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Abstract

We present LSD-C, a novel method to identify clus-
ters in an unlabeled dataset. Our algorithm first estab-
lishes pairwise connections in the feature space between
the samples of the minibatch based on a similarity met-
ric. Then it regroups in clusters the connected samples
and enforces a linear separation between clusters. This
is achieved by using the pairwise connections as targets
together with a binary cross-entropy loss on the predic-
tions that the associated pairs of samples belong to the
same cluster. This way, the feature representation of the
network will evolve such that similar samples in this fea-
ture space will belong to the same linearly separated cluster.
Our method draws inspiration from recent semi-supervised
learning practice and proposes to combine our clustering
algorithm with self-supervised pretraining and strong data
augmentation. We show that our approach significantly
outperforms competitors on popular public image bench-
marks including CIFAR 10/100, STL 10 and MNIST, as well
as the document classification dataset Reuters 10K. Our
code is available at https://www.dropbox.com/s/
xnczi9ogw0ar87d/lsd-clusters.zip?dl=0.

1. Introduction
The need for large scale labelled datasets is a major obsta-

cle to the applicability of deep learning to problems where
labelled data cannot be easily obtained. Methods such as
clustering, which are unsupervised and thus do not require
any kind of data annotation, are in principle more easily ap-
plicable to new problems. Unfortunately, standard clustering
algorithms [7, 10, 38, 40] usually do not operate effectively
on raw data and require to design new data embeddings
specifically for each new application. Thus, there is a signifi-
cant interest in automatically learning an optimal embedding
while clustering the data, a problem sometimes referred to
as simultaneous data clustering and representation learning.
Recent works have demonstrated this for challenging data
such as images [27, 51] and text [28, 43]. However, most of
these methods work with a constrained output space, which

usually coincides with the space of discrete labels or classes
being estimated, therefore forcing to work at the level of the
semantic of the clusters directly.

In this paper, we relax this limitation by introducing a
novel clustering method, Linearly Separable Deep Clus-
tering (LSD-C). This method operates in the feature space
computed by a deep network and builds on three ideas. First,
the method extracts mini-batches of input samples and estab-
lishes pairwise pseudo labels (connections) for each pair of
sample in the mini-batch. Differently from prior art, this is
done in the space of features computed by the penultimate
layer of the deep network instead of the final output layer,
which maps data to discrete labels. From these pairwise
labels, the method learns to regroup the connected samples
into clusters by using a clustering loss which forces the
clusters to be linearly separable. We empirically show in
section 4.2 that this relaxation already significantly improves
clustering performance.

Second, we initialize the model by means of a self-
supervised representation learning technique. Prior work
has shown that these techniques can produce features with
excellent linear separability [4, 16, 22] that are particularly
useful as initialization for downstream tasks such as semi-
supervised and few-shot learning [14, 41, 54].

Third, we make use of very effective data combination
techniques such as RICAP [48] and MixUp [55] to produce
composite data samples and corresponding pseudo labels,
which are then used at the pairwise comparison stage. In sec-
tion 4 we show that training with such composite samples
and pseudo labels greatly improves the performance of our
method, and is in fact the key to good performance in some
cases.

We comprehensively evaluate our method on popular
image benchmarks including CIFAR 10/100, STL 10 and
MNIST, as well as the document classification dataset
Reuters 10K. Our method consistently outperforms com-
petitors on all datasets, showing promising results. The rest
of the paper is organized as follows. We first review the most
relevant works in section 2. Next, we develop the details of
our proposed method in section 3, followed by the experi-
mental results, ablation studies and analysis in section 4. Our
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code is available at https://www.dropbox.com/s/
xnczi9ogw0ar87d/lsd-clusters.zip?dl=0.

2. Related work
Deep clustering. Clustering has been a long-standing

problem in the machine learning community, including well-
known algorithms such as K-means [38], mean-shift [7],
DBSCAN [10] or Gaussian Mixture models [40]. Fur-
thermore it can also be combined with other techniques
to achieve very diverse tasks like novel category discov-
ery [21, 11] or semantic instance segmentation [9] among
others. With the advances of deep learning, more and more
learning-based methods have been introduced in the litera-
ture [12, 13, 19, 26, 28, 36, 44, 51, 52]). Among them, DEC
[51] is one of the most promising method. It is a two stage
method that jointly learns the feature embedding and cluster
assignment. The model is first pretrained with an autoen-
coder using reconstruction loss, after which the model is
trained by constructing a sharpened version of the soft clus-
ter assignment as pseudo target. This method inspired a few
following works such as IDEC [17] and DCED [18]. JULE
[53] is a recurrent deep clustering framework that jointly
learns the feature representation with an agglomerative clus-
tering procedure, however it requires tuning a number of
hyper-parameters, limiting its practical use. More recently,
several methods have been proposed based on mutual in-
formation [5, 25, 27]. Among them, IIC [27] achieves the
current state-of-the-art results on image clustering by max-
imizing the mutual information between two transformed
counterparts of the same image. Closer to our work is the
DAC [3] method, which considers clustering as a binary
classification problem. By measuring the cosine similarity
between predictions, pairwise pseudo labels are generated
from the most confident positive or negative pairs. With
the generated pairwise pseudo labels, the model can then
be trained by a binary cross-entropy loss. DAC can learn
the feature embedding as well as the cluster assignment in
an end-to-end manner. Our work significantly differs from
DAC as it generates pairwise predictions from a less con-
strained feature space using similarity techniques not limited
to cosine distance.

Self-supervised representation learning. Self-
supervised representation learning has recently attracted
a lot of attention. Many effective self-supervised
learning methods have been proposed in the litera-
ture [1, 2, 4, 15, 16, 22]. DeepCluster [2] learns feature
representation by classification using the pseudo labels
generated from K-means on the learned features in each
training epoch. RotNet [16] randomly rotates an image,
and learns to predict the applied rotations. Very recently,
contrastive learning based methods MoCo [22] and SimCLR
[4] have achieved the state-of-the-art self-supervised
representation performance, surpassing the representation

learnt using ImageNet labels. Self-supervised learning has
been also applied in few-shot learning [14], semi-supervised
learning [41, 54] and novel category discovery [20], which
successfully boosts their performance. In this work we
make use of the provably well-conditioned feature space
learnt from self-supervised learning method to initialize
our network and avoid degenerative cases. Recently, the
concurrent work [50] also explored the effectiveness of
self-supervised learning for clustering, by mining the nearest
neighbors using pretrained self-supervised learning model.
The nearest neighbours are used to train the model for
clustering by enforcing the consistency between predictions
of nearest neighbors. Promising results have been achieved
by this method, which is consistent with our finding
about the effectiveness of self-supervised learning for
clustering. Our paper provides a different view of leveraging
self-supervised representation for clustering and also shows
promising results that are significantly better than previous
approaches. Despite image datasets, we also show that our
method works well on the text categorization dataset.

Pairwise pseudo labeling. Pairwise similarity between
pairs of sample has been widely used in the literature
for dimension reduction or clustering (e.g., t-SNE [37],
FINCH [43]). Several methods have shown the effectiveness
of using pairwise similarity to provide pseudo labels on-the-
fly to train deep convolutional neural networks. In [24], a
binary classifier is trained to provide pairwise pseudo labels
to train a multi-class classifier. In [20], ranking statistics is
used to obtain pairwise pseudo labels on-the-fly for the task
of novel category discovery. In [43], the pairwise connec-
tion between data points by finding the nearest neighbour is
used to cluster images using CNN features. In our method,
we compute pairwise labels from a neural network embed-
ding. This way we generate pseudo labels for each pair in
each mini-batch and learn cluster assignment without any
supervision.

3. Method

Our methods is divided into three stages: (i) self-
supervised pre-training, (ii) pairwise connection and clus-
tering, and (iii) data composition. We provide an overview
of our pipeline in fig. 1. Our method processes each input
data batch x in two steps, by extracting features f = Φ(x) ∈
RN×D by means of a neural network Φ, followed by esti-
mating posterior class probabilities p = Ψ(f) ∈ RN×K by
means of a linear layer Ψ and softmax non-linearity. We use
the symbol p′ = Φ(Ψ(x′)) to denote the class predictions
for the same mini-batch x′ with data augmentation (random
transformations) applied to it. We use the letters D, K and
N to denote the feature space dimension, the number of clus-
ters and the mini-batch size. We now detail each component
of LSD-C.
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Figure 1: Overview of LSD-C. Pairwise labels are extracted at the feature level. They are then used in a clustering loss after
the linear classifier. This way, the feature maps will evolve such that connected samples will be grouped in linearly separated
clusters. The MSE loss acts a regularizer and enforces the consistency of the cluster predictions when data augmentation is
applied.

3.1. Self-supervised pretraining

As noted in the introduction, traditional clustering meth-
ods require handcrafted or pretrained features. More re-
cently, methods such as [27] have combined deep learning
and clustering to learn features and clusters together; even
so, these methods usually still require ad hoc pre-processing
steps (e.g. pre-processing such as Sobel filtering [2, 27])
and extensive hyperparameter tuning. In our method we ad-
dress this issue and avoid bad local minima in our clustering
results by initializing our representation by means of self-
supervised learning. In practice, this amounts to train our
model on a pretext task (detailed in section 4) and then retain
and freeze the earlier layers of the model when applying
our clustering algorithm. As reported in [4, 16], the features
obtained from self-supervised pre-training are linearly sep-
arable with respect to typical semantic image classes. This
property is particularly desirable in our context and also mo-
tivates our major design choice: since the feature space of
self-supervised pre-trained network is linearly separable, it
is therefore easier to directly operate on it to discriminate
between different clusters.

3.2. Pairwise labeling

A key idea in our method is the choice of space where
pairwise the data connections are established: we extract
pairwise labels at the level of the data representation rather
than at the level of the class predictions. The latter is a com-
mon design choice, used in DAC [3] to establish pairwise
connections between data points and in DEC [51] to match
the current label posterior distribution to a sharper version
of itself.

The collection of pairwise labels between samples in a
mini-batch is given by the adjacency matrix A of an undi-

rected graph whose nodes are the samples and whose edges
encode their similarities. DAC [3] generates pseudo labels
by checking if the output of the network is above or under
certain thresholds. The method of [34] proceeds similarly
in the semi-supervised setting. In our method, as we work
instead at the feature space level, the pairwise labeling step
is a separate process from class prediction and we are free
to choose any similarity to establish our adjacency matrix A.
We denote with fi ∈ RD and fj ∈ RD the feature vectors for
samples i and j in a mini-batch, obtained from the penulti-
mate layer of the neural network Φ. We also use the symbol
Aij ∈ {0, 1} to denote the value of the adjacency matrix for
the pair of samples (i, j). Next, we describe the different
types of pairwise connections considered in this work and
summarize them in table 1.

Cosine and L2 similarity. Let τ ∈ R+ be a threshold hy-
perparameter and define Cij = [cos(fj , fi) > τ ] (cosine) or
Cij = [‖fj − fi‖2 < τ ] (Euclidean) where cos denotes the
dot product between L2-normalized vectors. We then define
Aij = 1Cij

where 1 is the indicator function. These defini-
tions connect neighbor samples but do not account well for
the local structure of the data. Indeed, it is not obvious that
the cosine similarity or Euclidean distance would establish
good data connections in feature space.

Symmetric SNE. A possible solution to alleviate the pre-
vious issue is to use the symmetric SNE similarity introduced
in t-SNE [37]. This similarity is based on the conditional
probability pj|i of picking j as neighbor of i under a Gaus-
sian distribution assumption. We make a further assumption
compared to [37] of an equal variance for every sample in
order to speed up the computation of pairwise similarities

3
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and define:

pj|i =
exp(−‖fj − fi‖2/T 2)∑

k 6=i
exp(−‖fk − fi‖2/T 2)

=
exp(−‖fj − fi‖2/T 2)

Zi
,

(1)

Cij =
pj|i + pi|j

2
> τ

⇐⇒
exp(−‖fj − fi‖2/T 2)

H(Zi, Zj)
> τ.

(2)

As shown in equation (1), we introduce a temperature hy-
perparameter T ∈ R+ and we call Zi the partition func-
tion for sample i. Then the associated adjacency matrix in
equation (2) can be written as a function of the L2 distance
between samples and, in the denominator, of the harmonic
mean H of the partition functions. As a result, if sample i or
j has many close neighbours, it will reduce the symmetric
SNE similarity and possibly prevent a connection between
samples i and j. Such a phenomenon is shown on the two
moons toy dataset in fig. 2.

k-nearest neighbors. We also propose a similarity based
on k-nearest neighbours (kNN) [8] where the samples i and
j are connected if i is in the k-nearest neighbours of j or if
j is in the k-nearest neighbours of i. With this similarity, the
hyperparameter is the minimum of neighbours k and not the
threshold τ .

3.3. Clustering loss and data composition

Now that we have established pairwise connections be-
tween each pair of samples in the mini-batch, we will use
the adjacency matrix as target for a binary cross-entropy
loss. Denoting with P (i = j) the probability that samples
i and j belong to the same cluster, we wish to optimize the
clustering loss:

Lclus = −
∑
i,j

Aij logP (i = j)

+ (1−Aij) logP (i 6= j).

(3)

The left term of this loss aims at maximizing the number
of connected samples (i.e. Aij = 1) within a cluster and
the right term at minimizing the number of non-connected
samples within it (namely, the edges of the complement of
the similarity graph 1 − Aij = 1). Hence the second term
prevents the formation of a single, large cluster that would
contain all samples.

The next step is to model P (i = j) by using the linear
classifier predictions of samples i and j. As seen in equation

(4), for a fixed number of clusters K, the probability of sam-
ples i and j belonging to the same cluster can be rewritten as
a sum of probabilities over the possible clusters. For simplic-
ity, we assume that samples i and j are independent. This
way, the pairwise comparison between samples appear only
at the loss level and we can thus use the standard forward
and backward passes of deep neural networks where each
sample is treated independently. By plugging equation (4)
in equation (3) and by replacing pj with p′j to form pair-
wise comparisons between the mini-batch and its augmented
version, we obtain our final clustering loss Lclus:

P (i = j) =

K∑
k=1

P (i = k, j = k)

=

K∑
k=1

P (i = k)P (j = k)

=p>i pj ,

(4)

Lclus = −
∑
i,j

Aij log(p>i p
′
j)

+ (1−Aij) log(1− p>i p
′
j).

(5)

A similar loss is used in [24] but with supervised pairwise
labels to transfer a multi-class classifier across tasks. It
is also reminiscent of DAC [3], but differs from the latter
because the DAC loss does not contain a dot product between
probability vectors but between L2 normalized probability
vectors. Hence DAC optimizes a Bhattacharyya distance
whereas we optimize a standard binary cross-entropy loss.

In practice Lclus can be used in combination with effec-
tive data augmentation techniques such as RICAP [48] and
MixUp [55]. These methods combine the images from the
minibatch and use a weighted combination of the labels
of the original images as new target for the cross-entropy
loss. We denote with σ permutation of the samples in the
minibatch; RICAP and MixUp require 4 and 2 permutations
respectively. RICAP creates a new minibatch of composite
images by patching together random crops from the 4 permu-
tations of the original minibatch, whereas MixUp produces a
new minibatch by taking a linear combination with random
weights from 2 permutations. The new target for a compos-
ite image is then obtained by taking a linear combination
of the labels in the recombined images, weighted by area
proportions in RICAP and the mixing weights in MixUp.
These techniques were proposed for the standard supervised
classification setting, so we adapt them here to clustering. In
order to do so, we propose to perform a pairwise labeling
between the composite images and the raw original images.
Both minibatches of original and composite images are fed
to the network. Then, as illustrated in fig. 3, the pairwise la-
bel between a composite image and a raw image is the linear

4
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Table 1: Pairwise labeling with adjacency matrices Aij = 1Cij based on different similarities. τ is the thresholding
hyperparameter for L2, SNE and Cosine. The number of neighbours k is kNN’s hyperparameter.

L2 dist. SNE Cosine kNN

Cij = ‖fj − fi‖2 < τ
exp(−‖fj−fi‖2/T 2)

H(Zi,Zj)
> τ

f>j fi
‖fj‖‖fi‖ > τ (j ∈ kNN(i)) ∨ (i ∈ kNN(j))

(a) Raw data (b) L2 dist. (c) kNN (d) SNE

Figure 2: Pairwise connections on the two moons toy data. From left to right. We apply our algorithm with different
connection techniques on a toy dataset shown in (a) where each color represents a class. We use the different connections
techniques of table 1 such that there are 650 undirected edges for each similarity. Compared to L2 distance and SNE, kNN
produces neighbourhoods of similar sizes and every sample is connected. SNE captures the local structure of the data: most of
the connections are at the external tails of the moons where there are less points.

combination of the pairwise labels between the components
of both. To sum up, to obtain the pairwise labels between a
minibatch and its composite version we just need to extract
the adjacency matrix A of the minibatch and then do a linear
combination of the adjacency matrix A with the different
column permutations σ:

Lclus = −
∑
σ

∑
i,j

wσAiσ(j) log(p>i p̃j)

+ (1− wσAiσ(j)) log(1− p>i p̃j)

(6)

Regarding the predicted probability of the ‘pure’ image i
and the composite image j being in the same cluster, we take
the dot product between their respective cluster predictions
pi and p̃j .

3.4. Overall loss

The overall loss we optimise is given by

Ltot = Lclus(f ,p,p
′) + Lcons(p,p

′), (7)

where

Lcons =
ω(t)

KN

N∑
i=1

‖pi − p′i‖2, (8)

and ω(t) = λe−5(1−
t
T )2 is the ramp-up function proposed

in [32, 49] with t the current training step, T the ramp-up
length and λ ∈ R+. Lcons is a consistency constraint which
requires the model to produce the same prediction p ≈ p′

for an image and an its augmented version. We use it in

our method in a similar way as semi-supervised learning
techniques [32, 39, 42, 49], i.e. as a regularizer to provide
consistent predictions. This differs significantly from clus-
tering methods like IIC [27] and IMSAT [25] where augmen-
tations are used as a main clustering cue by maximizing the
mutual information between different versions of an image.
Instead, as commonly done in semi-supervised learning, we
use the Mean Squared Error (MSE) between predictions as
the consistency loss.

4. Experiments

Datasets. We conduct experiments on five popular bench-
marks which we use to compare our method against recent
approaches whenever results are available. We use four im-
age datasets and one text dataset to illustrate the versatility of
our approach to different types of data. We use MNIST [33],
CIFAR 10 [30], CIFAR 100-20 [30] and STL 10 [6] as im-
age datasets. All these datasets cover a wide range of image
varieties ranging from 28 × 28 pixels grey scale digits in
MNIST to 96× 96 higher resolution images from STL 10.
CIFAR 100-20 is redesigned from original CIFAR 100 since
we consider only the 20 meta classes for evaluation as com-
mon practice [27]. Finally we also evaluate our method on a
text dataset, Reuters 10K [35]. Reuters 10K contains 10,000
English news labelled with 4 classes. Each news has 2,000
tf-idf features. For all datasets we suppose the number of
classes to be known.

5
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0.5 0.2 0.2

A11= 1 A15= 0 A17= 1 A12= 0

0.1

Figure 3: Illustration for eq. (6) of a pairwise target between the ”pure” image i = 1 and the composite image j with
σ(j) ∈ (1, 5, 7, 2). In this case, the resulting pairwise target equals 0.7.

Experimental details. We use ResNet-18 [23] for all
the datasets except two. For MNIST we use a model
inspired from VGG-4 [45], described in [27] and for
Reuters 10K we consider a simple DNN of dimension
2000–500–500–2000–4 described in [51]. We train with
batch-size of 256 for all experiments. We use SGD optimizer
with momentum [47] and weight decay set to 5× 10−4 for
every dataset except for Reuters 10K where we respectively
use Adam [29] and decay of 2 × 10−3. When comparing
with other methods in table 2 and table 3, we run our method
using 10 different seeds and report average and standard
deviation on each dataset to measure the robustness of our
method with respect to initialization. As it is common prac-
tice [27], we train and test the methods on the whole dataset
(this is acceptable given that the method uses no supervision).
Further experimental details about data augmentation and
training are available in the appendix.

Evaluation metrics. We take the commonly used cluster-
ing accuracy (ACC) as evaluation metric. ACC is defined
as

max
g∈Sym(K)

1

N

N∑
i=1

1 {yi = g (yi)} , (9)

where yi and yi respectively denote the ground-truth class
label and the clustering assignment obtained by our method
for each sample in the dataset. Sym (K) is the group of
permutations withK elements and following other clustering
methods we use the Hungarian algorithm [31] to optimize
the choice of permutation.

4.1. Results on standard benchmarks

We compare our method with the K-means [38] baseline
and recent clustering methods. In table 2, we report re-
sults on image datasets. We use RotNet [16] self-supervised
pre-training for each dataset on all the data available (e.g
including the unlabelled set in STL-10). Our method sig-
nificantly outperforms the others by a large margin. For
example, our method achieves 81.5% on CIFAR 10, while
the previous state-of-the-art method IIC [27] gives 61.7%.
On CIFAR 10, our method also outperforms the leading
semi-supervised learning technique FixMatch [46] which
obtains 64.3% in its one label per class setting. Similarly, on

CIFAR 100-20 and STL 10, our method outperforms other
clustering approaches respectively by 14.7 and 6.8 points.
On MNIST, our method and IIC both achieve a very low
error rate around 1%.

These results clearly show the effectiveness of our ap-
proach. Unlike IIC that requires to apply Sobel filtering and
very large batch size during training, our method does not
require such preprocessing and works with a common batch
size. We also note that our method is robust to different
initialization, with a maximum 3.2% of standard deviation
across all datasets.

To analyse further the results on CIFAR 10, we can look
at the confusion matrix resulting from our model’s predic-
tions.We note that most of the errors are due to the ‘cat’ and
‘dog’ classes being confused. If we retain only the confident
samples with prediction above 0.9 (around 60% of the sam-
ples), the accuracy rises to 94%. We assume that the two
classes ‘cat’ and ‘dog’ are are more difficult to discriminate
due to their visual similarity.

In table 3, we also evaluate our method on the document
classification dataset Reuters 10K to show its versatility.
We compare with different approaches than in table 2 as
clustering methods developed for text are seldom evaluated
on image datasets like CIFAR and vice versa. Following
existing approaches applied to Reuters 10K, we pretrain the
deep neural network by training a denoising autoencoder
on the dataset [28]. Our method works notably better than
the K-means baseline, and is on par with the best results
methods FINCH [43] and VaDE [28]. Most notably one run
of our method established state-of-the-art results of 83.5%,
2 points above the current best model.

4.2. Ablation studies

In order to analyze the effects of the different components
of our method, we conduct a three parts ablation study on
CIFAR 10 and CIFAR 100-20. First, we compare the impact
of different possible pairwise labeling methods in the feature
space. Second, as one of our key contribution is to choose
the space where the pairwise labeling is performed, we test
doing so at the level of features and predictions (i.e. after the
linear classifier but before the softmax layer like DEC [51]
or DAC [3]). Third, we analyse the importance of data
augmentation in clustering raw images. Results are reported
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Table 2: Comparison with other methods. Our method almost constantly reaches state-of-the-art performances by a large
margin. Note that [27] report best results over all the heads while we report results over ten different initializations. This
further shows that our method is overall stable and robust to initialization.

K-means [38] JULE [53] DEC [51] DAC [3] IIC [27] Ours

CIFAR 10 22.9 27.2 30.1 52.2 61.7 81.7 ± 0.9
CIFAR 100-20 13.0 13.7 18.5 23.8 25.7 42.3 ± 1.0
STL 10 19.2 27.7 35.9 47.0 59.6 66.4 ± 3.2
MNIST 57.2 96.4 84.3 97.8 99.2 98.6 ± 0.5

Table 3: Results on Reuters 10K. Our method performs on average on par with state of the art. Note that for the best seed we
reach state-of-the-art results of 83.5%.

K-means [38] IMSAT [25] DEC [51] VaDE [28] FINCH [43] Ours

Reuters 10K 52.4 71.9 72.2 79.8 81.5 79.0 ± 4.3

Table 4: Ablation study. We analyse the effect of different pairwise labeling methods but also the impact of where the labeling
is done (feature vs prediction space). We also show the paramount importance of data augmentation for clustering some
datasets like CIFAR 10.

Pairwise labeling Using the pred. space Data augmentation

L2 Cosine kNN SNE Cosine kNN SNE RICAP MixUp None

CIFAR 10 70.2 81.1 81.7 81.5 63.7 64.7 67.0 81.7 75.3 53.7
CIFAR 100-20 26.1 34.4 42.3 40.4 20.4 32.8 30.4 42.3 37.1 35.4

in table 4 and discussed next.

Pairwise similarity. We compare, in feature space, pair-
wise labeling methods based on L2 distance, cosine similar-
ity, kNN and symmetric SNE as described in table 1. For
kNN, we set the number of neighbors k to 20 and 10 for
CIFAR 10 and CIFAR 100-20 respectively. For the cosine
similarity, we use respectively thresholds 0.9 and 0.95. For
the L2 distance, we ran a grid search between 0 and 2 to find
an optimal threshold. For SNE, we set the threshold to 0.01
and the temperature to 1 and 0.5, for CIFAR 10 and CIFAR
100-20 respectively. Further details about the hyperparam-
eters are available in the supplementary. We observe that
kNN, SNE and cosine similarity perform very well on CI-
FAR 10 with values around 81%. It is interesting to note that
cosine similarity performs noticeably worse than kNN and
SNE on CIFAR 100-20 with around 6 points less. We also
notice that L2 distance performs consistently worse than the
other labeling methods. We can conclude that kNN and SNE
are the best labeling methods empirically with consistent
performance on these two datasets.

Feature space embedding. Instead of using these labeling
methods before the linear classifier, we apply them after it.

In this case, our overall approach becomes more similar
to standard pseudo-labeling methods such as [3, 34, 51],
which aim to match the network predictions output with a
‘sharper’ version of it. We observe that the performance
drops considerably for all labeling methods with an average
decrease of 16.3 points for CIFAR 10 and 10.6 points for
CIFAR 100-20. Hence, this shows empirically that where
pseudo labeling is applied plays a major role in clustering
effectiveness and that labeling at the feature space level is
noticeably better than doing so at the prediction space level.

Data augmentation. We compare RICAP, MixUp, and
the case without data composition (denoted as None). As
can it can be seen in table 4, data composition is crucial
for CIFAR 10 where RICAP and MixUp surpass None by
respectively 28 and 22 points. On CIFAR 100-20, the dif-
ferences are smaller but using data composition still brings
a clear improvement with a 5.1 points increase when using
RICAP. Interestingly, RICAP clearly outperforms MixUp in
both cases.

5. Conclusions

We have proposed a novel deep clustering method, LSD-
C. Our method establishes pairwise connections at the fea-
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ture space level among different data points in a mini-batch.
These on-the-fly pairwise connections are then used as tar-
gets by our loss to regroup samples into clusters. In this
way, our method can effectively learn feature representation
together with the cluster assignment. In addition, we also
combine recent self-supervised representation learning with
our clustering approach to bootstrap the representation be-
fore clustering begins. Finally, we adapt data composition
techniques to the pairwise connections setting, resulting in a
very large performance boost. Our method substantially out-
performs previous approaches in various public benchmarks,
including CIFAR 10/100-20, STL 10, MNIST and Reuters
10K.
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In this supplementary material, we provide our implementation details, the confusion matrices on CIFAR 10 using our
method with kNN labeling and some additional ablation studies. We also include the code to run our method on CIFAR 10
together with the network pretrained with RotNet [3].

1. Implementation details
Self-supervised pretraining. We train the RotNet [3] (i.e. predicting the rotation applied to the image among four

possibilities: 0◦, 90◦, 180◦, and 270◦) on all datasets with the same configuration. Following the authors’ released code, we
train for 200 epochs using a step-wise learning rate starting at 0.1 which is then divided by 5 at epochs 60, 120, and 160.

Main LSD-C models. After the self-supervised pretraining step, following [4] we freeze the first three macro-blocks
of the ResNet-18 [5] as the RotNet training provides robust early filters. We then train the last macro-block and the linear
classifier using our clustering method. For all the experiments, we use a batch size of 256. We summarize in table 1 all the
hyperparameters for the different datasets and labeling methods.

Table 1: Hyperparameters. Optimizer, ramp-up function and parameters of different labeling methods on different datasets.

Optimizer Ramp-up Cosine SNE kNN

Type Epochs LR steps LR init λ T τ τ Temp k

CIFAR 10 SGD 220 [140, 180] 0.1 5 100 0.9 0.01 1.0 20
CIFAR 100-20 SGD 200 170 0.1 25 150 0.95 0.01 0.5 10
STL 10 SGD 200 [140, 180] 0.1 5 50 - 0.01 0.5 -
MNIST SGD 15 - 0.1 5 50 - - - 10
Reuters 10K Adam 75 - 0.001 25 100 - - - 5

Data augmentation techniques. We showed in the main paper that data composition techniques like RICAP [8] and
MixUp [9] are highly beneficial to our method. For RICAP, we follow the authors’ instructions to sample the width and
height of crops for each minibatch permutation by using a Beta(0.3, 0.3) distribution. Regarding MixUp, we note that using a
Beta(0.3, 0.3) distribution for the mixing weight works better in our case than the Beta(1.0, 1.0) advised for CIFAR 10 in the
MixUp paper. Furthermore, we have to decrease the weight decay to 10−4 to make MixUp work.

Miscellaneous. Our method is implemented with PyTorch 1.2.0 [7]. Our experiments were run on NVIDIA Tesla
M40 GPUs and can run on a single GPU with 12 GB of RAM. Inference time for CIFAR10/CIFAR100-20/STL10 are
10.647s/10.453s/5.517s on a single GeForce GTX 1080 Ti GPU.

2. Confusion matrices on CIFAR 10
In fig. 1, we show some confusion matrices on CIFAR 10 to analyse how our clustering method performs on the different

classes. We notice that there are 8 confident clusters with a very high clustering accuracy of 94.0% for confident samples. The
”dog” and ”cat” clusters are not well identified possibly due to a huge intra-class variation of the samples.
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Figure 1: Confusion matrices on CIFAR 10 using our method with kNN labeling. Figure 1a shows that most of the errors
are due to the ”cat” and ”dog” classes. When taking the samples with prediction above 0.9 (60% of the samples) in Figure 1b,
there are less than 2000 predictions on classes ”cat” and ”dog” whereas there are more than 3500 for each of the other classes.
Our method manages to ignore the problematic classes when taking the confident samples. Indeed, the accuracy for confident
samples is 94.0%.

3. Additional experiments
In this section we report results of additional experiments we carried out. In table 2 we evaluate the impact of more

components of our method. For example, we apply K-means [6] on the feature space of the pretrained RotNet model and
we note very poor performance on CIFAR 10 and CIFAR 100-20. We can conclude that before training with our clustering
loss, the desired clusters are not yet separated in the feature space. After training with our clustering loss, the clusters can
be successfully separated. Moreover, if we only use the clustering loss and drop the consistency MSE loss, the performance
decreases on both CIFAR 10 and CIFAR 100-20 by 1.5 and 1.3 points respectively, showing that the MSE provides a moderate
but clear gain to our method. Finally, if we replace the linear classifier by a 2-layer classifier (i.e. this corresponds to a
non-linear separation of clusters in the feature space), it results in a small improvement on CIFAR 10 but a clear decrease of
1.9 points on CIFAR 100-20. Hence using a linear classifier provides more consistent results across datasets.

Table 2: Impact of the different losses. From the first column, we observe that the desired clusters are not yet separated in
the feature space after the RotNet pretraining. The second column shows that the MSE consistency loss provides a boost of
more than 1 point to our method. Finally, we see that using a non-linear classifier harms the performance on CIFAR 100-20.
All methods were trained for one seed only.

K-means + RotNet Ours (kNN) Ours (kNN) w/o MSE Ours (kNN) w/ non-lin.

CIFAR 10 14.3 81.7 80.2 82.0
CIFAR 100-20 9.1 40.5 39.2 38.6

Since we only trained the last macro block and the linear layer of a ResNet-18[5] we test the impact of increasing or
decreasing the number of trainable weights in table 3. Unsurprisingly, training only the last linear layer reaches about the
accuracy of k-means. However we still get reasonable performances by training from the second macro block.

We also study the impact of the self-supervised pretraining method in table 4. We note that our method has less impact when
combined with self-supervised training method that are based on contrastive loss. However we note that the data augmentation
we used was not the one proposed in the original paper. Hence there might be opportunities for improvements by tweaking
hyper parameters or changing the data augmentation.

Finally since our method uses similarity between elements of a batch, we measure the impact of varying batch size in
table 5. We observe different trends in CIFAR-10 and CIFAR100-20. For the former bigger batch sizes are beneficial while
this is the opposite for CIFAR100-20. For batch size of 256 the results are stable however. The divergence is probably caused
by a higher diversity of data in CIFAR100-20 which results in an unstable training signal.
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Table 3: Impact of number of trainable weights. We test the impact of training the network with our clustering method
(SNE) starting from different macro block of ResNet. We report results over two seeds (except #3 which uses 10 seeds). For
fairness, we use the same hyper-parameters for each row.

From macro block #2 #3 #4 (linear layer)

CIFAR 10 53.6±1.4 81.7±0.9 14.7±0.0
CIFAR 100-20 30.6±0.4 42.3±1.0 10.8±0.1

Table 4: Impact of self supervised method. We test the impact of using different self-supervised techniques on CIFAR-10
for one seed (except RotNet which used 10 seeds). All self-supervised method are trained with the same data augmentation.
For fairness, all clustering methods use the same hyper-parameters for each row. We trained parameters starting from the third
macro block of ResNet-18.

RotNet[3] SimCLR[1] MOCO v2[2]

K-means[6] 14.3 59.45 45.48
Ours (SNE) 81.7 43.5 23.7

Table 5: Impact of batch size. We test the impact of training with different batch size on our clustering method (SNE). We
report results over two seeds (except 256 which used 10 seeds). For fairness, we use the same hyper-parameters for each row.

Batch-size 64 128 256 512

CIFAR 10 72.4±1.3 76.9±1.5 81.7±0.9 80.9±1.2
CIFAR 100-20 46.2±0.2 42.2±0.0 42.3±1.0 31.9±1.0
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