
Under review as a conference paper at ICLR 2023

FEDDA: FASTER FRAMEWORK OF LOCAL ADAPTIVE
GRADIENT METHODS VIA RESTARTED DUAL AVERAG-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is an emerging learning paradigm to tackle massively
distributed data. In Federated Learning, a set of clients jointly perform a machine
learning task under the coordination of a server. The FedAvg algorithm is one of the
most widely used methods to solve Federated Learning problems. In FedAvg, the
learning rate is a constant rather than changing adaptively. The adaptive gradient
methods show superior performance over the constant learning rate schedule;
however, there is still no general framework to incorporate adaptive gradient
methods into the federated setting. In this paper, we propose FedDA, a novel
framework for local adaptive gradient methods. The framework adopts a restarted
dual averaging technique and is flexible with various gradient estimation methods
and adaptive learning rate formulations. In particular, we analyze FedDA-MVR,
an instantiation of our framework, and show that it achieves gradient complexity
Õ(ϵ−1.5) and communication complexity Õ(ϵ−1) for finding a stationary point ϵ.
This matches the best known rate for first-order FL algorithms and FedDA-MVR
is the first adaptive FL algorithm that achieves this rate. We also perform extensive
numerical experiments to verify the efficacy of our method.

1 INTRODUCTION

Federated Learning denotes the process in which a set of distributed located clients jointly perform
a machine learning task under the coordination of a central server over their privately-held data. A
widely used method in FL is the FedAvg(Local-SGD) McMahan et al. (2017) algorithm. As indicated
by its name, FedAvg performs (stochastic) gradient descent steps on each client and averages local
states periodically. This method can be shown to converge Stich (2018); Haddadpour & Mahdavi
(2019); Woodworth et al. (2020) when the distributions of the clients are homogeneous or with
bounded heterogeneity. Recently, a large amount of literature has focused on accelerating FedAvg.
In particular, many research works use momentum-based methods to accelerate FL, and significant
progress has been made in this direction with improved gradient complexity and communication
complexity Das et al. (2020); Karimireddy et al. (2019a); Khanduri et al. (2021a). However, another
important category of methods: adaptive gradient methods have received much less attention, and
there is still no general framework to incorporate adaptive gradient methods into the federated setting.

Adaptive gradient methods such as Adagrad Duchi et al. (2011), Adam Kingma & Ba (2014) and
AMSGrad Reddi et al. (2018) are widely used in the non-distributed setting. The gradient descent
method uses either a fixed learning rate or a fixed learning rate schedule. In contrast, adaptive gradient
methods set the learning rate to be inversely proportional to the magnitude of the gradient; this can
incorporate the local curvature structure of the problem. Adaptive gradient methods perform well
in practice; meanwhile, they also enjoy useful theoretical implications that make them outperform
the vanilla gradient descent method Duchi et al. (2011); Guo et al. (2021). For example, a recent
study Staib et al. (2019) showed that adaptive gradients help escape saddle points. Furthermore, some
studies Loshchilov & Hutter (2018); Chen et al. (2018a) showed that adaptive gradients improve the
generalization performance of the model.

Adaptive gradient methods can be viewed as a type of generalized mirror descent Huang et al. (2021)
methods, where the associated mirror map is defined according to adaptive learning rates. However,

1

Under review as a conference paper at ICLR 2023

Table 1: Comparisons of representative Federated Learning algorithms for finding an ϵ-stationary
point of Objective equation 1 i.e., ∥∇f(x)∥2 ≤ ϵ or its equivalent variants. Gc(f, ϵ) denotes the
number of gradient queries w.r.t. f (k)(x) for k ∈ [K]; Cc(f, ϵ) denotes the number of communication
rounds; State means what state the algorithm maintains locally (Primal/Dual); Local-Adaptive means
whether the algorithm performs adaptive gradient descent locally or not; Constrained means whether
the algorithm can solve both constrained and unconstrained problems or not. The first three algorithms
are not adaptive gradient methods, and the last four methods support some form of adaptive gradients.

Algorithm Gc(f, ϵ) Cc(f, ϵ) State Local-Adaptive Constrained
FedAvg McMahan et al. (2017) O(ϵ−2) O(ϵ−1.5) Primal/Dual ✗ ✗

FedCM Khanduri et al. (2021a) Õ(ϵ−1.5) Õ(ϵ−1) Primal/Dual ✗ ✗

STEM Khanduri et al. (2021a) Õ(ϵ−1.5) Õ(ϵ−1) Primal/Dual ✗ ✗

FedAdam Reddi et al. (2020) O(ϵ−2) O(ϵ−1) Primal ✗ ✗
Local-AMSGrad Chen et al. (2020b) O(ϵ−2) O(ϵ−1.5) Primal ✓ ✗

MIME-MVR Karimireddy et al. (2020a) Õ(ϵ−1.5) O(ϵ−1.5) Primal ✓ ✗

FedDA-MVR(Ours) Õ(ϵ−1.5) Õ(ϵ−1) Dual ✓ ✓

the mirror map is dynamic and changes at every training step. As a special case, the gradient descent
method can be viewed as a mirror descent method with the mirror map being the L2 distance function.
Following the convention in the mirror descent literature, we denote the parameter space as the
primal space and the gradient space as the dual space. The primal and dual space differ in adaptive
gradient methods, but they coincide in the gradient descent method. We can exploit this primal-dual
view to understand existing FL algorithms and design new algorithms. FedAvg actually exploits the
usefulness of average dual states. In FedAvg, the gradient average approximates the true gradient
evaluated at an average point of the client states, and the approximation error is upper-bounded by the
client states difference; therefore, clients can perform multiple local steps without communication.
Although in FedAvg, we do not differentiate the primal and dual space as they are the same, but the
dual state average and primal state average are not equivalent for adaptive gradient methods.

Current federated adaptive gradient methods in the literature either only perform adaptive gradient
steps on the server side, or ignore this primal-dual nuance when supporting local adaptive gradient
steps. An early work is Reddi et al. (2020), the authors proposed applying adaptive gradients in
the server-average step, while performing normal gradient descent updates locally. This method
is simple to implement and gets better performance than FedAvg, but the adaptive information is
not exploited during local updates; this weakens the usage of adaptive gradients. Recently, some
work Karimireddy et al. (2020a); Chen et al. (2020b) exploited adaptive information during local
update steps; however, a common characteristic of these methods is that they average the primal
states (parameters) of the problem during the synchronization step. This will cause some problems.
Firstly, since adaptive learning rates define the mirror map, updating adaptive learning rates locally
makes the dual space not aligned, thus we can not average the primal states directly. Then even if the
adaptive learning rates are fixed locally, the primal space might be nonlinear w.r.t. the dual space,
e.g., when we solve a constrained optimization problem. In summary, we propose two principles to
apply adaptive gradients in FL. First, the local dual spaces should be aligned with each other; Second,
we should average dual states.

More specifically, we propose the FL adaptive gradients framework FedDA, which is short for
Federated Dual-averaging Adaptive-gradient. In each global round of FedDA, the clients aggregate
gradients (dual states) locally, and the server averages the dual states of the clients in the synchroniza-
tion step. Local weights (primal states) are used as gradient query points in local updates and are
recovered through the inverse mirror map (defined by the adaptive gradients). The global primal state
is updated on the basis of the averaged dual states and the inverse mirror map. In addition, we utilize
a restarting technique to make sure that all clients share the same dual space during local updates;
more precisely, we refresh the adaptive gradients at every global epoch and use a fixed one in the local
update. Our FedDA framework is general and can incorporate a large family of adaptive gradient
methods to the FL setting. In particular, FedDA-MVR, an instantiation of our framework, achieves
the best-known gradient complexity and communication complexity in the FL setting. Finally, we
highlight our contribution as follows:

2

Under review as a conference paper at ICLR 2023

(i) We propose FedDA, a framework for federated adaptive gradient methods. The framework
uses a restarted dual averaging technique and adapts a large family of adaptive gradient
methods to the FL setting;

(ii) FedDA-MVR, an instantiation of our framework, obtains the gradient complexity of
Õ(ϵ−1.5) and communication complexity of Õ(ϵ−1). This matches the optimal rate of
non-adaptive federated algorithms and outperforms existing adaptive federated algorithms.
FedDA-MVR uses the momentum-based variance-reduction gradient estimation, and expo-
nential moving average of the gradient square as adaptive learning rates;

(iii) We empirically verify the efficacy of the framework FedDA by performing a colorrectal
cancer prediction task and a classification task over the CIFAR10 and FEMNIST datasets.

Notations. ∇f(x) (∇f (k)(x)) denotes the first-order derivatives of the function f(x) (f (k)(x)) w.r.t.
variable x. ξ denotes a random sample and ∇f(x; ξ)(∇f (k)(x; ξ)) is the stochastic estimate ∇f(x)
(∇f (k)(x)). O(·) is the big O notation, and Õ(·) hides logarithmic terms. Id denotes a d-dimensional
identity matrix. Diag(x) denotes the matrix whose diagonal is the vector x. ∥ · ∥ denotes the ℓ2 norm
for vectors and the spectral norm for matrices, respectively. ⟨·, ·⟩ denotes the Euclidean inner product.
[K] denotes the set of {1, 2, ...,K}. For a random variable X , E[X] denotes its expectation.

2 RELATED WORKS

Optimization Algorithms in Federated Learning. The term Federated Learning was first coined
in McMahan et al. (2017), where the task is learned from a set of distributed located clients under
the coordination of a server. In the paper McMahan et al. (2017), the authors proposed the FedAvg
algorithm, in which each client performs multiple steps of gradient descent with its local data
and then sends the updated model to the server for averaging. The idea of FedAvg algorithm
resembles the Local-SGD algorithm, which is studied in a more general distributed setting for a
longer time Mangasarian & Solodov (1993). The convergence of the local-SGD method has been
heavily analyzed in the literature Stich (2018); Karimireddy et al. (2019b); Dieuleveut & Patel (2019);
Khaled et al. (2020); Yu et al. (2019); Woodworth et al. (2020); Woodworth (2021); Glasgow et al.
(2022). Recently, Glasgow et al. (2022) proved a convergence rate of the Local-SGD under convex
setting that matches the lower bound. On top of the vanilla Local-SGD, various acceleration methods
are considered; we list a few representatives here. Karimireddy et al. (2020b) adopted the idea
of variance reduction technique for non-distributed finite sum problems: a ’control variate’ which
contains historical full gradient information is used to correct the bias of local gradients. Then
in Karimireddy et al. (2020a), the authors proposed a general framework (MIME) to translate a
centralized optimizer into the FL setting, including adaptive gradient methods. In MIME, the states
of an optimizer are fixed during local update steps and only updated at the server-average step. In Das
et al. (2020); Khanduri et al. (2021b), momentum-based variance reduction is applied to the FL
setting to control the noise of the stochastic gradients. In Das et al. (2020), the authors maintained a
server momentum state and a client momentum state, while in Khanduri et al. (2021b), the authors
maintained a momentum state and the momentum was averaged periodically similar to the primal
state.

Adaptive gradient methods are also studied in the FL setting. The ’Adaptive Federated Optimiza-
tion’ Reddi et al. (2020) method proposed to use adaptive gradients on the server side while the local
gradients are used to update the states of the adaptive gradient methods. In Chen et al. (2020b), the
authors first showed the divergence of a naive local AMSGrad method that directly averages the
primal states periodically. The authors then proposed Local-AMSGrad, a method in which clients
update adaptive learning rates locally and average at the synchronization step. Finally, another line of
research Tang et al. (2020; 2021); Lu et al. (2022); Chen et al. (2020a) considers federated adaptive
learning rates through the compression approach, these methods communicate local gradients at every
step, but the compression techniques are used to reduce the communication cost.

Adaptive Gradients in the Non-distributed Learning. Adaptive gradient methods are widely used
in the non-distributed machine learning setting. The first adaptive gradient method i.e. Adagrad
was proposed in (Duchi et al., 2011), where the method was shown to outperform SGD in the
sparse gradient setting. Since Adagrad does not perform well under dense gradient setting and
non-convex setting, some of its variants are proposed, such as SC-Adagra Mukkamala & Hein (2017)

3

Under review as a conference paper at ICLR 2023

and SAdagrad Chen et al. (2018b). Furthermore, Adam Kingma & Ba (2014) and YOGI Zaheer et al.
(2018) proposed to use the exponential moving average instead of the arithmetic average used in
Adagrad. Adam/YOGI is widely used and very successful in deep learning applications; however,
Adam diverges in some settings and the gradient information quickly disappears, so AMSGrad Reddi
et al. (2018) is proposed, and it applies an extra ‘long term memory’ variable to preserve the past
gradient information to handle the convergence issue of Adam. The convergence of Adam-type
methods is also studied in the literature Chen et al. (2019); Zhou et al. (2018); Liu et al. (2019); Guo
et al. (2021); Huang et al. (2021). Adaptive gradient methods with good generalization performance
are also proposed, such as AdamW (Loshchilov & Hutter, 2018), Padam (Chen et al., 2018a),
Adabound Luo et al. (2019), Adabelief Zhuang et al. (2020) and AaGrad-Norm Ward et al. (2019).

3 PRELIMINARIES

In this section, we introduce some preliminaries before introducing our framework. First, we consider
the following formulation of Federated Learning:

min
x∈X⊂Rd

{
f(x) :=

1

K

K∑
k=1

{
f (k)(x) := Eξ(k)∼D(k) [f (k)(x; ξ(k))]

}}
. (1)

which considers K clients. For the kth client, we optimize the loss objective f (k)(x) : X → R which
is smooth and possibly non-convex, and x denotes the variable of interest. X ⊂ Rd is a compact
and convex set. ξ(k) ∼ D(k) is a random example that follows an unknown data distribution D(k).
The formulation in equation 1 includes both the homogeneous case i.e. f (k)(x) = f (j)(x) for any
k, j ∈ [K], and the heterogeneous case i.e. f (k)(x) ̸= f (j)(x) for some k, j ∈ [K].

Next, we introduce some basics of adaptive gradient methods from a mirror-descent perspective.
Generally, mirror descent is associated with a mirror map Φ(x). Given the objective f(x) and the
primal state xt ∈ X at tth step, we first map the primal state to the mirror space as yt = ∇Φ(xt), then
we perform the gradient descent step in the mirror space: yt+1 = yt−η∇f(x), where η is the learning
rate, finally, we map yt+1 back to the primal space as xt+1 = argmin

x∈X
DΦ(x, yt+1), where DΦ(x, y)

denotes the Bregman Divergence associated to Φ, i.e. DΦ(x, y) = f(x)− f(y)− ⟨∇f(y), x− y⟩,
In summary, the mirror descent step can be written as a Bregman proximal gradient step as follows:

xt+1 = argmin
x∈X

η⟨∇f(xt), x⟩+DΦ(x, xt)

For the adaptive gradient methods, we uses the following mirror map: Φ(x) = 1
2x

THx, where H is
the adaptive matrix and is positive definite. Many adaptive gradient methods can be written in the
following proximal gradient descent form:

xt+1 = argmin
x∈X

η⟨νt, x⟩+
1

2
(x− xt)

THt(x− xt), (2)

we replace the gradient ∇f(x) with the generalized gradient estimation νt, besides, we replace H
with Ht based on the fact that the adaptive matrix is updated at every step. Next, we show some
examples of adaptive gradients methods that can be phrased as the above formulation. For the
Adagrad Duchi et al. (2011) method, we set

νt = ∇f(xt, ξt), Ht = Diag(
√
µt), µt =

1

t

t∑
i=1

ν2i (3)

For Adam Kingma & Ba (2014), we have:

ν̂t = (1− β1)∇f(xt, ξt) + β1ν̂t−1, µ̂t = (1− β2)∇f(xt, ξt)2 + β2µ̂t−1

νt = ν̂t/(1− γt1), µt = µ̂t/(1− γt2), Ht = Diag(
√
µt + ϵ) (4)

where β1, β2, γ1, γ2 are some constants. For other adaptive gradient methods, please refer to Huang
et al. (2021).

4

Under review as a conference paper at ICLR 2023

Algorithm 1 FedDA-Server
1: Input: Number of global epochs E, tuning parameters {βτ}Ei=1;
2: Initialize: Choose x0 ∈ X and compute ν0 = 1

K

∑K
j=1 ∇f (j)(x0,B

(k)
0) where {B(k)

0 }Kk=1 are a
mini-batch of random points selected from each of K clients;

3: for τ = 0 to E − 1 do
4: Server selects a set Sτ of r clients chosen uniformly at random w/o replacement;
5: for the client k ∈ Sτ in parallel do
6: (z(k)τ+1,I , ν(k)τ+1,I) = FedDA-client(xτ , ντ , Hτ)
7: end for
8: Compute zτ+1 = 1

r

∑
k∈Sτ

z
(k)
τ+1,I ;

9: Compute xτ+1 = argmin
x∈X

{−⟨x, zτ+1⟩+ 1
2λ (x− xτ)

THτ (x− xτ) };

10: Compute ντ+1 = 1
r

∑
k∈Sτ

ν
(k)
τ+1,I ;

11: Compute Hτ+1 = V(Hτ , zτ+1);
12: end for

Algorithm 2 FedDA-Client (xτ , ντ , Hτ)

1: Input: Number of local steps I , tuning parameters {ητ+1,i}I−1
i=0 , {ατ+1,i}Ii=1;

2: Initialize: x(k)τ+1,0 = xτ ; ν(k)τ+1,0 = ντ ; z(k)τ+1,0 = 0;
3: for i = 0 to I − 1 do
4: Compute z(k)τ+1,i+1 = z

(k)
τ+1,i − ητ+1,iν

(k)
τ+1,i;

5: Compute x(k)τ+1,i+1 = argmin
x∈X

{−⟨x, z(k)τ+1,i+1⟩+ 1
2λ (x− x

(k)
τ+1,0)

THτ (x− x
(k)
τ+1,0) };

6: Compute ν(k)τ+1,i+1 = U(ν(k)τ+1,i, x
(k)
τ+1,i+1, x

(k)
τ+1,i;ατ+1,i+1,B(k)

τ+1,i+1), where B(k)
τ+1,i+1 is a

minibatch of random samples from the client k;
7: end for
8: Output: Send z(k)τ+1,I , ν(k)τ+1,I to the server.

4 LOCAL ADAPTIVE GRADIENTS VIA DUAL AVERAGING

In this section, we introduce FedDA, a framework of federated adaptive gradient methods. The
procedure of FedDA is summarized in Algorithm 1.

In Algorithm 1, we perform E global steps and at each global step, we select a subset of clients
for training. All selected clients at each step will run Algorithm 2. In Algorithm 2, clients receive
the current model weight xτ , gradient estimation ντ and adaptive gradient matrix Hτ . The clients
then perform I local training steps: line 3- line 7 in Algorithm 2. For each step, we first accumulate
the dual state in the variable z(k)τ,i (line 4), then we calculate the local primal state x(k)τ,i (line 5),
which is a proximal gradient step similar to equation 2. The function of this step is to map the
aggregated dual state z(k)τ,i back to the primal space, and we use the primal state to query the gradient

to update the estimation of the gradient ν(k)τ,i (line 6). Note, we use a fixed adaptive matrix Hτ during
local steps, this makes the clients share the same dual space. In line 6 of Algorithm 2, we update
the gradient estimation ν(k)τ,i . The update rule U(·) is general, e.g.,the momentum-based variance
reduction update equation 5 and the momentum update equation 6 as follows (ατ,i is some constant):

ν
(k)
τ+1,i+1 = ∇f (k)(x(k)τ+1,i+1,B

(k)
τ+1,i+1) + (1− ατ+1,i+1)(ν

(k)
τ+1,i −∇f (k)(x(k)τ+1,i,B

(k)
τ+1,i+1))

(5)

and

ν
(k)
τ+1,i+1 = ατ+1,i+1∇f (k)(x(k)τ+1,i+1,B

(k)
τ+1,i+1) + (1− ατ+1,i+1)ν

(k)
τ+1,i (6)

After the client runs Algorithm 2, it returns the aggregated local dual states z(k)τ+1,I and the local

gradient estimation ν(k)τ+1,I to the server. The server first averages the local dual states (line 8 of

5

Under review as a conference paper at ICLR 2023

Algorithm 1) to get zτ+1. We can average local dual states as all clients have a common dual space.
The server then calculates the new primal states xτ+1 as in line 9 of Algorithm 1. Next, the gradient
estimation ντ is also updated by averaging local states (line 10 of Algorithm 1). Finally, we update
the adaptive matrix Hτ (line 11 of Algorithm 1). The update rule V is general, e.g.,

µτ+1 = βτ+1z
2
τ+1/η

2
τ+1,I−1 + (1− βτ+1)µτ+1, Hτ+1 = Diag(

√
µτ+1 + ϵ) (7)

and

µτ+1 = βτ+1||zτ+1||/ητ+1,I−1 + (1− βτ+1)µτ+1, Hτ+1 = (µτ+1 + ϵ)Id (8)

where we set µ0 = 0, ϵ is some constant. In summary, Algorithm 1 aggregates and averages dual
states at each global round. The adaptive matrix Hτ is fixed during local updates and is refreshed on
the server side at each global round. Since the algorithm uses a new mirror map (adaptive gradient
matrix) at each global round, we call our framework to be restarted dual averaging.
Remark 1. In contrast to our dual-averaging strategy, some existing adaptive FL algorithms Pra-
neeth Karimireddy et al. (2020) average the local primal states. In the unconstrained case, the primal
and dual spaces are linear with each other, but in the constrained case, the linearity does not exist,
and the averaging in the primal space and dual space is not equivalent. As we show in the subsequent
theoretical analysis, dual averaging leads to the convergence in the constrained case.
Remark 2. Note that we use the averaged dual states zτ+1 when we update the adaptive matrix (line
11 of Algorithm 1). An alternative choice is to use the most recent gradient Praneeth Karimireddy
et al. (2020). In comparison, the dual state aggregates information of whole round and offers smoother
estimation of the problem’s local curvature. Another possible choice, as used in the Local-AMSGrad
method Chen et al. (2020b), is to update the state of the adaptive matrix µτ (see equation 7) locally
and then average in the server synchronization step. The limitation of this approach is that µτ is
not linear w.r.t gradient, and thus averaging µτ does not offer a linear speed-up w.r.t. the number of
clients; in contrast, the dual state satisfies linearity.
Remark 3. By choosing different update rules U and V , we can create many variants of FedDA. An
representative is FedDA-MVR, in which we update ν(k)τ,i with momentum-based variance reduction
(equation 5) and the adaptive matrix Hτ with an exponential average of the square of the gradient
(equation 7). In the subsequent discussion, we focus on this variant and perform both theoretical and
empirical analysis.

5 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of our FedDA framework; more specifically, we
focus on the analysis of FedDA-MVR. FedDA-MVR uses equation 7 to update the adaptive matrix
Hτ and equation 5 to update the gradient estimation ν(k)τ,i . We first state the assumptions we need in
our analysis:

5.1 SOME MILD ASSUMPTIONS

Assumption 1 (Bounded Client Heterogeneity). The difference of gradients between different
workers are bounded:

∥∇f (k)(x)−∇f (ℓ)(x)∥2 ≤ ζ2, ∀k, ℓ ∈ [K].

We measure the heterogeneity of the clients in terms of gradient dissimilarity. The above assumption
or its similar form is also exploited in the analysis of other Federated Learning Algorithms, such as
in Khanduri et al. (2021a); Das et al. (2020).
Assumption 2. The function f(x) is bounded from below in X , i.e., f∗ = infx∈X f(x).
Assumption 3 (Unbiased and Bounded-variance Stochastic Gradient). The stochastic gradients are
unbiased with bounded variance, i.e.

E[∇f (k)(x; ξ(k))] = ∇f (k)(x)

and there exists a constant σ such that

E∥∇f (k)(x; ξ(k))−∇f (k)(x)∥2 ≤ σ2, ∀ ξ(k) ∼ D(k), ∀ k ∈ [K].

6

Under review as a conference paper at ICLR 2023

Assumption 2 guarantees the feasibility of the Federated Learning problem equation 1, and Assump-
tion 3 is widely used in stochastic optimization analysis.

Assumption 4. The adaptive matrix Hτ is symmetric positive definite, i.e. there exists a constant
ρ > 0 such that

Hτ ⪰ ρId ≻ 0, ∀t ≥ 1,

In our analysis, we assume the adaptive matrix is positive definite, and this requirement can be easily
satisfied by many adaptive gradient methods. Firstly, most adaptive gradient methods always have
non-negative adaptive learning rates, such as equation 3 and equation 4. To make it positive, we can
add a bias term ϵ such as in the Adam update rule equation 4.

Assumption 5 (Sample Gradient Lipschitz Smoothness). The stochastic functions f (k)(x, ξ(k)) with
ξ(k) ∼ D(k) for all k ∈ [K], satisfy the mean squared smoothness property, i.e, we have

E∥∇f (k)(x; ξ(k))−∇f (k)(y; ξ(k))∥2 ≤ L2∥x− y∥2 for all x, y ∈ Rd,

The smoothness assumption above is a slightly stronger requirement than the standard smooth
condition, but this assumption is widely used in the analysis of variance reduction methods, such as
SPIDER Fang et al. (2018) and STORM Cutkosky & Orabona (2019).

Assumption 6. All clients participate in the training at each step, i.e. choose r = K in Algorithm 1.

We make the full participation assumption to simplify the exposition of the theoretical results. All the
results presented can be easily generalized to the partial participation case.

5.2 CONVERGENCE PROPERTY OF FED-MVR

In this subsection, we provide the convergence property of our FedDA-MVR variant. For convenience
of discussion, we redefine the subscript t = τI + i, i.e. we denote the t step as the i local step in the
τ global round. Similarly, we denote the total number of running steps as T = EI . We analyze our
algorithm through the following measure:

Gt =
ρ2

λ2η2t
||x̃t − x̃t+1||2 + ||ν̄t −∇f(x̃t)||2 (9)

where ν̄t denotes the average gradient estimation at the t step and x̃t denotes the virtual global
primal state at the t step (see Section 9.2 in the appendix for formal definitions). In Remark 7 of the
appendix, we discuss the intuition of the measure Gt. In particular, in the unconstrained case i.e. when
X = Rd, the measure upper-bounds the square norm of the gradient. Therefore, the convergence of
our measure Gt means the convergence to a first-order stationary point. Now, we are ready to provide
the main result of our convergence theorem.

Theorem 5.1. In Algorithm 1, we choose the parameters as κ =
ρK2/3

λL
, c =

96λ2L2

Kρ2
+

ρ

72κ3λLI2
,

wt = max

{
483I6K2 − t− I, 143K0.5

}
, λ > 0, and choose ηt = κ

(ωt+t+I)1/3
, then we have:

1

T

T−1∑
t=0

E[Gt] ≤
[
96LI2

T
+

2L

K2/3T 2/3

]
(f(x0)− f∗) +

[
72I4

bT
+

3I2

2bK2/3T 2/3

]
σ2

+ 1922 ×
(
48I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b1
+

2ζ2

21

)
log(T + 1).

Note, by choosing a proper value of local updates I and using a minibatch of samples for the first
iteration to decrease the noise, our result matches the best known convergence rate for stochastic
federated gradient methods Khanduri et al. (2021a), i.e. our algorithms has gradient complexity of
Õ(ϵ−1.5) and communication complexity of Õ(ϵ−1), moreover we achieve linear speed up w.r.t the
number of clients K. More formally, we have the following corollary:

7

Under review as a conference paper at ICLR 2023

Figure 1: Results for the PATHMNIST Yang et al. (2021) dataset. Plots show the Train Accuracy,
Test Accuracy, Density vs Number of Rounds (E in Algorithm 1) respectively. The post-fix of L1

means we consider the L1 constraints. I is chosen as 5.

Corollary 1. Suppose in Algorithm 1, we set I = O((T/K2)1/6), and use sample minibatch of size
O(I2) in the initialization, then we have:

1

T

T∑
t=1

(
E[Gt]

)
= Õ(

1

K2/3T 2/3
)

and to reach an ϵ-stationary point, we need to make Õ(ϵ−1.5/K) number of steps and need Õ(ϵ−1)
number of communication rounds.

6 NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to verify the efficacy of the proposed adaptive
federated learning framework i.e. FedDA. More specifically, we consider the variant of FedDA-MVR
here, and defer experiments for other variants to Section 8 of the appendix. We performed two sets
of experiments. In the first experiment, we consider a biomedical prediction task: predicting the
survival of colorectal cancer. In this task, we impose a L1 sparsity constraint. L1 constraint improves
the explainability of the model, which is essential for biomedical applications. Then in the second
experiment, we consider a federated multiclass image classification task. More specifically, we
consider two datasets: CIFAR10 Krizhevsky et al. (2009) and FEMNIST Caldas et al. (2018). All
experiments are run on a machine with an Intel Xeon Gold 6248 CPU and 4 Nvidia Tesla V100
GPUs. The code is written in Pytorch. We simulate the Federated Learning environment through the
Pytorch.distributed package.

6.1 COLORRECTAL CANCER SURVIVAL PREDICTION WITH SPARSE CONSTRAINTS

In this subsection, we consider a colorrectal cancer prediction task on the PATHMNST dataset Yang
et al. (2021); Kather et al. (2019), which contains 9 different classes. It has 89996 training images,
and we equally randomly split the training set into 10 clients. We used the original test set for the
metric. In this task, we impose the L1 sparsity constraint to improve the explainability of the model.

In this task, we compare with the following baselines: FedAvg McMahan et al. (2017) and FedDu-
alAvg Yuan et al. (2021). FedDualAvg is a recently proposed federated algorithm that deals with
composite optimization problems. In FedDualAvg, clients maintain dual states locally, but adaptive
gradients are not applied. For our FedDA-MVR, we train with and without the L1 constraint. We
tune the hyper-parameters for each method and choose the best setting. The results are summarized in
Figure 1, the plots are averaged over 5 independent runs and then smoothed. In Figure 1, FedDualAvg
and FedDA-MVR-L1 consider the L1 constraint, while FedAvg and FedDA-MVR do not. We show
results of Train/Test Accuracy and also the number of non-zero (below a threshold) elements in the
parameter (i.e. the rightmost plot in Figure 1). As shown in the plots, FedDA-MVR-L1 outperforms
unconstrained FedDA-MVR in all metrics. This shows the importance of considering constrained
problems in Federated Learning. Furthermore, FedDA-MVR-L1 also outperforms FedAvg and
FedDualAvg in all metrics. This shows that our algorithm can effectively exploit adaptive gradient
information in the constrained case. For more details of this experiment, such as the hyper-parameter
choices, please refer to Section 8 of the appendix.

8

Under review as a conference paper at ICLR 2023

Figure 2: Results for CIFAR10 dataset. From left to right, we show Train Loss, Train Accuracy, Test
Loss, Test Accuracy w.r.t the number of rounds (E in Algorithm 1), respectively. I is chosen as 5.

Figure 3: Results for FEMNIST dataset. From left to right, we show Train Loss, Train Accuracy, Test
Loss, Test Accuracy w.r.t the number of rounds (E in Algorithm 1), respectively. I is chosen as 5.

6.2 IMAGE CLASSIFICATION TASK WITH CIFAR10 AND FEMNIST

In this subsection, we consider an unconstrained image classification task for both homogeneous and
heterogeneous cases. More specifically, we consider two datasets: CIFAR10 Krizhevsky et al. (2009)
and FEMNIST Caldas et al. (2018). CIFAR10 is a widely used image classification benchmark dataset
which contains 50000 training images, and we construct both homogeneous and heterogeneous cases
based on it. For the homogeneous case, we uniformly randomly distribute them into 10 clients.
The Heterogeneous case is deferred to Appendix 8.3. FEMNIST is a Federated dataset of hand-
written digits; it contains hand-written digits of 3550 users (we randomly sample 500 users in our
experiments). Data distribution of FEMNIST is heterogeneous for different writing styles of people.

In this task, we compare our method with the following baselines: the non-adaptive methods:
FedAvg McMahan et al. (2017), FedCM Xu et al. (2021), STEM Khanduri et al. (2021a) and adaptive
methods: FedAdam (Reddi et al., 2020), Local-Adapt Wang et al. (2021), Local-AMSGrad Chen
et al. (2020b), MIME-MVR Praneeth Karimireddy et al. (2020). For all methods, we tune their
hyper-parameters to find the best setting. The results are summarized in Figure 2 (CIFAR10) and
Figure 3 (FEMNIST), the plots are averaged over 5 runs and then smoothed. As shown in the figures,
our FedDA-MVR outperforms all baselines. In addition, the FedAvg algorithm has competitive
training performance; however, it tends to overfit the training data severely. Then we observe that
adaptive methods in general get better train and test performance. Finally, the superior performance
of our method compared with the three adaptive baselines shows that our method exploits adaptive
information better; for example, MIME-MVR also exploits the momentum-based variance reduction
technique, but it fixes all optimizer states during local updates, in contrast, we only fix the adaptive
matrix but update the momentum ν

(k)
t , k ∈ [K] at every step. For more details, including the

hyper-parameter selection, please refer to Section 8 of the appendix.

7 CONCLUSION

In this paper, we proposed the FedDA framework to incorporate adaptive gradients into the Federated
Learning environment. More specifically, we adopted the Mirror Descent view of adaptive gradients,
furthermore, we proposed to maintain and average the dual states in the training, meanwhile we fixed
the adaptive matrix during local training such that the dual space is shared by all clients. We also
analyze the convergence property of our Framework: for the variant FedDA-MVR, we proved that
it reaches an ϵ-optimal stationary point with Õ(ϵ−1.5) gradient queries and Õ(ϵ−1) communication
rounds, these results match the best known gradient complexity and communication complexity of
stochastic federated algorithms under the non-convex case. Finally, we validate our algorithm for
both constrained and unconstrained tasks. The numerical results show the superior performance of
our algorithm compared to various baseline methods.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Congliang Chen, Li Shen, Haozhi Huang, Wei Liu, and Zhi-Quan Luo. Efficient-adam:
Communication-efficient distributed adam with complexity analysis. 2020a.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, and Quanquan Gu. Closing the gener-
alization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018a.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-
type algorithms for non-convex optimization. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

Xiangyi Chen, Xiaoyun Li, and Ping Li. Toward communication efficient adaptive gradient method.
In Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, pp. 119–128,
2020b.

Zaiyi Chen, Yi Xu, Enhong Chen, and Tianbao Yang. Sadagrad: Strongly adaptive stochastic gradient
methods. In International Conference on Machine Learning, pp. 913–921. PMLR, 2018b.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
In Advances in Neural Information Processing Systems, pp. 15236–15245, 2019.

Rudrajit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S Dhillon, and Ufuk
Topcu. Faster non-convex federated learning via global and local momentum. arXiv preprint
arXiv:2012.04061, 2020.

Aymeric Dieuleveut and Kumar Kshitij Patel. Communication trade-offs for local-sgd with large step
size. Advances in Neural Information Processing Systems, 32, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex opti-
mization via stochastic path-integrated differential estimator. In Advances in Neural Information
Processing Systems, pp. 689–699, 2018.

Margalit R Glasgow, Honglin Yuan, and Tengyu Ma. Sharp bounds for federated averaging (local sgd)
and continuous perspective. In International Conference on Artificial Intelligence and Statistics,
pp. 9050–9090. PMLR, 2022.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-average
estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated
learning. arXiv preprint arXiv:1910.14425, 2019.

Feihu Huang, Junyi Li, and Heng Huang. Super-adam: Faster and universal framework of adaptive
gradients. arXiv preprint arXiv:2106.08208, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated
learning. arXiv preprint arXiv:1910.06378, 2019a.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019b.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2020a.

10

Under review as a conference paper at ICLR 2023

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020b.

Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Esther Herpel, Cleo-
Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous, Dyke Ferber, et al. Predicting
survival from colorectal cancer histology slides using deep learning: A retrospective multicenter
study. PLoS medicine, 16(1):e1002730, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pp.
4519–4529. PMLR, 2020.

Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan Rajawat, and Pramod
Varshney. Stem: A stochastic two-sided momentum algorithm achieving near-optimal sample and
communication complexities for federated learning. Advances in Neural Information Processing
Systems, 34, 2021a.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. arXiv preprint
arXiv:2102.07367, 2021b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He. Maximizing
communication efficiency for large-scale training via 0/1 adam. arXiv preprint arXiv:2202.06009,
2022.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Olvi L Mangasarian and Mikhail V Solodov. Backpropagation convergence via deterministic
nonmonotone perturbed minimization. Advances in Neural Information Processing Systems, 6,
1993.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In International Conference on Machine Learning, pp. 2545–2553. PMLR, 2017.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv e-prints, pp. arXiv–2008, 2020.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

11

Under review as a conference paper at ICLR 2023

Matthew Staib, Sashank Reddi, Satyen Kale, Sanjiv Kumar, and Suvrit Sra. Escaping saddle points
with adaptive gradient methods. In International Conference on Machine Learning, pp. 5956–5965.
PMLR, 2019.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

Hanlin Tang, Shaoduo Gan, Samyam Rajbhandari, Xiangru Lian, Ji Liu, Yuxiong He, and Ce Zhang.
Apmsqueeze: A communication efficient adam-preconditioned momentum sgd algorithm. arXiv
preprint arXiv:2008.11343, 2020.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training with
adam’s convergence speed. In International Conference on Machine Learning, pp. 10118–10129.
PMLR, 2021.

Jianyu Wang, Zheng Xu, Zachary Garrett, Zachary Charles, Luyang Liu, and Gauri Joshi. Local
adaptivity in federated learning: Convergence and consistency. arXiv preprint arXiv:2106.02305,
2021.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. In International Conference on Machine Learning, pp. 6677–6686. PMLR, 2019.

Blake Woodworth. The minimax complexity of distributed optimization. arXiv preprint
arXiv:2109.00534, 2021.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with
client-level momentum. arXiv preprint arXiv:2106.10874, 2021.

Haibo Yang, Xin Zhang, Prashant Khanduri, and Jia Liu. Anarchic federated learning. In International
Conference on Machine Learning, pp. 25331–25363. PMLR, 2022.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical image
classification. arXiv preprint arXiv:2110.14795, 2021.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 5693–5700, 2019.

Honglin Yuan, Manzil Zaheer, and Sashank Reddi. Federated composite optimization. In International
Conference on Machine Learning, pp. 12253–12266. PMLR, 2021.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in neural information processing systems, pp. 9793–9803,
2018.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the conver-
gence of adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671,
2018.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in Neural Information Processing Systems, 33, 2020.

12

Under review as a conference paper at ICLR 2023

8 MORE EXPERIMENTAL DETAILS AND RESULTS

In this section, we add additional experiments. In Section 8.1, we consider more variants of FedDA
besides FedDA-MVR. More specifically, we consider four variants of FedDA. We introduce two
cases for the update of the adaptive matrix Hτ in equation 7 and equation 8 and we denote them as
case 1 and case 2, similarly, we denote equation 5 and equation 6 as case 1 and case 2 of gradient
estimation respectively. So we have four different variants, we denote them as FedDA-i-j, for
i, j ∈ {1, 2}, where i shows the choice of gradient estimation and j shows the choice of adaptive
matrix update rule. Note FedDA-MVR corresponds to FedDA-1-1 as we choose Case 1 of gradient
estimation and Case 1 of adaptive matrix update in Algorithm 1. We also introduce more details such
as the hyper-parameter choices. Then in Section 8.2, we perform some ablation studies and compare
our FedDA with other baselines in more detail; In Section 8.3, we include experiments when we
construct heterogeneous dataset from CIFAR10; Finally in Section 8.4, we show the form of our
FedDA when I = 1, i.e. no local steps.

8.1 OTHER VARIANTS OF FEDDA FOR TASKS IN SECTION 6

8.1.1 COLORRECTAL CANCER SURVIVAL PREDICTION WITH SPARSE CONSTRAINTS

Figure 4: Results for the PATHMNIST dataset. Plots show the Train Accuracy, Test Accuracy,
Density vs Number of Rounds (E in Algorithm 1) respectively. The post-fix of L1 means we consider
the L1 constraints.

In this task, we use a 4-layer convolutional neural network with 32 filters at each layer. We have
10 clients and run 20000 steps (T), average states with interval 5 (I) and use mini-batch size of 16.
Besides, we calculate density with threshold 0.01. For other hyper-parameters, we perform grid
search and choose the best setting for each method. More specifically, for the SGD method, we use
learning rate 0.01; for the FedDualAvg algorithm, we use local learning rate 0.1, global learning rate
0.1, L1 constraint 0.01; for our FedDA-MVR, we use learning rate 0.01, w as 100000, c as 5000000,
β as 0.999 and τ as 0.01, for the L1 regularized version FedDA-MVR-L1, we also add L1 constraint
0.01. For other variants of FedDA: for FedDA-2-1, we use learning rate 0.001, α as 0.9, β as 0.999,
τ as 0.01; for FedDA-1-2, we use learning rate 1, w as 10000, c as 200, β as 0.999, τ as 0.001, L1

constraint 0.01; for FedDA-2-2, we use learning rate 0.01, α 0.9, β as 0.999, τ as 0.01, L1 constraint
0.01. The experimental results for different variants of FedDA is summarized in Figure 4. As shown
by the plots, all variants of FedDA get good performance, but we find FedDA-MVR (FedDA-1-1)
gets most sparse model as measured by the density metric.

8.1.2 IMAGE CLASSIFICATION TASK WITH CIFAR10 AND FEMNIST

In this unconstrained federated image classification task, we use a 4-layer convolutional neural
network with 64 filters at each layer. For the FEMNIST dataset, we randomly sample 50 users at
each global round. We run 20000 steps (T), average states with interval 5 (I) and use mini-batch
size of 16. For other hyper-parameters, we perform grid search and choose the best setting for each
method. In the CIFAR10 related experiments, for the SGD method, we use learning rate 0.005; for
the FedCM algorithm, we use learning rate 0.01, momentum coefficient α as 0.9; for the FedAdam
algorithm, we use local learning rate 0.001, global learning rate 0.002, momentum coefficient 0.9,
coefficient for adaptive matrix β as 0.999; for the Local-Adapt algorithm, we use local learning rate
0.001, global learning rate 0.002, momentum coefficient 0.9, coefficient for adaptive matrix β as

13

Under review as a conference paper at ICLR 2023

Figure 5: Results for CIFAR10 dataset. From left to right, we show Train Loss, Train Accuracy, Test
Loss, Test Accuracy w.r.t the number of global rounds (E in Algorithm 1), respectively.

0.999; for the Local-AMSGrad algorithm, we use learning rate 0.001, momentum coefficient 0.9,
adaptive matrix coefficient 0.999; for the MIME-MVR algorithm, we use learning rate 0.1, w 100, c
as 2000; for the STEM algorithm, we use learning rate 0.1, w 100 and c 2000; for our FedDA-MVR,
we use learning rate 0.02, w as 10000, c as 1000000, β as 0.999 and τ as 0.01. For other variants of
FedDA: for FedDA-2-1, we use learning rate 0.001, α as 0.9, β as 0.999, τ as 0.01; for FedDA-1-2,
we use learning rate 1, w as 5000, c as 100, β as 0.999, τ as 0.01; for FedDA-2-2, we use learning
rate 0.01, α 0.9, β as 0.999, τ as 0.01.

Figure 6: Results for FEMNIST dataset. From left to right, we show Train Loss, Train Accuracy,
Test Loss, Test Accuracy w.r.t the number of global rounds (E in Algorithm 1), respectively.

Then in the FEMNIST experiments, for the SGD method, we use learning rate 0.1; for the FedCM
algorithm, we use learning rate 0.1, momentum coefficient α as 0.9; for the FedAdam algorithm,
we use local learning rate 0.02, global learning rate 0.04, momentum coefficient 0.9, coefficient for
adaptive matrix β as 0.999; for the Local-Adapt algorithm, we use local learning rate 0.02, global
learning rate 0.02, momentum coefficient 0.9, coefficient for adaptive matrix β as 0.999; for the
Local-AMSGrad algorithm, we use learning rate 0.0005, momentum coefficient 0.9, adaptive matrix
coefficient 0.999; for the MIME-MVR algorithm, we use learning rate 1, w 10000, c as 400; for the
STEM algorithm, we use learning rate 1, w 10000 and c 400; for our FedDA-MVR, we use learning
rate 0.02, w as 10000, c as 1000000, β as 0.999 and τ as 0.01. For other variants of FedDA: for
FedDA-2-1, we use learning rate 0.001, α as 0.9, β as 0.999, τ as 0.01; for FedDA-1-2, we use
learning rate 1, w as 5000, c as 100, β as 0.999, τ as 0.01; for FedDA-2-2, we use the learning rate
0.01, α 0.9, β as 0.999, τ as 0.01.

The experimental results for different variants of FedDA is summarized in Figure 5 and 6. As shown
by plots, all variants of FedDA get good performance. FedDA-MVR (FedDA-1-1) gets the best
performance in most metrics, we observe that its test loss show some extent of overfitting in the late
training stage.

8.2 MORE DISCUSSION OF EXPERIMENTAL RESULTS

In this subsection, we make more detailed comparison between our FedDA and other baselines
(The experiments are over homogeneous CIFAR10 dataset). In Figure 7, we compare FedCM with
FedDA-2-1 and FedDA-2-2 for different values of local steps I . Since FedDA-2-1 and FedDA-2-2
do not use variance reduction acceleration, the superior performance shows the effectiveness of
using adaptive gradients in our framework. Next, In Figure 8, we compare Local-AMSGrad vs
FedDA-2-1 for different values of I , FedDA-2-1 outperforms Local-AMSGrad for all I and with a
greater margin for larger I . Note both Local-AMSGrad and FedDA-2-1 use Adam-style adaptive
gradients (equation 6 and equation 7) and have same communication cost per epoch. In Figure 9,

14

Under review as a conference paper at ICLR 2023

we compare FedAdam and Local-Adapt with FedDA-2-1. All methods use Adam-style adaptive
gradients. FedAdam only performs adaptive gradients over the server, Local-Adapt performs both
local and global adaptive gradients, but the state of the local adaptive gradient is refreshed per epoch.
We have two observations: First, the Local-Adapt method has very marginal improvement over
FedAdam, which shows the restarted strategy used by Local-Adapt is less effective than our method;
Second, both FedAdam and Local-Adapt benefit little from increasing the I value (compared to our
FedDA-2-1). For FedAdam, this shows the limitation of only applying adaptive gradients at the server
level. Finally, in Figure 10, we change I for all four variants of our FedDA. As shown by the figure,
our framework can benefit from more local steps.

Figure 7: Comparison between FedCM vs FedDA-2-1 and FedDA-2-2. From top to bottom, we show
I = 5, 10, 20 respectively. The number inside the parentheses is the value of I .

Figure 8: Comparison between Local-AMSGrad vs FedDA-2-1. From top to bottom, we show
I = 5, 10, 20 respectively. The number inside the parentheses is the value of I .

15

Under review as a conference paper at ICLR 2023

Figure 9: Comparison between FedAdam and Local-Adapt vs FedDA-2-1. The number inside the
parentheses is the value of I .

Figure 10: Ablation study of local steps I . From top row to the bottom row, we show results for
FedDA-1-1, FedDA-1-2, FedDA-2-1 and FedDA-2-2. The number inside the parentheses is the value
of I .

8.3 IMAGE CLASSIFICATION TASK WITH HETEROGENEOUS CIFAR10

Besides the FEMNIST dataset considered in the main text, we validate our FedDA over a manually
crafted heterogeneous dataset based on CIFAR10 (Similar approaches are seen in literature such
as Das et al. (2020); Yang et al. (2022)). Note For CIFAR10, we have 50000 training images and 5000
images per class. We create heterogeneity in the training set as follows: Suppose we have 10 clients,
for ith client, we distribute ρ-percent samples of ith class, and (1− ρ)/9-percent samples of other
classes, where 0 < ρ ≤ 1. Note for ρ close to 1, the ith client will be dominated by images of ith
class, thus the data distribution among clients will be very different. In our experiments, we choose

16

Under review as a conference paper at ICLR 2023

ρ = 0.8. This means the ith client has 4000 images of ith class and 111 images of other classes. This
creates a high level of heterogeneity. Note that we use the original test set of CIFAR10. The results
are summarized in Figure 11. Note we compare with the same set of baseline methods as in the
homogeneous case. FedDA-i-j represents different variants of our framework, in particular, FedDA-
1-1 represents FedDA-MVR. As shown by the figure, all of our variants outperform the baselines.
FedAvg suffers most due to heterogeneity and is much worse than other methods. Compared to the
homogeneous case (Figure 2 and Figure 5), the methods overfit to the training data slightly more.

Figure 11: Results for heterogeneous CIFAR10 dataset. From left to right, we show Train Loss, Train
Accuracy, Test Loss, Test Accuracy w.r.t the number of rounds (E in Algorithm 1), respectively. I is
chosen as 5.

For hyper-parameters, we perform grid search and choose the best setting for each method. For
the SGD method, we use learning rate 0.01; for the FedCM algorithm, we use learning rate 0.01,
momentum coefficient α as 0.9; for the FedAdam algorithm, we use local learning rate 0.001, global
learning rate 0.002, momentum coefficient 0.9, coefficient for adaptive matrix β as 0.999; for the
Local-Adapt algorithm, we use local learning rate 0.001, global learning rate 0.002, momentum
coefficient 0.9, coefficient for adaptive matrix β as 0.999; for the Local-AMSGrad algorithm, we use
learning rate 0.001, momentum coefficient 0.9, adaptive matrix coefficient 0.999; for the MIME-MVR
algorithm, we use learning rate 0.1, w 100, c as 2000; for the STEM algorithm, we use learning rate
0.1, w 100 and c 2000; for our FedDA-MVR/FedDA-1-1, we use learning rate 0.02, w as 10000, c as
1000000, β as 0.999 and τ as 0.01. For other variants of FedDA: for FedDA-2-1, we use learning rate
0.001, α as 0.9, β as 0.999, τ as 0.01; for FedDA-1-2, we use learning rate 1, w as 5000, c as 100, β
as 0.999, τ as 0.01; for FedDA-2-2, we use learning rate 0.01, α 0.9, β as 0.999, τ as 0.01.

8.4 A SPECIAL CASE OF FEDDA: I = 1

To better illustrate the structure of our FedDA, we give the form of a special case in this subsection,
i.e. I = 1. The pseudo code is summarized in Algorithm 3: at each epoch, the server first gets new
primal state through equation 2 (line 4); then each client (we assume full participation for simplicity)
updates gradient estimate ντ locally (line 6), and the server average these states (line 8), the adaptive
matrix is also updated by the server (line 8).

Algorithm 3 FedDA-Distributed
1: Input: Number of global epochs E, tuning parameters {ατ , βτ , ητ}Ei=1;
2: Initialize: Choose x0 ∈ X and compute ν0 = 1

K

∑K
j=1 ∇f (j)(x0,B

(k)
0) where {B(k)

0 }Kk=1 are a
mini-batch of random points selected from each of K clients;

3: for τ = 0 to E − 1 do
4: Compute xτ+1 = argmin

x∈X
{ητ+1⟨x, ντ ⟩+ 1

2λ (x− xτ)
THτ (x− xτ) };

5: for the client k ∈ [K] in parallel do
6: Compute ν(k)τ+1 = U(ντ , xτ+1, xτ ;ατ+1,B(k)

τ+1), where B(k)
τ+1 is a minibatch of random

samples from the client k;
7: end for
8: Compute ντ+1 = 1

K

∑
k∈[K] ν

(k)
τ+1 and Hτ+1 = V(Hτ , ντ);

9: end for

17

Under review as a conference paper at ICLR 2023

9 PROOF OF THEOREMS

In this section, we provide the convergence analysis of our algorithm.

9.1 PRELIMINARY PROPOSITIONS

Proposition 1. Let {θk}, k ∈ K be K vectors. Then the following are true: ||θi + θj ||2 ≤
(1 + λ)||θi||2 + (1 + 1

λ)||θj ||
2 for any a > 0 and ||

∑K
k=1 θk||2 ≤ K

∑K
k=1 ||θk||2

Proposition 2. For a finite sequence z(k) ∈ Rd for k ∈ [K] define z̄ := 1
K

∑K
k=1 z

(k), we then have∑K
k=1 ∥z(k) − z̄∥2 ≤

∑K
k=1 ∥z(k)∥2.

Proposition 3. Let z0 > 0 and z1, z2, . . . , zT ≥ 0. We have
∑T

t=1
zt

z0+
∑t

i=t zi
≤ log(1 +

∑t
i=1 zi
z0

).

These propositions are standard results. For proofs, the reader can refer to Lemma 3 of Karimireddy
et al. (2019a) for Proposition 1 and Lemma C.1 and Lemma C.2 in Khanduri et al. (2021a) for
Propositions 2 and 3.

9.2 PRELIMINARY LEMMAS IN LOCAL UPDATES

We first introduce some notation. For 0 ≤ i ≤ I , we denote:

ψ
(k)
τ,i (x) = −⟨x, z(k)τ,i ⟩+

1

2λ
(x− x

(k)
τ,0)

THτ−1(x− x
(k)
τ,0), (10)

then, by definition (Line 4 of Algorithm 2), we have:

x
(k)
τ,i = argmin

x∈X
ψ
(k)
τ,i (x), (11)

we also define

ψ̃τ,i(x) = −⟨x, z̄τ,i⟩+
1

2λ
(x− xτ,0)

THτ−1(x− xτ,0), (12)

where z̄τ,i = 1
K

∑K
k=1 z

(k)
τ,i is the virtual average of z(k)τ,i and xτ,0 = xτ . Then we define

x̃τ,i = argmin
x∈X

ψ̃τ,i(x), (13)

Remark 4. In Algorithm 1, at each epoch τ , we only sample r clients from the K clients to perform
an update. For k /∈ Sτ , we define the relevant variables for convenience of analysis and they are not
really calculated.

Remark 5. Note that the global primal state x̃i is not the arithmetic mean of the local states x(k)i in
general.

Finally, we also define

d̃τ,i =
1

ητ,i
(x̃τ,i − x̃τ,i+1), d

(k)
τ,i =

1

ητ,i
(x

(k)
τ,i − x

(k)
τ,i+1), k ∈ [K], i ∈ [I], (14)

Furthermore, recall that by the procedure of Algorithm 2 (line 6), we have

ν̄τ,i =
1

ητ,i
(z̄τ,i − z̄τ,i+1), ν

(k)
τ,i =

1

ητ,i
(z

(k)
τ,i − z

(k)
τ,i+1), k ∈ [K], i ∈ [I], (15)

Remark 6. When it is clear from the context, we omit the global epoch τ in the subscript of the
definitions, i.e. we use ψ(k)

i (x), ψ̃i(x), x
(k)
i , x̃i, d̃i, d

(k)
i , ν̄i, ν

(k)
i and H .

Next, we introduce the following lemma related to local updates. We omit the global epoch number τ
in the subscript.
Lemma 1. For any i ∈ [I] and k ∈ [K], we have the following inequalities be satisfied:

1. λ⟨ν(k)i , d
(k)
i ⟩ ≥ ρ||d(k)i ||2, λ||ν(k)i || ≥ ρ||d(k)i ||

18

Under review as a conference paper at ICLR 2023

2. λ⟨ν̄i, d̃i⟩ ≥ ρ||d̃i||2, λ||ν̄i|| ≥ ρ||d̃i||;

3. λ||z(k)i − z̄i|| ≥ ρ||x(k)i − x̃i||;

Proof. The first and second claims follow similar derivations, and we provide only the derivations
for the first claim. First, if i = 1, we have

x
(k)
1 = argmin

x∈X
− ⟨x, z(k)1 ⟩+ 1

2λ
(x− x

(k)
0)TH(x− x

(k)
0),

by the first-order optimality condition, we have:

⟨−z(k)1 +
1

λ
H(x

(k)
1 − x

(k)
0), u− x

(k)
1 ⟩ ≥ 0, ∀ u ∈ X ,

choose u = x
(k)
0 and use the fact that z(k)1 = −η0ν0, we have:

η0||ν(k)0 ||×||x(k)0 −x(k)1 || ≥ η0⟨ν(k)0 , x
(k)
0 −x(k)1 ⟩ ≥ 1

λ
(x

(k)
1 −x(k)0)TH(x

(k)
1 −x(k)0) ≥ ρ

λ
||x(k)0 −x(k)1 ||2

we use the Cauchy-Schwartz inequality in the leftmost inequality and use the strong convexity
assumption of the adaptive matrix in the rightmost inequality, we get the result in the lemma.

Next if i > 0, by the definition of ψ(k)
i (x), we have:

ψ
(k)
i (x

(k)
i+1)− ψ

(k)
i (x

(k)
i) = −⟨z(k)i , x

(k)
i+1 − x

(k)
i ⟩+ 1

2λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

(16)

Then by the definition of x(k)i , and the first order optimality condition, we have

⟨−z(k)i +
1

λ
H(x

(k)
i − x

(k)
0), u− x

(k)
i ⟩ ≥ 0, ∀ u ∈ X ,

if we pick u = x
(k)
i+1, we have −⟨z(k)i , x

(k)
i+1 − x

(k)
i ⟩ ≥ − 1

λ (x
(k)
i+1 − x

(k)
i)TH(x

(k)
i − x

(k)
0), plug this

inequality to equation 16, we have:

ψ
(k)
i (x

(k)
i+1)− ψ

(k)
i (x

(k)
i)

≥ − 1

λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i − x

(k)
0) +

1

2λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

≥ 1

2λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 − x

(k)
i)

Similarly for ψ(k)
i+1, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x

(k)
i) = −⟨z(k)i+1, x

(k)
i+1 − x

(k)
i ⟩+ 1

2λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

and by the definition of x(k)i+1 and the first order optimality condition, we can get

⟨−z(k)i+1 +
1

λ
H(x

(k)
i+1 − x

(k)
0), u− x

(k)
i+1⟩ ≥ 0, ∀ u ∈ X ,

pick u = x
(k)
i , we have −⟨z(k)i+1, x

(k)
i+1 − x

(k)
i ⟩ ≤ − 1

λ (x
(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 − x

(k)
0), plug this

inequality to the above equality, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x

(k)
i)

≤ − 1

λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 − x

(k)
0) +

1

2λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 + x

(k)
i − 2x

(k)
0)

≤ − 1

2λ
(x

(k)
i+1 − x

(k)
i)TH(x

(k)
i+1 − x

(k)
i)

Next, by definition of ψ(k)
i (x) and ψ(k)

i+1(x), we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x

(k)
i) = ψ

(k)
i (x

(k)
i+1)− ψ

(k)
i (x

(k)
i) + ηi⟨ν(k)i , x

(k)
i+1 − x

(k)
i ⟩

19

Under review as a conference paper at ICLR 2023

Finally, we combine the above relations and have:

ηi||ν(k)i ||×||x(k)i −x(k)i+1|| ≥ ηi⟨ν(k)i , x
(k)
i −x(k)i+1⟩ ≥

1

λ
(x

(k)
i+1−x

(k)
i)TH(x

(k)
i+1−x

(k)
i) ≥ ρ||x(k)i −x(k)i+1||

2

we use the Cauchy-Schwartz inequality in the leftmost inequality and use the strong convexity
assumption of the adaptive matrix in the rightmost inequality, we get the result in the claim of the
lemma.

Next, we prove the third claim, by the definition of ψ(k)
i+1, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x̃i+1) = −⟨z(k)i+1, x

(k)
i+1 − x̃i+1⟩+

1

2λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x

(k)
0)

By the definition of x(k)i+1 and first order optimality condition, we have

⟨−z(k)i+1 +
1

λ
H(x

(k)
i+1 − x

(k)
0), u− x

(k)
i+1⟩ ≥ 0, ∀ u ∈ X ,

pick u = x̃i+1, we have −⟨z(k)i+1, x
(k)
i+1 − x̃i+1⟩ ≤ − 1

λ (x
(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x

(k)
0). Plug this

inequality back to the above inequality, we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x̃i+1)

≤ − 1

λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x

(k)
0) +

1

2λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x

(k)
0)

≤ − 1

2λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x̃i+1)

Then for ψ̃i+1(x), we have:

ψ̃
(k)
i+1(x

(k)
i+1)− ψ̃i+1(x̃i+1) = −⟨z̄i+1, x

(k)
i+1 − x̃i+1⟩+

1

2λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x̃0)

By the definition of x̃i+1 and first order optimality condition, we have:

⟨−z̄i+1 +
1

λ
H(x̃i+1 − x̃0), u− x̃i+1⟩ ≥ 0, ∀ u ∈ X ,

pick u = x
(k)
i+1, we have −⟨z̄i+1, x

(k)
i+1 − x̃i+1⟩ ≥ − 1

λ (x
(k)
i+1 − x̃i+1)

TH(x̃i+1 − x̃0). Plug this
inequality back to the above inequality, we have:

ψ̃i+1(x
(k)
i+1)− ψ̃i+1(x̃i+1)

≥ − 1

λ
(x

(k)
i+1 − x̃i+1)

TH(x̃i+1 − x̃0) +
1

2λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 + x̃i+1 − 2x̃0)

≥ 1

2λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x̃i+1)

Next, since we have x(k)0 = x̃0, then by the definition of ψ(k)
i+1(x) and ψ̃i+1(x) we have:

ψ
(k)
i+1(x

(k)
i+1)− ψ

(k)
i+1(x̃i+1) = ψ̃i+1(x

(k)
i+1)− ψ̃i+1(x̃i+1)− ⟨z(k)i+1 − z̄i+1, x

(k)
i+1 − x̃i+1⟩

Next, we combine the above relations and have:

||z(k)i+1 − z̄i+1|| × ||x(k)i+1 − x̃i+1|| ≥ ⟨z(k)i+! − z̄i+1, x
(k)
i+1 − x̃i+1⟩

≥ 1

λ
(x

(k)
i+1 − x̃i+1)

TH(x
(k)
i+1 − x̃i+1) ≥ ρ||x(k)i+1 − x̃i+1||2

where the first inequality is by the Cauchy-Schwartz inequality and the last inequality is by the
positive definiteness of H . This concludes the proof of the first inequality in the lemma.

20

Under review as a conference paper at ICLR 2023

9.3 STATE CONSENSUS ERROR

As each client performs local update, the states i.e. z(k)τ,i and ν(k)τ,i drift away, the following lemmas
bound this difference. We omit the global epoch number τ in the subscript.

Lemma 2. For each 0 ≤ i ≤ I , and suppose iterates z(k)i , k ∈ [K] are generated from Algorithm 2,
we have:

K∑
k=1

E∥z(k)i − z̄i∥2 ≤ (I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Based on Algorithm 2, we have z(k)0 = z̄0 = 0, the inequality in the lemma holds trivially.
Otherwise, we have

z
(k)
i = −

i−1∑
ℓ=0

ηℓν
(k)
ℓ and z̄i = −

i−1∑
ℓ=0

ηℓν̄ℓ.

So we have:
K∑

k=1

∥z(k)i − z̄i∥2 =

K∑
k=1

∥∥∥ i−1∑
ℓ=1

(
ηℓν

(k)
ℓ − ηℓν̄ℓ

)∥∥∥2 ≤ (I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

∥ν(k)ℓ − ν̄ℓ∥2

where the equality uses the fact ν(k)0 = ν0 for k ∈ [K], the inequality uses the Proposition 1 and the
fact that we have i ≤ I . We get the claim in the lemma by taking expectation on both sides of the
above inequality. This completes the proof.

Lemma 3. For i ∈ [I], we have:

K∑
k=1

||d(k)i − d̃i||2 ≤ 4λ2(I − 1)

ρ2η2i

i∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Firstly, when i = 0, x(k)0 = x̃0, z(k)1 = z̄1, so we have x(k)1 = x̃1 by Line 5 of Algorithm 2,
and then we have η0d

(k)
0 = x

(k)
0 −x(k)1 = x̃0− x̃1 = ηtd̃0, the inequality in the lemma holds trivially.

Next when i > 0, we have:

η2i ||d
(k)
i − d̃i||2 = ||x(k)i − x

(k)
i+1 − (x̃i − x̃i+1)||2 ≤ 2||x(k)i − x̃i||2 + 2||x(k)i+1 − x̃i+1||2

≤ 2λ2

ρ2
(
||z(k)i − z̄i||2 + ||z(k)i+1 − z̄i+1||2

)
The last inequality uses claim 3 of Lemma 1. Sum over k ∈ [K] and use Lemma 2, we have:

ρ2η2i

K∑
k=1

||d(k)i − d̃i||2 ≤ 2λ2(I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2 + 2λ2(I − 1)

i∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ 4λ2(I − 1)

i∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

This completes the proof.

21

Under review as a conference paper at ICLR 2023

9.4 DESCENT LEMMA

In this subsection, we bound the descent of function value f(x̃τ,i) over the virtual sequence x̃τ,i.

Lemma 4. Suppose that the sequence {x(k)τ,i }
I−1
i=0 be generated from Algorithm 2, then we have

f(xτ+1) ≤ f(xτ)−
I−1∑
i=0

(
3ρητ+1,i

4λ
−
η2τ+1,iL

2

)
∥d̃τ+1,i∥2 +

I−1∑
i=0

λητ+1,i

ρ

∥∥∥∥ēτ+1,i

∥∥∥∥2,
where ēτ,i = ν̄τ,i − 1

K

∑K
k=1 ∇f (k)(x̃τ,i).

Proof. Since the function f(x) is L-smooth, we have (we omit the global epoch number τ for ease
of notation):

f(x̃i+1) ≤ f(x̃i) + ⟨∇f(x̃i), x̃i+1 − x̃i⟩+
L

2
∥x̃i+1 − x̃i∥2 = f(x̃i)− ηi⟨∇f(x̃i), d̃i⟩+

Lη2i
2

∥d̃i∥2

= f(x̃i)− ηi⟨ν̄i, d̃i⟩ − ηi⟨∇f(x̃i)− ν̄i, d̃i⟩+
Lη2i
2

∥d̃i∥2

(a)

≤ f(x̃i)− (
ρηi
λ

− Lη2i
2

)∥d̃i∥2 − ηi⟨∇f(x̃i)− ν̄i, d̃i⟩

(b)

≤ f(x̃i)−
(
ρηi
λ

− η2iL

2

)
∥d̃i∥2 +

ρηi
4λ

∥d̃i∥2 +
ληi
ρ

∥ν̄i −∇f(x̃i)∥2

(c)

≤ f(x̃i)−
(
3ρηi
4λ

− η2iL

2

)
∥d̃i∥2 +

ληi
ρ

∥ēi∥2

In inequality (a), we use claim 1 of Lemma 1; inequality (b) uses Young’s inequality; inequality (c)
denotes ēi = ν̄i − 1

K

∑K
k=1 ∇f (k)(x̃i).

For the τ global epoch, we sum over i = 0 to I − 1, we have:

f(x̃τ+1,I) ≤ f(x̃τ+1,0)−
I−1∑
i=0

(
3ρητ+1,i

4λ
−
η2τ+1,iL

2

)
∥d̃τ+1,i∥2 +

I−1∑
i=0

λητ+1,i

ρ

∥∥∥∥ēτ+1,i

∥∥∥∥2,
Follow the update rules in Algorithm 1 and Algorithm 2, we have x̃τ+1,0 = xτ and x̃τ+1,I = xτ+1.
This completes the proof.

9.5 GRADIENT ERROR CONTRACTION

In this subsection, we bound the gradient estimation error ēτ,i, where we have ēτ,i = ν̄τ,i −
1
K

∑K
k=1 ∇f (k)(x̃τ,i) as defined in Lemma 4, additionally, we also define the global gradient estima-

tion error eτ as eτ = ντ − 1
K

∑K
k=1 ∇f (k)(xτ) = ντ −∇f(xτ). Note we have eτ = ēτ,I = ēτ+1,0.

We first show a fact about ē0, the initial gradient estimation error.

Lemma 5. For e0 := ν0 − 1
K

∑K
k=1 ∇f (k)(x0), suppose we choose mini-batch size of |B(k)

0 | =
b, k ∈ [K], we have: E∥e0∥2 ≤ σ2

bK .

Proof. By line 1 of Algorithm 1, we have:

E∥e0∥2 = E
∥∥∥∥ν0 − 1

K

K∑
k=1

∇f (k)(x0)
∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

∇f (k)(x0;B(k)
0)− 1

K

K∑
k=1

∇f (k)(x0)
∥∥∥∥2

(a)

≤ 1

K2

K∑
k=1

E
∥∥∥∥∇f (k)(x0;B(k)

0)−∇f (k)(x0)
∥∥∥∥2 (b)

≤ σ2

bK
.

22

Under review as a conference paper at ICLR 2023

where (a) follows from the following: From the unbiased gradient assumption, we have:
E
[
∇f (k)(x(k)0 ;B(k)

0)
]
= ∇f (k)(x(k)0), for all k ∈ [K]. Moreover, the samples B(k)

0 and B(ℓ)
0 at

the kth and the ℓth clients are chosen uniformly randomly, and independent of each other for all
k, ℓ ∈ [K] and k ̸= ℓ.

E
[〈

(x
(k)
0 ;B(k)

0)−∇f (k)(x0)
)
,
(
∇f (ℓ)(x(ℓ)0 ;B(ℓ)

0)−∇f (ℓ)(x̄0)
)〉]

= E
[〈

E
[
∇f (k)(x(k)0 ;B(k)

0)−∇f (k)(x(k)0)
]︸ ︷︷ ︸

=0

,E
[
∇f (ℓ)(x(ℓ)0 ;B(ℓ)

0)−∇f (ℓ)(x(ℓ)0)
]︸ ︷︷ ︸

=0

〉]
= 0.

Inequality (c) results from the bounded variance assumption. This completes the proof.

Lemma 6. Define ēτ,i := ν̄τ,i − 1
K

∑K
k=1 ∇f (k)(x̃τ,i), then for every τ ≥ 1 and i ≥ 0, suppose

αi < 1 and clients use batchsize b1 in the training, then we have:

E∥ēτ,i∥2 ≤ (1− ατ,i)
2E∥ēτ,i−1∥2 +

40λ2(I − 1)L2

ρ2K2

i−1∑
ℓ=1

η2τ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8η2τ,i−1L

2

K
E∥d̃τ,i−1∥2 +

4α2
τ,iσ

2

b1K

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Consider the error term ∥ēi∥2, i ≥ 1 (we omit the global epoch number τ for ease of notation),
we have:

E∥ēi∥2 = E
∥∥∥∥ν̄i − 1

K

K∑
k=1

∇f (k)(x̃i)
∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

∇f (k)(x(k)i ;B(k)
i) + (1− αi)

(
ν̄i−1 −

1

K

K∑
k=1

∇f (k)(x(k)i−1;B
(k)
i)

)
− 1

K

K∑
k=1

∇f (k)(x̃i)
∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

((
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x̃i)
)

− (1− αi)
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x̃i−1)

))
+ (1− αi)ēi−1

∥∥∥∥2
= (1− αi)

2E∥ēi−1∥2 +
1

K2
E
∥∥∥∥ K∑

k=1

[(
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x̃i)
)

− (1− αi)
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x̃i−1)

)]∥∥∥∥2
= (1− αi)

2E∥ēi−1∥2 +
1

K2

K∑
k=1

E
∥∥∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x̃i)
)

− (1− αi)
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x̃i−1)

)∥∥∥∥2,
where the first equality uses the definition of ν̄i; last equality follows from expanding the norm using
the inner products across k ∈ [K] and noting that the cross term is zero in expectation because of the

23

Under review as a conference paper at ICLR 2023

samples are sampled independently at different workers. Now we consider the 2nd term above:

E
∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x̃i)
)
− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x̃i−1)

)∥∥2
= E

∥∥(∇f (k)(x(k)i ;B(k)
i)−∇f (k)(x(k)i)

)
− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)
+∇f (k)(x(k)i)−∇f (k)(x̃i)− (1− αi)

(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)∥∥2
≤ 2E

∥∥(∇f (k)(x(k)i ;B(k)
i)−∇f (k)(x(k)i)

)
− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)∥∥2
+ 2E

∥∥∇f (k)(x(k)i)−∇f (k)(x̃i)− (1− αi)
(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)∥∥2

For the first term of the above inequality, we have:

E
∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)
− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)∥∥2
= E

∥∥(1− ai)
[(
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)
−
(
∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)]
+ αi

(
∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
)∥∥2

≤ 2(1− αi)
2E
∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i−1;B
(k)
i)
)
−
(
∇f (k)(x(k)i)−∇f (k)(x(k)i−1)

)∥∥2
+ 2α2

iE
∥∥∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i)
∥∥2

≤ 2(1− αi)
2E
∥∥∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i−1;B
(k)
i)
∥∥2 + 2α2

iσ
2/b1

≤ 2(1− αi)
2L2E∥x(k)i − x

(k)
i−1∥

2 + 2a2iσ
2/b1 ≤ 2(1− αi)

2L2η2i−1E∥d
(k)
i−1∥

2 + 2α2
iσ

2/b1

≤ 4(1− αi)
2L2η2i−1E∥d

(k)
i−1 − d̃i−1∥2 + 4(1− αi)

2L2η2i−1E∥d̃i−1∥2 + 2α2
iσ

2/b1

where uses Proposition 1 in the first inequality and the bounded variance assumption in the second
inequality. For the second inequality, we have:

E
∥∥∇f (k)(x(k)i)−∇f (k)(x̃i)− (1− αi)

(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)∥∥2
(a)

≤ 2E
∥∥∇f (k)(x(k)i)−∇f (k)(x̃i)

∥∥2 + 2E
∥∥(1− αi)

(
∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)

)∥∥2
≤ 2L2E

∥∥x(k)i − x̃i
∥∥2 + 2L2(1− αi)

2E
∥∥x(k)i−1 − x̃i−1

∥∥2
(b)

≤ 2λ2L2

ρ2
E
∥∥z(k)i − z̄i

∥∥2 + 2λ2L2(1− αi)
2

ρ2
E
∥∥z(k)i−1 − z̄i−1

∥∥2

24

Under review as a conference paper at ICLR 2023

where (a) uses Proposition 1; (b) uses claim 3 of Lemma 1; Next, we combine the above inequalities
together to get:

E∥ēi∥2 ≤ (1− αi)
2E∥ēi−1∥2 +

4α2
iσ

2

b1K
+

8(1− αi)
2η2i−1L

2

K2

K∑
k=1

E∥d(k)i−1 − d̃i−1∥2

+
8(1− αi)

2η2i−1L
2

K
E∥d̃i−1∥2 +

4λ2L2

K2ρ2

K∑
k=1

E
∥∥z(k)i − z̄i

∥∥2
+

4λ2L2(1− αi)
2

K2ρ2

K∑
k=1

E
∥∥z(k)i−1 − z̄i−1

∥∥2
≤ (1− αi)

2E∥ēi−1∥2 +
4α2

iσ
2

b1K
+

32λ2(I − 1)(1− αi)
2L2

K2ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

+
8(1− αi)

2η2i−1L
2

K
E∥d̃i−1∥2 +

4λ2(I − 1)L2

K2ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

+
4λ2(I − 1)L2(1− αi−1)

2

K2ρ2

i−2∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ (1− αi)
2E∥ēi−1∥2 +

4α2
iσ

2

b1K
+

40λ2(I − 1)L2

K2ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2 +
8η2i−1L

2

K
E∥d̃i−1∥2,

The second inequality uses Lemma 2 and Lemma 3 and the last inequality uses the assumption that
αi < 1. This completes the proof.

Lemma 7. For τ ≥ 0. Suppose we choose ητ,i = κ/(ωi + i+ τI)1/3, additionally, suppose αi < 1,
wi ≤ wi−1, wi ≥ 2, ητ,i ≤ ρ

48λLI2 be satisfied, we have:

ρK

64L2

(
E∥ēτ+1∥2

ητ+1,I−1
− E∥ēτ∥2

ητ,I−1

)
≤ −

I−1∑
i=0

3ητ+1,i

2ρ
E∥ēτ+1,i∥2 +

I−1∑
i=0

ητ+1,iρ

8
E∥d̃τ+1,i∥2 +

I−1∑
i=0

σ2c2η3τ+1,iρ

16L2

+
5I(I − 1)

4Kρ

I∑
ℓ=1

ητ+1,ℓ

K∑
k=1

E∥ν(k)τ+1,ℓ − ν̄τ+1,ℓ∥2

Proof. Using Lemma 6 at the global epoch τ − 1, then for i ≥ 0 (we denote ητ,−1 = ητ−1,I−1 for
all τ ≥ 1), we have:

E∥ēτ,i+1∥2

ητ,i
− E∥ēτ,i∥2

ητ,i−1

≤
[
(1− aτ,i+1)

2

ητ,i
− 1

ητ,i−1

]
E∥ēτ,i∥2 +

40λ2(I − 1)L2

ρ2K2ητ,i

i∑
ℓ=1

η2τ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8L2ητ,i
K

E∥d̃τ,i∥2 +
4a2τ,i+1σ

2

ητ,ib1K

(a)

≤
(
η−1
τ,i − η−1

τ,i−1 − cητ,i
)
E∥ēτ,i∥2 +

80λ2(I − 1)L2

ρ2K2

i∑
ℓ=1

ητ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8L2ητ,i
K

E∥d̃τ,i∥2 +
4σ2c2η3τ,i
b1K

,

where inequality (a) utilizes the fact that (1 − ατ,i)
2 ≤ 1 − ατ,i ≤ 1 and aτ,i+1 = cη2τ,i for all

i ∈ [I], and the following fact: suppose we choose ητ,i = κ/(ωi+ i+τI)
1/3, then for 0 ≤ l ≤ i < I ,

25

Under review as a conference paper at ICLR 2023

we have:

ητ,l
ητ,i

=
(wi + i+ τI)1/3

(wl + l + τI)1/3
=

(
1 +

wi + i− wl − l

wl + l + τI

)1/3

≤
(
1 +

(I − 1)

wl + l + τI

)1/3

≤ 1 +
(I − 1)

3(wl + l + τI)
≤ 2 (17)

The first inequality is by the fact that 0 < i− l < I − 1, the second last inequality uses the concavity
of x1/3 as: (x+ y)1/3 − x1/3 ≤ y/3x2/3, while the last inequality uses the fact that wl ≥ 0, I ≥ 1,
l ≥ 0, τ ≥ 1.

For the difference η−1
i − η−1

i−1, we have:

1

ητ,i
− 1

ητ,i−1
=

(wi + i+ τI)1/3

κ
− (wi−1 + i− 1 + τI)1/3

κ

(a)

≤ (wi + i+ τI)1/3

κ
− (wi + i− 1 + τI)1/3

κ
(b)

≤ 1

3κ(wi + i− 1 + τI)2/3

(c)

≤ 22/3κ2

3κ3(wi + i+ τI)2/3
(d)
=

22/3

3κ3
η2i

(e)

≤ ρ

72κ3λLI2
ηi,

(18)

where inequality (a) is because that we choose wi ≤ wi−1, (b) results from the concavity of x1/3 as:
(x+y)1/3−x1/3 ≤ y/(3x2/3), (c) used the fact that wi ≥ 2, finally, (d) and (e) utilize the definition

of ητ,i and the condition that ητ,i ≤ ρ
48λLI2 , respectively. So if we choose c =

96λ2L2

Kρ2
+

ρ

72κ3λLI2

we have: η−1
τ,i − η−1

τ,i−1 − cητ,i ≤ − 96λ2L2

Kρ2 ητ,i,

Therefore, we have:

E∥ēτ,i+1∥2

ητ,i
− E∥ēτ,i∥2

ητ,i−1
≤ −96λ2L2ητ,i

Kρ2
E∥ēτ,i∥2 +

80λ2(I − 1)L2

ρ2K2

i∑
ℓ=1

ητ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
8L2ητ,i
K

E∥d̃τ,i∥2 +
4σ2c2η3τ,i
b1K

,

Multiplying ρK/64λL2 on both sides, we have:

ρK

64λL2

(
E∥ēτ,i+1∥2

ητ,i
− E∥ēτ,i∥2

ητ,i−1

)
≤ −3λητ,i

2ρ
E∥ēτ,i∥2 +

5λ(I − 1)

4Kρ

i∑
ℓ=1

ητ,ℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+
ητ,iρ

8λ
E∥d̃τ,i∥2 +

σ2c2η3τ,iρ

16λL2b1
.

Then we sum the above inequality from 0 to I − 1 and get:

ρK

64λL2

(
E∥ēτ,I∥2

ητ,I−1
− E∥ēτ,0∥2

ητ−1,I−1

)
≤ −

I−1∑
i=0

3ληi
2ρ

E∥ēτ,i∥2 +
I−1∑
i=0

5λ(I − 1)

4Kρ

i∑
ℓ=1

ηℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+

I−1∑
i=0

ητ,iρ

8λ
E∥d̃τ,i∥2 +

I−1∑
i=0

σ2c2η3τ,iρ

16λL2b1

≤ −
I−1∑
i=0

3ληi
2ρ

E∥ēτ,i∥2 +
5λI(I − 1)

4Kρ

I∑
ℓ=1

ηℓ

K∑
k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

+

I−1∑
i=0

ητ,iρ

8λ
E∥d̃τ,i∥2 +

I−1∑
i=0

σ2c2η3τ,iρ

16λL2b1

By definition, we have ēτ,0 = eτ−1 and ēτ,I = eτ , then we get the results in the lemma by replacing
τ by τ + 1.

26

Under review as a conference paper at ICLR 2023

9.6 DESCENT IN POTENTIAL FUNCTION

We define the potential function as follows:

Φτ := f(x̃τ) +
ρK

64λL2

∥eτ∥2

ητ−1,I−1
. (19)

Next, we characterize the descent in the potential function.
Lemma 8. For any τ ≥ 0, we have:

E[Φτ+1 − Φτ] ≤ −
I−1∑
i=0

(
5ρητ+1,i

8λ
−
η2τ+1,iL

2

)
E∥d̃i∥2 −

λ

2ρ

I−1∑
i=0

ητ+1,iE∥ēτ+1,i∥2

+
σ2c2ρ

16λL2b1

I−1∑
i=0

η3τ+1,i +
5λI(I − 1)

4Kρ

I∑
i=1

ητ+1,i

K∑
k=1

E∥ν(k)τ+1,i − ν̄τ+1,i∥2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. We can the inequality in the lemma by combining Lemma 4 and Lemma 7

9.7 ACCUMULATED GRADIENT ERROR

In this subsection, we bound the gradient consensus error given by term
∑K

k=1 E∥ν
(k)
τ,i − ν̄τ,i∥2.

Lemma 9. For i ≥ 1 and αi < 1, we have:
K∑

k=1

E∥ν(k)τ,i − ν̄τ,i∥2 ≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)τ,i−1 − ν̄τ,i−1

∥∥2 + 8KIL2η2τ,i−1E∥d̃τ,i−1∥2 +
8KIσ2c2η4τ,i−1

b1

+ 16KIζ2c2η4τ,i−1 +
96λ2I2L2

ρ2

i−1∑
ℓ=1

ητ,ℓ2
K∑

k=1

E∥ν(k)τ,ℓ − ν̄τ,ℓ∥2

where the expectation is w.r.t. the stochasticity of the algorithm.

Proof. By the update rule of ν(k)i (we omit the global epoch step for convenience), we have:

E∥ν(k)i − ν̄i∥2

= E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i) + (1− αi)
(
ν
(k)
i−1 −∇f (k)(x(k)i−1;B

(k)
i)
)

−
(

1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i) + (1− αi)

(
ν̄i−1 −

1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)
))∥∥∥∥2

= E
∥∥∥∥(1− αi)

(
ν
(k)
i−1 − ν̄i−1

)
+∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2

≤ (1 + β)(1− αi)
2E
∥∥∥∥ν(k)i−1 − ν̄i−1

∥∥∥∥2 + (1 + 1

β

)
E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2, (20)

where the last inequality uses Proposition 1.

27

Under review as a conference paper at ICLR 2023

Next, we consider the second term:

E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

− (1− αi)

(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2
(a)

≤ 2E
∥∥∥∥∇f (k)(x(k)i ;B(k)

i)− 1

K

K∑
j=1

∇f (j)(x(j)i ;B(j)
i)

−
(
∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

)∥∥∥∥2

+ 2α2
iE
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2
(b)

≤ 2E
∥∥∥∥(∇f (k)(x(k)i ;B(k)

i)−∇f (k)(x(k)i−1;B
(k)
i)
)∥∥∥∥2

+ 2α2
iE
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2
(c)

≤ 2L2E
∥∥∥∥x(k)i − x

(k)
i−1

∥∥∥∥2 + 2α2
iE
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2, (21)

where inequality (a) uses Proposition 1; inequality (b) uses Proposition 2; inequality (c) uses the
smoothness assumption.

28

Under review as a conference paper at ICLR 2023

Next, we consider the second term in equation 21 above, we have

E
∥∥∥∥∇f (k)(x(k)i−1;B

(k)
i)− 1

K

K∑
j=1

∇f (j)(x(j)i−1;B
(j)
i)

∥∥∥∥2
= E

∥∥∥∥(∇f (k)(x(k)i−1;B
(k)
i)−∇f (k)(x(k)i−1)

)
− 1

K

K∑
j=1

(
∇f (j)(x(j)i−1;B

(j)
i)−∇f (j)(x(j)i−1)

)
+∇f (k)(x(k)i−1)−

1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
≤ 2E

∥∥∥∥(∇f (k)(x(k)i−1;B
(k)
i)−∇f (k)(x(k)i−1)

)
− 1

K

K∑
j=1

(
∇f (j)(x(j)i−1;B

(j)
i)−∇f (j)(x(j)i−1)

)∥∥∥∥2

+ 2E
∥∥∥∥∇f (k)(x(k)i−1)−

1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
(a)

≤ 2E
∥∥∥∥(∇f (k)(x(k)i−1;B

(k)
i)−∇f (k)(x(k)i−1)

)∥∥∥∥2 + 2E
∥∥∥∥∇f (k)(x(k)i−1)−

1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
≤ 2E

∥∥(∇f (k)(x(k)i−1;B
(k)
i)−∇f (k)(x(k)i−1)

)∥∥2 + 4E
∥∥∇f (k)(x̃i−1)−∇f(x̃i−1)

∥∥2
+ 8E

∥∥∇f (k)(x(k)i−1)−∇f (k)(x̃i−1)
∥∥2 + 8E

∥∥∥∥∇f(x̃i−1)−
1

K

K∑
j=1

∇f (j)(x(j)i−1)

∥∥∥∥2
(b)

≤ 2σ2

b1
+

4

K

K∑
j=1

E∥∇f (k)(x̃i−1)−∇f (j)(x̄i−1)∥2

+ 8L2E∥x(k)i−1 − x̃i−1∥2 +
8L2

K

K∑
j=1

E∥x(j)i−1 − x̃i−1∥2

(c)

≤ 2σ2

b1
+ 4ζ2 + 8L2E∥x(k)i−1 − x̃i−1∥2 +

8L2

K

K∑
j=1

E∥x(j)i−1 − x̃i−1∥2, (22)

where inequality (a) uses Proposition 2; inequality (b) utilizes bounded variance assumption; (c)
uses the bounded heterogeneity assumption. Finally, substituting equation 22 and equation 21 into
equation 20 and sum over all K workers, we get

K∑
k=1

E∥ν(k)i − ν̄i∥2

≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 2L2

(
1 +

1

β

) K∑
k=1

E∥x(k)i − x
(k)
i−1∥

2

+
4Kσ2

b1

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i + 32L2

(
1 +

1

β

)
α2
i

K∑
k=1

E∥x(k)i−1 − x̃i−1∥2

≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 2L2η2i−1

(
1 +

1

β

) K∑
k=1

E∥d(k)i−1∥
2

+
4Kσ2

b1

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i +

32λ2L2a2i
ρ2

(
1 +

1

β

) K∑
k=1

E∥z(k)i−1 − z̄i−1∥2

where the second inequality uses claim 3 of the Lemma 1.

29

Under review as a conference paper at ICLR 2023

Next using Lemma 2, we have:

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 2L2η2i−1

(
1 +

1

β

) K∑
k=1

E∥d(k)i−1∥
2

+
4Kσ2

b1

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i

+
32λ2L2a2i

ρ2

(
1 +

1

β

)
(I − 1)

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2 (23)

For the second term of the above inequality, we have:

2L2η2i−1

(
1 +

1

β

) K∑
k=1

E∥d(k)i−1∥
2

≤ 4L2η2i−1

(
1 +

1

β

) K∑
k=1

E∥d(k)i−1 − d̃i−1∥2 + 4KL2η2i−1

(
1 +

1

β

)
E∥d̃i−1∥2

≤ 16λ2L2(I − 1)

ρ2

(
1 +

1

β

) i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2 + 4KL2η2i−1

(
1 +

1

β

)
E∥d̃i−1∥2

where the first inequality uses Proposition 1 and the second inequality uses Lemma 3. Next plug the
above inequality back to Eq. equation 23, we have:

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ (1− αi)
2(1 + β)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 4KL2η2i−1

(
1 +

1

β

)
E∥d̃i−1∥2

+
4Kσ2

b1

(
1 +

1

β

)
α2
i + 8Kζ2

(
1 +

1

β

)
α2
i

+
16λ2L2(1 + 2a2i)(I − 1)

ρ2

(
1 +

1

β

) i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 8KIL2η2i−1E∥d̃i−1∥2 +
8KIσ2c2η4i−1

b1

+ 16KIζ2c2η4i−1 +
96λ2I2L2

ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2,

In the last inequality, we choose β = 1/I , then we have (1 + 1/β) ≤ (1 + I) ≤ 2I , we also use the
fact that (1− αi)

2 < 1 and ai = cη2i−1 < 1. This completes the proof.

30

Under review as a conference paper at ICLR 2023

Lemma 10. For ηi ≤ ρ
48LI2 , then we have

I2

ρK

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ ρ

84

I−1∑
i=0

ηiE∥d̃i∥2 +
(
ρσ2c2

84b1L2
+
ρζ2c2

42L2

) I−1∑
i=0

η3i

Proof. By Lemma 9 (we omit the global epoch number for convenience) we have:

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + 8KIL2η2i−1E∥d̃i−1∥2 +
8KIσ2c2η4i−1

b1

+ 16KIζ2c2η4i−1 +
96λ2I2L2

ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

≤ (1 +
1

I
)

K∑
k=1

E
∥∥ν(k)i−1 − ν̄i−1

∥∥2 + KLρηi−1

6λI
E∥d̃i−1∥2 +

Kρσ2c2η3i−1

6λILb1

+
Kρζ2c2η3i−1

3λIL
+

96λ2I2L2

ρ2

i−1∑
ℓ=1

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2, (24)

where in the second inequality, we use the condition that ηi ≤ ρ
48λLI2 . Applying equation 24

recursively from 1 to i. We have:

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ KLρ

6λI

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ

ηℓE∥d̃ℓ∥2 +
Kρσ2c2

6λILb1

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ

η3ℓ

+
Kρζ2c2

3λIL

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ

η3ℓ

+
96λ2L2I2

ρ2

i−1∑
ℓ=0

(
1 +

1

I

)i−1−ℓ ℓ∑
ℓ̄=0

η2ℓ̄

K∑
k=1

E∥ν(k)
ℓ̄

− ν̄ℓ̄∥2

(a)

≤ KLρ

6λI

(
1 +

1

I

)I i−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
Kρσ2c2

6λILb1

(
1 +

1

I

)I i−1∑
ℓ=0

η3ℓ

+
Kρζ2c2

3λIL

(
1 +

1

I

)I i−1∑
ℓ=0

η3ℓ +
96λ2L2I3

ρ2

(
1 +

1

I

)I i−1∑
ℓ̄=0

η2ℓ̄

K∑
k=1

E∥ν(k)
ℓ̄

− ν̄ℓ̄∥2

(b)

≤ KLρ

2λI

i−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
Kρσ2c2

2λILb1

i−1∑
ℓ=0

η3ℓ +
Kρζ2c2

λIL

i−1∑
ℓ=0

η3ℓ

+
288λ2L2I3

ρ2

i−1∑
ℓ=0

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2, (25)

where inequality (a) is by the fact that 1 + 1/I > 1 and i − 1 − ℓ ≤ I for i ∈ [I] and ℓ ∈ [i] and
inequality (b) is because that (1 + 1/I)I ≤ e < 3.

31

Under review as a conference paper at ICLR 2023

Next, multiplying both sides of equation 25 by ηi and summing over i = 1 to I:

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ KLρ

2λI

I∑
i=1

ηi

i−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
Kρσ2c2

2λILb1

I∑
i=1

ηi

i−1∑
ℓ=0

η3ℓ

+
Kρζ2c2

λIL

I∑
i=1

ηi

i−1∑
ℓ=0

η3ℓ +
288λ2L2I3

ρ2

I∑
i=1

ηi

i−1∑
ℓ=0

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

(a)

≤ KLρ

2λI

(I∑
i=1

ηi

) I−1∑
ℓ=0

ηℓE∥d̃ℓ∥2 +
(
Kρσ2c2

2λILb1
+
Kρζ2c2

λIL

)(I∑
i=1

ηi

) I−1∑
ℓ=0

η3ℓ

+
288λ2L2I3

ρ2

(I∑
i=1

ηi

) I−1∑
ℓ=0

η2ℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

(b)

≤ Kρ2

96λ2I2

I−1∑
i=0

ηiE∥d̃i∥2 +
(

Kρ2σ2c2

96λ2I2L2b1
+

Kρ2ζ2c2

48λ2I2L2

) I−1∑
i=0

η3i +
1

8

I−1∑
ℓ=1

ηℓ

K∑
k=1

E∥ν(k)ℓ − ν̄ℓ∥2

where inequality (a) uses the fact that i ≤ I and (b) uses that we choose ηi ≤ ρ/(48λLI2).
Rearranging the terms we have:

7

8

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ Kρ2

96λ2I2

I−1∑
i=0

ηiE∥d̃i∥2 +
(

Kρ2σ2c2

96λ2I2L2b1
+

Kρ2ζ2c2

48λ2I2L2

) I−1∑
i=0

η3i

Multiplying 8λI2/(7Kρ) on both sides, we have:

λI2

Kρ

I∑
i=1

ηi

K∑
k=1

E∥ν(k)i − ν̄i∥2 ≤ ρ

84λ

I−1∑
i=0

ηiE∥d̃i∥2 +
(

ρσ2c2

84λL2b1
+
ρζ2c2

42λL2

) I−1∑
i=0

η3i

This completes the proof.

9.8 PROOF OF THE MAIN CONVERGENCE THEOREM

In this subsection, we prove Theorem 5.1 and Corollary 5.7. To prove Theorem 5.1, we firstly show
the following theorem hold:

Theorem 9.1. Choosing the parameters as κ =
ρK2/3

λL
, c =

96λ2L2

Kρ2
+

ρ

72κ3λLI2
, wt =

max

{
483I6K2 − t− I, 143K0.5

}
, λ > 0, and choose ηt = κ

(ωt+t+I)1/3
, then we have:

1

T

T−1∑
t=0

(
E∥d̃t∥2 +

λ2

ρ2
E∥ēt∥2

)
≤
[
96λ2LI2

ρ2T
+

2λ2L

ρ2K2/3T 2/3

]
(f(x0)− f∗) +

[
72λ2I4

bρ2T
+

3λ2I2

2bρ2K2/3T 2/3

]
σ2

+
1922λ2

ρ2
×
(
48I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b1
+

2ζ2

21

)
log(T + 1).

Proof. By definition, we have ηt ≤ η0 < κ/w
1/3
0 = ρK2/3/48λLI2K2/3 = ρ/48λLI2, then

c = λ2L2

(
96

Kρ2 + 1
72K2ρ2I2

)
≤ 192λ2L2

Kρ2 and:

cη2t ≤ cη20 <
192λ2L2

Kρ2
∗ κ2

w
2/3
0

=
192L2

Kρ2
∗ ρ

2K4/3

L2w
2/3
0

=
192K1/3

w
2/3
0

≤ 192K1/3

196K1/3
< 1,

So we have αt < 1, then the conditions of Lemma 8-Lemma 10 are satisfied.

32

Under review as a conference paper at ICLR 2023

Firstly, substitute the gradient consensus error in Lemma 10 to Lemma 8, we can write the descent of
potential function as:

E[Φτ+1 − Φτ] ≤ −
I−1∑
i=0

(
5ρητ+1,i

8λ
−
η2τ+1,iL

2

)
E∥d̃τ+1,i∥2 −

λ

2ρ

I−1∑
i=0

ητ+1,iE∥ēτ+1,i∥2

+
σ2c2ρ

16λL2b1

I−1∑
i=0

η3τ+1,i +
ρ

42λ

I−1∑
i=0

ητ+1,iE∥d̃τ+1,i∥2 +
(

ρσ2c2

42λL2b1
+
ρζ2c2

21λL2

) I−1∑
i=0

η3τ+1,i

≤ −
I−1∑
i=0

(
3ρητ+1,i

5λ
−
η2τ+1,iL

2

)
E∥d̃τ+1,i∥2 −

λ

2ρ

I−1∑
i=0

ητ+1,iE∥ēτ+1,i∥2

+

(
ρσ2c2

8λL2b1
+
ρζ2c2

21λL2

) I−1∑
i=0

η3τ+1,i

(a)

≤ −
I−1∑
i=0

ρηi
2λ

E∥d̃τ+1,i∥2 −
λ

2ρ

I−1∑
i=0

ητ+1,iE∥ēτ+1,i∥2 +
(
ρσ2c2

8λL2b1
+
ρζ2c2

21λL2

) I−1∑
i=0

η3τ+1,i,

where (a) follows from the fact that ηi ≤ ρ
48λLI2 ≤ ρ

48λL .

Suppose we denote T = EI , and t = τI + i for t ≥ 0 and τ ≥ 0. Then we have ηt = ητ+1,i,
d̃t = d̃τ+1,i, ēt = ēτ+1,i. In particular, we denote η−1 = η0 for convenience.

Then we sum the above inequality for τ from 0 to E − 1, and get:

E[ΦE − Φ0]≤−
T−1∑
t=0

(ρηt
2λ

)
E∥d̃t∥2 −

T−1∑
t=0

ληt
2ρ

E∥ēt∥2 +
(
ρσ2c2

8λL2b1
+
ρζ2c2

21λL2

) T∑
t=0

η3t ,

Rearranging terms, we get:
T∑

t=1

(
ρηt
2λ

E∥d̃t∥2 +
ληt
2ρ

E∥ēt∥2
)

≤ E[Φ0 − ΦE] +

(
ρσ2c2

8λL2b1
+
ρζ2c2

21λL2

) T−1∑
t=0

η3t

(a)

≤ f(x0)− f∗ +
ρK

64λL2

E∥e0∥2

η0
+

(
ρσ2c2

8λL2b1
+
ρζ2c2

21λL2

) T−1∑
t=0

η3t

(b)

≤ f(x0)− f∗ +
σ2ρ

64λbL2η0
+

(
ρσ2c2

8λL2b1
+
ρζ2c2

21λL2

) T−1∑
t=0

η3t ,

(26)

where (a) follows from the fact that f∗ ≤ ΦE and (b) results from application of Lemma 5 and b is
the minibatch size at the first iteration.

Next for the last term of the equation 26 above, we have:
T−1∑
t=0

η3t =

T−1∑
t=0

κ3

wt + t

(a)

≤
T−1∑
t=0

κ3

1 + t
= κ3

T−1∑
t=0

1

1 + t

(b)

≤ κ3 ln(T + 1). (27)

where inequality (a) above follows from the fact that we have wt > 1 and inequality (b) follows
from the application of Proposition 3.

Substituting equation 27 in equation 26, multiplying both sides by 2λ/(ρηTT) and using the fact that
ηt is non-increasing in t we have

1

T

T−1∑
t=0

(
E∥d̃t∥2 +

λ2

ρ2
E∥ēt∥2

)
≤ 2λ(f(x0)− f∗)

ρηTT
+

1

ηTT

σ2

32bL2η0
+

κ3

ηTT

(
σ2c2

4b1L2
+

2ζ2c2

21L2

)
ln(T + 1).

(28)
Now considering each term of equation 28 above separately. For the first term:

1

ηTT
=

(wT + T)1/3

κT

(a)

≤
w

1/3
T

κT
+

1

κT 2/3
=

48λLI2

ρT
+

λL

ρK2/3T 2/3
. (29)

33

Under review as a conference paper at ICLR 2023

where inequality (a) follows from identity (x+ y)1/3 ≤ x1/3 + y1/3 and inequality (b) follows from
the definition of κ and wT

wT = max

{
(I + 1), 483I6K2 − T, 2 ∗ 3201.5K0.5

}
≤ 483I6K2,

Similarly, for the second term of equation 28, we have from the definition of η0 and ηT

1

ηTT

σ2

32bL2η0
≤
(
48λLI2

ρT
+

λL

ρK2/3T 2/3

)
× σ2

32bL2
× w

1/3
0

κ

≤
(
48λLI2

ρT
+

λL

ρK2/3T 2/3

)
× σ2

32bL2
× 48λLI2

ρ

≤ 72λ2I4

bρ2T
σ2 +

3λ2I2

2bρ2K2/3T 2/3
σ2. (30)

Finally, for the last term in equation 28 above, we have from the definition of the stepsize, ηt,

κ3c2

ηTTL2

(
σ2

4b1
+

2ζ2

21

)
ln(T + 1)

≤
(
48λLI2

ρT
+

λL

ρK2/3T 2/3

)
× 1922λ

Lρ
×
(
σ2

4b1
+

2ζ2

21

)
log(T + 1)

≤ 1922λ2

ρ2
×
(
48I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b1
+

2ζ2

21

)
log(T + 1). (31)

Finally, substituting the bounds obtained in equation 29, equation 30 and equation 31 into equation 28,
we get

1

T

T−1∑
t=0

(
E∥d̃t∥2 +

λ2

ρ2
E∥ēt∥2

)
≤
[
96λ2LI2

ρ2T
+

2λ2L

ρ2K2/3T 2/3

]
(f(x0)− f∗) +

[
72λ2I4

bρ2T
+

3λ2I2

2bρ2K2/3T 2/3

]
σ2

+
1922λ2

ρ2
×
(
48I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b1
+

2ζ2

21

)
log(T + 1).

This completes the proof of the theorem.

Now we are ready to show Theorem 5.1. Firstly notice that:

λ2Gt

ρ2
=

1

η2t
||x̃t − x̃t+1||2 +

λ2

ρ2
||ν̄t −∇f(x̃t)||2 = ||d̃t||2 +

λ2

ρ2
||ēt||2

Combine with Theorem 9.1, we have:

1

T

T−1∑
t=0

E[Gt] ≤
[
96LI2

T
+

2L

K2/3T 2/3

]
(f(x0)− f∗) +

[
72I4

bT
+

3I2

2bK2/3T 2/3

]
σ2

+ 1922 ×
(
48I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b1
+

2ζ2

21

)
log(T + 1).

Remark 7. For the measure Gt, we discuss its intuition under both the unconstrained and constrained
case. First, for unconstrained case, i.e. when X = Rd, we have:

||∇f(x̃τ,i)||/||Hτ || = ||Hτ ×H−1
τ ∇f(x̃τ,i)||/||Hτ || ≤ ||H−1

τ ∇f(x̃τ,i)||
= ||H−1

τ ∇f(x̃τ,i)−H−1
τ ν̄τ,i +H−1

τ ν̄τ,i|| ≤ ||H−1
τ ∇f(x̃τ,i)−H−1

τ ν̄τ,i||+ ||H−1
τ ν̄τ,i||

≤ 1

ρ
||ν̄τ,i −∇f(x̃τ,i)||+

1

λητ,i
||x̃τ,i − x̃τ,i+1|| ≤

√
2
√
Gτ,i/ρ

34

Under review as a conference paper at ICLR 2023

In the last inequality, we use Jensen inequality, and in the second last inequality, we use Assumption 4
and the fact that x̃τ,i+1 = xτ,0+λH

−1
τ z̄τ,i+1 and x̃τ,i = xτ,0+λH

−1
τ z̄τ,i and ητ,iν̄τ,i = z̄τ,i+1−z̄τ,i

in the unconstrained case. In other words, we have ||∇f(x̃t)||2 ≤ 2||Hτ ||2
ρ2 Gτ . Note the coefficient of

the right-side is an upper bound of the square condition number of Hτ . It is common assumption in
the analysis of adaptive gradient methods that Ht has a finite condition number Huang et al. (2021).
In sum, the convergence of our measure Gt means the convergence to a first order stationary point in
the unconstrained case.

Next, for the constrained case, our measure upper bounds the gradient mapping 1
ητ+1,i

||xτ − x∗τ+1,i||,
x∗t is defined as follows:

x∗τ+1,i = argmin
x∈X

{−⟨x, z∗τ+1,i)⟩+
1

2λ
(x− xτ)

THτ (x− xτ)}

where z∗τ+1,i =
∑i

ℓ=0 −ηℓ∇f(x̃τ+1,i) is the accumulation of true gradient. Next follow Lemma 1,
we have:

∥x∗τ+1,i − x̃τ+1,i∥ ≤ λ

ρ
∥z∗τ+1,i − z̄τ+1,i∥

=
λ

ρ
∥

i−1∑
l=0

−ητ+1,ℓ(∇f(x̃τ+1,ℓ)− ν̄τ+1,ℓ))∥
(a)

≤
i−1∑
l=0

λητ+1,ℓ

ρ
∥∇f(x̃τ+1,ℓ)− ν̄τ+1,ℓ∥

where inequality (a) is due to the triangle inequality. Next we have:

∥xτ − x∗τ+1,i∥ = ∥xτ − x̃τ+1,i + x̃τ+1,i − x∗τ+1,i∥ ≤ ∥xτ − x̃τ+1,i∥+ ∥x̃τ+1,i − x∗τ+1,i∥

≤ ∥
i−1∑
l=0

d̃τ+1,i∥+ ∥x̃τ+1,i − x∗τ+1,i∥ ≤
i−1∑
l=0

(
∥d̃τ+1,ℓ∥+

λητ+1,ℓ

ρ
∥∇f(x̃τ+1,ℓ)− ν̄τ+1,ℓ∥

)
By Jensen inequality and the definition of the measure equation 9, we have

∥d̃t∥+
ληt
ρ

∥∇f(x̃t)− ν̄t∥ ≤
√
2ληt
ρ

√
Gt,

So we have

1

ητ+1,i
∥xτ − x∗τ+1,i∥ ≤

√
2λ

ρ

i−1∑
l=0

ητ+1,l

ητ+1,i

√
Gτ+1,l ≤

2
√
2λ

ρ

i−1∑
l=0

√
Gτ+1,ℓ,

the last inequality is because of Eq. equation 17. In all, when the measure Gτ+1,ℓ → 0, the gradient
mapping 1

ητ+1,i
∥xτ − x∗τ+1,i∥ converges to 0.

Corollary 2. With the hyper-parameters chosen as in Theorem 9.1. Suppose we set I = O((T/K2)1/6)
and use sample minibatch of size O(I2) in the first step, Then we have:

E[Gt] = O

(
f(x0)− f∗

K2/3T 2/3

)
+ Õ

(
σ2

K2/3T 2/3

)
+ Õ

(
ζ2

K2/3T 2/3

)
.

and to reach an ϵ-stationary point, we need to make Õ(ϵ−1.5/K) number of steps and need Õ(ϵ−1)
number of communication rounds.

Proof. It is straightforward to verify the expression for E[Gt] in the corollary by applying Theorem
9.1 and choosing I and b as corresponding values. As for the gradient and communication complexity
of the algorithm. We have the following results: The number of total steps T needed to achieve an
ϵ-stationary point, i.e. Õ(1

K2/3T 2/3) = ϵ are O(1
Kϵ3/2

), i.e. the gradient complexity. Total rounds of
communication steps to achieve an ϵ-stationary point is E = T/I , as we have I = O((T/K2)1/6),
then T/I = Õ(K1/3T 5/6). Assume we have large number of clients compared, more specifically,
assume K ≥

√
T . Then we have T/I = Õ(K1/3T 5/6) = Õ(K2/3T 2/3), in other words, we have

E = Õ(ϵ−1). This completes the proof of the corollary.

35

	Introduction
	Related Works
	Preliminaries
	Local Adaptive Gradients via Dual Averaging
	Theoretical Analysis
	Some Mild Assumptions
	Convergence Property of Fed-MVR

	Numerical Experiments
	Colorrectal Cancer Survival Prediction with Sparse Constraints
	Image Classification Task with CIFAR10 and FEMNIST

	Conclusion
	More Experimental Details and Results
	Other Variants of FedDA for Tasks in Section 6
	Colorrectal Cancer Survival Prediction with Sparse Constraints
	Image Classification Task with CIFAR10 and FEMNIST

	More discussion of Experimental Results
	Image Classification Task with Heterogeneous CIFAR10
	A special case of FedDA: I=1

	 Proof of Theorems
	Preliminary Propositions
	Preliminary Lemmas in local updates
	State Consensus Error
	Descent Lemma
	Gradient Error Contraction
	Descent in Potential Function
	Accumulated Gradient Error
	Proof of the Main Convergence Theorem

