
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

LSD-C: Linearly Separable Deep Clusters

Anonymous ICCV submission

Paper ID ****

Abstract

We present LSD-C, a novel method to identify clus-
ters in an unlabeled dataset. Our algorithm first estab-
lishes pairwise connections in the feature space between
the samples of the minibatch based on a similarity met-
ric. Then it regroups in clusters the connected samples
and enforces a linear separation between clusters. This
is achieved by using the pairwise connections as targets
together with a binary cross-entropy loss on the predic-
tions that the associated pairs of samples belong to the
same cluster. This way, the feature representation of the
network will evolve such that similar samples in this fea-
ture space will belong to the same linearly separated cluster.
Our method draws inspiration from recent semi-supervised
learning practice and proposes to combine our clustering
algorithm with self-supervised pretraining and strong data
augmentation. We show that our approach significantly
outperforms competitors on popular public image bench-
marks including CIFAR 10/100, STL 10 and MNIST, as well
as the document classification dataset Reuters 10K. Our
code is available at https://www.dropbox.com/s/
xnczi9ogw0ar87d/lsd-clusters.zip?dl=0.

1. Introduction
The need for large scale labelled datasets is a major obsta-

cle to the applicability of deep learning to problems where
labelled data cannot be easily obtained. Methods such as
clustering, which are unsupervised and thus do not require
any kind of data annotation, are in principle more easily ap-
plicable to new problems. Unfortunately, standard clustering
algorithms [7, 10, 38, 40] usually do not operate effectively
on raw data and require to design new data embeddings
specifically for each new application. Thus, there is a signifi-
cant interest in automatically learning an optimal embedding
while clustering the data, a problem sometimes referred to
as simultaneous data clustering and representation learning.
Recent works have demonstrated this for challenging data
such as images [27, 51] and text [28, 43]. However, most of
these methods work with a constrained output space, which

usually coincides with the space of discrete labels or classes
being estimated, therefore forcing to work at the level of the
semantic of the clusters directly.

In this paper, we relax this limitation by introducing a
novel clustering method, Linearly Separable Deep Clus-
tering (LSD-C). This method operates in the feature space
computed by a deep network and builds on three ideas. First,
the method extracts mini-batches of input samples and estab-
lishes pairwise pseudo labels (connections) for each pair of
sample in the mini-batch. Differently from prior art, this is
done in the space of features computed by the penultimate
layer of the deep network instead of the final output layer,
which maps data to discrete labels. From these pairwise
labels, the method learns to regroup the connected samples
into clusters by using a clustering loss which forces the
clusters to be linearly separable. We empirically show in
section 4.2 that this relaxation already significantly improves
clustering performance.

Second, we initialize the model by means of a self-
supervised representation learning technique. Prior work
has shown that these techniques can produce features with
excellent linear separability [4, 16, 22] that are particularly
useful as initialization for downstream tasks such as semi-
supervised and few-shot learning [14, 41, 54].

Third, we make use of very effective data combination
techniques such as RICAP [48] and MixUp [55] to produce
composite data samples and corresponding pseudo labels,
which are then used at the pairwise comparison stage. In sec-
tion 4 we show that training with such composite samples
and pseudo labels greatly improves the performance of our
method, and is in fact the key to good performance in some
cases.

We comprehensively evaluate our method on popular
image benchmarks including CIFAR 10/100, STL 10 and
MNIST, as well as the document classification dataset
Reuters 10K. Our method consistently outperforms com-
petitors on all datasets, showing promising results. The rest
of the paper is organized as follows. We first review the most
relevant works in section 2. Next, we develop the details of
our proposed method in section 3, followed by the experi-
mental results, ablation studies and analysis in section 4. Our

1

https://www.dropbox.com/s/xnczi9ogw0ar87d/lsd-clusters.zip?dl=0
https://www.dropbox.com/s/xnczi9ogw0ar87d/lsd-clusters.zip?dl=0

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

code is available at https://www.dropbox.com/s/
xnczi9ogw0ar87d/lsd-clusters.zip?dl=0.

2. Related work
Deep clustering. Clustering has been a long-standing

problem in the machine learning community, including well-
known algorithms such as K-means [38], mean-shift [7],
DBSCAN [10] or Gaussian Mixture models [40]. Fur-
thermore it can also be combined with other techniques
to achieve very diverse tasks like novel category discov-
ery [21, 11] or semantic instance segmentation [9] among
others. With the advances of deep learning, more and more
learning-based methods have been introduced in the litera-
ture [12, 13, 19, 26, 28, 36, 44, 51, 52]). Among them, DEC
[51] is one of the most promising method. It is a two stage
method that jointly learns the feature embedding and cluster
assignment. The model is first pretrained with an autoen-
coder using reconstruction loss, after which the model is
trained by constructing a sharpened version of the soft clus-
ter assignment as pseudo target. This method inspired a few
following works such as IDEC [17] and DCED [18]. JULE
[53] is a recurrent deep clustering framework that jointly
learns the feature representation with an agglomerative clus-
tering procedure, however it requires tuning a number of
hyper-parameters, limiting its practical use. More recently,
several methods have been proposed based on mutual in-
formation [5, 25, 27]. Among them, IIC [27] achieves the
current state-of-the-art results on image clustering by max-
imizing the mutual information between two transformed
counterparts of the same image. Closer to our work is the
DAC [3] method, which considers clustering as a binary
classification problem. By measuring the cosine similarity
between predictions, pairwise pseudo labels are generated
from the most confident positive or negative pairs. With
the generated pairwise pseudo labels, the model can then
be trained by a binary cross-entropy loss. DAC can learn
the feature embedding as well as the cluster assignment in
an end-to-end manner. Our work significantly differs from
DAC as it generates pairwise predictions from a less con-
strained feature space using similarity techniques not limited
to cosine distance.

Self-supervised representation learning. Self-
supervised representation learning has recently attracted
a lot of attention. Many effective self-supervised
learning methods have been proposed in the litera-
ture [1, 2, 4, 15, 16, 22]. DeepCluster [2] learns feature
representation by classification using the pseudo labels
generated from K-means on the learned features in each
training epoch. RotNet [16] randomly rotates an image,
and learns to predict the applied rotations. Very recently,
contrastive learning based methods MoCo [22] and SimCLR
[4] have achieved the state-of-the-art self-supervised
representation performance, surpassing the representation

learnt using ImageNet labels. Self-supervised learning has
been also applied in few-shot learning [14], semi-supervised
learning [41, 54] and novel category discovery [20], which
successfully boosts their performance. In this work we
make use of the provably well-conditioned feature space
learnt from self-supervised learning method to initialize
our network and avoid degenerative cases. Recently, the
concurrent work [50] also explored the effectiveness of
self-supervised learning for clustering, by mining the nearest
neighbors using pretrained self-supervised learning model.
The nearest neighbours are used to train the model for
clustering by enforcing the consistency between predictions
of nearest neighbors. Promising results have been achieved
by this method, which is consistent with our finding
about the effectiveness of self-supervised learning for
clustering. Our paper provides a different view of leveraging
self-supervised representation for clustering and also shows
promising results that are significantly better than previous
approaches. Despite image datasets, we also show that our
method works well on the text categorization dataset.

Pairwise pseudo labeling. Pairwise similarity between
pairs of sample has been widely used in the literature
for dimension reduction or clustering (e.g., t-SNE [37],
FINCH [43]). Several methods have shown the effectiveness
of using pairwise similarity to provide pseudo labels on-the-
fly to train deep convolutional neural networks. In [24], a
binary classifier is trained to provide pairwise pseudo labels
to train a multi-class classifier. In [20], ranking statistics is
used to obtain pairwise pseudo labels on-the-fly for the task
of novel category discovery. In [43], the pairwise connec-
tion between data points by finding the nearest neighbour is
used to cluster images using CNN features. In our method,
we compute pairwise labels from a neural network embed-
ding. This way we generate pseudo labels for each pair in
each mini-batch and learn cluster assignment without any
supervision.

3. Method

Our methods is divided into three stages: (i) self-
supervised pre-training, (ii) pairwise connection and clus-
tering, and (iii) data composition. We provide an overview
of our pipeline in fig. 1. Our method processes each input
data batch x in two steps, by extracting features f = Φ(x) ∈
RN×D by means of a neural network Φ, followed by esti-
mating posterior class probabilities p = Ψ(f) ∈ RN×K by
means of a linear layer Ψ and softmax non-linearity. We use
the symbol p′ = Φ(Ψ(x′)) to denote the class predictions
for the same mini-batch x′ with data augmentation (random
transformations) applied to it. We use the letters D, K and
N to denote the feature space dimension, the number of clus-
ters and the mini-batch size. We now detail each component
of LSD-C.

2

https://www.dropbox.com/s/xnczi9ogw0ar87d/lsd-clusters.zip?dl=0
https://www.dropbox.com/s/xnczi9ogw0ar87d/lsd-clusters.zip?dl=0

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ϕ(x)

Linear

Pairwise labeling

Low level
self-supervised

features

Clustering
loss

Features

p1
...

p256

p’1
...

p’256

Predictions

MSE loss

Tr
an

sf
or

m

Figure 1: Overview of LSD-C. Pairwise labels are extracted at the feature level. They are then used in a clustering loss after
the linear classifier. This way, the feature maps will evolve such that connected samples will be grouped in linearly separated
clusters. The MSE loss acts a regularizer and enforces the consistency of the cluster predictions when data augmentation is
applied.

3.1. Self-supervised pretraining

As noted in the introduction, traditional clustering meth-
ods require handcrafted or pretrained features. More re-
cently, methods such as [27] have combined deep learning
and clustering to learn features and clusters together; even
so, these methods usually still require ad hoc pre-processing
steps (e.g. pre-processing such as Sobel filtering [2, 27])
and extensive hyperparameter tuning. In our method we ad-
dress this issue and avoid bad local minima in our clustering
results by initializing our representation by means of self-
supervised learning. In practice, this amounts to train our
model on a pretext task (detailed in section 4) and then retain
and freeze the earlier layers of the model when applying
our clustering algorithm. As reported in [4, 16], the features
obtained from self-supervised pre-training are linearly sep-
arable with respect to typical semantic image classes. This
property is particularly desirable in our context and also mo-
tivates our major design choice: since the feature space of
self-supervised pre-trained network is linearly separable, it
is therefore easier to directly operate on it to discriminate
between different clusters.

3.2. Pairwise labeling

A key idea in our method is the choice of space where
pairwise the data connections are established: we extract
pairwise labels at the level of the data representation rather
than at the level of the class predictions. The latter is a com-
mon design choice, used in DAC [3] to establish pairwise
connections between data points and in DEC [51] to match
the current label posterior distribution to a sharper version
of itself.

The collection of pairwise labels between samples in a
mini-batch is given by the adjacency matrix A of an undi-

rected graph whose nodes are the samples and whose edges
encode their similarities. DAC [3] generates pseudo labels
by checking if the output of the network is above or under
certain thresholds. The method of [34] proceeds similarly
in the semi-supervised setting. In our method, as we work
instead at the feature space level, the pairwise labeling step
is a separate process from class prediction and we are free
to choose any similarity to establish our adjacency matrix A.
We denote with fi ∈ RD and fj ∈ RD the feature vectors for
samples i and j in a mini-batch, obtained from the penulti-
mate layer of the neural network Φ. We also use the symbol
Aij ∈ {0, 1} to denote the value of the adjacency matrix for
the pair of samples (i, j). Next, we describe the different
types of pairwise connections considered in this work and
summarize them in table 1.

Cosine and L2 similarity. Let τ ∈ R+ be a threshold hy-
perparameter and define Cij = [cos(fj , fi) > τ] (cosine) or
Cij = [‖fj − fi‖2 < τ] (Euclidean) where cos denotes the
dot product between L2-normalized vectors. We then define
Aij = 1Cij

where 1 is the indicator function. These defini-
tions connect neighbor samples but do not account well for
the local structure of the data. Indeed, it is not obvious that
the cosine similarity or Euclidean distance would establish
good data connections in feature space.

Symmetric SNE. A possible solution to alleviate the pre-
vious issue is to use the symmetric SNE similarity introduced
in t-SNE [37]. This similarity is based on the conditional
probability pj|i of picking j as neighbor of i under a Gaus-
sian distribution assumption. We make a further assumption
compared to [37] of an equal variance for every sample in
order to speed up the computation of pairwise similarities

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

and define:

pj|i =
exp(−‖fj − fi‖2/T 2)∑

k 6=i
exp(−‖fk − fi‖2/T 2)

=
exp(−‖fj − fi‖2/T 2)

Zi
,

(1)

Cij =
pj|i + pi|j

2
> τ

⇐⇒
exp(−‖fj − fi‖2/T 2)

H(Zi, Zj)
> τ.

(2)

As shown in equation (1), we introduce a temperature hy-
perparameter T ∈ R+ and we call Zi the partition func-
tion for sample i. Then the associated adjacency matrix in
equation (2) can be written as a function of the L2 distance
between samples and, in the denominator, of the harmonic
mean H of the partition functions. As a result, if sample i or
j has many close neighbours, it will reduce the symmetric
SNE similarity and possibly prevent a connection between
samples i and j. Such a phenomenon is shown on the two
moons toy dataset in fig. 2.

k-nearest neighbors. We also propose a similarity based
on k-nearest neighbours (kNN) [8] where the samples i and
j are connected if i is in the k-nearest neighbours of j or if
j is in the k-nearest neighbours of i. With this similarity, the
hyperparameter is the minimum of neighbours k and not the
threshold τ .

3.3. Clustering loss and data composition

Now that we have established pairwise connections be-
tween each pair of samples in the mini-batch, we will use
the adjacency matrix as target for a binary cross-entropy
loss. Denoting with P (i = j) the probability that samples
i and j belong to the same cluster, we wish to optimize the
clustering loss:

Lclus = −
∑
i,j

Aij logP (i = j)

+ (1−Aij) logP (i 6= j).

(3)

The left term of this loss aims at maximizing the number
of connected samples (i.e. Aij = 1) within a cluster and
the right term at minimizing the number of non-connected
samples within it (namely, the edges of the complement of
the similarity graph 1 − Aij = 1). Hence the second term
prevents the formation of a single, large cluster that would
contain all samples.

The next step is to model P (i = j) by using the linear
classifier predictions of samples i and j. As seen in equation

(4), for a fixed number of clusters K, the probability of sam-
ples i and j belonging to the same cluster can be rewritten as
a sum of probabilities over the possible clusters. For simplic-
ity, we assume that samples i and j are independent. This
way, the pairwise comparison between samples appear only
at the loss level and we can thus use the standard forward
and backward passes of deep neural networks where each
sample is treated independently. By plugging equation (4)
in equation (3) and by replacing pj with p′j to form pair-
wise comparisons between the mini-batch and its augmented
version, we obtain our final clustering loss Lclus:

P (i = j) =

K∑
k=1

P (i = k, j = k)

=

K∑
k=1

P (i = k)P (j = k)

=p>i pj ,

(4)

Lclus = −
∑
i,j

Aij log(p>i p
′
j)

+ (1−Aij) log(1− p>i p
′
j).

(5)

A similar loss is used in [24] but with supervised pairwise
labels to transfer a multi-class classifier across tasks. It
is also reminiscent of DAC [3], but differs from the latter
because the DAC loss does not contain a dot product between
probability vectors but between L2 normalized probability
vectors. Hence DAC optimizes a Bhattacharyya distance
whereas we optimize a standard binary cross-entropy loss.

In practice Lclus can be used in combination with effec-
tive data augmentation techniques such as RICAP [48] and
MixUp [55]. These methods combine the images from the
minibatch and use a weighted combination of the labels
of the original images as new target for the cross-entropy
loss. We denote with σ permutation of the samples in the
minibatch; RICAP and MixUp require 4 and 2 permutations
respectively. RICAP creates a new minibatch of composite
images by patching together random crops from the 4 permu-
tations of the original minibatch, whereas MixUp produces a
new minibatch by taking a linear combination with random
weights from 2 permutations. The new target for a compos-
ite image is then obtained by taking a linear combination
of the labels in the recombined images, weighted by area
proportions in RICAP and the mixing weights in MixUp.
These techniques were proposed for the standard supervised
classification setting, so we adapt them here to clustering. In
order to do so, we propose to perform a pairwise labeling
between the composite images and the raw original images.
Both minibatches of original and composite images are fed
to the network. Then, as illustrated in fig. 3, the pairwise la-
bel between a composite image and a raw image is the linear

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1: Pairwise labeling with adjacency matrices Aij = 1Cij based on different similarities. τ is the thresholding
hyperparameter for L2, SNE and Cosine. The number of neighbours k is kNN’s hyperparameter.

L2 dist. SNE Cosine kNN

Cij = ‖fj − fi‖2 < τ
exp(−‖fj−fi‖2/T 2)

H(Zi,Zj)
> τ

f>j fi
‖fj‖‖fi‖ > τ (j ∈ kNN(i)) ∨ (i ∈ kNN(j))

(a) Raw data (b) L2 dist. (c) kNN (d) SNE

Figure 2: Pairwise connections on the two moons toy data. From left to right. We apply our algorithm with different
connection techniques on a toy dataset shown in (a) where each color represents a class. We use the different connections
techniques of table 1 such that there are 650 undirected edges for each similarity. Compared to L2 distance and SNE, kNN
produces neighbourhoods of similar sizes and every sample is connected. SNE captures the local structure of the data: most of
the connections are at the external tails of the moons where there are less points.

combination of the pairwise labels between the components
of both. To sum up, to obtain the pairwise labels between a
minibatch and its composite version we just need to extract
the adjacency matrix A of the minibatch and then do a linear
combination of the adjacency matrix A with the different
column permutations σ:

Lclus = −
∑
σ

∑
i,j

wσAiσ(j) log(p>i p̃j)

+ (1− wσAiσ(j)) log(1− p>i p̃j)

(6)

Regarding the predicted probability of the ‘pure’ image i
and the composite image j being in the same cluster, we take
the dot product between their respective cluster predictions
pi and p̃j .

3.4. Overall loss

The overall loss we optimise is given by

Ltot = Lclus(f ,p,p
′) + Lcons(p,p

′), (7)

where

Lcons =
ω(t)

KN

N∑
i=1

‖pi − p′i‖2, (8)

and ω(t) = λe−5(1−
t
T)2 is the ramp-up function proposed

in [32, 49] with t the current training step, T the ramp-up
length and λ ∈ R+. Lcons is a consistency constraint which
requires the model to produce the same prediction p ≈ p′

for an image and an its augmented version. We use it in

our method in a similar way as semi-supervised learning
techniques [32, 39, 42, 49], i.e. as a regularizer to provide
consistent predictions. This differs significantly from clus-
tering methods like IIC [27] and IMSAT [25] where augmen-
tations are used as a main clustering cue by maximizing the
mutual information between different versions of an image.
Instead, as commonly done in semi-supervised learning, we
use the Mean Squared Error (MSE) between predictions as
the consistency loss.

4. Experiments

Datasets. We conduct experiments on five popular bench-
marks which we use to compare our method against recent
approaches whenever results are available. We use four im-
age datasets and one text dataset to illustrate the versatility of
our approach to different types of data. We use MNIST [33],
CIFAR 10 [30], CIFAR 100-20 [30] and STL 10 [6] as im-
age datasets. All these datasets cover a wide range of image
varieties ranging from 28 × 28 pixels grey scale digits in
MNIST to 96× 96 higher resolution images from STL 10.
CIFAR 100-20 is redesigned from original CIFAR 100 since
we consider only the 20 meta classes for evaluation as com-
mon practice [27]. Finally we also evaluate our method on a
text dataset, Reuters 10K [35]. Reuters 10K contains 10,000
English news labelled with 4 classes. Each news has 2,000
tf-idf features. For all datasets we suppose the number of
classes to be known.

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0.5 0.2 0.2

A11= 1 A15= 0 A17= 1 A12= 0

0.1

Figure 3: Illustration for eq. (6) of a pairwise target between the ”pure” image i = 1 and the composite image j with
σ(j) ∈ (1, 5, 7, 2). In this case, the resulting pairwise target equals 0.7.

Experimental details. We use ResNet-18 [23] for all
the datasets except two. For MNIST we use a model
inspired from VGG-4 [45], described in [27] and for
Reuters 10K we consider a simple DNN of dimension
2000–500–500–2000–4 described in [51]. We train with
batch-size of 256 for all experiments. We use SGD optimizer
with momentum [47] and weight decay set to 5× 10−4 for
every dataset except for Reuters 10K where we respectively
use Adam [29] and decay of 2 × 10−3. When comparing
with other methods in table 2 and table 3, we run our method
using 10 different seeds and report average and standard
deviation on each dataset to measure the robustness of our
method with respect to initialization. As it is common prac-
tice [27], we train and test the methods on the whole dataset
(this is acceptable given that the method uses no supervision).
Further experimental details about data augmentation and
training are available in the appendix.

Evaluation metrics. We take the commonly used cluster-
ing accuracy (ACC) as evaluation metric. ACC is defined
as

max
g∈Sym(K)

1

N

N∑
i=1

1 {yi = g (yi)} , (9)

where yi and yi respectively denote the ground-truth class
label and the clustering assignment obtained by our method
for each sample in the dataset. Sym (K) is the group of
permutations withK elements and following other clustering
methods we use the Hungarian algorithm [31] to optimize
the choice of permutation.

4.1. Results on standard benchmarks

We compare our method with the K-means [38] baseline
and recent clustering methods. In table 2, we report re-
sults on image datasets. We use RotNet [16] self-supervised
pre-training for each dataset on all the data available (e.g
including the unlabelled set in STL-10). Our method sig-
nificantly outperforms the others by a large margin. For
example, our method achieves 81.5% on CIFAR 10, while
the previous state-of-the-art method IIC [27] gives 61.7%.
On CIFAR 10, our method also outperforms the leading
semi-supervised learning technique FixMatch [46] which
obtains 64.3% in its one label per class setting. Similarly, on

CIFAR 100-20 and STL 10, our method outperforms other
clustering approaches respectively by 14.7 and 6.8 points.
On MNIST, our method and IIC both achieve a very low
error rate around 1%.

These results clearly show the effectiveness of our ap-
proach. Unlike IIC that requires to apply Sobel filtering and
very large batch size during training, our method does not
require such preprocessing and works with a common batch
size. We also note that our method is robust to different
initialization, with a maximum 3.2% of standard deviation
across all datasets.

To analyse further the results on CIFAR 10, we can look
at the confusion matrix resulting from our model’s predic-
tions.We note that most of the errors are due to the ‘cat’ and
‘dog’ classes being confused. If we retain only the confident
samples with prediction above 0.9 (around 60% of the sam-
ples), the accuracy rises to 94%. We assume that the two
classes ‘cat’ and ‘dog’ are are more difficult to discriminate
due to their visual similarity.

In table 3, we also evaluate our method on the document
classification dataset Reuters 10K to show its versatility.
We compare with different approaches than in table 2 as
clustering methods developed for text are seldom evaluated
on image datasets like CIFAR and vice versa. Following
existing approaches applied to Reuters 10K, we pretrain the
deep neural network by training a denoising autoencoder
on the dataset [28]. Our method works notably better than
the K-means baseline, and is on par with the best results
methods FINCH [43] and VaDE [28]. Most notably one run
of our method established state-of-the-art results of 83.5%,
2 points above the current best model.

4.2. Ablation studies

In order to analyze the effects of the different components
of our method, we conduct a three parts ablation study on
CIFAR 10 and CIFAR 100-20. First, we compare the impact
of different possible pairwise labeling methods in the feature
space. Second, as one of our key contribution is to choose
the space where the pairwise labeling is performed, we test
doing so at the level of features and predictions (i.e. after the
linear classifier but before the softmax layer like DEC [51]
or DAC [3]). Third, we analyse the importance of data
augmentation in clustering raw images. Results are reported

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2: Comparison with other methods. Our method almost constantly reaches state-of-the-art performances by a large
margin. Note that [27] report best results over all the heads while we report results over ten different initializations. This
further shows that our method is overall stable and robust to initialization.

K-means [38] JULE [53] DEC [51] DAC [3] IIC [27] Ours

CIFAR 10 22.9 27.2 30.1 52.2 61.7 81.7 ± 0.9
CIFAR 100-20 13.0 13.7 18.5 23.8 25.7 42.3 ± 1.0
STL 10 19.2 27.7 35.9 47.0 59.6 66.4 ± 3.2
MNIST 57.2 96.4 84.3 97.8 99.2 98.6 ± 0.5

Table 3: Results on Reuters 10K. Our method performs on average on par with state of the art. Note that for the best seed we
reach state-of-the-art results of 83.5%.

K-means [38] IMSAT [25] DEC [51] VaDE [28] FINCH [43] Ours

Reuters 10K 52.4 71.9 72.2 79.8 81.5 79.0 ± 4.3

Table 4: Ablation study. We analyse the effect of different pairwise labeling methods but also the impact of where the labeling
is done (feature vs prediction space). We also show the paramount importance of data augmentation for clustering some
datasets like CIFAR 10.

Pairwise labeling Using the pred. space Data augmentation

L2 Cosine kNN SNE Cosine kNN SNE RICAP MixUp None

CIFAR 10 70.2 81.1 81.7 81.5 63.7 64.7 67.0 81.7 75.3 53.7
CIFAR 100-20 26.1 34.4 42.3 40.4 20.4 32.8 30.4 42.3 37.1 35.4

in table 4 and discussed next.

Pairwise similarity. We compare, in feature space, pair-
wise labeling methods based on L2 distance, cosine similar-
ity, kNN and symmetric SNE as described in table 1. For
kNN, we set the number of neighbors k to 20 and 10 for
CIFAR 10 and CIFAR 100-20 respectively. For the cosine
similarity, we use respectively thresholds 0.9 and 0.95. For
the L2 distance, we ran a grid search between 0 and 2 to find
an optimal threshold. For SNE, we set the threshold to 0.01
and the temperature to 1 and 0.5, for CIFAR 10 and CIFAR
100-20 respectively. Further details about the hyperparam-
eters are available in the supplementary. We observe that
kNN, SNE and cosine similarity perform very well on CI-
FAR 10 with values around 81%. It is interesting to note that
cosine similarity performs noticeably worse than kNN and
SNE on CIFAR 100-20 with around 6 points less. We also
notice that L2 distance performs consistently worse than the
other labeling methods. We can conclude that kNN and SNE
are the best labeling methods empirically with consistent
performance on these two datasets.

Feature space embedding. Instead of using these labeling
methods before the linear classifier, we apply them after it.

In this case, our overall approach becomes more similar
to standard pseudo-labeling methods such as [3, 34, 51],
which aim to match the network predictions output with a
‘sharper’ version of it. We observe that the performance
drops considerably for all labeling methods with an average
decrease of 16.3 points for CIFAR 10 and 10.6 points for
CIFAR 100-20. Hence, this shows empirically that where
pseudo labeling is applied plays a major role in clustering
effectiveness and that labeling at the feature space level is
noticeably better than doing so at the prediction space level.

Data augmentation. We compare RICAP, MixUp, and
the case without data composition (denoted as None). As
can it can be seen in table 4, data composition is crucial
for CIFAR 10 where RICAP and MixUp surpass None by
respectively 28 and 22 points. On CIFAR 100-20, the dif-
ferences are smaller but using data composition still brings
a clear improvement with a 5.1 points increase when using
RICAP. Interestingly, RICAP clearly outperforms MixUp in
both cases.

5. Conclusions

We have proposed a novel deep clustering method, LSD-
C. Our method establishes pairwise connections at the fea-

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ture space level among different data points in a mini-batch.
These on-the-fly pairwise connections are then used as tar-
gets by our loss to regroup samples into clusters. In this
way, our method can effectively learn feature representation
together with the cluster assignment. In addition, we also
combine recent self-supervised representation learning with
our clustering approach to bootstrap the representation be-
fore clustering begins. Finally, we adapt data composition
techniques to the pairwise connections setting, resulting in a
very large performance boost. Our method substantially out-
performs previous approaches in various public benchmarks,
including CIFAR 10/100-20, STL 10, MNIST and Reuters
10K.

References
[1] Yuki Markus Asano, Christian Rupprecht, and Andrea

Vedaldi. Self-labelling via simultaneous clustering and repre-
sentation learning. In Proc. ICLR, 2019. 2

[2] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning of
visual features. In Proc. ECCV, 2018. 2, 3

[3] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming
Xiang, and Chunhong Pan. Deep adaptive image clustering.
In Proc. ICCV, 2017. 2, 3, 4, 6, 7

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. arXiv, 2020. 1, 2, 3

[5] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-
resentation learning by information maximizing generative
adversarial nets. In Proc. NIPS, 2016. 2

[6] Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011. 5

[7] Dorin Comaniciu and Peter Meer. Mean shift: A robust
approach toward feature space analysis. PAMI, 1979. 1, 2

[8] Thomas Cover and Peter Hart. Nearest neighbor pattern
classification. IEEE transactions on information theory, 1967.
4

[9] Bert De Brabandere, Davy Neven, and Luc Van Gool. Seman-
tic instance segmentation with a discriminative loss function.
arXiv, 2017. 2

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, 1996. 1, 2

[11] Dario Fontanel, Fabio Cermelli, Massimiliano Mancini,
Samuel Rota Bulò, Elisa Ricci, and Barbara Caputo. Boosting
deep open world recognition by clustering. arXiv, 2020. 2

[12] Aude Genevay, Gabriel Dulac-Arnold, and Jean-Philippe Vert.
Differentiable deep clustering with cluster size constraints.
arXiv, 2019. 2

[13] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng,
Weidong Cai, and Heng Huang. Deep clustering via joint
convolutional autoencoder embedding and relative entropy
minimization. In Proc. ICCV, 2017. 2

[14] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick
Pérez, and Matthieu Cord. Boosting few-shot visual learning
with self-supervision. In Proc. ICCV, 2019. 1, 2

[15] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick
Pérez, and Matthieu Cord. Learning representations by pre-
dicting bags of visual words. arXiv, 2020. 2

[16] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-
pervised representation learning by predicting image rotations.
In Proc. ICLR, 2018. 1, 2, 3, 6

[17] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Im-
proved deep embedded clustering with local structure preser-
vation. In IJCAI, 2017. 2

[18] Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep
clustering with convolutional autoencoders. In International
conference on neural information processing, 2017. 2

[19] Philip Haeusser, Johannes Plapp, Vladimir Golkov, Elie Al-
jalbout, and Daniel Cremers. Associative deep clustering:
Training a classification network with no labels. In German
Conference on Pattern Recognition, 2018. 2

[20] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, An-
drea Vedaldi, and Andrew Zisserman. Automatically discover-
ing and learning new visual categories with ranking statistics.
In Proc. ICLR, 2020. 2

[21] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning
to discover novel visual categories via deep transfer clustering.
In Proc. ICCV, 2019. 2

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. arXiv, 2019. 1, 2

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. CVPR,
2016. 6

[24] Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom,
and Zsolt Kira. Multi-class classification without multi-class
labels. In Proc. ICLR, 2019. 2, 4

[25] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto,
and Masashi Sugiyama. Learning discrete representations via
information maximizing self-augmented training. In Proc.
ICML, 2017. 2, 5, 7

[26] Gabriel Huang, Hugo Larochelle, and Simon Lacoste-Julien.
Centroid networks for few-shot clustering and unsupervised
few-shot classification. arXiv, 2019. 2

[27] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant
information clustering for unsupervised image classification
and segmentation. In Proc. ICCV, 2019. 1, 2, 3, 5, 6, 7

[28] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and
Hanning Zhou. Variational deep embedding: An unsupervised
and generative approach to clustering. arXiv, 2016. 1, 2, 6, 7

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. ICLR, 2014. 6

[30] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, 2009. 5

[31] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 1955. 6

[32] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In Proc. ICLR, 2017. 5

8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 1998. 5

[34] Dong-Hyun Lee. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In Workshop on challenges in representation learning, ICML,
2013. 3, 7

[35] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li.
Rcv1: A new benchmark collection for text categorization
research. Journal of machine learning research, 2004. 5

[36] Fengfu Li, Hong Qiao, and Bo Zhang. Discriminatively
boosted image clustering with fully convolutional auto-
encoders. Pattern Recognition, 83:161–173, 2018. 2

[37] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 2008.
2, 3

[38] James MacQueen et al. Some methods for classification
and analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA,
1967. 1, 2, 6, 7

[39] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin
Ishii. Virtual adversarial training: a regularization method for
supervised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence, 2018. 5

[40] Karl Pearson. Contributions to the mathematical theory of
evolution. Philosophical Transactions of the Royal Society of
London Series A, 1894. 1, 2

[41] Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Kai Han, An-
drea Vedaldi, and Andrew Zisserman. Semi-supervised learn-
ing with scarce annotations. In Proc. CVPR Workshop, 2020.
1, 2

[42] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Reg-
ularization with stochastic transformations and perturbations
for deep semi-supervised learning. In Advances in neural
information processing systems, 2016. 5

[43] Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Effi-
cient parameter-free clustering using first neighbor relations.
In Proc. CVPR, 2019. 1, 2, 6, 7

[44] Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen
Basri, and Yuval Kluger. Spectralnet: Spectral clustering
using deep neural networks. In Proc. ICLR, 2018. 2

[45] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv,
2014. 6

[46] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. arXiv, 2020. 6

[47] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In Proc. ICML, 2013. 6

[48] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Ri-
cap: Random image cropping and patching data augmentation
for deep cnns. In Asian Conference on Machine Learning,
2018. 1, 4

[49] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Proc. NIPS, 2017.
5

[50] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Geor-
goulis, Marc Proesmans, and Luc Van Gool. Scan: Learn-
ing to classify images without labels. In arXiv preprint
arXiv:2005.12320, 2020. 2

[51] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In Proc. ICML, 2016.
1, 2, 3, 6, 7

[52] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi
Hong. Towards k-means-friendly spaces: Simultaneous deep
learning and clustering. In Proc. ICML. JMLR. org, 2017. 2

[53] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-
vised learning of deep representations and image clusters. In
Proc. CVPR, 2016. 2, 7

[54] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lu-
cas Beyer. S4l: Self-supervised semi-supervised learning. In
Proc. ICCV, 2019. 1, 2

[55] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David
Lopez-Paz. mixup: Beyond empirical risk minimization.
arXiv, 2017. 1, 4

9

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

LSD-C: Linearly Separable Deep Clusters
–Supplementary Material–

Anonymous ICCV submission

Paper ID ****

In this supplementary material, we provide our implementation details, the confusion matrices on CIFAR 10 using our
method with kNN labeling and some additional ablation studies. We also include the code to run our method on CIFAR 10
together with the network pretrained with RotNet [3].

1. Implementation details
Self-supervised pretraining. We train the RotNet [3] (i.e. predicting the rotation applied to the image among four

possibilities: 0◦, 90◦, 180◦, and 270◦) on all datasets with the same configuration. Following the authors’ released code, we
train for 200 epochs using a step-wise learning rate starting at 0.1 which is then divided by 5 at epochs 60, 120, and 160.

Main LSD-C models. After the self-supervised pretraining step, following [4] we freeze the first three macro-blocks
of the ResNet-18 [5] as the RotNet training provides robust early filters. We then train the last macro-block and the linear
classifier using our clustering method. For all the experiments, we use a batch size of 256. We summarize in table 1 all the
hyperparameters for the different datasets and labeling methods.

Table 1: Hyperparameters. Optimizer, ramp-up function and parameters of different labeling methods on different datasets.

Optimizer Ramp-up Cosine SNE kNN

Type Epochs LR steps LR init λ T τ τ Temp k

CIFAR 10 SGD 220 [140, 180] 0.1 5 100 0.9 0.01 1.0 20
CIFAR 100-20 SGD 200 170 0.1 25 150 0.95 0.01 0.5 10
STL 10 SGD 200 [140, 180] 0.1 5 50 - 0.01 0.5 -
MNIST SGD 15 - 0.1 5 50 - - - 10
Reuters 10K Adam 75 - 0.001 25 100 - - - 5

Data augmentation techniques. We showed in the main paper that data composition techniques like RICAP [8] and
MixUp [9] are highly beneficial to our method. For RICAP, we follow the authors’ instructions to sample the width and
height of crops for each minibatch permutation by using a Beta(0.3, 0.3) distribution. Regarding MixUp, we note that using a
Beta(0.3, 0.3) distribution for the mixing weight works better in our case than the Beta(1.0, 1.0) advised for CIFAR 10 in the
MixUp paper. Furthermore, we have to decrease the weight decay to 10−4 to make MixUp work.

Miscellaneous. Our method is implemented with PyTorch 1.2.0 [7]. Our experiments were run on NVIDIA Tesla
M40 GPUs and can run on a single GPU with 12 GB of RAM. Inference time for CIFAR10/CIFAR100-20/STL10 are
10.647s/10.453s/5.517s on a single GeForce GTX 1080 Ti GPU.

2. Confusion matrices on CIFAR 10
In fig. 1, we show some confusion matrices on CIFAR 10 to analyse how our clustering method performs on the different

classes. We notice that there are 8 confident clusters with a very high clustering accuracy of 94.0% for confident samples. The
”dog” and ”cat” clusters are not well identified possibly due to a huge intra-class variation of the samples.

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Predicted label

plane

auto

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

 la
be

l
5544 44 65 38 16 19 14 13 156 91

23 5796 2 7 1 3 3 0 29 136

208 1 4524 120 846 129 115 33 17 7

24 4 149 2945 130 2552 139 32 15 10

19 0 109 158 5219 267 67 155 5 1

9 2 74 2203 178 3233 25 274 2 0

18 0 106 77 25 31 5732 1 10 0

16 1 33 934 101 292 2 4614 2 5

75 60 12 8 8 4 5 1 5786 41

81 207 12 15 4 1 9 4 48 5619
0

1000

2000

3000

4000

5000

(a) All samples

Predicted label

plane

auto

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

 la
be

l

3756 0 11 1 0 0 0 1 16 0

1 3978 0 0 0 0 0 0 0 8

98 0 3758 2 375 14 25 3 0 0

1 0 17 342 14 955 15 1 0 0

0 0 6 0 3571 19 5 10 0 0

0 0 4 182 18 1460 0 52 0 0

1 0 20 1 1 0 4912 0 1 0

0 0 5 215 7 28 0 3983 0 0

1 1 1 0 1 0 0 0 4566 0

9 9 3 0 0 0 1 0 2 3452
0

1000

2000

3000

4000

(b) Confident samples

Figure 1: Confusion matrices on CIFAR 10 using our method with kNN labeling. Figure 1a shows that most of the errors
are due to the ”cat” and ”dog” classes. When taking the samples with prediction above 0.9 (60% of the samples) in Figure 1b,
there are less than 2000 predictions on classes ”cat” and ”dog” whereas there are more than 3500 for each of the other classes.
Our method manages to ignore the problematic classes when taking the confident samples. Indeed, the accuracy for confident
samples is 94.0%.

3. Additional experiments
In this section we report results of additional experiments we carried out. In table 2 we evaluate the impact of more

components of our method. For example, we apply K-means [6] on the feature space of the pretrained RotNet model and
we note very poor performance on CIFAR 10 and CIFAR 100-20. We can conclude that before training with our clustering
loss, the desired clusters are not yet separated in the feature space. After training with our clustering loss, the clusters can
be successfully separated. Moreover, if we only use the clustering loss and drop the consistency MSE loss, the performance
decreases on both CIFAR 10 and CIFAR 100-20 by 1.5 and 1.3 points respectively, showing that the MSE provides a moderate
but clear gain to our method. Finally, if we replace the linear classifier by a 2-layer classifier (i.e. this corresponds to a
non-linear separation of clusters in the feature space), it results in a small improvement on CIFAR 10 but a clear decrease of
1.9 points on CIFAR 100-20. Hence using a linear classifier provides more consistent results across datasets.

Table 2: Impact of the different losses. From the first column, we observe that the desired clusters are not yet separated in
the feature space after the RotNet pretraining. The second column shows that the MSE consistency loss provides a boost of
more than 1 point to our method. Finally, we see that using a non-linear classifier harms the performance on CIFAR 100-20.
All methods were trained for one seed only.

K-means + RotNet Ours (kNN) Ours (kNN) w/o MSE Ours (kNN) w/ non-lin.

CIFAR 10 14.3 81.7 80.2 82.0
CIFAR 100-20 9.1 40.5 39.2 38.6

Since we only trained the last macro block and the linear layer of a ResNet-18[5] we test the impact of increasing or
decreasing the number of trainable weights in table 3. Unsurprisingly, training only the last linear layer reaches about the
accuracy of k-means. However we still get reasonable performances by training from the second macro block.

We also study the impact of the self-supervised pretraining method in table 4. We note that our method has less impact when
combined with self-supervised training method that are based on contrastive loss. However we note that the data augmentation
we used was not the one proposed in the original paper. Hence there might be opportunities for improvements by tweaking
hyper parameters or changing the data augmentation.

Finally since our method uses similarity between elements of a batch, we measure the impact of varying batch size in
table 5. We observe different trends in CIFAR-10 and CIFAR100-20. For the former bigger batch sizes are beneficial while
this is the opposite for CIFAR100-20. For batch size of 256 the results are stable however. The divergence is probably caused
by a higher diversity of data in CIFAR100-20 which results in an unstable training signal.

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3: Impact of number of trainable weights. We test the impact of training the network with our clustering method
(SNE) starting from different macro block of ResNet. We report results over two seeds (except #3 which uses 10 seeds). For
fairness, we use the same hyper-parameters for each row.

From macro block #2 #3 #4 (linear layer)

CIFAR 10 53.6±1.4 81.7±0.9 14.7±0.0
CIFAR 100-20 30.6±0.4 42.3±1.0 10.8±0.1

Table 4: Impact of self supervised method. We test the impact of using different self-supervised techniques on CIFAR-10
for one seed (except RotNet which used 10 seeds). All self-supervised method are trained with the same data augmentation.
For fairness, all clustering methods use the same hyper-parameters for each row. We trained parameters starting from the third
macro block of ResNet-18.

RotNet[3] SimCLR[1] MOCO v2[2]

K-means[6] 14.3 59.45 45.48
Ours (SNE) 81.7 43.5 23.7

Table 5: Impact of batch size. We test the impact of training with different batch size on our clustering method (SNE). We
report results over two seeds (except 256 which used 10 seeds). For fairness, we use the same hyper-parameters for each row.

Batch-size 64 128 256 512

CIFAR 10 72.4±1.3 76.9±1.5 81.7±0.9 80.9±1.2
CIFAR 100-20 46.2±0.2 42.2±0.0 42.3±1.0 31.9±1.0

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual

representations. arXiv, 2020. 3
[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv preprint

arXiv:2003.04297, 2020. 3
[3] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting image rotations. In Proc.

ICLR, 2018. 1, 3
[4] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman. Automatically discovering and learning

new visual categories with ranking statistics. In Proc. ICLR, 2020. 1
[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016. 1, 2
[6] James MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley

symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967. 2, 3
[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In Proc. NIPS, 2019. 1

[8] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Ricap: Random image cropping and patching data augmentation for deep cnns.
In Asian Conference on Machine Learning, 2018. 1

[9] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv, 2017. 1

3

