1 ≤ l ≤ m.

For simplicity, let ci,j(xi,j) =
∑

l∈[m] ci,j(el) · xl
i,j .

Definition 3.3. For a fractional allocation x, we construct an
auxiliary (multi-)graph G(x) = (V,E), where the vertices
V = G1 ∪ · · · ∪Gn represent the agents. If xl

i1,j1
̸= 0 and

xl
i2,j2
̸= 0, we construct an edge between ai1,j1 and ai2,j2

and label the edge by l. A cycle in the graph is called share
cycle if at least two edges in the cycle have different labels.

Lemma 3.4. There exists a fractional allocation x such that

• For every agent ai,j , ci,j(xi,j) ≤ GMMSi.

• For any xl
i,j ̸= 0, ci,j(el) ≤ GMMSi.

• There is no share-cycle in the auxiliary graph.

Further, such an allocation can be found in polynomial time.

Proof. We utilize the linear programming technique intro-
duced in (Lenstra et al., 1990) to prove this lemma.

Fix a parameter ti ≥ 0, which can be viewed as a guess of
the value of GMMSi. Let

Mi,j(ti) = {e ∈M | ci,j(e) ≤ ti}

be the set of items for which agent ai,j has cost no greater
than ti, and

Pi,l(ti) = {ai,j ∈ Gi | ci,j(e) ≤ ti}

be the set of agents in Gi who have cost on item el no greater
than ti. Consider the following linear program LPi(ti):


∑

el∈Mi,j(ti)

ci,j(el) · yli,j,k ≤ ti, ∀j ∈ [gi], k ∈ [n]∑
j∈Pi,l(ti),k∈[n]

yli,j,k = 1, ∀el ∈M

yli,j,k ≥ 0, ∀j ∈ [gi], k ∈ [n], el ∈Mi,j(ti),

where i, j, k, l represent group Gi, agent ai,j in Gi, the k-th
bundle in the n-partition of group Gi, and item el. Thus,
variable yli,j,k means the fraction of item el allocated to
agent ai,j in the k-th bundle in the n-partition of group Gi.
The first constraint means that the cost of every copy of
every agent is not greater than ti, and the second constraint
means all items are allocated.

Let t∗i be the minimum value of ti such that LP (ti) has a
feasible solution. Then we have the following claims.
Claim 3. t∗i can be computed in polynomial time.

Proof. Similar to (Lenstra et al., 1990), we can binary
search t∗i . An upper bound of t∗i is the maximum cost among
all agents in Gi by allocating each item to the agent with
minimum cost on it, and a lower bound is 1

gi·n times this
maximum cost. For each ti, checking whether LP (ti) ad-
mits a feasible solution can be done in polynomial time.

5

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

Claim 4. t∗i ≤ GMMSi.

Proof. This lemma is straightforward as LPi(GMMSi) has
a feasible (integral) solution.

We next construct a fractional allocation x = (x1, . . . ,xn)
satisfying all conditions of Lemma 3.4. Denote by {yl∗i,k,j}
a feasible solution of LPi(t

∗
i). Let

xl
i,j =

1

n

∑
k∈[n]

yl∗i,k,j .

By the first constraint of LPi(t
∗
i),

ci,j(xi,j) ≤
1

n
· n · t∗i ≤ GMMSi

Moreover, xl
i,j > 0 if and only if yl∗i,k,j > 0 for some k ∈

[n]. By the definition ofMi,j(ti), ci,j(el) ≤ t∗i ≤ GMMSi.
Thus, x satisfies the first two conditions of Lemma 3.4. If
there is no share cycle in the auxiliary graph G(x), the
lemma holds. Otherwise, we gradually modify x to satisfy
the third condition without hurting the first two.

Let C = ai1,j1 − ai2,j2 − · · · − aik,jk − ai1,j1 be a share cy-
cle in the auxiliary graph G(x). Denote ai1,j1 → ai2,j2 →
· · · → aik,jk → ai1,j1 as the right direction and the back-
ward direction as the left. Let item el denote the item that
agent ail,jl and her right neighbor ail+1,jl+1

share in the
share cycle, where l + 1 = 1 if l = k. For agent ail,jl ,
denote by αl = cil,jl(el) the cost of her right shared item of
the cycle and βl = cil,jl(el−1) as the cost of the left shared
item, where l − 1 = k if l = 1.

Note that either of the following expressions must be less
than or equal to 1:

∏
i∈[l] αi∏
i∈[l] βi

or
∏

i∈[l] βi∏
i∈[l] αi

, since their product

is exactly 1. If
∏

i∈[l] αi∏
i∈[l] βi

≤ 1 , we choose left as the desired
direction and right otherwise. Without loss of generality,
assume that the direction is right.

Let γ > 0 be a sufficiently small number. As Figure 3
shows, we let agent ai1,j1 give a fraction of item e1 with
cost γ to ai2,j2 . The amount of the passed item e1 is γ · 1

α1
.

For agent ai2,j2 , the cost of the received fraction is γ · β2

α1
.

We want ai2,j2 to pass a fraction to her right neighbor so
that her total cost does not change. Therefore she will
pass γ · β2

α1·α2
fraction of item e2 to ai3,j3 . Repeat this

process for the remaining agents in the cycle. For agent
ail,jl with l ∈ [2, . . . , k], she will receive a fraction of el−1

with cost γ ·
∏

i∈{2,··· ,l} βi∏
i∈[l−1] αi

, and will pass a fraction el with

amount γ ·
∏

i∈{2,··· ,l} βi∏
i∈[l] αi

to her right neighbor. Eventually,
agent ai1,j1 receives a fraction of the item ek with cost

γ ·
∏

i∈{k} βi∏
i∈[k] αi

, which is no greater than γ, the cost she gives

away. Therefore, her total cost does not increase. Hence,
by exchanging items in the above way, no agent’s cost is
increased.

It remains to decide the value of γ so that at least one edge
in this cycle is canceled and no agent passes more items
than she possesses. Consider agent ail,jl . If el and el−1 are
the same item, then her allocation xil,jl does not change in
the process, since she essentially passes a fractional item
from her left neighbor to her right. Therefore, the edges
between ail,jl and ail+1,jl+1

cannot be canceled and she will
not give more item than she possesses no matter how large
γ is. Thus we can safely exclude her from the calculation
of γ. Consequently, we only need to focus on agents who
share different items with their neighbors. Assume ail,jl
is such an agent. If l = 1, then she will pass a fraction of
e1 with amount γ · 1

α1
. Otherwise, she will receive cost

γ ·
∏

i∈{2,··· ,l} βi∏
i∈[l−1] αi

, and needs to pass a fraction of el with

amount γ ·
∏

i∈{2,··· ,l} βi∏
i∈[l] αi

. We need to select γ such that

γ ·
∏

i∈{2,··· ,l} βi∏
i∈[l] αi

≤ xl
il,jl

. Furthermore, since we want
to remove one edge from the cycle, we also hope that this
inequality holds tight for some agent. We then can determine
the value γ by the following:

γ = min
l∈S

{
xl
il,jl
·
βl ·

∏
i∈[l] αi∏

i∈[l] βi

}
,

where S is the set of agents in the shared cycle who share
different items with their neighbors. As a special case,

Figure 3. Exchanging items among the cycle in the right direction.

By reallocating the items in the cycle with the computed γ, it
is ensured that at least one edge in this cycle is cancelled and
the reallocation is valid. Therefore, after the reallocation,
there is one less edge in the graph G(x). Consequently, in
polynomial time, we can repeat this process until all share
cycles are eliminated. In the process, the total cost of agents
are non-increasing, so ci,j(xi,j) ≤ GMMSi.

Furthermore, no agent receives a new item in the exchanging
items process. For item ep and agent ai,j with xi,j,p >
0, ci,j(ep) ≤ GMMSi still holds.

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We first obtain a fractional alloca-
tion x satisfying all conditions of Lemma 3.4.

6

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

If there is no share cycle in G(x), then there exists an agent
whose bundle contains only one fractional item. Assume
not, then each agent who possesses fractional items must
have at least two or more of them. Therefore, such agents
will have at lease two adjacent edges with different labels in
the auxiliary graph. Furthermore, since each non-isolated
vertex in the auxiliary graph has a degree of at least 2, a
share cycle must exist, making a contradiction.

Let ai,j be such an agent having received only one fractional
item ep. Let Ai,j = {el|xl

i,j = 1} ∪ {ep}. Note that for
agent ai,j , ci,j(Ai,j) ≤ ci,j({el|xl

i,j = 1}) + ci,j({ep}) ≤
ci,j(xi,j) + GMMSi ≤ 2GMMSi. Then, delete the agent
ai,j and all the edges labeled with ep in G(x).

Since the updated auxiliary graph G(x) is a subgraph of the
previous one, there is still no share cycle. So we keep the
above process until there is no agent in G(x) and we get a
2-GMMS allocation A = Ai,j i∈[n],j∈[gi]

.

4. Homogeneous Agents
In this section, we switch our focus to the homogeneous
setting where the agents within each group Gi have iden-
tical cost functions. That is, for any two agents ai,j , ai,j′ ,
ci,j(e) = ci,j′(e) for all items e ∈ M. For simplicity, we
use ci(·) to denote the cost function of all agents in group
Gi. Li et al. (2023) proved that the homogeneous setting
admits a 2-GMMS allocation. In the following, we improve
this approximation ratio to 4

3 .

4.1. Upper Bound: A 4
3 -GMMS Algorithm

Theorem 4.1. There exists a 4
3 -GMMS allocation for all

homogeneous instances.

Definition 4.2 (Ordered Instance). A homogeneous in-
stance I = (G,M, c) is called ordered if the agents in
all groups have the same ordinal preference over all items,
i.e., ci(e1) ≥ ci(e2) ≥ · · · ≥ ci(em) for all i ∈ [n].

It is widely known that when each group contains exactly
one agent, the ordered instance is the most challenging case
for approximating GMMS fairness (Barman & Krishna-
murthy, 2020; Huang & Lu, 2021; Li et al., 2022). This
property also holds for the case where each group contains
multiple identical agents (Li et al., 2023).

Lemma 4.3. (Li et al., 2023) For any α ≥ 1, if an α-GMMS
allocation exists for all ordered instances with homogeneous
agents, then an α-GMMS allocation exists for all instances
with homogeneous agents.

By Lemma 4.3, it suffices to restrict our focus on ordered
instances. In addition, we assume without loss of generality
that the valuations of agents are normalized so that ci(M) =
n for all i ∈ [n]. By the definition of GMMSi, n · gi ·

GMMSi ≥ ci(M) = n and thus gi · GMMSi ≥ 1.

We next introduce some notions to be used in the algorithm.

Recall that ci(e) ≤ GMMSi,∀i ∈ [n], e ∈ M. An item
e ∈ M is called large for group Gi if ci(e) > 2

3GMMSi,
medium if 1

3GMMSi ≤ ci(e) ≤ 2
3GMMSi, and small if

ci(e) <
1
3GMMSi. For a set of chores S, let Hi(S), Di(S)

and Li(S) respectively denote the set of large, medium and
small items in S for group Gi, i.e.,

Hi(S) =

{
ek ∈ S

∣∣∣ ci(ek) > 2

3
GMMSi

}
,

Di(S) =

{
ek ∈ S

∣∣∣ 1
3
GMMSi ≤ ci(ek) ≤

2

3
GMMSi

}
,

Li(S) =

{
ek ∈ S

∣∣∣ ci(ek) < 1

3
GMMSi

}
.

Let (S1, . . . , Sgi) be an arbitrary GMMS-defining parti-
tion for group Gi, and (S1,k, . . . , Sn,k) be an arbitrary n-
partition of Sk such that maxj∈[n] ci(Sj,k) ≤ GMMSi for
1 ≤ k ≤ gi. Thus, each bundle Sk,j for k ∈ [n] and j ∈ [gi]
can contain at most one large item or at most two medium
items, due to the definitions of GMMS. Hence, the total
number of large and medium items inM satisfies

|Hi(M)|+ |Di(M)|
2

≤ n · gi.

Next, we introduce our algorithm. The algorithm runs in two
phases. In the first phase, we allocate items, via Algorithm
1, to each group Gi, denoted by B = (B1, . . . , Bn). In the
second phase, we allocate Bi to agents in each group Gi,
denoted by Bi = (Bi,1, . . . , Bi,gi).

We start with Algorithm 1, which runs in n rounds. Each
round j consists of two parts: bag initialization and bag fill-
ing. In bag initialization, items are put in a bag S according
to their indices, and one will be selected in every n items.
Specifically, the selection adopts the following strategy:

• If there are currently x items in bag S and x is even,
the chore with index n · x+ j will be considered next;

• If there are currently x items in bag S and x is odd, the
chore with index n · x+ n+ 1− j will be considered;

• Assume item et is being considered. If there is a group
that regards et as large or medium, note this group, add
et to S, and begin considering the next item;

• Otherwise, exit the bag initialization step.

Consequently, the items in S, considered medium or large
by some group, contain two sequences: Items with indices

7

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

Algorithm 1 Assign Items to Groups
Input: Ordered homogeneous instance I = (G,M, c).
Output: Allocation B = (B1, . . . , Bn).

1: Initialize R←M.
2: for j from 1 to n do
3: %Bag Initialization:
4: Initialize S ← ∅, t← j.
5: Let k be the index of one group such that Gk ∈ G.
6: while ∃Gi ∈ G s.t. et ∈ Hi(R) ∪Di(R) do
7: S ← S ∪ {et}, R← R \ {et}, k ← i.
8: if ⌊t/n⌋ is odd then
9: t← (⌊t/n⌋+ 2) · n+ 1− j.

10: else
11: t← (⌊t/n⌋+ 1) · n+ j.
12: end if
13: end while
14: %Bag Filling:
15: while ∃Gi ∈ G s.t. ci(S) < 1 and Li(R) ̸= ∅ do
16: k ← i.
17: e← the item with the largest index in R.
18: S ← S ∪ {e}, R← R \ {e}.
19: end while
20: Bk ← S, G ← G \ {Gk}.
21: end for

j, 2n+ j, 4n+ j, . . . form one, and with indices 2n+ 1−
j, 4n+ 1− j, 6n+ 1− j, . . . form the other.

In the bag filling step, the algorithm attempts to put more
items in the bag S and assign the bag to some group. It
will check if there exists some group Gi for which the cost
of S is at most 1 and there are small items unallocated. If
such a group exists, the algorithm will note this group and
add the smallest item (for all groups since the instance is
ordered) to bag S. This step will be repeated until there is
no group that satisfies the conditions. The algorithm will
then allocate bag S to the last noted group, which will leave
the algorithm. Eventually, after n iterations, one bag will be
allocated to each group, and the algorithm terminates.

Claim 5. For group Gi, |Hi(Bi)|+ |Di(Bi)|
2 ≤ gi.

Proof. Recall that large and medium items are added to Bi

in the bag initialization step. Denote k = |Hi(M)| mod n.
Since Algorithm 1 allocates 1 item among every n large
and medium items into Bi, |Hi(Bi)| = ⌊ |Hi(M)|

n ⌋ or
⌈ |Hi(M)|

n ⌉, and |Di(Bi)| = ⌊ |Di(M)|
n ⌋ or ⌈ |Di(M)|

n ⌉.

When |Hi(Bi)| = ⌊ |Hi(M)|
n ⌋ or k = 0,

|Hi(Bi)|+
|Di(Bi)|

2
≤ ⌊|Hi(M)|

n
⌋+
⌈ |Di(M)|

n ⌉
2

≤ ⌈|Hi(M)|+ |Di(M)|/2
n

⌉ ≤ gi.

When |Hi(Bi)| = ⌈ |Hi(M)|
n ⌉ and k ̸= 0, let item e denote

the last large item added in Bi during the algorithm. Ac-
cording to the algorithm’s selective strategy, after selecting
item e, the next medium item (if any) is chosen after at least
2(n − k) items. After the 2(n − k) items, the number of
the medium items does not exceed (gi − ⌈Hi(M)

n ⌉) × 2n.
Since in bag initialization, if the algorithm selects item ej ,
before the algorithm selects ej+2n, only one another item
is selected. In each subsequent group of 2n medium items,
the algorithm selects 2 items to be included in Bi. Hence,

|Hi(Bi)|+
|Di(Bi)|

2
≤ ⌈Hi(M)

n
⌉+gi−⌈

Hi(M)

n
⌉ = gi,

which completes the proof.

Claim 6. All the items can be allocated by Algorithm 1.

Proof. Consider the last remained group is Gi in the last
round of the algorithm. In the bag initialization part, there
is only one item unallocated in every n items among group
Gi’s large and medium items. Therefore, all the large and
medium items can be added into Bi during the bag initializa-
tion part. If there are some items that are small for Gi, for
the bundle S removed in every round before the last round,
ci(S) ≥ ci(M)

n . Therefore, for the remaining items S′ in
the last round, ci(S′) ≤ ci(M)− (n− 1) ci(M)

n = ci(M)
n .

All the small items for group Gi are added into Bi. Hence,
all the items can be allocated.

Claim 7. Given the set of items Bi computed by
Algorithm 1, we can divide Bi into a gi-partition
(Ai,1, . . . , Ai,gi) such that ci(Ai,j) ≤ 4

3GMMSi, for any
agent aj ∈ Gi.

Proof. Firstly, initialize the set of bundles Ai,j = ∅ for all
j ∈ [gi]. We allocate one large item or two medium items
to one empty bundle until all the items in Hi(Bi) ∪Di(Bi)
are allocated. All large and medium items can be allocated
this way by Claim 5.

After allocating the large and medium items, each agent
in the group will have a cost at most 4

3GMMSi, which is
directly derived from the definition of large and medium
items. If Li(Bi) = ∅ then the proof is complete. Otherwise,
consider e∗, the last item added to bag S(which becomes Bi)
by Algorithm 1. We have ci(Bi \ {e∗}) < 1 ≤ GMMSi · gi
from Line 15 of the algorithm. For item e ∈ Li(Bi) \ {e∗},
find some agent ai,j with ci(Ai,j) ≤ GMMSi and assign
e to that agent:Ai,j ← Ai,j ∪ {e}. Repeat this step un-
til Li(Bi) \ {e∗} is exhausted. Note that we can always
find an agent to receive e. Otherwise, at some point each
agent in Gi has cost more than GMMSi, which means
ci(Bi \ {e∗}) ≥

∑
j∈[gi]

ci(Ai,j) ≥ gi · GMMSi, asserting
a contradiction. Analogously, after allocating Li(Bi)\{e∗},

8

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

there exists some agent ai,j∗ such that ci(Ai,j∗) ≤ GMMSi.
We then assign the only remaining item e∗ to this agent, thus
Ai,j∗ ← Ai,j∗ ∪ {e∗}. Note that each agent who would re-
ceive a small item this way has cost at most GMMSi before
taking the item, so we can conclude that for each agent ai,j
in Gi,ci(Ai,j) ≤ 4

3GMMSi.

Based on the discussion above, Theorem 4.1 is proved.

We remark that the above algorithm is not polynomial-time,
since we need to first compute GMMS values. However,
by applying the techniques in (Barman & Krishnamurthy,
2020), our algorithm can run in polynomial time, and the
approximation ratio will increase to 4

3 + ϵ for an arbitrarily
small constant ϵ.

4.2. Non-existence of GMMS Allocations

We finally show that an exact GMMS allocation may not
exist for any number of groups, even when every group
contains a single agent, which degenerates to the traditional
setting of MMS fair allocation of chores with additive cost
functions. It is proved in (Aziz et al., 2017; Feige et al.,
2021) that when n = 3, an MMS allocation is not guaran-
teed. For n > 3, it remains unknown. On the other hand,
Procaccia & Wang (2014) designed a series of instances for
the allocation of goods, showing that an MMS allocation
is not guaranteed for any n ≥ 3. We next show how to
convert these instances to chores. Note that, in this section,
we restrict our focus to the case where each group contains
a single agent. We use I = (M,N ,v) to denote a goods
instance, where N = {a1, . . . , an} is the set of agents and
v = (v1, . . . , vn) is their valuation profile. For a goods
instance, agents want to get higher utilities, and their MMS
is defined by the maximum, over all n-partitions ofM, of
the minimum value of a bundle in the n-partition. We refer
the readers to (Feige et al., 2021) for a formal definition.

Theorem 4.4. For any n ≥ 3, there is an instance that does
not admit an exact MMS allocation.

Proof. Let I = (M,N ,v) be any goods instance such that
(1) for every agent ai ∈ N , MMSi =

1
nvi(M), and in one

of her MMS-defining partitions, every bundle has the same
number of goods, and (2) there is no MMS allocation. Note
that the instances provided in (Procaccia & Wang, 2014)
satisfy these requirements. We construct a chores instance
I ′ = (N ′,M′, c), whereM′ =M, N ′ = N , and

ci(g) = vi(M)− vi(g) for any g ∈M′.

Denote by MMS′i the MMS of agent ai ∈ N ′ in I ′. Hence

MMS′i =
ci(M)

n
=

m

n
vi(M)−MMSi =

m− 1

n
vi(M).

For any set of chores S such that |S| ≥ m
n + 1, the cost of

the bundle is at least

ci(S) ≥ (
m

n
+ 1)vi(M)− vi(S)

≥ (
m

n
+ 1)vi(M)− vi(M) =

m

n
vi(M) > MMS′i.

Hence, if there is an MMS allocation, it must be balanced,
i.e., every agent must obtain exactly m

n chores. Since there
is no MMS allocation in the goods instance I, there must
be one agent ai who gets a bundle Ai such that vi(Ai) <
MMSi for any allocation A. Thus, in the chores instance,
for any allocation A, there also exists an agent ai such that

ci(Ai) =
m

n
vi(M)− vi(Ai)

>
m

n
vi(M)−MMSi = MMS′i,

implying that I ′ does not admit an MMS allocation.

5. Conclusion
In this work, we study the fair allocation problem of indi-
visible chores among groups of agents, where fairness is
measured by group maximin share (GMMS). For the hetero-
geneous setting, we design a polynomial-time algorithm that
returns a 2-GMMS allocation, and prove that the approxi-
mation ratio cannot be improved to better than 2− 1

n . For
the homogeneous setting, we improve the approximation
ratio to 4

3 , but the best possible approximation in this case
remains unknown.

Our paper uncovers many open problems and further direc-
tions. As mentioned, the best possible approximation ratio
in the homogeneous setting is still unknown. In fact, for
the homogeneous setting, we still do not know if it makes
a difference between the case of multiple agents within
each group and when every group contains a single agent.
Secondly, for the heterogeneous setting, our approximation
ratio is tight only when the number of groups goes large. It
is an open question whether we can design better algorithms
for a small number of groups. Thirdly, in this paper, we only
consider identical and unrelated machines. It is interesting
to extend our setting to related machines. We still do not
know if the setting of related machines is strictly harder than
that of identical machines.

Acknowledgments
This work is funded by the Hong Kong SAR Research
Grants Council (No. PolyU 15224823) and the Guang-
dong Basic and Applied Basic Research Foundation (No.
2024A1515011524).

9

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akrami, H. and Garg, J. Breaking the 3/4 barrier for ap-

proximate maximin share. In SODA, pp. 74–91. SIAM,
2024.

Akrami, H., Garg, J., Sharma, E., and Taki, S. Simplification
and improvement of MMS approximation. In IJCAI, pp.
2485–2493. ijcai.org, 2023a.

Akrami, H., Mehlhorn, K., Seddighin, M., and Shahkarami,
G. Randomized and deterministic maximin-share ap-
proximations for fractionally subadditive valuations. In
NeurIPS, 2023b.

Amanatidis, G., Markakis, E., Nikzad, A., and Saberi, A.
Approximation algorithms for computing maximin share
allocations. ACM Trans. Algorithms, 13(4):52:1–52:28,
2017.

Amanatidis, G., Aziz, H., Birmpas, G., Filos-Ratsikas, A.,
Li, B., Moulin, H., Voudouris, A. A., and Wu, X. Fair
division of indivisible goods: Recent progress and open
questions. Artif. Intell., 322:103965, 2023.

Aziz, H., Rauchecker, G., Schryen, G., and Walsh, T. Al-
gorithms for max-min share fair allocation of indivisible
chores. In AAAI, pp. 335–341. AAAI Press, 2017.

Barman, S. and Krishnamurthy, S. K. Approximation algo-
rithms for maximin fair division. ACM Trans. Economics
and Comput., 8(1):5:1–5:28, 2020.

Barman, S., Narayan, V., and Verma, P. Fair chore division
under binary supermodular costs. In AAMAS, pp. 2863–
2865, 2023.

Bilmes, J. A. Submodularity in machine learning and artifi-
cial intelligence. CoRR, abs/2202.00132, 2022.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Procaccia,
A. D. (eds.). Handbook of Computational Social Choice.
Cambridge University Press, 2016.

Budish, E. The combinatorial assignment problem: Ap-
proximate competitive equilibrium from equal incomes.
Journal of Political Economy, 119(6):1061–1103, 2011.

Feige, U. and Huang, S. Concentration and maximin
fair allocations for subadditive valuations. CoRR,
abs/2502.13541, 2025.

Feige, U., Sapir, A., and Tauber, L. A tight negative example
for MMS fair allocations. In WINE, volume 13112 of Lec-
ture Notes in Computer Science, pp. 355–372. Springer,
2021.

Garg, J. and Taki, S. An improved approximation algorithm
for maximin shares. Artif. Intell., 300:103547, 2021.

Ghodsi, M., Hajiaghayi, M. T., Seddighin, M., Seddighin,
S., and Yami, H. Fair allocation of indivisible goods:
Improvements and generalizations. In EC, pp. 539–556.
ACM, 2018.

Ghodsi, M., Hajiaghayi, M. T., Seddighin, M., Seddighin,
S., and Yami, H. Fair allocation of indivisible goods:
Beyond additive valuations. Artif. Intell., 303:103633,
2022.

Huang, X. and Lu, P. An algorithmic framework for approx-
imating maximin share allocation of chores. In EC, pp.
630–631. ACM, 2021.

Huang, X. and Segal-Halevi, E. A reduction from chores
allocation to job scheduling. In EC, pp. 908. ACM, 2023.

Kurokawa, D., Procaccia, A. D., and Wang, J. Fair enough:
Guaranteeing approximate maximin shares. J. ACM, 65
(2):8:1–8:27, 2018.

Lenstra, J. K., Shmoys, D. B., and Tardos, É. Approximation
algorithms for scheduling unrelated parallel machines.
Math. Program., 46:259–271, 1990.

Li, B., Li, Y., and Wu, X. Almost (weighted) proportional
allocations for indivisible chores. In WWW, pp. 122–131.
ACM, 2022.

Li, B., Wang, F., and Zhou, Y. Fair allocation of indivisible
chores: Beyond additive costs. In NeurIPS, 2023.

Moulin, H. Fair division in the internet age. Annual Review
of Economics, 11(1):407–441, 2019.

Procaccia, A. D. and Wang, J. Fair enough: guaranteeing
approximate maximin shares. In EC, pp. 675–692. ACM,
2014.

Schuurman, P. and Woeginger, G. J. Polynomial time ap-
proximation algorithms for machine scheduling: Ten
open problems. Journal of Scheduling, 2(5):203–213,
1999.

Seddighin, M. and Seddighin, S. Improved maximin guar-
antees for subadditive and fractionally subadditive fair
allocation problem. Artif. Intell., 327:104049, 2024.

Shchepin, E. V. and Vakhania, N. An optimal rounding gives
a better approximation for scheduling unrelated machines.
Oper. Res. Lett., 33(2):127–133, 2005.

10

Settling the Maximin Share Fairness for Scheduling among Groups of Machines

Uziahu, G. B. and Feige, U. On fair allocation of indivisible
goods to submodular agents. CoRR, abs/2303.12444,
2023.

Wang, F. and Li, B. Fair surveillance assignment problem.
In WWW, pp. 178–186. ACM, 2024.

Wooldridge, M. J. An Introduction to MultiAgent Systems,
Second Edition. Wiley, 2009.

11

