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Abstract
We propose Pullback Flow Matching (PFM), a
novel framework for generative modeling on data
manifolds. Unlike existing methods that assume
or learn restrictive closed-form manifold map-
pings for training Riemannian Flow Matching
(RFM) models, PFM leverages pullback geometry
and isometric learning to preserve the underlying
manifold’s geometry while enabling efficient gen-
eration and precise interpolation in latent space.
This approach not only facilitates closed-form
mappings on the data manifold but also allows
for designable latent spaces, using assumed met-
rics on both data and latent manifolds. By en-
hancing isometric learning through Neural ODEs
and proposing a scalable training objective, we
achieve a latent space more suitable for interpola-
tion, leading to improved manifold learning and
generative performance. We demonstrate PFM’s
effectiveness through applications in synthetic
data, protein dynamics and protein sequence data,
generating novel proteins with specific properties.
This method shows strong potential for drug dis-
covery and materials science, where generating
novel samples with specific properties is of great
interest.

1. Introduction
Since the rise of machine learning in the scientific do-
main, researchers have focused on developing larger models
trained on increasingly massive datasets, as in weather fore-
casting (Bodnar et al., 2024) and protein structure prediction
(Hayes et al., 2024). However, relying on such scaling laws
is not feasible in many scientific fields where data is limited

1Department of Mathematics, KTH Royal Institute of Tech-
nology 2Department of Applied Mathematics, Delft University of
Technology 3AMLab, University of Amsterdam 4DAMTP, Uni-
versity of Cambridge 5Department of Mathematics, University
of California, Los Angeles. Correspondence to: Friso de Kruiff
<f.c.dekruiff@uva.nl>.

Proceedings of the Workshop on Generative AI for Biology at the
42nd International Conference on Machine Learning, Vancouver,
Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

Data manifold (D) Latent manifold (M)

Figure 1: Isometric learning for the rotated Swiss roll in 3D.
The learned geodesic path (in black) on the data manifold
D ⊂ R3 correspond to the shortest paths on the latent
manifold M = R3.

and precise modeling of physical phenomena is crucial. In
such cases, incorporating prior knowledge about the geome-
try of the data as an inductive bias enables models to make
accurate interpolations between data points, which is essen-
tial for reliable predictions and realistic representations of
complex systems.

Current methods, however, lack the mathematical founda-
tions to accurately interpolate in latent space (Arvanitidis
et al., 2017) and do not capture the underlying geometric
structure of the data (Wessels et al., 2024). Our goal is to
develop mappings that enable precise interpolation in latent
space, leveraging geometry as an inductive bias to facilitate
efficient and accurate generation on data manifolds, thereby
advancing the ability to model complex physical phenomena
with limited data.

We consider modeling the data under the manifold hypothe-
sis, which states that high-dimensional data lies on a lower
dimensional manifold. This has been applied successfully
to various scientific tasks (Vanderplas & Connolly, 2009;
Dsilva et al., 2016; Noé & Clementi, 2017). Modeling the
data in its intrinsic dimension allows for efficient analysis
(Diepeveen et al., 2024) and generation (Rombach et al.,
2022). Furthermore, accurately capturing the geometry
of the data manifold in the learning problem has shown
to improve several down-stream tasks such as clustering
(Ghojogh et al., 2022), classification (Kaya & Bilge, 2019;
Hauberg et al., 2012) and generation (Arvanitidis et al.,
2020; Sun et al., 2024).
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One way to achieve a latent manifold that supports in-
terpolation is to have a structured Riemannian geometry,
such as the one from pullback geometry, which provides
closed-form manifold mappings (Diepeveen et al., 2024).
This requires constructing an invertible and differentiable
mapping—diffeomorphism—between the data manifold and
the latent manifold. Interpolation on manifolds is then
performed through geodesics, shortest paths, and thus to
achieve our goal we require geodesics on the data manifold
to match geodesics on the latent manifold. This motivates
our consideration of isometries, that is, metric-preserving
diffeomorphisms φ. These mappings preserve the distances
of points on the data manifold on the latent manifold, and
thereby ensure proper interpolation.

Related-Work. In the literature, low-dimensional genera-
tion and generation on manifolds have typically been ad-
dressed as separate problems. Low-dimensional approaches,
such as latent diffusion (Rombach et al., 2022) or latent
flow-matching (Dao et al., 2023), often overlook the ge-
ometric structure of the data, leading to inaccuracies in
tasks requiring a faithful representation of the underlying
manifold. Conversely, manifold generation methods either
assume geodesics on the data manifold for simulation-free
training (Chen & Lipman, 2024)—an approach inapplicable
when closed-form mappings are unavailable—or attempt to
learn a metric that forces the generative trajectories to have
data support (Kapusniak et al., 2024).

Using a pullback framework presents challenges, such as
task-specific learning problems that limit generality and
prevent the learning of isometries across broader data mani-
folds (Cuzzolin, 2008; Gruffaz et al., 2021; Lebanon, 2006).
Geometrically regularized latent space methods, like (Lee
et al., 2022) and (Duque et al., 2022), work in practice but
lack solid mathematical grounding in isometries, particu-
larly guaranteeing diffeomorphism in architectural design.
(Diepeveen, 2024) addresses isometry challenges with a
more general mathematical framework, but its learning ob-
jective’s expressivity and computational feasibility limit its
application to high-dimensional real-world datasets.

Our approach bridges these gaps by modeling data on a
lower-dimensional latent manifold with known geometry
through diffeomorphisms parameterized and trained in a
scalable and expressive way. By doing so we preserve the
intrinsic properties of the data manifold and enable accurate
and efficient generation through simulation-free training.

Contributions. We propose PFM, a novel framework for
latent manifold learning and generation through isometries.
This method respects the geometry of the data manifold,
even when closed-form manifold mappings are not avail-
able. Second, learning can be performed in the intrinsic
dimension of the data manifold resulting in efficient and
effective learning of the generative model with fewer param-

eters. We leverage pullback geometry to define a new metric
on the entire ambient space, Rd, by learning an isometry φ
that preserves the geometric structure of the data manifold
D on the latent manifold M. We use the corresponding
metric of the assumed latent manifold M to perform RFM.
Our contributions are:

1. We introduce PFM, a novel framework that enables
accurate and efficient data generation on manifolds.
PFM leverages the pullback geometry to preserve the
underlying geometric structure of the data manifold
within the latent space, facilitating precise interpolation
and generation.

2. We improve the parameterization of diffeomorphisms,
used to learn isometries, in both expressiveness and
training efficiency through neural ordinary differential
equations (Neural ODEs).

3. We introduce a scalable and stable isometric learning
objective. This objective relies solely on a distance
measure on the data manifold, simplifying the training
process compared to (Diepeveen, 2024) while main-
taining geometric fidelity.

4. We demonstrate our methods’ effectiveness through ex-
periments on synthetic data, high-dimensional molecu-
lar dynamics data, and experimental peptide sequences.
Our framework utilizes designable latent spaces to
generate novel proteins with specific properties closely
matching reference samples. This directed generation
showcases the significant applicability of isometric
learning and PFM in accurate physical modeling and in-
terpolation, advancing generative modeling techniques
in drug discovery and materials science.

2. Notation
We give a brief summary of the notation used in the paper,
and give a more extensive background on Riemannian and
pullback geometry in Appendix A.

A manifold M is a topological space that locally resembles
Euclidean space. A d-dimensional manifold M around a
point p ∈ M is described by a chart ψ : U → Rd, where
U ⊆ M is a neighborhood of p. The chart provides a local
coordinate system for the manifold. The tangent space at
a point p ∈ M, denoted TpM, is the vector space of all
tangent vectors at that point.

A smooth manifold M equipped with a Riemannian met-
ric is called a Riemannian manifold and is denoted by
(M, (·, ·)M). The Riemannian metric (·, ·)M is a smoothly
varying inner product defined on the tangent spaces TpM
for all points p ∈ M, and it defines lengths and angles
on the manifold. A geodesic, γp,q(t) is the shortest path
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between two points p, q ∈ M, generalizing the notion of a
straight line in Euclidean space.

The exponential map expp : TpM → M maps a tan-
gent vector Ξp to a point on the manifold by following the
geodesic in the direction of Ξp starting from p. The inverse
of the exponential map is the logarithmic map, denoted
by logp : M → TpM, which returns the tangent vector
corresponding to a given point on the manifold.

In this work, we consider a d-dimensional Riemannian mani-
fold

(
M, (·, ·)M

)
, and a smooth diffeomorphism φ : Rd →

M, such that φ
(
Rd
)
⊆ M is geodesically convex, meaning

that any pair of points within this subset are connected by a
unique geodesic.

This mapping allows us to pullback the geometric structure
of M to Rd by defining the pullback metric on Rd. Specif-
ically, for tangent vectors Ξp,Φp ∈ TpRd, the pullback
metric is defined as

(Ξp,Φp)
φ :=

(
φ∗[Ξp], φ∗[Φp]

)M
φ(p)

, (1)

where φ∗ is the pushforward of tangent vectors under φ.
Through this construction, various geometric objects in M,
such as distances and geodesics, can be expressed in terms
of their counterparts in Rd with respect to the pullback
metric.

The distance function dφRd : Rd × Rd → R on Rd with the
pullback metric is given by,

dφRd(xi,xj) = dM
(
φ(xi), φ(xj)

)
, (2)

where dM denotes the Riemannian distance on M. The
length-minimizing geodesic connecting xi and xj in Rd

with respect to the pullback metric γφxi,xj
: [0, 1] → Rd is

given by,

γφxi,xj
(t) = φ−1

(
γMφ(xi),φ(xj)

(t)
)
, (3)

here γM denotes the geodesic in M connecting φ(xi) and
φ(xj). This enables computation of geodesics and distances
in Rd using the geometry of M, as stated in Prop. 2.1 of
(Diepeveen, 2024).

In this paper we will assume the standard Euclidean metric
(·, ·)2 and a Euclidean latent manifold M = Rd. Hence, the
pullback metric will be defined as

(Ξp,Φp)
φ :=

(
φ∗[Ξp], φ∗[Φp]

)Rd

φ(p)
. (4)

We will calculate distances on the latent manifold M = Rd

through,

dφRd(xi,xj) = ∥φ(xi)− φ(xj)∥2, (5)

and the geodesic calculation will boil down to

γφxi,xj
(t) = φ−1

(
φ(xi)(1− t) + tφ(xj)

)
. (6)

An example of a pullback geodesic γφxi,xj
(t) on the data

manifold based on a geodesic on a latent Euclidean manifold
can be viewed in Figure 1.

3. Pullback Flow Matching
We propose Pullback Flow Matching (PFM), a novel frame-
work for generative modeling on data manifolds using pull-
back geometry. Our goal is to transform samples from a
simple distribution x0 ∼ p on the data manifold D into
a complex target distribution x1 ∼ q, also on D. Ideally,
we would perform this transformation using Riemannian
Flow Matching (RFM), see Appendix A for a summary,
on
(
D, (·, ·)D

)
by optimizing the objective from (Chen &

Lipman, 2024),

LRFM (η) =

Et,q(x1),p(x0)

(∥∥vt(γDx1,x0
(t);η

)
− γ̇Dx1,x0

(t)
∥∥D
γD
x1,x0

(t)

)2
,

(7)

where η represents the learnable parameters of the parame-
terized vector field vt(x;η). Solving this objective on data
manifolds becomes intractable as the training of RFM is no
longer simulation-free (Chen & Lipman, 2024). Existing
methods address this challenge by employing restrictive and
computationally intensive manifold mappings (Kapusniak
et al., 2024). We overcome this limitation by defining a new
metric on the ambient space Rd using the pullback metric
(Diepeveen, 2024) and assume a learned isometry φθ that
approximates geodesics γφθ on

(
Rd, (·, ·)φθ

)
to those γD

on
(
D, (·, ·)D

)
. Rewriting the RFM objective under the

pullback framework yields the objective,

LPFM (η) =

Et,q(x1),p(x0)

(∥∥∥vt(γφθ
x1,x0

(t);η
)
− γ̇φθ

x1,x0
(t)
∥∥∥φθ

γ
φθ
x1,x0

(t)

)2
,

(8)

By applying Equation 3, we reformulate the PFM objective
in terms of manifold mappings on M,

LPFM (η) =

Et,q(x1),p(x0)

(∥∥∥vt(γMφθ(x1),φθ(x0)
(t);η

)
−

γ̇Mφθ(x1),φθ(x0)
(t)

M
γM
φθ(x1),φθ(x0)

(t)

)2
, (9)

Assuming a latent manifold M with closed-form mappings
enables simulation-free training on data manifolds. For
efficiency, we model the d-dimensional latent manifold as
a product manifold, M = Md′ × Rd−d′

. By encoding
samples close to the submanifold Md′ ⊂ M, isometric
learning ensures geodesics Md′ closely match geodesics on
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CFM

PFM

1-PFM

Figure 2: Trajectories of continous normalizing flows (CNF) (left) trained with Conditional Flow Matching (CFM), PFM
and 1-PFM objectives on the ARCH dataset compared to the data manifold D (right). At t = 0 the trajectory starts with a
standard normal distribution in the data space for CFM and latent submanifold for (1-)PFM mapped back to the data space.

M. As a result, we formulate the d′-PFM objective,

Ld′−PFM (η) =

Et,q(x1),p(x0)

(∥∥∥vt(γMd′
φθ(x1),φθ(x0)

(t);η
)
−

γ̇
Md′
φθ(x1),φθ(x0)

(t)
Md′

γ
M

d′
φθ(x1),φθ(x0)

(t)

)2
, (10)

The d′-PFM objective offers two key benefits. Defining the
objective on the submanifold Md′ results in computational
speed-ups during training. Second, the known geometry
on the submanifold simplifies the training dynamics of the
vector field vt(·;η), requiring fewer parameters η to learn
the sampling trajectories of the data manifold, see Table 3.

4. Learning Isometries
The motivation for learning isometries φθ—metric-
preserving diffeomorphisms—is to obtain a latent
(sub)manifold that supports interpolation with closed-form
geometric mappings, facilitating efficient simulation-free
training of PFM. Our approach aligns with the isometry
learning framework introduced by Diepeveen (Diepeveen,
2024), but differs in two crucial ways. First, we propose a
more expressive parameterization of learnable diffeomor-
phisms via neural ordinary differential equations (NODEs).
Second, we introduce a novel training objective that enables
scalable isometric learning on data manifolds.

4.1. Parameterizing Diffeomorphisms

We parameterize diffeomorphisms, invertible and differen-
tiable functions between two manifolds, specifically φ :
Rd → M. In practice, we construct a product manifold,
M = Md′ × Rd−d′

and the diffeomorphism φ as,

φ := [ψ−1, Id−d′ ] ◦ ϕ ◦ Tµ, (11)

where ψ : U → Rd′
a chart on a geodesically convex sub-

set U ⊂ Md′ of the d′-dimensional latent submanifold(
Md′ , (·, ·)Md′

)
. See Appendix B for a list of manifolds

with closed-form expressions for the exponential and loga-
rithmic maps, and how these maps can be used to construct
a chart ψ. Furthermore, ϕ : Rd → Rd is a diffeomor-
phism and Tµ(x) = x − µ, with µ the average of the
datapoints. We choose this construction because the mani-
fold hypothesis translates to assuming the data manifold is
homeomorphic to Md′ . In such case, the rest of the latent
manifold should be mapped close to zero, e.g. φ(xi) is
close to Md′ × 0d−d′

in terms of the metric on M.

We generate the diffeomorphism ϕ by learning a Neural
ODE (Chen et al., 2018). The advantage of this approach
is threefold, i) this parameterization of diffeomorphisms is
more expressive and efficient to train compared to Invert-
ible Residual Networks (Behrmann et al., 2019) as chosen
by (Diepeveen, 2024), ii) based on some mild technical as-
sumptions a Neural ODE can be proven to generate proper
diffeomorphisms, see Appendix C for the proof, and iii)
numerically the accuracy and invertibility of the generated
flow can be controlled through smaller step-sizes and higher-
order solvers.

To define the diffeomorphism ϕθ : Rd → Rd, we start with
the Neural ODE governing the flow:

dz(t)

dt
= f(z(t);θ), (12)

where f : Rd → Rd is a vector field parameterized by a
multilayer perceptron (MLP) with Swish activation func-
tions and a sine-cosine time embedding and θ denotes the
parameters of the MLP. Given an initial condition z(0) = x,
the solution to this Neural ODE is:

ϕθ(x) := x+

∫ 1

0

f(z(t);θ) dt. (13)
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To obtain the inverse ϕ−1
θ one has to integrate the differen-

tial equation backwards in time with initial condition z(1).
To solve the Neural ODE we implemented a Runge-Kutta
solver in JAX, see Appendix F for further architectural and
training related details.

4.2. Learning Objective

The primary objectives of learning isometries are i) to
map the data manifold

(
D, (·, ·)D

)
into a low-dimensional

geodesic subspace of
(
M, (·, ·)M

)
, specifically Md′ ⊂ M,

and ii) to preserve local isometry, as motivated by Proposi-
tion 2.1 and Theorems 3.4, 3.6, and 3.8 from (Diepeveen,
2024).

We improve the training objective of Diepeveen (2024) by
incorporating graph matching loss for isometric learning,
enforcing global isometry between data and latent manifolds
(Zhu et al., 2014), ensuring each sample remains equally
isometric to all others. Additionally, we use global isometry
loss and submanifold loss to map the data manifold D onto
the lower-dimensional geodesic subspace Md′ .

The original objective enforces local isometry—preserving
geodesic distances in small neighborhoods—via the pull-
back metric’s Riemannian tensor (·, ·)φ. However, this is
computationally intractable and poorly scalable. We address
this by using the regularization in stability regularization
from (Finlay et al., 2020), which more efficiently enforces
local isometry, leading to a scalable objective,

L(θ) = α1
1

n2

n∑
i=1

n∑
j=1

∥dφθ

Rd (xi,xj)− di,j∥2

(global isometry loss)

+ α2
1

n

n∑
i=1

∑
j ̸=i

∥(dφθ

Rd (xi,x·)− dφθ

Rd (xj ,x·))

− (di,· − dj,·)∥2 (graph matching loss)

+ α3
1

n

n∑
i=1

∥∥∥∥[0d′ ∅
∅ Id−d′

]
(ϕθ ◦ Tµ)(xi)

∥∥∥∥
1

(submanifold loss)

+ α4
1

n

n∑
i=1

∫ 1

0

∥εT∇fθ(zi(t))∥2 dt.

(stability regularization)

Here, ε ∼ N (0, I) and dφθ

Rd (xi,x·) and di,· denote the
columns of the distance matrices induced by (·, ·)φ and
(·, ·)D. The benefit of this formulation is that it only requires
approximating geodesic distances di,j on the data manifold
D, without needing to calculate or differentiate the metric
tensor. In section 5, we demonstrate the effectiveness of the
graph matching loss and stability regularization through an
ablation study on synthetic and high-dimensional protein
dynamics trajectories. We do not include an ablation of the

global isometry loss and submanifold losses, as these have
been thoroughly examined in (Diepeveen, 2024), and our
experiments showed consistent results with those previously
reported.

5. Experiments
The goal of this paper is to learn interpolatable latent
(sub)manifolds for generation on data manifolds. We
achieve this through isometric learning in the framework of
pullback geometry. In this section we validate our methods
on synthetic, simulated and experimental datasets, for full
descriptions see Appendix E. For details on the training
procedure and hyperparameter settings we refer the reader
to Appendix F.

We begin our experiments with an ablation study of graph
matching loss and stability regularization, demonstrating
the benefits of including both terms for learning isometries.
Second, we compare (latent) interpolation methods with in-
terpolation on the latent manifold M, (·, ·)M-interpolation,
and on the latent submanifold Md′ , (·, ·)Md′ -interpolation.
We demonstrate that we can accurately interpolate on the
data manifold by interpolating on the latent (sub)manifold
1. Third, we validate PFM as a generative model on data
manifolds and discuss how sample generation is improved
by generating on the submanifold Md′ . Finally, we inspect
the designability of the latent manifold through the choice
of metric (·, ·)D in the task of small protein design.

5.1. Ablation Study

The goal of the ablation study is to evaluate the effective-
ness of the reformulated objective function for learning
isometries. To this end, we perform an ablation study for
both the graph matching loss and stability regularization
on a synthetic ARCH dataset (n = 500, d = 2) in the
spirit of (Tong et al., 2020) and a coarse-grained protein
dynamics datasets of intestinal fatty acid binding protein
(I-FABP) (n = 500, d = 131 × 3). We report three met-
rics on the validation set of 20 % of the data, invertibility
εinv = 1

n

∑n
i=1 ∥xi−φ−1

θ

(
φθ(xi)

)
∥2, low-dimensionality

εld = 1
n

∑n
i=1

∥∥∥∥[0d′ ∅
∅ Id−d′

]
ϕθ(xi)

∥∥∥∥2
1

and isometry

εiso = 1
n2

∑n
i=1

∑n
j=1 ∥di,j − dM

(
φ(xi), φ(xj)

)
∥2.

Result. Table 1 demonstrates that incorporating both the
graph matching loss and stability regularization improves
the invertibility and isometry metrics across both datasets,
with the combined approach yielding both a low εinv and
εiso values, indicating enhanced model performance in pre-

1In these experiments we do not report interpolation through the
Riemannian Auto-Encoder (RAE) by (Diepeveen, 2024) due to the
intractability of the training objective for the higher-dimensional
datasets.
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Table 1: Ablation study of isometric learning for ARCH dataset and I-FABP protein dynamics datasets for graph matching
loss (GM) and stability regularization (Stability). In both cases we choose Md′ = R. We report the means for invertibility
(↓), low-dimensionality (↓) and isometry (↓) with standard devations denoted by ±. The distance (·, ·)D we assume on the
data manifold D is a locally Euclidean distance based on Isomap (Tenenbaum et al., 2000).

Data Metric None GM Stability Both
A

R
C

H

Invertibility 7.637 · 10−1 3.585 · 10−2 8.198 · 10−5 1.011 · 10−4

±9.872 · 10−1 ±1.939 · 10−2 ±1.061 · 10−5 ±6.069 · 10−5

Low-Dimensionality 6.520 · 10−4 4.531 · 10−4 1.407 · 10−2 1.373 · 10−2

±9.521 · 10−5 ±3.341 · 10−5 ±8.414 · 10−4 ±6.768 · 10−4

Isometry 2.334 · 10−3 1.464 · 10−3 2.018 · 10−3 1.544 · 10−3

±1.466 · 10−4 ±1.221 · 10−4 ±5.791 · 10−5 ±2.025 · 10−4

I-
FA

B
P Invertibility 2.995 · 10−5 2.891 · 10−5 2.973 · 10−5 2.809 · 10−5

±8.945 · 10−6 ±4.968 · 10−6 ±7.560 · 10−6 ±8.982 · 10−6

Low-Dimensionality 1.378 · 10−1 1.379 · 10−1 1.379 · 10−1 1.378 · 10−1

±1.952 · 10−4 ±1.424 · 10−4 ±1.788 · 10−4 ±1.981 · 10−4

Isometry 2.889 · 10−3 2.898 · 10−3 2.919 · 10−3 2.887 · 10−3

±1.384 · 10−4 ±1.667 · 10−4 ±1.571 · 10−4 ±1.387 · 10−4

serving the geometry of the data in the synthetic dataset as
well as the more noisy and high dimensional dataset.

Figure 3: Isometric learning for AK dataset, coarse-grained
protein conformation data. We define a new metric (·, ·)φ
on the ambient space, Rd (d = 214 × 3), by learning a
diffeomorphism φ : Rd → M that preserves a locally
Euclidean metric (·, ·)D on the latent manifold M = Md′×
Rd−d′

for d′ = 1.

5.2. Interpolation Experiments

The goal of isometric learning is to learn an interpolatable
latent (sub)manifold of the data manifold with closed-form
manifold mappings. To evaluate whether interpolation on
the latent (sub)manifold accurately reflects interpolation on
the data manifold, we conduct an interpolation experiment
using the synthetic ARCH dataset, as well as the molecular
dynamics datasets of Adenylate Kinase (AK) and I-FABP,
see Figure 3 for the example of isometric learning on the
AK dataset.

In both cases we choose Md′ = R, see Appendix D for
guidance on latent manifold and metric selection. We ap-
proximate the metric on the data manifold (·, ·)D through

the length of Isomap’s geodesics (Tenenbaum et al., 2000),
see Figure 4 for an example. We compare the accuracy of
the 100 longest geodesics between points in the test set for
multiple (latent) interpolation methods.

Figure 4: Example of (·, ·)Md′ -interpolation for ARCH
dataset in red. In blue the dataset {xi}ni=1, black the true
submanifold Md′ , the half circle, and in orange the Isomap
geodesic between orange points.

Result. The (·, ·)Md′ - and (·, ·)M-interpolation achieves
superior interpolation accuracy with lower RMSE vari-
ablity compared to other models, indicating more robust
and reliable interpolation. (·, ·)Md′ -interpolation specifi-
cally demonstrates improvements over other methods in
the more stochastic and seemingly higher dimensional AK
(d = 639) and I-FABP (d = 642) datasets. This improve-
ment suggests that compressing the latent representation
into a lower-dimensional space reduces the noise while
accurately capturing the underlying data manifold. Our
findings demonstrate that accurate interpolation of protein
dynamics trajectories of AK and I-FABP can be achieved
using a single-dimensional latent manifold. This method
shows promise for improving protein dynamics simulations.
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Table 2: Root mean square error (RMSE) (↓) of the 100 longest isomap geodesics in the test set for 3 different seeds for
linear interpolation, (·, ·)M-interpolation and (·, ·)Md′ -interpolation, compared to latent interpolation methods variational
autoencoders (VAEs) (Kingma & Welling, 2013), β−VAEs (Higgins et al., 2017) and GRAE (Duque et al., 2022).

Interpolation Latent ARCH Swiss Roll AK I-FABP

Linear ✗ 0.331±0.049 0.573±0.018 0.554±0.131 0.494±0.022

VAE ✓ 0.526±0.024 0.596±0.085 1.235±0.477 0.405±0.023

β-VAE ✓ 0.527±0.025 0.640±0.066 0.919±0.631 0.368±0.009

GRAE (Isomap) ✓ 0.426±0.076 0.568±0.024 2.030±0.579 0.442±0.005

GRAE (PHATE) ✓ 0.128±0.052 0.660±0.150 1.012±0.395 0.474±0.040

(·, ·)M ✓ 0.097±0.030 0.159±0.054 0.296±0.058 0.415±0.025

(·, ·)Md′ ✓ 0.109±0.026 0.159±0.055 0.219±0.012 0.292±0.006

5.3. Generation Experiments

We demonstrate the effectiveness of our proposed method
PFM for generation on data manifolds D. We train two
PFMs, one using the latent manifold M and one using the
lower dimensional latent submanifold Md′ , named PFM
and d′-PFM respectively. Additionally, we train a Condi-
tional Flow Matching (CFM) model on the raw data as a
comparison. A visual example of the learned generative
flows over time for the ARCH dataset can be viewed in
Figure 2. To evaluate our generative methods, we use the
1-nearest neighbour (NN) accuracy (Lopez-Paz & Oquab,
2016), which measures how well the generated point clouds
match the reference point clouds. Each point cloud is classi-
fied by finding its nearest neighbor in the combined set of
generated and reference point clouds. The accuracy reflects
how similar the generated point clouds are to the reference
set, with an accuracy close to 50% indicating successful
learning of the target distribution.

Result. Figure 2 we see that the learned isometry to the
latent manifold M acts as a strong manifold prior, capturing
the manifold structure at the start of the continous normal-
izing flows (CNF) trajectory (t = 0.0). Additionally, the
learned isometry to the latent submanifold Md′ captures the
noiseless manifold revealing the underlying manifold used

to generate the data. Through this strong (noiseless) mani-
fold prior, we see that both PFM and 1-PFM approximate
the distribution on the manifold earlier in the trajectory and
better. Table 3 highlights the effectiveness of the 1-PFM
model in generative tasks. The 1-PFM model leverages the
lower-dimensional isometric latent manifold Md′ , signifi-
cantly reducing the number of parameters required. Training
the 1-PFM is significantly faster due to the reduction in pa-
rameters and the dimensionality of the training samples. The
1-NN accuracy for 1-PFM approaches the ideal 0.5 across
all datasets, indicating that this model better captures the
underlying distribution on the data manifold compared to
CFM and PFM.

5.4. Designable Latent Manifolds for Novel Protein
Engineering

The goal of these experiments is to design a latent mani-
fold that captures biologically relevant properties of protein
sequences, enabling the generation of novel proteins with
specific characteristics. By leveraging our method’s flex-
ibility in defining the metric on the data manifold (·, ·)D,
we structure the latent space such that it captures protein
properties, such as sequence similarity, hydrophobicity, hy-
drophobic moment, charge, and isoelectric point.

Table 3: Evaluation of generative model performance across dimensionality of (latent) (sub)manifold (↓), number of model
parameters, denoted by # pars (↓), and 1-NN accuracy (1-NN→ 0.5). The 1-NN metric measures the generative quality,
with values closer to 0.5 indicating better performance.

ARCH Swiss

Model dim # pars 1-NN dim # pars 1-NN

CFM 2 50562 0.295±0.031 2 50691 0.870±0.016

PFM 2 50562 0.262±0.025 2 50691 0.795±0.011

1-PFM 1 5697 0.487±0.027 1 16066 0.789±0.019

AK I-FABP

Model dim # pars 1-NN dim # pars 1-NN
CFM 642 4682325 0.386±0.000 393 1789941 0.365±0.004

PFM 642 4682325 0.356±0.097 393 1789941 0.452±0.017

1-PFM 1 5697 0.464±0.022 1 5697 0.508±0.006
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To achieve this, we use protein sequences of up to 25
amino acids from the giant repository of AMP activities
(GRAMPA) dataset (see Appendix E for details). We con-
struct the following custom metric on the data manifold,

dD(xi, xj) = dLevenshtein(xi, xj) + dhydrophobicity(xi, xj)
(14)

+ dhydrophobic moment(xi, xj) + dcharge(xi, xj)
(15)

+ disoelectric point(xi, xj), (16)

where the Levenshtein distance measures the number of
single-character edits (insertions, deletions, or substitutions)
required to transform one sequence into another.

For the remaining four properties—hydrophobicity, hy-
drophobic moment, charge, and isoelectric point—distances
are computed using the difference in property values be-
tween sequences. We define the (pseudo)distance as,

d[property](xi, xj) = |fproperty(xi)− fproperty(xj)|. (17)

These (pseudo)distances are standardized by dividing by
the maximum observed distance in the training data. Since
the Levenshtein distance is a proper metric, we ensure that
the combined distance dD(xi, xj) remains a valid distance
metric. We use the designed metric (·, ·)D on the space
of protein sequences with at most 25 amino acids in the
GRAMPA dataset to learn an isometry that preserves this
metric on the latent manifold M.

To generate protein sequences with specific properties, we
sample from a normal distribution around the data points in
the latent manifold z ∈ M. The variability of this sampling
process is aligned with the latent variability of the training
data σztrain , scaled by a temperature factor τ , resulting in
the following expression,

z
(analogue)
i = zi + τN (0, σztrainI), and (18)

x
(analogue)
i = φ−1

θ (zi) for i = 1, . . . , ntest. (19)

This sampling methodology is referred to as analogue gen-
eration, as it does not involve explicitly learning the distri-
bution over the latent manifold. Instead, it generates novel
sequences by sampling around existing data points on the
latent (sub)manifold of the test set.

To evaluate the effectiveness of the generated sequences,
we measure the number of unique sequences that were not
present in the original dataset and compare the properties
of the generated samples to the properties of their base
points. For further specifics on hyperparameters and training
procedures, refer to Appendix F.

Results. Designed latent manifolds facilitated the genera-
tion of diverse novel protein sequences, demonstrating the

Table 4: Unique protein sequences generated via analogue
generation on the latent manifold M at various temper-
atures (τ ). The table presents the total sequences gener-
ated (Total), those already in the dataset (In Data), and
the number of novel sequences (Novel). We perform a
Kolmogorov-Smirnov test at a 5% significance level to com-
pare novel sequences with their base points. Non-significant
Kolmogorov-Smirnov values are shown as X/Y, where X is
the number of non-significant properties and Y is the total
properties tested.

τ Total In Data Novel Non-Sign. KS

0.01 689 652 37 5/5
0.05 689 103 586 5/5
0.1 689 35 654 5/5
0.2 689 12 677 2/5
0.5 689 1 688 1/5
1 689 0 689 0/5

effectiveness of our analogue generation methodology. As
shown in Table 4, increasing the temperature parameter
(τ ) directly influenced the diversity of generated sequences.
At lower temperatures (τ ≤ 0.1), many unique sequences
emerged while maintaining similarity to their base points,
as indicated by non-significant KS test values. Conversely,
higher temperatures (τ > 0.1) resulted in a significant in-
crease in novel sequences, alongside greater divergence
from the base sequences. These results suggest that tem-
perature manipulation can strategically balance novelty and
similarity, highlighting the effectiveness of isometric learn-
ing in structuring the latent space for protein design.

6. Conclusion
We introduce Pullback Flow Matching (PFM), a novel
framework for simulation-free training of generative models
on data manifolds. By leveraging pullback geometry and
isometric learning, PFM allows for closed-form mappings
on data manifolds while enabling precise interpolation and
efficient generation. We demonstrated the effectiveness of
PFM through applications in synthetic protein dynamics and
small protein generation, showcasing its potential in gener-
ating novel, property-specific samples through designable
latent spaces. This approach holds significant promise for
advancing generative modeling in fields like drug discovery
and materials science, where precise and efficient sample
generation is critical.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Background
To achieve an interpolatable latent manifold we take a Riemannian geometric perspective. We start by introducing the
notation and key concepts of differential and Riemannian geometry, for a formal description see (Lee, 2012). Second, we
explain prior work on RAEs (Diepeveen, 2024), a framework for constructing interpolatable latent manifolds. Third, we
summarize CFM for generative modeling (Lipman et al., 2022), a scalable way to train generative models in a simulation-free
manner. Finally, we discuss how RFM (Chen & Lipman, 2024) generalize CFM to Riemannian manifolds.

A.1. Riemmanian Geometry

A d-dimensional smooth manifold M is a topological space that locally resembles Rd, such that for each point p ∈ M,
there exists a neighborhood U of p and a homeomorphism ψ : U → Rd, called a chart. Then the tangent space TpM at a
point p ∈ M is a vector space consisting of the tangent vectors at p representing the space of derivations at p.

A Riemannian manifold
(
M, (·, ·)M

)
is a smooth manifold M equipped with a Riemannian metric (·, ·)M, which is a

smoothly varying positive-definite inner product on the tangent space TpM at each point p. The Riemannian metric (·, ·)M
defines the length of tangent vectors and the angle between them, thereby inducing a natural notion of distance on M based
on the lengths of tangent vectors along curves between two points.

The shortest path between two points on M is called a geodesic, which generalizes the concept of straight lines in Euclidean
space to curved manifolds. Geodesics on Riemannian manifold are found by minimizing

E(γ) =
1

2

∫ 1

0

(
γ̇(t), γ̇(t)

)
γ(t)

dt, (20)

whereas

L(γ) =

∫ 1

0

√(
γ̇(t), γ̇(t)

)
γ(t)

dt (21)

defines the distance between two points on the manifold. The exponential map,

expp : TpM → M, (22)

at p maps a tangent vector Ξp ∈ TpM to a point on M reached by traveling along the geodesic starting at p in the direction
of Ξp for unit time. The logarithmic map,

logp : M → TpM, (23)

is the inverse of the exponential map, mapping a point q ∈ M back to the tangent space TpM at p.

These names, ’exponential’ and ’logarithmic’ map, are geometric extensions of familiar calculus concepts. Just as the
exponential function maps a number to a point on a curve, the exponential map on a manifold maps a direction and starting
point to a location along a geodesic. Similarly, the logarithm in calculus reverses exponentiation, and the logarithmic map
on a manifold reverses the exponential map, returning the original direction and distance needed to reach a specified point
along the geodesic.

Assume
(
M, (·, ·)M

)
is a d-dimensional Riemannian manifold and a smooth diffeomorphism φ : Rd → M, such that

φ(Rd) ⊆ M is geodesically convex, i.e., geodesics are uniquely defined on φ(Rd). We can then define the pullback metric
as

(Ξp,Φp)
φ
p :=

(
φ∗[Ξp], φ∗[Φp]

)
φ(p)

, (24)

for tangent vectors Ξp and Φp, where φ∗ is the pushforward. These mappings allow us to define all relevant geometric
mappings in Rd in terms of manifold mappings on M, see e.g. Proposition 2.1 of (Diepeveen, 2024):

1. Distances dφRd : Rd × Rd → R on
(
Rd, (·, ·)φ

)
are given by,

dφRd(xi,xj) = dM
(
φ(xi), φ(xj)

)
, (25)

2. Length-minimizing geodesics γφxi,xj
: [0, 1] → Rd on

(
Rd, (·, ·)φ

)
are given by,

γφxi,xj
(t) = φ−1

(
γMφ(xi),φ(xj)

(t)
)

(26)
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3. Logarithmic maps logφxi
: Rd → Txi

Rd on
(
Rd, (·, ·)φ

)
are given by,

logφxi
(xj) = φ−1

∗

[
logMφ(xi)

(
φ(xj)

)]
(27)

4. Exponential maps expφxi
: Gxi

→ Rd for Gxi
:= logφxi

(Rd) ⊂ Txi
Rd on

(
Rd, (·, ·)φ

)
are given by

expφxi
(Ξxi

) = φ−1
(
expMφ(xi)

(φ∗[Ξxi
])
)

(28)

A visual example of pullback geometry is given in Figure 5. Pullback geometry allows us to remetrize all of space
Rd, including the data manifold D ⊂ Rd, through the pullback metric. We can use it to define geometric mappings on(
Rd, (·, ·)φ

)
, including geodesics (see Equation 26), through geometric mappings on the latent manifold M. Next, we

summarize work on Riemannian Auto-Encoders, that leverage pullback geometry to create an interpolatable latent manifold.

Figure 5: Example of pullback geometry for φ : Rd → M with M = Md′ × Rd−d′
for Md′ = Rd′

, d = 3 and d′ = 2.
Samples φ(xi) are close to elements of Md′ × 0d−d′

.

A.2. Riemannian Auto-Encoder

The goal of RAEs is to create a interpolatable latent representation of the data. This is achieved through data-driven
(pullback) Riemannian geometry, encoding the data onto a latent manifold with known geometry. The benefit of this, is that
interpolation on the data manifold corresponds to interpolation on the latent manifold. Resulting in a more interpretable
latent space compared to traditional auto-encoders.

Similar as in (Diepeveen, 2024), we define a RAE as a Riemannian Encoder RE : Rd → Rr and Riemannian Decoder
RD : Rr → Rd,

RAE(x) := (RD ◦RE)(x) s.t., (29)

RE(x)k := (logφz (x),v
k
z)

φ
z for k = 1, . . . r, (30)

RD(a) := expφz

(
r∑

k=1

akv
k
z

)
(31)

where z denotes a base point and (·, ·)φz the pullback metric at z. Furthermore,

vk
z :=

d∑
l=1

W lkΦ
l
z, (32)

represents the basis vectors of the latent space in the tangent space TzRd. Let Φl
z ∈ TzRd be an orthonormal basis in the

tangent space at z with respect to (·, ·)φz and define

Xi,l =
(
logφz (x

i),Φl
z

)φ
z

for i = 1, . . . , n and l = 1, . . . , d. (33)
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We can compute W through a Singular Value Decomposition (SVD) of X .

X = UΣW T , (34)

where U ∈ RN×R, Σ = diag(σ1, . . . , σR) ∈ RR×R with σ1 ≥ · · · ≥ σR, W ∈ Rd×R and where R := rank(X). The
first r columns of W , corresponding to the largest singular values, are selected to form the matrix W ∈ Rd×r. This
parameter r allows one to set the dimensionality of the latent representation of the RAE, if r = d then the RAE reduces to
RAE(x) = expφz

(
logφz (x)

)
.

To learn a RAE, one needs to first construct a diffeomorphism and define an objective function. In (Diepeveen, 2024)
diffeomorphisms are constructed by,

φ := [ψ−1, Id−d′ ] ◦ ϕ ◦O ◦ Tz, (35)

where ψ : U → Rd′
is a chart on a (geodesically convex) subset U ⊂ Md′

of a d′-dimensional Riemannian manifold
(Md′

, (·, ·)M′
d
), ϕ : Rd → Rd is a real-valued diffeomorphism, O ∈ O(d) is an orthogonal matrix, and Tz : Rd → Rd is

given by Tz(x) = x− z. The learnable diffeomorphism φ := φθ is constructed through parameterizing ϕ := ϕθ by an
invertible residual network (Behrmann et al., 2019).

A.3. Learning Isometries with Riemannian Auto-Encoders

After constructing the diffeomorphism and Riemannian Auto-Encoder, one can learn an isometry by find the parameters θ
of φθ in (Diepeveen, 2024) through minimizing the objective,

L(θ) = 1

N(N − 1)

N(N−1)∑
i,j=1,i̸=j

(
dφθ

Rd (xi,xj)− di,j
)2

(global isometry loss)

+ αsub
1

N

N∑
i=1

∥∥∥∥[Id−d′ ∅
∅ 0d′

]
(ϕθ ◦O ◦ Tz)(xi)

∥∥∥∥
1

(submanifold loss)

+ αiso
1

N

N∑
i=1

∥∥∥∥∥
((

ej , ej
′
)φθ

xi

)d

j,j′=1

− Id

∥∥∥∥∥
2

F

, (local isometry loss)

where ∥ · ∥F is the Frobenius norm and
((

ej , ej
′
)φθ

xi

)d

j,j′=1

denotes a d-dimensional matrix just as (Aij)
d
i,j=1 denotes a

matrix.

First, the global isometry loss takes global geometry into account, ensuring that the learned distances under the diffeomor-
phism φθ approximate the true pairwise distances di,j between data points. Second, the submanifold loss enforces that the
data manifold is mapped to M = Md′ ×Rd−d′

, preserving the submanifold structure of the data in the latent space. Finally,
the local isometry loss enforces local isometry, ensuring that small-scale distances and local geometry are preserved under
the transformation, which is critical for maintaining the intrinsic geometric properties of the data during dimensionality
reduction. For further details on the implementation and theoretical considerations, see (Diepeveen, 2024).
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A.4. Conditional Flow Matching

To achieve the goal of accurate generative modeling on data manifolds through isometric learning, we first need to understand
generative modeling on Euclidean spaces. We do this through summarizing CFM (Lipman et al., 2022), a commonly used
and effective framework for learning CNFs for generative modeling for Euclidean data (Chen et al., 2018). CFM is a
method designed to map a simple base distribution to a target data distribution by learning a time-dependent vector field.
The fundamental goal of Flow Matching (FM) is to align a target probability path pt(x) with a vector field ut(x), which
generates the desired distribution. The FM objective is defined as follows:

LFM(η) = Et,pt(x)∥vt(x;η)− ut(x)∥2, (36)

where η represents the learnable parameters of the neural network that parameterizes the vector field vt(x;η), and
t ∼ U(0, 1) is uniformly sampled. However, a significant challenge in FM is the intractability of constructing the exact path
pt(x) and the corresponding vector field ut(x).

To address this (Lipman et al., 2022) introduce CFM, a more practical approach by constructing the probability path and
vector fields in a conditional manner. The CFM objective is then formulated by marginalizing over the data distribution
q(x1) and considering the conditional probability paths:

LCFM(η) = Et,q(x1),pt(x|x1)∥vt(x;η)− ut(x|x1)∥2. (37)

A key result, as established in Theorem 2 of (Chen & Lipman, 2024), is that the gradients of the CFM objective with respect
to the parameters η are identical to those of the original FM objective, i.e.,

∇ηLFM(η) = ∇ηLCFM(η), (38)

ensuring that optimizing the CFM objective yields the same result as the original FM objective. This enables effective train
of the neural network without needing direct access to the intractable marginal probability paths or vector fields.

Given a sample x1 from the data distribution q(x1), we define a conditional probability path pt(x|x1)
2. This path starts at

t = 0 from a simple distribution, typically a standard Gaussian, and approaches a distribution concentrated around x1 as
t→ 1:

pt(x|x1) = N (x|µt(x1), σt(x1)
2I), (39)

where µt(x1) : [0, 1] × Rd → Rd is the time-dependent mean, and we denote the time-dependent standard deviation as
σt(x1) : [0, 1]× R → R>0. For simplicity, we set µ0(x1) = 0 and σ0(x1) = 1, ensuring that all conditional paths start
from the same standard Gaussian distribution. At t = 1, the path converges to a distribution centered at x1 with a small
standard deviation σmin.

The corresponding conditional vector field ut(x|x1) can be defined by considering the flow:

χt(x) = σt(x1)x+ µt(x1), (40)

which maps a sample from the standard Gaussian to a sample from pt(x|x1). The vector field ut(x|x1) that generates this
flow, as proven by (Lipman et al., 2022) in Theorem 3, is given by:

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1), (41)

where the primes denote derivatives with respect to time to stay consistent with the original papers notation.

In this work, we choose to use the optimal transport (OT) formulation of CFM. Here, the mean µt(x1) and standard deviation
σt(x1) are designed to change linearly in time, offering a straightforward interpolation between the base distribution and the

2In this work, we use two types of indexing: xt to denote time indices and xi for different data points. It should be clear from the
context which indexing is being used.
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target distribution. Specifically, the mean and standard deviation are defined as:

µt(x1) = tx1, σt(x1) = 1− (1− σmin)t. (42)

This linear path results in a vector field ut(x|x1) given by:

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
. (43)

The corresponding conditional flow that generates this vector field is:

χt(x) = (1− (1− σmin)t)x+ tx1. (44)

This OT path is optimal in the sense that it represents the displacement map between the two Gaussian distributions p0(x|x1)
and p1(x|x1) (Lipman et al., 2022).

The final CFM loss under this OT formulation is derived by substituting the above vector field and flow into the general
CFM objective (Equation 37) and reparameterizing pt(x|x1) in terms of x0. This yields the following objective function:

LCFM(η) = Et,q(x1),p(x0)

∥∥∥∥vt(χt(x0);η)−
x1 − (1− σmin)x0

1− (1− σmin)t

∥∥∥∥2 . (45)

This formulation is advantageous because the OT paths ensure that particles move in straight lines and with constant speed,
leading to simpler and more efficient regression tasks compared to traditional diffusion-based methods. We use the OT-CFM
objective in this work when we refer to CFM.
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A.5. Riemannian Flow Matching

The next step toward generation on data manifolds is understanding generation on manifolds with closed form geometric
mappings. RFM aims to do exactly this by generalizing CFM to Riemannian manifolds (Chen & Lipman, 2024). Assume a
complete, connected and smooth manifold M endowed with a Riemannian metric (·, ·)M. We are given a set of training
samples x1 ∈ M from some unknown data distribution q(x1) on the manifold. Then the goal is to learn a parametric map
ρ : M → M that pushes a simple base distribution p to the data distribution q. To achieve RFM (Chen & Lipman, 2024)
reparameterize the conditional flow as

xt = χt(x0|x1), (46)

where χt(x0|x1) is the solution to the ordinary differential equation (ODE) defined by a time-dependent conditional vector
field ut(x|x1) ∈ TxM that is tangent to the manifold M. The initial condition is set as χ0(x0|x1) = x0.

This formulation leads to the RFM objective, which ensures that the vector field ut(x|x1) learned by the model lies entirely
within the tangent space of the manifold at each point xt ∈ M:

LRFM(η) = Et,q(x1),p(x0)

(
∥vt(xt;η)− ut(xt|x1)∥Mxt

)2
, (47)

where ∥ · ∥M is the norm enduced by the Riemannian metric (·, ·)M. For manifolds with closed-form geodesic expressions,
a simulation-free objective can be formulated using exponential and logarithmic maps. This approach allows models to
be trained without numerically simulating particle trajectories, leveraging closed-form geodesics and mappings to directly
compute vector fields and transport paths. In this case, xt can be defined by the geodesic between x1 and x0 and can be
explicitly expressed as

xt = γMx1,x0

(
κ(t)

)
= expMx1

(
κ(t) logMx1

(x0)
)
, (48)

with monotonically decreasing differentiable function κ(t) satisfying κ(0) = 1 and κ(1) = 0 acting as a scheduler.
Furthermore, the tangent vector field ut(x|x1) can be evaluated through,

ut(x|x1) = γ̇Mx1,x0

(
κ(t)

)
=

d

dt
expMx1

(
κ(t) logMx1

(x0)
)

(49)

The objective function is then given by:

LRFM(η) = Et,q(x1),p(x0)

(∥∥vt(γMx0,x1

(
κ(t)

)
;η)− γ̇Mx0,x1

(
κ(t)

)∥∥M
p

)2
(50)

Constructing a simulation-free objective for RFM on general geometries presents significant challenges due to the absence
of closed-form expressions for essential geometric operations, such as exponential and logarithmic maps, or geodesics.
These operations are crucial for defining and efficiently evaluating the objective but are often computationally intensive to
approximate without closed-form solutions. For a list of examples of manifolds with closed-form geometric mappings, see
the appendix of (Chen & Lipman, 2024).

In the absence of such closed-form solutions, existing methods tackle these difficulties by either learning a metric that
constrains the generative trajectory to align with the data support (Kapusniak et al., 2024) or by assuming a metric with
easily computable geodesics on the data manifold (Chen & Lipman, 2024). However, learning a metric can be problematic
as it may lead to overfitting or fail to capture the true geometry of the data, particularly when the data manifold is complex or
poorly understood. On the other hand, assuming a simple metric with computable geodesics can oversimplify the problem,
resulting in models that inadequately represent the underlying data structure. To overcome these challenges, we introduce
Pullback Flow Matching in section 3.
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B. Closed Form Manifold Mappings
In Table 5, we include a table of manifolds and their closed-form geometric mappings from (Chen & Lipman, 2024). These
mappings provide explicit expressions for the exponential and logarithmic maps, which construct local coordinate charts.
Given a reference point x ∈ M, the chart ψ is defined as ψ(y) = logMx (y), mapping points on the manifold to the tangent
space at x. The inverse chart is the exponential map, ψ−1(Ξ) = expMx (Ξ), ensuring a local diffeomorphism.

Table 5: Riemannian manifolds with closed-form geometric mappings. The table includes exponential maps, logarithm maps,
and inner products, the operator ⊕ denotes Möbius addition. For any points x,y ∈ M and tangent vectors Ξ,Φ ∈ TxM,
we use the notation ∥ · ∥2M = (·, ·)M for the Riemannian metric. This table is adapted from (Chen & Lipman, 2024).

Manifold M expMx (Ξx) logMx (y) (Ξ,Φ)M

N -D sphere {x ∈ RN+1 : ∥x∥2 = 1} x cos(∥Ξx∥2) + Ξx

∥Ξx∥2
sin(∥Ξx∥2) arccos

(
(x,y)

) Px(y−x)
∥Px(y−x)∥2

(Ξx,Φx)
M

N -D flat tori [0, 2π]N (x+ Ξx) % (2π) arctan 2
(
sin(y − x), cos(y − x)

)
(Ξx,Φx)

M

N -D Hyperbolic {x ∈ RN : ∥x∥2 < 1} x⊕
(
tanh

(
∥Ξx∥2

1−∥x∥2
2

)
Ξx

∥Ξx∥2

) (
1− ∥x∥22

)
tanh−1 (∥−x⊕ y∥2) −x⊕y

∥−x⊕y∥2

4
(1−∥x∥2

2)
2 (Ξx,Φx)

M

N ×N SPD matrices X
1
2 exp{X− 1

2UX− 1
2 }X

1
2 X

1
2 log{X− 1

2Y X− 1
2 }X

1
2 tr

(
X−1ΞXX−1ΦX

)

C. Neural ODEs Parameterize Diffeomorphisms
We can verify that this defines a diffeomorphism by using Theorem C.15 of (Younes, 2010). According to Theorem C.15,
for ϕθ to be a diffeomorphism, the vector field f must satisfy f ∈ L1([0, 1], C1

(0)(Ω,B)), where Ω is the domain of the
vector field and B is a Banach space representing the target space.

In our case, f is composed of smooth and continuously differentiable functions due to the MLP parameterization, ensuring
f is also smooth and continuously differentiable. Additionally, we enforce local isometry by regularizing the Jacobian of
fθ, which guarantees local regularity of f in the data domain (see stability regularization). Thus, f meets the required
conditions and ϕθ defines a proper diffeomorphism.

D. Manifold and Metric Selection
Isometric learning requires three key choices to be made, first one needs to choose the Riemannian metric of the data
manifold (·, ·)D, second one needs to choose both the latent (sub)manifold and its Riemannian metric

(
Md′ , (·, ·)Md′

)
and

finally one needs to choose the dimensionality d′. Technically one also needs to assume a metric on Rd−d′
, but in this work

we assume a Euclidean metric (·, ·)2 throughout all our experiments.

There are several options when selecting the metric on the data manifold (·, ·)D. One can choose for example a locally
euclidean approximation through Isomap (Tenenbaum et al., 2000) or a more noise-robust geodesic approximation (Little
et al., 2022). One can also design a metric to create a latent space 3 structured based on properties of the data one cares
about, we show how in subsection 5.4. In this work, we focus on using a proper metric and defer the exploration of learning
with pseudo-metrics to future research.

When selecting a latent Riemannian (sub)manifold and metric it is crucial to select Md′ such that M = Md′ × Rd−d′
it is

diffeomorphic to the data manifold D. This ensures that the latent space of the RAE can effectively capture the intrinsic
structure of the data. The manifold should be chosen based on its ability to accommodate the data’s periodicity, curvature,
and dimensionality. This alignment is essential for accurately representing the data manifold within the latent space. Unless
otherwise stated we assume Md′ = Rd′

. Additionally, one should select the Riemannian geometry of
(
Md′ , (·, ·)Md′

)
such that geometric mappings can be explicitly defined in closed form. A list of manifolds with closed form geometric
mappings can be found in the appendix of (Chen & Lipman, 2024). Unless otherwise states we select (·, ·)Md′ = (·, ·)2.

Finally, d′, the dimensionality of the latent space, is a hyperparameter that could be tuned through iterative testing.
Techniques such as Isomap (Tenenbaum et al., 2000) or equivalents on other manifolds such as hyperbolic space (Cvetkovski
& Crovella, 2011) can be employed to evaluate various dimensional and Riemannian geometric settings and determine the
optimal d′ that balances model complexity with the ability to accurately capture the data manifold’s structure.

3In this text we refer to the latent space as the concept in machine and representation learning, technically its a latent manifold endowed
with a Riemannian metric, not a vector space.
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E. Data Description
In this work we use several datasets, synthetic, simulated and experimental. Here we describe them in order of appearance
in the experiments.

E.1. ARCH Dataset

We create a dataset in the spirit of (Tong et al., 2020). We sample n = 500 data points uniform on the line [−1, 1]
(xi ∼ U(−1, 1)), wrap this line around the unit half circle and add normally distributed noise with σ = 0.1, i.e.

yi,1 = sin(0.5πxi) + ai,1, yi,2 = cos(0.5πxi) + ai,2 for ai,j ∼ N (0, 0.12). (51)

An example of the dataset can be found in Figure 4.

E.2. Adenylate Kinase (AK)

We consider the time-normalized open-to-close transition of AK. This is a dataset from coarse-grained molecular dynamics
simulations consisting of n = 102 conformations of 214 amino-acids in 3D, samples of the trajectory can be found in
Figure 6.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 6: Example of the open-to-close transition of adynalate kinase protein.

E.3. Intestinal Fatty Acid Binding Protein

The second protein dynamics dataset is that of n = 500 conformations of I-FABP in water. The datasets comes from
simulations in CHARMM of 500 picoseconds (ps) with a 2 femtoseconds (fs) timestep. The data can be found on
mdanalysis.org.

E.4. GRAMPA Dataset

The giant repository of AMP activities (GRAMPA) dataset (Witten & Witten, 2019) is a compilation of peptides and their
antimicrobial activity against various bacteria, including E. coli and P. aeruginosa. It includes data on peptide sequences,
target bacteria, bacterial strains, and minimal inhibitory concentration (MIC) values, with additional columns providing
details on sequence modifications and data sources. The dataset was created to support deep learning models aimed at
predicting the antimicrobial effectiveness of peptides. The dataset is available here. In our experiments we follow the
preprocessing pipeline from (Szymczak et al., 2023) and use only the sequence data and the corresponding MIC scores.
After preprocessing we are left with n = 3444 sequences of maximum 25 amino-acids with tested antimicrobial activity
against E. coli.
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F. Training Procedure
We explain the training procedure and hyperparameter settings for each of the experiments in section 5 in further detail for
reproducibility. In all experiments the datasets where split into train and test sets. We apply early stopping and present the
model with the lowest average loss on the test data.

F.1. Ablation Study

For details of hyperparameter settings for the ablation study see Table 6.

Table 6: Hyperparameter settings for ablation study of RAE on the ARCH, AK and I-FABP datasets.

Hyperparameter ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
nsteps 10 10 10
Seed 0 0 0
Number of Layers 5 5 5
α1 1.0 1.0 1.0
α2 [0.0, 1.0] [0.0, 5.0] [0.0, 5.0]
α3 1.0 1.0 1.0
α4 [0.0, 0.01] [0.0, 0.005] [0.0, 0.1]
d′ 1 1 1
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Number of Neighbors 5 2 4
Batch Size 64 16 64
Warmup 50 400 200

Specific hyperparameters worth mentioning are nsteps which is the number of Runge-Kutta steps we use in our Neural ODE,
Number of Layers is the number of layers of the MLP with swish activation function for the vector field of the Neural ODE.
The Number of Neighbors is the hyperparameter used to calculate the shortest paths over the nearest neighbors graph for the
Isomap geodesics in sklearn and the Warmup is the number of epochs we train with α1, α2 = 0 to first learn a lower
dimensional representation.
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F.2. Interpolation Experiments

For details of hyperparameter settings for the interpolation experiments of (·, ·)M- and (·, ·)Md′ -interpolation see Table 7
and for the (β-)VAEs see Table 8.

Table 7: Hyperparameter settings for interpolation experiments for (·, ·)M- and (·, ·)Md′ -interpolation on the ARCH, AK
and I-FABP datasets.

Hyperparameters ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
nsteps 10 10 10
Seed 0 0 0
Number of Layers 5 5 5
α1 1.0 1.0 1.0
α2 5.0 5.0 5.0
α3 1.0 1.0 1.0
α4 0.001 0.005 0.1
d′ 1 1 1 5
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Number of Neighbors 5 2 4
Batch Size 64 16 64
Warmup 50 400 200
nparameters 17282 2486480 934961

Table 8: Hyperparameter settings for interpolation experiments for (β-)VAE on the ARCH dataset. VAEs have β = 1.0,
β-VAEs have β = 10.0.

Hyperparameters ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
Seed 0 0 0
Number of Encoder Layers 5 5 5
Number of Decoder Layers 5 5 5
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Beta [1.0, 10.0] [1.0, 10.0] [1.0, 10.0]
d′ 1 1 1
Batch Size 64 16 64
nparameters 34184 4555655 1712324
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F.3. Generation Experiments

Table 9: Hyperparameter settings for CFM, PFM and d′-PFM for generation experiments. The same isometry φθ of the
interpolation experiments is used for the PFM and d′-PFM.

ARCH I-FABP
Hyperparameter CFM PFM d′-PFM CFM PFM d′-PFM

Epochs 5000 5000 5000 5000 5000 5000
Learning Rate 0.0005 0.0005 0.0005 0.001 0.001 0.0005
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine
Minimum Learning Rate 5.0 · 10−6 5.0 · 10−6 5.0 · 10−6 1.0 · 10−5 1.0 · 10−5 5.0 · 10−6

Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2
Seed 0 0 0 0 0 0
Number of Layers 10 10 10 10 10 10
Hidden Units 64 64 16 131 · 3 + 1 131 · 3 + 1 131 · 3 + 1
Batch Size 64 64 64 64 64 64
nsimulation steps 10 10 10 10 10 10

F.4. Designable Latent Manifolds for Novel Protein Engineering

In Table 10 one can find the settings for training the isometry on the GRAMPA dataset for the protein sequence design
experiments. Specific hyperparameter worth mentioning is the embedding dimensions, we use an embedding layer from
the Flax library to embed the discrete sequences into a continuous space and use a sign-cosine positional embedding, to
embed the location in the sequence of the amino acids in the data.

Table 10: Hyperparameter settings for protein design experiments of the RAEs on the GRAMPA dataset.

Hyperparameters Setting

Epochs 1000
Learning Rate 0.0001
Optimizer Adam
Train/Test Split 0.8/0.2
nsteps 10
Seed 0
Number of Layers 5
Embedding dimension 8
α1 5.0
α2 5.0
α3 5.0
α4 0.05
d′ 128
Hidden Units 512
Batch Size 128
Warmup 100
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