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ABSTRACT

The main goal of Few-Shot learning algorithms is to enable learning from small
amounts of data. One of the most popular and elegant Few-Shot learning ap-
proaches is Model-Agnostic Meta-Learning (MAML). The main idea behind this
method is to learn shared universal weights of a meta-model, which then are
adapted for specific tasks. However, due to limited data size, the method suffers
from over-fitting and poorly quantifies uncertainty. Bayesian approaches could, in
principle, alleviate these shortcomings by learning weight distributions in place of
point-wise weights. Unfortunately, previous Bayesian modifications of MAML are
limited in a way similar to the classic MAML, e.g., task-specific adaptations must
share the same structure and can not diverge much from the universal meta-model.
Additionally, task-specific distributions are considered as posteriors to the universal
distributions working as priors and optimizing them jointly with gradients is hard
and poses a risk of getting stuck in local optima.
In this paper, we propose BayesHMAML, a novel generalization of Bayesian
MAML, which employs Bayesian principles along with Hypernetworks for MAML.
We achieve better convergence than the previous methods by classically learning
universal weights. Furthermore, Bayesian treatment of the specific tasks enables
uncertainty quantification, and high flexibility of task adaptations is achieved using
Hypernetworks instead of gradient-based updates. Consequently, the proposed
approach not only improves over the previous methods, both classic and Bayesian
MAML in several standard Few-Shot learning benchmarks but also benefits from
the properties of the Bayesian framework.

1 INTRODUCTION

Deep neural networks work perfectly when trained on large data sets. These, however, are rarely
available in real-world settings. Hence, approaches able to learn from small amounts of data are
needed. In particular, Few-Shot learning models can easily adapt to previously unseen tasks based on
a few labeled samples. Among Few-Shot learning approaches, one of the most popular and elegant is
Model-Agnostic Meta-Learning (MAML) Finn et al. (2017). The main idea behind this method is to
produce universal weights which can be rapidly updated to solve new small tasks. However, limited
data sets lead to two main problems. Firstly, the method tends to overfit training data, preventing us
from using deep architectures with large numbers of weights. Secondly, it lacks good quantification
of uncertainty, e.g., the model does not know how reliable its predictions are. Both problems can be
addressed by employing Bayesian Neural Networks (BNNs) (MacKay, 1992; Jospin et al., 2022),
which in place of point-wise estimates, learn distributions. BNNs may rely on the same network
structure as the classic NNs. Still, their parameters (i.e., network’s weights) have assumed prior
distributions, which later are updated to posterior distributions when training data is observed. The
Bayesian treatment allows for obtaining uncertain information principally and prevents over-fitting.

Bayesian modification has also been previously proposed for MAML. Bayesian MAML (Yoon et al.,
2018) or Amortized bayesian meta-learning (Ravi & Beatson, 2018), PACOH (Rothfuss et al., 2021;
2020), FO-MAML (Nichol et al., 2018), MLAP-M (Amit & Meir, 2018), Meta-Mixture (Jerfel
et al., 2019) learn distributions for the common universal weights, which are then updated to per-
task local weights distributions. Although BNNs help these methods to regularize training and
quantify uncertainty, they still suffer from the same shortages as the classic MAML, as well as from
additional challenges coming from solving a harder modeling and optimization task (due to increased
dimensionality and complexity of a variational objective).
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Figure 1: Visualization of MAML, BayesianMAML and BayesHMAML. For the classic MAML, we
have universal weights θ which are then adjusted to θ′i for individual tasks. For BayesianMAML, the
posterior distributions for individual small tasks q(θ′|λi(θ, ϕ)) are obtained in a few gradient-based
updates from the universal distribution q(θ|ψ). For BayesHMAML, we learn the universal weights
analogically as for MAML, but then, a hypernetwork H(Si, θ) produces parameters of the Bayesian
posteriors. Such an approach enables significantly larger updates in the adaptation phase.

The previous Bayesian modifications of MAML (see the middle plot in Fig. 1), similar to the original
MAML, rely on gradient-based updates. Weights specialized for small tasks are obtained by taking
a fixed number of gradient steps from the common universal weights. Such the procedure binds
tightly all the tasks by an overly rigid structure of possible solutions. The same effect is observed for
the methods using the Bayesian approach, despite them acting on distributions instead of individual
weights. All the specialized weight distributions must stay within a distance of a few gradient updates.
Additionally, as proposed for example by Ravi & Beatson (2018) the universal distribution is usually
employed as a prior for the per-task specializations, amplifying the above problem by furthermore
limiting how the final weights for the small tasks may look like. Although such a hierarchical structure
is not uncommon (see for example the work by (Amit & Meir, 2018)), it noticeably complicates the
variational objective and the optimized loss surface. We argue that for practical problems with limited
datasets, the benefits from the usage of the hierarchical model are outweighed by the optimization
challenges.

A natural way to allow a more flexible structure of solutions and to enable better adaptations of
weights is to employ non-gradient-based updates, for example, by using hypernetworks. Hyper-
networks, introduced by Ha et al. (2016), are neural models, separate from a main model, which
generate weights for it. In our paper, we propose to use a hypernetwork to adapt specialized per-task
distributions starting from the universal weights. In particular, besides the main network, we have a
side hypernetwork responsible for modeling Bayesian posteriors for individual tasks. Similar to the
previous approaches, the final posterior is obtained by updating the universal weights, but otherwise,
we propose multiple modifications. For instance, we avoid the aforementioned hierarchical structure
by modeling the universal weights in a point-wise manner. Then, by using the hypernetwork in our
amortization scheme, we also can allow arbitrary variances for the specialized distributions while at
the same time remaining robust against overfitting. In our model, variances for the per-task weights
are regularized by using the common hypernetwork. Hence, the distribution of the universal weights
does not need to be used as a common prior and we achieve a simpler optimization objective. A
schematic illustration of the approach, we present on the right-most plot in Fig. 1.

Our contributions can be summarized as follows:

• We introduce BayesHMAML, a novel Bayesian approach to the Few-Shot learning problem,
which directly produces posterior distributions of weights specialized for small tasks by
aggregating information from support sets and common universal weights.

• BayesHMAML handles universal weights and their updates in a new way: in the adaptation
procedure, it transforms the classical neural network into its Bayesian counterpart.

• Compared to the previous Bayesian modifications to MAML, BayesHMAML by employing
hypernetworks achieves significantly more flexible weight updates.

• To the best of our knowledge, the proposed solution is the first approach using the Hypernet-
work paradigm for Bayesian Few-Shot learning.
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2 BACKGROUND

In this section, we introduce all the notions necessary for understanding our method. First, we start
by presenting background and notations for Few-Shot learning. Then we describe how the MAML
algorithm works. Finally, we introduce general idea of Hypernetworks dedicated for MAML updates.

The terminology describing the Few-Shot learning setup is dispersive due to the colliding defini-
tions used in the literature. Here, we use the nomenclature derived from the Meta-Learning literature,
which is the most prevalent at the time of writing. Let S = {(xl,yl)}Ll=1 be a support-set containing
input-output pairs, with L examples with the equal class distribution. In the one-shot scenario, each
class is represented by a single example, and L = K, whereK is the number of the considered classes
in the given task. Whereas, for Few-Shot scenarios, each class usually has from 2 to 5 representatives
in the support set S.

Let Q = {(xm,ym)}Mm=1 be a query-set (sometimes referred to in the literature as a target-set), with
M examples, where M is typically one order of magnitude greater than K. For clarity of notation,
the support and query sets are grouped in a task T = {S,Q}. During the training stage, the models
for Few-Shot applications are fed by randomly selected examples from training set D = {Tn}Nn=1,
defined as a collection of such tasks.

During the inference stage, we consider task T∗ = {S∗,X∗}, where S∗ is a support set with the
known class values for a given task, and X∗ is a set of query (unlabeled) inputs. The goal is to predict
the class labels for query inputs x ∈ X∗, assuming support set S∗ and using the model trained on D.

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) is one of the current standard
algorithms for Few-Shot learning, which learns the parameters of a model so that it can adapt to a
new task in a few gradient steps.

We consider a model represented by a parametrized function fθ with parameters θ. In practice,
the architecture consists of a future extractor (backbone) E(·) and one fully connected layer. The
universal weights θ = (θE , θH) include θE for feature extractor and θH for classification head.

In adaptation to a new task Ti = {Si,Qi}, all model’s parameters θ are updated to θ′i. Such an update
is modeled by one or more gradient descent updates on task Ti. In the simplest case of one gradient
update, the parameters are updated as follows:

θ′i = θ − α∇θLTi
(fθ)

where the step size α is a hyperparameter and the loss function for a set of observations Z is defined
as LZ for the few shot scenario is represented as a simple cross-entropy:

LZ(fθ) =
∑

(xi,l,yi,l)∈Z

K∑
k=1

−yki,l log fθ,k(xi,j),

where fθ,k(xi,j) denotes k-th output of the model fθ, for a given input xi,l, and yi,l is corresponding
class in one-hot coding. For simplicity of notation, we will consider one gradient update for the rest
of this section, but using multiple gradient updates is a straightforward extension.

The meta-optimization across tasks is performed via stochastic gradient descent (SGD):

θ ← θ − β∇θ
∑

Ti∼p(T )

LTi(fθ′i)

where β is the meta step size, see Fig. 1.

HyperMAML (Przewięźlikowski et al., 2022) is a generalization of the MAML algorithm which
uses hypernetwork paradigm to model non-gradient based updates. We aim at predicting the class
distribution p(y|xq,S), assuming given single query example xq , and the set of support examples S .

Analogically to MAML we consider a model represented by a parameterized function fθ with
parameters θ. When adapting to a new task Ti, the model’s parameters θ become θ′i. In HyperMAML,
contrary to MAML, the updated parameter vector θ′i is computed using Hypernetwork. In practice,
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Hypernetwork is a neural network that consists of feature extractorE(·), that transforms support set to
low-dimensional representation and fully connected layers which aggregate such lower reprehension.
Before aggregation, we add true labels and predictions given by universal weights. Hypernetwork
produces an update for universal weights

θ′i = θ +Hϕ(Si, fθ(Si)).

Analogically to MAML universal weights θ = (θE , θH) consist of θE from feature extractor and θH
from classification head. But in HyperMAML we produce updates only for θH :

θ′i = (θ′Ei , θ
′H
i ) = (θ′Ei , θ

′H
i +Hϕ(Si, fθ(Si)).

The meta-optimization across tasks is performed via stochastic gradient descent (SGD) such that the
model parameters θ are updated as follows:

θ ← θ − β∇θ
∑

Ti∼p(T )

LTi
(fθ′i)

where β is the meta step size.

3 BAYESIAN PERSPECTIVE ON MAML

In this section, we present BayesHMAML – a Bayesian extension of the classical MAML and discuss
its use for Few-Shot learning.

A generic predictive model p(y|fθ′(x)) with latent weights θ′ can be trained in a point-wise manner
as explained above, which however may lead to over-fitting and takes into account only aleatoric
uncertainty, entirely overlooking model uncertainty. The most straightforward Bayesian treatment
for such a model is to pose priors for the model parameters and learn their posteriors. In particular,
for MAML one needs to learn posterior distributions for both θ and θ′. However, the observed
data D depends directly only on θ′ (by p(y|fθ′(x))) and on θ only through θ′. This naturally hints
towards a hierarchical Bayesian model: θ → θ′i → Ti, which indeed was previously proposed by
Ravi & Beatson (2018) and later studied by Chen & Chen (2022). Since fθ′(x) is an arbitrary neural
network, posterior inference for such a model is intractable. Hence, the variational inference along
with reparametrization gradients (i.e., Bayes by backpropagation (Blundell et al., 2015)) is typically
used and the following objective (evidence lower bound) maximized w.r.t variational parameters λi
and ψ:

LD = Eq(θ|ψ)


N∑
i

Eq(θ′i|λi) [log p(Ti|θ
′
i)−KL (q(θ′i|λi)|p(θ′i|θ))]︸ ︷︷ ︸
LTi

−KL(q(θ|ψ)|p(θ))
where q(θ′i|λi) and q(θ|ψ) are respectively per-task posterior approximation and approximate poste-
rior for the universal weights. They are tied together by the prior p(θ′i|θ).
The above formulation raises a few challenges. Due to potentially large number of tasks T and their
limited size (few data points per task) it is hard to choose the prior p(θ′i|θ), which would not dominate
learning q(θ′i|λi) for individual tasks and yet sufficiently modulate q(θ|ψ). The problem becomes
even more prominent with an increasing number of tasks with the parameters λi learned separately
for each of the tasks. A solution is amortized inference (Kingma & Welling, 2014) where instead of
learning a separate λi for each task, q(θ′i|·) is conditioned on data.

Ravi & Beatson (2018) proposed a strategy inspired once again by the standard MAML, e.g., they
used q(θ′i|λi) = SGD(Ti, θ), where SGD denotes a few steps of optimization with the gradient
∇λi
LTi

, starting from the distribution for the universal parameters θ. From an implementation
perspective, the difference is rather minor: instead of moving θ to θ′i for MAML, for Amortized
Bayesian MAML one now transforms parameters controlling the distribution for θ into parameters
controlling the distribution for θ′i. On the other hand, gradient-based optimization of the objective
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Figure 2: Schematic of our BayesHMAML model. Instead of updating the weights with gradient de-
scent, we use Hypernetwork to aggregate information from the support set and production parameters
for the probability distributionN (µ(S), σ(S)) dedicated to a specific task. We move such distribution
by using universal weights θ to obtain final task specific distribution N (θ+µ(S), σ(S)). Finally, we
sample θ′ and use a cost function containing cross-entropy and Kullback–Leibler regularization. In
BayesHMAML, we have universal weight and Bayesian updates. Such an approach allows production
to model significantly significant updates in the adaptation phase.

LD w.r.t jointly ψ and λi poses a strong risk of finding a local optimum and suboptimal solutions,
especially when the variational parameters include the hard-to-fit distribution variances. Finally, the
prior p(θ′i|θ) as specified in the original work, prevents q(θ′i|·) to diverge significantly from q(θ|·)
which may often impose a too strong regularization.

3.1 BAYESHMAML: BAYESIAN HYPERNETWORK FOR FEW-SHOT LEARNING

In this work, we propose an alternative approach that alleviates the problems of the previous attempts
at Bayesian MAML. In particular, the posterior q(θ|·) for the universal parameters serves no purpose
beyond regularizing per-task posterior approximations (via the prior p(θ′i|θ) and by providing ini-
tialization for the SGD updates) but as explained above may complicate the optimization task. For
example, Ravi & Beatson (2018) hinted toward considering simple distributions (e.g. delta distri-
butions, which however could be overly limiting for q(θ′i|·)). Hence, in our method, we learn θ in a
point-wise manner instead. In particular, we don’t learn variance for the universal parameters θ, but
we learn them for individual θ′i independently. Furthermore, we remove the coupling prior between
θ and θ′i and propose a basic non-hierarchical prior p(θ′i) instead. All these modifications simplify
the optimization landscape and, taken together along with our Hypernetwork-based adjustment
strategy (details below) should enable better optima for our objective:

LourD =

N∑
i

Eq(θ′i|λi(θ,Si)) [log p(Ti|θ
′
i)− γ ·KL (q(θ′i|λi(θ,Si))|p(θ′i))]

In practice, we use the standard normal priors for the weights of the neural network f , i.e., p(θ′i) =
N (θ′i|0, I), and the hyperparameter γ allows controlling impact of the priors and compensating for
model mispecification.

The key component of BayesHMAML is however our amortization scheme, e.g., implementa-
tion details of q(θ′i|λi(θ,Si)), see Fig. 2. In particular, we propose q(θ′i|λi(θ,Si)) = N (θ′i|θ +
µi(Si), σi(Si)), where µi(Si) and σi(Si) are outputs of a hypernetwork Hϕ. Parameters of the
posterior approximation q(θ′i|·) are constructed by combining the point-wise learned universal pa-
rameters θ and outputs of the hypernetwork (for the mean of the distribution) or just directly from
the hypernetwork outputs (for the variance/standard deviation parameter). Optimization of LourD is
performed w.r.t to θ and hypernetwork weights ϕ, which have fixed sizes and do not grow with the
number of tasks N . Hence, BayesHMAML scales well. Also, hypernetworks can provide flexible
adjustments and BayesHMAML better than the previous methods adapt for individual tasks.

Optimization details are presented in Algorithm 1. We use learning with minibatches and applied an
annealing scheme for the hyperparameter γ (Bowman et al., 2016). For a batch of meta-task, our
hypernetwork aggregates information from the support set and produces parameters of probability
distribution dedicated to a specific task (µ(Si), σ(Si)) = Hϕ(Si, fθ(Si)). In Bayesian training, we
sample weights from updated distributions θ′i ∼ N (θ+ µ(Si), σ(Si)). For simplicity of notation, we
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Algorithm 1 BayesHMAML
Require: p(T ): distribution over tasks
Require: α, γ: step size hyper parameters

1: while not done do
2: Sample task Ti ∼ p(T )
3: for each Ti do
4: Compute probability distribution of adapted parameters:
5: (µ(Si), σ(Si)) = Hϕ(Si, fθ(Si))
6: Sample θ′i ∼ N (θ + µ(Si), σ(Si))
7: end for
8: Update
9: θ ← θ − β∇θLT

10: ϕ← ϕ− β∇ϕLT
11: where LT =

∑
Ti∼p(T )

[
LTi

(fθ′i)− γKL[N (θ + µ(Si), σ(Si)),N (0, I)]
]

will consider one sample for the rest of this section, but in practice, we use multiple samples. The
number of samples is a hyperparameter.

The meta-optimization across tasks is obtained by minimization of cross-entropy loss and Kull-
back–Leibler regularization:

LourT =
∑

Ti∼p(T )

[
LTi(fθ′i)− γKL[N (θ + µ(Si), σ(Si)),N (0, I)]

]
,

where parameter γ changes from zero to fixed constant during training. The final value of γ is also a
hyperparameter of the model.

4 RELATED WORK

The problem of Meta-Learning and Few-Shot learning (Hospedales et al., 2020; Schmidhuber, 1992;
Bengio et al., 1992) is currently one of the most important topics in deep learning, with the abundance
of methods emerging as a result. They can be roughly categorized into three groups: Model-based
methods, Metric-based methods, Optimization-based methods. In all these groups, we can find
methods that use Hypernetworks and Bayesian models. We briefly describe such approaches. To
the best of our knowledge, it is the first approach that uses the Hypernetwork paradigm for bayesian
few-shot learning. In the end, we concentrate on Bayesian models proposed for few-shot learning
models.

Model-based methods aim to adapt to novel tasks quickly by utilizing mechanisms such as memory
(Ravi & Larochelle, 2017; Santoro et al., 2016; Mishra et al., 2018; Zhen et al., 2020), Gaussian
Processes (Rasmussen, 2003; Patacchiola et al., 2020; Wang et al., 2021; Sendera et al., 2021), or
generating fast weights based on the support set with set-to-set architectures (Qiao et al., 2017; Bauer
et al., 2017; Ye et al., 2018; Zhmoginov et al., 2022). Other approaches maintain a set of weight
templates and, based on those, generate target weights quickly through gradient-based optimization
such as (Zhao et al., 2020). The fast weights approaches can be interpreted as using Hypernetworks
(Ha et al., 2016) – models which learn to generate the parameters of neural networks performing the
designated tasks.

Metric-based methods learn a transformation to a feature space where the distance between
examples from the same class is small. The earliest examples of such methods are Matching Networks
(Vinyals et al., 2016) and Prototypical Networks (Snell et al., 2017). Subsequent works show that
metric-based approaches can be improved by techniques such as learnable metric functions (Sung
et al., 2018), conditioning the model on tasks (Oreshkin et al., 2018) or predicting the parameters of
the kernel function to be calculated between support and query data with Hypernetworks (Sendera
et al., 2022).

Optimization-based methods such as MetaOptNet (Lee et al., 2019) is based on the idea of an
optimization process over the support set within the Meta-Learning framework. Arguably, the most
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popular of this family of methods is Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017). In
literature, we have various techniques for stabilizing its training and improving performance, such
as Multi-Step Loss Optimization (Antoniou et al., 2018), or using the Bayesian variant of MAML
(Yoon et al., 2018).

Due to a need for calculating second-order derivatives when computing the gradient of the meta-
training loss, training the classical MAML introduces a significant computational overhead. The
authors show that in practice, the second-order derivatives can be omitted at the cost of small gradient
estimation error and minimally reduced accuracy of the model (Finn et al., 2017; Nichol et al., 2018).
Methods such as iMAML and Sign-MAML propose to solve this issue with implicit gradients or
Sign-SGD optimization (Rajeswaran et al., 2019; Fan et al., 2021). The optimization process can also
be improved by training the base initialization (Munkhdalai & Yu, 2017; Li et al., 2017; Rajasegaran
et al., 2020). In (Przewięźlikowski et al., 2022) propose a generalization of the MAML algorithm,
which uses hypernetwork paradigm to model non-gradient based updates.

Bayesian approaches Classical MAML-based algorithms have problems with over-fitting. To
solve a such problem we can use the Bayesian model (Ravi & Beatson, 2018; Yoon et al., 2018; Grant
et al., 2018; Jerfel et al., 2019; Nguyen et al., 2020). In practice, the Bayesian model contains two
levels of probability distribution on weights. We have Bayesian universal weights, which are updated
for different tasks Grant et al. (2018). Its leads to a hierarchical Bayes formulation. Bayesian networks
perform better in few-shot settings and reduce over-fitting. Several variants of the hierarchical Bayes
model have been proposed based on different Bayesian inference methods (Finn et al., 2018; Yoon
et al., 2018; Gordon et al., 2018; Nguyen et al., 2020). Another branch of probabilistic methods is
represented by PAC-Bayes based method (Chen & Chen, 2022; Amit & Meir, 2018; Rothfuss et al.,
2021; 2020; Ding et al., 2021; Farid & Majumdar, 2021). In the PAC-Bayes framework, we use the
Gibbs error when sampling priors. But still, we have a double level of Bayesian networks.

In the paper, we propose BayesHMAML, which uses probability distribution only for weight dedicated
for small tasks. Thanks to such a solution, we produce significantly larger updates.

5 EXPERIMENTS

In the typical Few-Shot learning setting, making a valuable and fair comparison between proposed
models is often complicated because of the significant differences in architectures and implementa-
tions of known methods. To limit the influence of the deeper backbone (feature extractor) architectures,
we follow the unified procedure proposed by Chen et al. (2019)1.

In all the reported experiments, the tasks consist of 5 classes (5-way) and 1 or 5 support examples
(1 or 5-shot). Unless indicated otherwise, all compared models use a known and widely utilized
backbone consisting of four convolutional layers (each consisting of a 2D convolution, a batch-norm
layer, and a ReLU non-linearity; each layer consists of 64 channels) and have been trained from
scratch Chen et al. (2019). In all experiments, the query set of each task consists of 16 samples for
each class (80 in total). We split the data sets into the standard train, validation, and test class subsets,
used commonly in the literature Ravi & Larochelle (2017); Chen et al. (2019); Patacchiola et al.
(2020). We report the performance of BayesHMAML averaged over three training runs for each
setting. We provide the additional training details in the Appendix.

We report the performance of two variants of BayesHMAML:

• BayesHMAML - Bayesian models generated by the hypernetworks for each task.

• BayesHMAML + adaptation - Bayesian models generated by hypernetworks adapted to
the support examples of each task with a few training steps.

In the case of BayesHMAML + adaptation, we tune a copy of the hypernetwork on the support set
separately for each validation task. This way, we ensure that our model does not take unfair advantage
of the validation tasks. In the case of hypernetwork-based approaches, such adaptation is a common
strategy introduced by Sendera et al. (2022).

1We shall release the code with our experiments after the end of the review period.
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5.1 CLASSIFICATION

First, we consider a classical Few-Shot learning scenario. We benchmark the performance of the
BayesHMAML and other methods on two challenging and widely considered data sets: Caltech-
USCD Birds (CUB) Wah et al. (2011) and mini-ImageNet Ravi & Larochelle (2017). The following
experiments are in the most popular setting, 5-way, with five random classes. We compare BayesH-
MAML to a vast pool of state-of-the-art algorithms in the tasks of 1-shot and 5-shot classification.

In CUB, we have the second score in 1-shot and 5-shot. In the case of mini-ImageNet we have
comparable results to other methods. It should be highlighted that we obtained the best score in the
area of Bayesian and the MAML-based method.

Table 1: The classification accuracy results for the inference tasks on CUB and mini-ImageNet data
sets in the 1-shot and 5-shot settings. The highest results are in bold and the second-highest in italic
(the larger, the better).

CUB mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot

ML-LSTM Ravi & Larochelle (2017) – – 43.44 ± 0.77 60.60 ± 0.71
LLAMA Grant et al. (2018) – – 49.40 ± 1.83
VERSA Gordon et al. (2018) – – 48.53 ± 1.84 67.37 ± 0.86
Amortized VI Gordon et al. (2018) – – 44.13 ± 1.78 55.68 ± 0.91
Meta-Mixture Jerfel et al. (2019) – – 49.60 ± 1.50 64.60 ± 0.92
Feature Transfer Zhuang et al. (2020) 46.19 ± 0.64 68.40 ± 0.79 39.51 ± 0.23 60.51 ± 0.55
Baseline++ Chen et al. (2019) 61.75 ± 0.95 78.51 ± 0.59 47.15 ± 0.49 66.18 ± 0.18
ProtoNet Snell et al. (2017) 52.52 ± 1.90 75.93 ± 0.46 44.19 ± 1.30 64.07 ± 0.65
RelationNet Sung et al. (2018) 62.52 ± 0.34 78.22 ± 0.07 48.76 ± 0.17 64.20 ± 0.28
DKT + BNCosSim Patacchiola et al. (2020) 62.96 ± 0.62 77.76 ± 0.62 49.73 ± 0.07 64.00 ± 0.09
VAMPIRE Nguyen et al. (2020) – – 51.54 ± 0.74 64.31 ± 0.74
ABML Ravi & Beatson (2018) 49.57 ± 0.42 68.94 ± 0.16 45.00 ± 0.60 –
FO-MAML Nichol et al. (2018) – – 48.70 ± 1.84 63.11 ± 0.92
Reptile Nichol et al. (2018) – – 49.97 ± 0.32 65.99 ± 0.58
HyperShot Sendera et al. (2022) 65.27 ± 0.24 79.80 ± 0.16 52.42 ± 0.46 68.78 ± 0.29
HyperShot+ adaptation Sendera et al. (2022) 66.13 ± 0.26 80.07 ± 0.22 53.18 ± 0.45 69.62 ± 0.2
FEAT Ye et al. (2018) 68.87 ± 0.22 82.90 ± 0.15 55.15 ± 0.20 71.61 ± 0.16
MAML Finn et al. (2017) 56.11 ± 0.69 74.84 ± 0.62 45.39 ± 0.49 61.58 ± 0.53
MAML++ Antoniou et al. (2018) – – 52.15 ± 0.26 68.32 ± 0.44
iMAML-HF Rajeswaran et al. (2019) – – 49.30 ± 1.88 –
SignMAML Fan et al. (2021) – – 42.90 ± 1.50 60.70 ± 0.70
Bayesian MAML Yoon et al. (2018) 55.93 ± 0.71 53.80 ± 1.46 64.23 ± 0.69
Unicorn-MAML Ye & Chao (2021) – – 54.89 –
Meta-SGD Li et al. (2017) – – 50.47 ± 1.87 64.03 ± 0.94
PAMELA Rajasegaran et al. (2020) – – 53.50 ± 0.89 70 .51 ± 0 .67
HyperMAML Przewięźlikowski et al. (2022) 66.11 ± 0.28 78.89 ± 0.19 51.84 ± 0.57 66.29 ± 0.43

BayesHMAML 66.57 ± 0.47 79.86 ± 0.31 52.54 ± 0.46 67.39 ± 0.35
BayesHMAML + adaptation 66 .92 ± 0 .38 80 .47 ± 0 .38 52.69 ± 0.38 68.24 ± 0.47

Table 2: The classification accuracy results for the inference tasks on cross-domain tasks
(Omniglot→EMNIST and mini-ImageNet→CUB) data sets in the 1-shot and 5-shot setting. The
highest results are bold and second-highest in italic (the larger, the better).

Omniglot→EMNIST mini-ImageNet→CUB
Method 1-shot 5-shot 1-shot 5-shot

Feature Transfer Zhuang et al. (2020) 64.22 ± 1.24 86.10 ± 0.84 32.77 ± 0.35 50.34 ± 0.27
Baseline++ Chen et al. (2019) 56.84 ± 0.91 80.01 ± 0.92 39.19 ± 0.12 57.31 ± 0.11
ProtoNet Snell et al. (2017) 72.04 ± 0.82 87.22 ± 1.01 33.27 ± 1.09 52.16 ± 0.17
RelationNet Sung et al. (2018) 75.62 ± 1.00 87.84 ± 0.27 37.13 ± 0.20 51.76 ± 1.48
DKT Patacchiola et al. (2020) 75.40 ± 1.10 90 .30 ± 0 .49 40.14 ± 0.18 56.40 ± 1.34
HyperShot Sendera et al. (2022) 78.06 ± 0.24 89.04 ± 0.18 39.09 ± 0.28 57 .77 ± 0 .33
HyperShot + adaptation Sendera et al. (2022) 80.65 ± 0.30 90.81 ± 0.16 40 .03 ± 0 .41 58.86 ± 0.38
OVE PG GP + Cosine (ML) Snell & Zemel (2020) 68.43 ± 0.67 86.22 ± 0.20 39.66 ± 0.18 55.71 ± 0.31
OVE PG GP + Cosine (PL) Snell & Zemel (2020) 77.00 ± 0.50 87.52 ± 0.19 37.49 ± 0.11 57.23 ± 0.31
MAML Finn et al. (2017) 74.81 ± 0.25 83.54 ± 1.79 34.01 ± 1.25 48.83 ± 0.62
Bayesian MAML Yoon et al. (2018) 63.94 ± 0.47 65.26 ± 0.30 33.52 ± 0.36 51.35 ± 0.16
HyperMAML Przewięźlikowski et al. (2022) 79.07 ± 1.09 89.22 ± 0.78 36.32 ± 0.61 49.43 ± 0.14

BayesHMAML 80 .95 ± 0 .46 89.21 ± 0.27 36.90 ± 0.34 49.24 ± 0.38
BayesHMAML + adaptation 81.05 ± 0.47 89.76 ± 0.26 37.23 ± 0.44 50.79 ± 0.59
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Figure 3: We train BayesHMAML on cross-domain adaptation setting Omniglot→EMNIST. Then
we sample one thousand different weights from the distribution dedicated to the support set. We
present predictions of BayesHMAML in three cases: for an element from the support set, an element
from the query set, and an element from EMNIST but from classes that were not sampled for the
support set. As we can see for elements from support and query sets, our model always gives a similar
prediction. We have high uncertainty in the case of elements from out of distribution.

5.2 CROSS-DOMAIN ADAPTATION

In the cross-domain adaptation setting, the model is evaluated on tasks from a different distribution
than the one on which it had been trained. Therefore, such a task is more challenging than standard
classification and is a plausible indicator of a model’s ability to generalize. To benchmark the
performance of BayesHMAML in cross-domain adaptation, we combine two data sets so that the
training fold is drawn from the first data set and validation and the testing fold – from another. We
report the results in Table 2. In the task of 1-shot Omniglot→EMNIST classification, BayesHMAML
achieves the best result. In the 5-shot Omniglot→EMNIST classification task BayesHMAML yields
comparable results to baseline methods. In mini-ImageNet→CUB classification, our method
performs comparably to baseline methods such as MAML, ProtoNet and Matching Net. Again we
obtained the best score in the area of Bayesian and the MAML-based method.

5.3 ABLATION STUDIES: UNCERTAINTY

One of the most important advantages of a Bayesian Neural network is the natural uncertainty
of the model. To visualize it, we train BayesHMAML on cross-domain adaptation setting Om-
niglot→EMNIST. We sample testing tasks from EMNIST during the evaluation. Then we sample
one thousand different weights from the distribution dedicated to our support set. In Fig. 3 we present
predictions of BayesHMAML in three cases: for an element from the support set, an element from
the query set, and an element out of the distribution of the support set (element from EMNIST but
from classes which was not sampled for support set). As we can see, our model always gives a similar
prediction for elements from support and query sets. In the case of elements from out of distribution,
we have high uncertainty.

6 CONCLUSIONS

In this work, we introduced BayesHMAML – a novel Bayesian Meta-Learning algorithm strongly
motivated by MAML. In BayesHMAML, we have universal weight trained analogically to MAML in
a point-wise manner and Bayesian updates. Such an approach allows for significantly larger updates
in the adaptation phase. Our experiments show that BayesHMAML outperforms all Bayesian and
MAML-based methods in several standard Few-Shot learning benchmarks and in most cases achieves
results better or comparable to various other state-of-the-art methods. What is crucial, BayesHMAML
can be used to estimate uncertainty of the prediction effectively, enabling possible applications in
critical areas of deep learning, such as medical diagnosis or autonomous driving.
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A APPENDIX: TRAINING DETAILS

In this section, we present details of the training and architecture overview.

A.1 ARCHITECTURE OVERVIEW

The architecture of BayesHMAML consists of the following parts:
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Encoder For each experiment described in the main body of this work, we utilize a shallow
convolutional encoder (feature extractor), commonly used in the literature Finn et al. (2017); Chen
et al. (2019); Patacchiola et al. (2020). This encoder consists of four convolutional layers, each
consisting of a convolution, batch normalization, and ReLU nonlinearity. Each of the convolutional
layers has an input and output size of 64, except for the first layer, where the input size is equal to
the number of image channels. We also apply max-pooling between each convolution, by which the
resolution of the processed feature maps is decreased by half. The output of the encoder is flattened
to process it in the next layers.

In the case of the Omniglot and EMNIST images, such encoder compresses the images into 64-
element embedding vectors, which serve as input to the Hypernetwork (with the above-described
enhancements) and the classifier. However, in the case of substantially larger mini-ImageNet and
CUB images, the backbone outputs a feature map of shape [64× 5× 5], which would translate to
1600-element embeddings and lead to an over parametrization of the Hypernetwork and classifier
which processes them and increase the computational load. Therefore, we apply an average pooling
operation to the obtained feature maps and ultimately also obtain embeddings of shape 64. Thus, we
can use significantly smaller Hypernetworks.

Hypernetwork The Hypernetwork transforms the enhanced embeddings of the support examples
of each class in a task into the updates for the portion of classifier weights predicting that class. It
consists of three fully-connected layers with ReLU activation function between each consecutive pair
of layers. In the hypernetwork, we use a hidden size of 256 or 512.

Classifier The universal classifier is a single fully-connected layer with the input size equal to the
encoder embedding size (in our case 64) and the output size equal to the number of classes. When
using the strategy with embeddings enhancement, we freeze the classifier to get only the information
about the behavior of the classifier. This means we do not calculate the gradient for the classifier in
this step of the forward pass. Instead, gradient calculation for the classifier takes place during the
classification of the query data.

A.2 TRAINING DETAILS

In all of the experiments described in the main body of this work, we utilize the switch and the embed-
ding enhancement mechanisms. During training, we use the Adam optimizer and the MultiStepLR
learning rate scheduler with the decay of 0.3 and learning rate starting from 0.01 or 0.001. We train
BayesHMAML for 4000 epochs on all the data sets, save for the simpler Omniglot→ EMNIST
classification task, where we train for 2048 epochs instead.

A.3 HYPERPARAMETERS

Below, we outline the hyperparameters of architecture and training procedures used in each experi-
ment.

hyperparameter CUB mini-ImageNet mini-ImageNet → CUB Omniglot → EMNIST

learning rate 0.01 0.001 0.001 0.01
Hyper Network depth 3 3 3 3
Hyper Network width 512 256 256 512
epochs no. 4000 4000 4000 2048
milestones 51, 550 101, 1100 101, 1100 51, 550
γ 1e− 4 1e− 4 1e− 5 0.001
weight set num. (train) 5 7 5 5

Table 3: Hyperparameters for each of conducted 1-shot experiments.
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hyperparameter CUB mini-ImageNet mini-ImageNet → CUB Omniglot → EMNIST

learning rate 0.001 0.001 0.001 0.01
Hyper Network depth 3 3 3 3
Hyper Network width 256 256 256 512
epochs no. 4000 4000 4000 2048
milestones 101, 1100 101, 1100 101, 1100 51, 550
γ 1e− 5 1e− 5 1e− 4 0.001
weight set num. (train) 5 5 5 5

Table 4: Hyperparameters for each of the conducted 5-shot experiments.
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