
Published as a conference paper at ICLR 2021

EXTREME MEMORIZATION VIA SCALE OF INITIALIZA-
TION

Harsh Mehta
Google Research
harshm@google.com

Ashok Cutkosky
Boston University
ashok@cutkosky.com

Behnam Neyshabur
Blueshift, Alphabet
neyshabur@google.com

ABSTRACT

We construct an experimental setup in which changing the scale of initialization
strongly impacts the implicit regularization induced by SGD, interpolating from
good generalization performance to completely memorizing the training set while
making little progress on the test set. Moreover, we find that the extent and manner
in which generalization ability is affected depends on the activation and loss
function used, with sin activation demonstrating extreme memorization. In the case
of the homogeneous ReLU activation, we show that this behavior can be attributed
to the loss function. Our empirical investigation reveals that increasing the scale
of initialization correlates with misalignment of representations and gradients
across examples in the same class. This insight allows us to devise an alignment
measure over gradients and representations which can capture this phenomenon.
We demonstrate that our alignment measure correlates with generalization of deep
models trained on image classification tasks.

1 INTRODUCTION

Training highly overparametrized deep neural nets on large datasets has been a very successful
modern recipe for building machine learning systems. As a result, there has been a significant interest
in explaining some of the counter-intuitive behaviors seen in practice, with the end-goal of further
empirical success.

One such counter-intuitive trend is that the number of parameters in models being trained have
increased considerably over time, and yet these models continue to increase in accuracy without loss
of generalization performance. In practice, improvements can be observed even after the point where
the number of parameters far exceed the number of examples in the dataset, i.e., when the network is
overparametrized (Zhang et al., 2016; Arpit et al., 2017) . These wildly over-parameterized networks
avoid overfitting even without explicit regularization techniques such as weight decay or dropout,
suggesting that the training procedure (usually SGD) has an implicit bias which encourages the net to
generalize (Caruana et al., 2000; Neyshabur et al., 2014; 2019; Belkin et al., 2018a; Soudry et al.,
2018).

Contributions In order to understand the interplay between training and generalization, we in-
vestigate situations in which the network can be made to induce a scenario in which the accuracy
on the test set drops to random chance while maintaining perfect accuracy on the training set. We
refer to this behavior as extreme memorization, distinguished from the more general category of
memorization where either test set performance is higher than random chance or the net fails to attain
perfect training set accuracy. In this paper, we examine the effect of scale of initialization on the
generalization performance of SGD. We found that it is possible to construct an experimental setup
in which simply changing the scale of the initial weights allows for a continuum of generalization
ability, from very little overfitting to perfectly memorizing the training set. It is our hope that these
observations provide fodder for further advancements in both theoretical and empirical understanding
of generalization. 1

1The code used for experiments is open-sourced at https://github.com/google-research/
google-research/tree/master/extreme_memorization

1

https://github.com/google-research/google-research/tree/master/extreme_memorization
https://github.com/google-research/google-research/tree/master/extreme_memorization

Published as a conference paper at ICLR 2021

(a) Test accuracy (b) Changing scale of initialization (c) Alignment on deep models

Figure 1: (a) Results when using sin activation function in a 2-layer MLP. We initialize the first layer using
random normal distribution with mean zero and vary the standard deviation σ as shown in the plots. Initialization
scheme for the top layer is kept unchanged and uses a glorot uniform initializer (Glorot & Bengio, 2010). The
plot shows the drastic changes in generalization ability solely due the changes in scaling on CIFAR-10 dataset.
Plot (b) shows the correlation between best test accuracy and gradient alignment values across 3 different datasets,
CIFAR-10 (Krizhevsky, 2009) CIFAR-100 and SVHN as we change scale of initialization. Finally, plot (c)
illustrates that the alignment measure can also capture differences in generalization across model architectures.
Note that, in order to do a fair comparison, all hyperparameters (e.g. learning rate, optimizer) are kept constant.

• We construct a two-layer feed forward network using sin activation and observe that in-
creasing the scale of initialization of the first layer has a strong effect on the implicit
regularization induced by SGD, approaching extreme memorization of the training set as the
scale is increased. We observe this phenomenon on 3 different image classification datasets:
CIFAR-10, CIFAR-100 and SVHN.

• For the popular ReLU activation, one might expect that changing the scale should not
affect the predictions of network, due to its homogeneity property. Nevertheless, even with
ReLU activation we see a similar drop in generalization performance. We demonstrate that
generalization behavior can be attributed further up in the network to a variety of common
loss functions (softmax cross-entropy, hinge and squared loss).

• Gaining insight from these phenomena, we devise an empirical “gradient alignment” measure
which quantifies the agreement between gradients for examples corresponding to a class. We
observe that this measure correlates well with the generalization performance as the scale of
initialization is increased. Moreover, we formulate a similar notion for representations as
well.

• Finally, we provide evidence that our alignment measure is able to capture generalization
performance across architectural differences of deep models on image classification tasks.

2 RELATED WORK

Understanding the generalization performance of neural networks is a topic of widespread interest.
While overparametrized nets generalize well when trained via SGD on real datasets, they can just as
easily fit the training data when the labels are completely shuffled (Zhang et al., 2016). In fact, Belkin
et al. (2018b) show that the perfect overfitting phenomenon seen in deep nets can also be observed in
kernel methods. Further studies like Neyshabur et al. (2017); Arpit et al. (2017) expose the qualitative
differences between nets trained with real vs random data. Generalization performance has been
shown to depend on many factors including model family, number of parameters, learning rate
schedule, explicit regularization techniques, batch size, etc (Keskar et al., 2016; Wilson et al., 2017).
Xiao et al. (2019) further characterize regions of hyperparameter spaces where the net memorizes the
training set but fails to generalize completely.

Interestingly, there has been recent work showing that over-parametrization aids not just with
generalization but optimization too (Du et al., 2019; 2018; Allen-Zhu et al., 2018; Zou et al.,
2019). Du et al. (2018) show that for sufficiently over-parameterized nets, the gram matrix of the
gradients induced by ReLU activation remains positive definite throughout training due to parameters
staying close to initialization. Moreover, in the infinite width limit the network behaves like its
linearized version of the same net around initialization (Lee et al., 2019). Jacot et al. (2018) explicitly
characterize the solution obtained by SGD in terms of Neural Tangent Kernel which, in the infinite

2

Published as a conference paper at ICLR 2021

width limit, stays fixed through the training iterations and deterministic at initialization. Finally,
Frankle & Carbin (2018); Frankle et al. (2019) hypothesize that overparametrized neural nets contain
much smaller sub-networks, called “lottery tickets”, which when trained in isolation can match the
performance of the original net.

From an optimization standpoint, several initialization schemes have been proposed in order to
facilitate neural network training (Glorot & Bengio, 2010; He et al., 2015a). Balduzzi et al. (2017)
identify the shattered gradient problem where the correlation between gradients w.r.t to the input
in feedforward networks decays exponentially with depth. They further introduce looks linear
initialization in order to prevent shattering. Recent work explores some intriguing behavior induced
by changing just the scaling of the net at initialization. Building on observation made by others (Li &
Liang, 2018; Du et al., 2019; 2018; Zou et al., 2019; Allen-Zhu et al., 2018), Chizat & Bach (2018)
formally introduce the notion of lazy training, a phenomenon in which an over-parametrized net
can converge to zero training loss even as parameters barely change. Chizat & Bach (2018) further
observe that any model can be pushed to this regime by scaling the initialization by a certain factor,
assuming the output is close to zero at initialization. Moreover, Woodworth et al. (2020) expand on
how scale of initialization acts as a controlling quantity for transitioning between two very different
regimes, called the kernel and rich regimes. In the kernel regime, the behavior of the net is equivalent
to learning using kernel methods, while in the rich regime, gradient descent shows richer inductive
biases which are not captured by RKHS norms. In practice, the transition from rich regime to kernel
regime also comes with a drop in generalization performance. Geiger et al. (2019) further explore
the interplay between hidden layer size and scale of initialization in disentangling both regimes,
specifically that the scale of initialization, which separates kernel and rich regime, is a function of the
hidden size.

On a somewhat orthogonal direction, from a theoretical perspective, several studies attempt to
bound the generalization error of the network based on VC-dimension (Vapnik, 1971), sharpness
based measures such as PAC-Bayes bounds (McAllester, 1999; Dziugaite & Roy, 2017; Neyshabur
et al., 2017), or norms of the weights (Bartlett, 1998; Neyshabur et al., 2015b; Bartlett et al., 2017;
Neyshabur et al., 2019; Golowich et al., 2019). Further works explore generalization from an
empirical standpoint such as sharpness based measures (Keskar et al., 2016), path norm (Neyshabur
et al., 2015a) and Fisher-Rao metric (Liang et al., 2017). A few have also emphasized the role of
distance from initialization in capturing generalization behavior (Dziugaite & Roy, 2017; Nagarajan
& Kolter, 2019; Neyshabur et al., 2019; Long & Sedghi, 2019).

Li & Liang (2018) study 2-layer ReLU net and points out that final learned weights are accumulated
gradients added to the random initialization and these accumulated gradients have low rank when
trained on structured datasets. Wei & Ma (2019) obtain tighter bounds by considering data-dependent
properties of the network such as norm of the Jacobians of each layer with respect to the previous
layers. More recently, Chatterjee (2020) hypothesize that similar examples lead to similar gradients,
reinforcing each other in making the the overall gradient stronger in these directions and biasing the
net to make changes in parameters which benefit multiple examples.

3 EXTREME MEMORIZATION

In this section, we discuss the experimental setup which leads to extreme memorization due to
increase in scale of initialization. To reiterate, we refer to the scenario where the net obtains perfect
training accuracy but random chance performance on the test set as extreme memorization.

In order to investigate this in the simplest setup possible, we consider a 2-layer feed-forward network
trained using stochastic gradient descent (SGD):

z(x) = W2φ(W1x)

where φ is the chosen activation function, x ∈ Rp, W1 ∈ Rh×p, W2 ∈ Rk×h and z ∈ Rk is the
output of the net. The aim is to find parameters [W∗1,W

∗
2] which minimizes the empirical loss

L = 1
n

∑n
i=1 `(z(xi), yi) given i.i.d draws of n data points {(xi, yi)} from some unknown joint

distribution over x ∈ Rp and y ∈ Rk. We focus on multi-class classification problems, in which each
y is restricted to be one of the standard basis vectors in Rk. We use the notations `i = `(z(xi), yi)
and ri = φ(W1xi) is a shorthand for the hidden layer representation for input xi. Also, for any
c ∈ {1, . . . , k}, we use the shorthand y = c to say that y is the cth standard basis vector.

3

Published as a conference paper at ICLR 2021

In our experiments, we choose a large hidden size so that the net is very over-parameterized and
always gets perfect accuracy on the training set. Also, since we are only interested in studying
the implicit regularization induced by SGD, we do not use explicit regularizers like weight decay,
dropout, etc. More details on the exact setup, datasets used and hyper-parameters are in the appendix.

3.1 SIN ACTIVATION

(a) Training accuracy (b) Relative norms (c) Gradient alignment (d) Rep alignment

Figure 2: Results when using sin activation function in a 2-layer MLP applied on CIFAR-10 dataset (Krizhevsky,
2009). We initialize W1 using random normal distribution with mean zero and vary the standard deviation σ
as shown in the plots. The initialization scheme for W2 is kept unchanged, using a Glorot uniform initializer
(Glorot & Bengio, 2010). (a) shows the the evolution and rate of attaining perfect training accuracy. (b) plots
the norm of the gradients of W1 over norm of W1. As elucidated in (Chizat & Bach, 2018), increasing the
scale initialization leads to gradients being increasingly smaller than the weights and thus weights not being
able to move very far from initialization. (c) shows how example gradient alignment can capture differences
in generalization ability in case of sin activation as the scale of initialization is increased. Plot (d) shows that
representation alignment is also able to discriminate generalization ability induced at high scale of initialization.
We obtain similar results on CIFAR-100 and SVHN datasets as well, which are included in the appendix.

As shown in Figure 1, setting φ to sin function results in a degradation of generalization performance
to the point of extreme memorization just by increasing the scale of initialization of the hidden layer
W1. Intuitively, when using sin activations, if W1 remains close to its initial value, then a single
hidden layer can be approximated by a kernel machine with a specific shift-invariant kernel K, where
K is determined by the initializing distribution (Rahimi & Recht, 2008). For example, when the
initializing distribution is a Gaussian with standard deviation σ, K is a Gaussian kernel with width
1/σ. Formally, consider a network architecture of z(x) = W2φ(W1x + b), where W1 is a matrix
whose entries are initialized via a Gaussian distribution with variance σ2 and b ∈ Rh is a bias vector
whose coordinates are initialized uniformly from [0, 2π]. Then (Rahimi & Recht, 2008) showed

E
W1,b

[〈φ(W1x+ b), φ(W1x
′ + b)〉] ∝ exp

(
−σ

2‖x− x′‖2

2

)
(1)

Thus, when holding W1 and b fixed, the network approximates a kernel machine with a Gaussian
kernel whose width decreases as W1 is scaled up (which corresponds to increasing the variance
parameter in its initialization). In this scenario, one expects that the classifier will obtain near-perfect
accuracy on the train data, but have no signal elsewhere because all points are nearly orthogonal in
the kernel space. We did not specify a bias vector in our architecture, but intuitively one expects
similar behavior. In fact, we have the following analogous observation (proved in Appendix B):
Theorem 1. Suppose each entry of W1 is initialized via a Gaussian with mean 0 and variance σ2.
Then for any x and x′, we have∣∣∣∣ E

W1

[〈φ(W1x), φ(W1x
′)〉]
∣∣∣∣ ≤ h exp

(
−σ

2‖x− x′‖2

2

)
This suggests that for large enough σ, the vectors φ(W1x) will be nearly uncorrelated in expectation at
initialization. Further, for any loss function ` and label y, we have that the columns of∇W2`(z(x), y)
are proportional to φ(W1x), and so these gradients should also display a lack of correlation as σ
increases. We argue that this lack of correlation leads to memorization behavior. By memorization,
we mean that our trained model will have near-perfect accuracy on the training set, while having very
low or even near-random performance on the testing set, indicating that the model has “memorized”
the training set without learning anything about the testing set.

To gain some intuition for why we might expect poor correlation among features or gradients to
produce memorization, let us take a look at an extreme case where the gradients for all the examples

4

Published as a conference paper at ICLR 2021

are orthogonal to each other. More concretely, suppose the true data distribution is such that for
all independent samples (x1, y1), (x2, y2) with (x1, y1) 6= (x2, y2), we have 〈∇`1,∇`2〉 < ε for all
W1,W2 for some small ε. Then we should expect that taking a gradient step along any given example
gradient should have a negligible O(ε) effect on the loss for any other example. As a result, the final
trained model may achieve very small loss on the training set, but should learn essentially nothing
about the test set - it will be a perfectly memorizing model.

3.2 MEASURING ALIGNMENT

Motivated by this orthogonality intuition, we wish to develop an empirical metric that can measure the
degree to which training points are well-aligned with each other. We begin with a review of related
metrics in the existing literature and suggest improvements in order to better capture generalization.

log 𝑎 𝑏⁄

co
s𝜃

*
,,

(a) Alignment (Ours)

log 𝑎 𝑏⁄

(b) Diversity

log 𝑎 𝑏⁄

(c) Stiffness

log 𝑎 𝑏⁄

(d) Confusion

Figure 3: Comparing different gradient-based measures for the simple case of having two samples from the
same class where a = ∇`1 and b = ∇`2.

Related statistics Other relevant gradient-based measures have been suggested for understanding
optimization or generalization. One such measure is Gradient diversity (Yin et al., 2018), that
quantifies the extent to which individual gradients are orthogonal to each other and is defined as∑n
i=1 ‖∇`i‖22/‖

∑n
i=1∇`i‖22. Unfortunately, Gradient Diversity did not correlate with generalization

in our experiments in Section 3. Moreover, as shown in Figure 3, Gradient Diversity is most sensitive
when the cosine of the angle between two gradient is highly negative, a scenario which is rare
in high dimensional spaces. Furthermore, this notation does not take the class information into
account and treats all pairs of samples equally. Cosine Gradient Stiffness (Fort et al., 2019) is another
measure to capture the similarity of gradients and can be calculated as Ei 6=j [cos(∇`i,∇`j)]. Fort et al.
(2019) also define a modified version of Cosine Gradient Stiffness that allows this calculation within
classes. Although it measures a quantity which is close to what we want, as shown in Figure 3, this
measure is invariant to the scale of the gradient. That means that samples with very small gradients
would be weighted as much as samples with large gradients, thus discarding valuable information.
Finally, we also consider Gradient Confusion (Sankararaman et al., 2019), which can be calculated as
mini 6=j〈∇`i,∇`j〉. We note that, as shown in Figure 3, gradient confusion is sensitive to the norm
of gradients and is most affected by the ratio of the norms. Also, similar to Gradient Diversity, this
measure does not take the class information into account.

With these observations in mind, we formulate our measure of alignment Ω between gradient vectors
and compare it with other measures in Figure 3. Note that we normalize our alignment measure by the
mean gradient norm in order to avoid discarding magnitude information from individual gradients:

Ω :=
Ei 6=j [〈∇`i,∇`j〉]

E[‖∇`‖]2 (2)

Assuming n vectors, we can further expand since Ei 6=j [〈∇`i,∇`j〉] =
∑

i6=j〈∇`i,∇`j〉
n(n−1) and E[‖∇`‖] =∑n

i=1 ‖∇`i‖
n

Ω =
n
∑

i6=j〈∇`i,∇`j〉
(n− 1)(

∑n
i=1 ‖∇`i‖)2

(3)

Efficient computation of alignment Note that
∑
i 6=j〈∇`i,∇`j〉 may appear to require O(n2) time

to compute, but in fact it can be computed in O(n) time by reformulating the expression as:∑
i 6=j

〈∇`i,∇`j〉 =

∥∥∥∥∥
n∑

i=1

∇`i

∥∥∥∥∥
2

−
n∑

i=1

‖∇`i‖2 (4)

5

Published as a conference paper at ICLR 2021

For comparison, Gradient Diversity also can be computed in O(n) time but Cosine Gradient Stiffness
and Gradient Confusion appears to require O(n2) time.

Alignment within a class In order to compute alignment for a specific class, we propose selecting
the examples of a class and compute the alignment for that subset. More specifically, we formulate
specific alignment for each class c = 1, . . . , k, as follows:

Ωc :=
nc

∑
i6=j〈∇`i,∇`j〉1[yi = yj = c]

(nc − 1)(
∑n

i ‖∇`i‖1[yi = c])2
(5)

where nc is the number of training examples with label y = c and 1[p] is the indicator of the
proposition p - it is one if p is true and zero otherwise. We further take the mean of Ωc over all classes
for an overall view of how in-class alignment behaves.

Ωin−class :=
1

k

k∑
c=1

Ωc (6)

As shown in Figure 1, Ωin−class correlates well with generalization ability of the net when scale
of initialization is increased. All of our gradient alignment plots report the average in-class
alignment Ωin−class.

(a) Test accuracy (b) Representation alignment (c) Gradient alignment

Figure 4: Results when using ReLU activation in a 2-layer MLP with Softmax cross-entropy loss function
when trained on CIFAR-10 dataset. Similar to Figure 2, W1 is initialized with random normal distribution with
mean zero and varying standard deviation scale σ as shown in the plots. (a) shows how the test accuracy drops
and saturates as σ is increased. (c) shows how gradients start to show misalignment as the scale is increased.
(b) shows a similar misalignment trend for hidden layer representations. Note that, in contrast to the extreme
memorization phenomenon we observed for sin activation, here we observe a more limited decrease in both
generalization performance and alignment. Similar results on CIFAR-100, SVHN and additional plots for
CIFAR-10 with all the loss functions discussed in Section 3.2 can be found in the appendix.

Representation Alignment Since gradients are the sole contributor to changes in the the weights
of the net, they play a crucial part in capturing generalization performance. However, calculating
the gradient for every example in the batch can incur a significant compute and memory overhead.
Fortunately, the gradients for W2 are a functions of the intermediate representations ri = φ(W1xi).
Considering example representations instead of example gradients has a practical advantage that
representations can be obtained for free with the forward pass. Also, representation alignment,
defined below as Ωr, at any training step, accounts for the cumulative changes made by the gradients
since the beginning of the training whereas gradient alignment only accounts for the current step. We
show a comparison with gradient alignment in Figure 2. For completeness, we provide plots for both
gradient and representation alignment for all the experiments where its useful to do so. We formulate
representation alignment in the same way we formulated gradient alignment below.

Ωr
in−class :=

1

k

k∑
c=1

Ωr
c Ωr

c :=
nc

∑
i 6=j〈ri, rj〉1[yi = yj = c]

(nc − 1)(
∑n

i ‖ri‖1[yi = c])2

4 WHY SHOULD THE SCALING AFFECT HOMOGENEOUS ACTIVATIONS ?

For sin activations, extreme memorization phenomenon may be explainable through the lens of
random Fourier features and kernel machines, which suggests that large initialization leads to very
poorly aligned examples. In this Section, we investigate what happens when we use more typical

6

Published as a conference paper at ICLR 2021

activations such as ReLU. We find that even for ReLU, increasing the scale of the initialization leads
to a drop in generalization performance, and a similar downward movement in alignment as the
initialization scale increases (see Figure 4). This might feel counter-intuitive as the ReLU activation
is positive-homogeneous, which means that scale factors from the input can be pulled out of the
function altogether and it only changes the scale of the output. However, this does not take into
account the effect of the loss function `, which is typically not homogeneous. We study 3 commonly
used loss functions, namely softmax cross-entropy, multi-class hinge loss and squared loss, and show
their effect on gradients when weights are close to their initialization. The result we present for
ReLU holds for linear activation too. Even though with linear activations we don’t expect perfect
training accuracy, we do see the same trend in alignment measures and the drops in generalization
performance that goes with it. Due to space constraints, we refer the reader to appendix Section F for
the plots.

As shown in Figure 2, increasing the scale of initialization also leads to the scale of the gradients being
much smaller than the scale of the parameters at initialization (Chizat & Bach, 2018; Woodworth
et al., 2020). Thus if it was high enough in the beginning, SGD should not be able to correct the scale
of the weights during the course of the training.

Softmax cross entropy Typically, the softmax layer consists of a weight vector si for every class,
which is used to compute the logits zi. These logits then are used to compute the probability pi for
each class using the softmax function g : Rk → Rk:

pi = gi(z) =
ezi/T∑k
j=1 e

zj/T
for i = 1, . . . , k and z = (z1, . . . , zk) ∈ Rk (7)

Assuming T is 1, which is typically the case, the derivative of the loss with respect to zi is
d
dzi
`(g(z), y) = pi − yi where ` is the negative log-likelihood and g(z) = (p1, . . . , pn) is the

Softmax function. Let us consider the limiting behavior of this gradient when we increase the scale
of the network, which causes the z values to become arbitrarily high. In this case, all the pi except
the one corresponding to the largest z value become zero, so that the gradient is 0 if the prediction
is correct, and otherwise is −1 in the coordinate of the correct class and 1 in the coordinate of the
predicted class. Contrasting this with the case where the scale of the network is arbitrarily close to 0,
the gradient in the coordinate of the correct class will be 1/k − 1.0 and 1/k in the incorrect class
coordinates, so that all the gradients are the same and the alignment is 1, which is the maximum
possible alignment. Therefore the gradients with respect to the logits will on average be more
orthogonal in the former case. Since the gradients for parameters will be multiplied by gradient with
respect to the logits due to the chain rule, they will be more orthogonal as well. We corroborate this
intuition with empirical evidence as shown in Figure 4.

In practice, since the initialization scheme is chosen carefully, weight scaling is less of a concern in
the beginning, but it can become an issue during the course of the training if the magnitude of the
weights starts to increase. In either scenario, one simple strategy to counteract the effect of scaling of
the net is to increase the temperature term T with it such that magnitude of the input to the Softmax
can stay the same and consequently there will be no relative change to alignment in the gradients
coming from the loss function. Moreover, this observation also brings some clarity into why tuning
hyper-parameters that affects the scale of the network is sometimes helpful in practice, either by
explicitly tuning the temperature term or appling weight decay which favors parameters of low norm
and implicitly controls the scale of the network throughout the training run.

The arguments made for Softmax can also be adapted to Sigmoid for binary classification. Moreover,
since Sigmoid is also used occasionally as an activation function, it is valuable to see how it behaves
with changes in scale of initialization in that capacity. We do in fact observe similar degradation in
generalization performance, although in this case, there is an extra complication that increasing the
scale of the input to Sigmoid also affects the training accuracy since gradients for the hidden layer
starts to saturate beyond a certain scale. More details on this can be found in the appendix.

Hinge loss is defined by:

`(z, y) =
∑
i 6=y

max(0,∆ + zi − zy) (8)

where ∆ is the target margin. In practice ∆ is typically set to 1.0. However, if the network outputs
are scaled by a factor of α, this will have the same effect as scaling the margin to be ∆

α and then

7

Published as a conference paper at ICLR 2021

scaling the loss by α:
∑
i 6=y max(0,∆ + αzi − αzy) = α

∑
i 6=y max(0,∆/α+ zi − zy). With this

in mind, let us calculate the gradient:

d`

dzi
=

{
1(∆ + zi − zy > 0) i 6= y

−
∑

i6=y 1(∆ + zi − zy > 0) i = y
(9)

It is instructive to take a look at what happens when the effective margin is arbitrarily close to zero.
At initialization, we can treat each 1(zi − zy > 0) as independently 0 or 1 uniformly at random, so
we can expect half of the gradient coordinates for incorrect classes to be 1. On the other extreme, if
the effective margin becomes large 1(∆ + zi − zy > 0) will always be 1, and the gradients for all
incorrect classes will be 1. Again, the latter case will lead to the maximum alignment value of 1, so
that the gradients more aligned across examples.

In this case, misalignment can be fixed by scaling the margin ∆ with the scale of the network.
Intuitively, we want to change the loss function such that the scale factor can be pulled out of the loss
entirely so that scaling of the loss by a constant doesn’t change the minimizer.

(a) Test accuracy (b) Alignment (c) Test accuracy (d) Alignment

Figure 5: Plots (a) and (b) shows how representation alignment increases with generalization performance as
the architecture is improved from 2-layer MLP with ReLU activation to a ConvNet architecture (exact details in
the appendix) on CIFAR-10 dataset. We see further increase when even bigger and widely used architectures
like ResNet-50 and DenseNet-121 are employed on the same task. Note that we keep all the hyperparameters
same across architectures in this experiment. Plots (c) and (d) elucidates the drop in representation alignment
when the labels are shuffled in the case of 2-layer MLP.

Squared loss is defined as `(z, y) = 1
2 (z − y)2 and d`

dz = z − y, where y is a one hot vector with
1 in the coordinate of the correct class. In the extreme case where scale of the net is close to 0, z
will also be close to zero so the y term will dominate in gradients for all the examples. On the other
hand, when the scale is high, the z term dominates. Again, since y is a constant in our training and
z will essentially be a random vector at initialization, we can expect the gradients across examples
to be more aligned when the scale of the network is lower. Similar to the argument presented for
hinge loss, the effect of scaling on generalization performance in this case can be fixed by scaling the
one-hot vector y appropriately with it so that the scale factor can be pulled out of the loss function.

5 IS ALIGNMENT RELEVANT MORE BROADLY?

In this Section, we explore whether the alignment metric is useful in capturing generalization
performance more generally. More specifically, is alignment relevant when we make changes to
architecture or data distribution rather than the initialization scheme? We provide empirical evidence
which suggests an optimistic answer.

Introduction of new architecture changes has been a very successful recipe in advancing performance
of deep learning models. In the task of image recognition, addition of convolutional layers and
pooling layers (Lecun et al., 1998) and, more recently, residual layers (He et al., 2015b; 2016) have
caused significant jumps in generalization performance. Moreover, several theoretical studies show
how convolution and pooling operations can significantly affect the implicit bias of SGD, in favor
of better generalization in the image domain (Cohen & Shashua, 2016; Gunasekar et al., 2018).
In Figure 5, we investigate the architectural change of extending our standard 2-layer MLP with
preceding convolutional layers. Unsurprisingly, we observe substantial improvement in generalization
performance. Moreover, the plots show that the addition of convolutional layers leads the last layer
representations to be significantly more aligned, suggesting that these architecture changes cause the

8

Published as a conference paper at ICLR 2021

net to discard irrelevant variations in the input more effectively across examples and ultimately leads
to better generalization. Finally, we experiment with popular large scale image recognition models
like ResNet-50 and DenseNet-121 (Huang et al., 2017) and also observe a similar trend.

Another way to impact generalization performance is to shuffle the labels in the training set (Zhang
et al., 2016; Arpit et al., 2017). If we completely shuffle the labels in the dataset, we don’t expect the
model to generalize on the test set at all, i.e., random chance performance. Fig 5 shows that shuffling
the labels also leads to a drop in representation alignment.

6 CONCLUSION AND FUTURE WORK

In this work, investigated how increasing the scale of initialization can degrade the generalization
ability of neural nets. We observed an extreme case of this phenomenon in the case of sin activation,
making it particularly interesting given a recent rise in the use of sin activation in practical setting
(Sitzmann et al., 2020; Tancik et al., 2020), since our work shows how sensitive the generalization
performance can be to scale of initialization in those case. This phenomena is also quite conspicuous
even with more popular activations like ReLU and Sigmoid. In the case of ReLU, we argue that
the drop in generalization performance can be attributed to the loss function since the rest of the
net is unaffected by scaling due to homogeneity. We complement these observations by defining
an alignment measure that correlates empirically well with generalization in a variety of settings,
including the inductive bias introduced by architectural changes like convolution layers, indicating its
broader importance.

Our formulation of alignment measure suggests some intriguing avenues for future research. For
example, as shown in Figure 1, even though our experiments suggest that low scale of initialization
leads to increased representational alignment, there seems to be a sweet spot below which its affect on
generalization ability no longer holds true. Exploring generalization behavior in this case of ultra-low
scale of initialization is also an interesting direction of future research.

7 ACKNOWLEDGEMENTS

We are grateful to Eugene Ie, Walid Krichene and Jascha Sohl-dickstein for reading earlier drafts of
this paper and providing valuable feedback.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization, 2018.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder
S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Y Bengio, and Simon Lacoste-Julien.
A closer look at memorization in deep networks. 06 2017.

David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 342–350,
International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL http:
//proceedings.mlr.press/v70/balduzzi17b.html.

P. L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the
weights is more important than the size of the network. IEEE Transactions on Information Theory,
44(2):525–536, 1998.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning
practice and the bias-variance trade-off, 2018a.

9

http://proceedings.mlr.press/v70/balduzzi17b.html
http://proceedings.mlr.press/v70/balduzzi17b.html

Published as a conference paper at ICLR 2021

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. 02 2018b.

Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In Proceedings of the 13th International Conference on Neural
Information Processing Systems, NIPS’00, pp. 381–387, Cambridge, MA, USA, 2000. MIT Press.

Satrajit Chatterjee. Coherent gradients: An approach to understanding generalization in gradient
descent-based optimization, 2020.

Lénaïc Chizat and Francis Bach. A note on lazy training in supervised differentiable programming.
ArXiv, abs/1812.07956, 2018.

Nadav Cohen and Amnon Shashua. Inductive bias of deep convolutional networks through pooling
geometry, 2016.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks, 2018.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1eK3i09YQ.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Stanislav Fort, Paweł Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. Stiffness: A
new perspective on generalization in neural networks, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural networks.
CoRR, abs/1803.03635, 2018. URL http://arxiv.org/abs/1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. The lottery ticket
hypothesis at scale. arXiv preprint arXiv:1903.01611, 8, 2019.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
learning in deep neural networks: an empirical study. ArXiv, abs/1906.08034, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. Information and Inference: A Journal of the IMA, May 2019. ISSN 2049-8764.
doi: 10.1093/imaiai/iaz007. URL http://dx.doi.org/10.1093/imaiai/iaz007.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent on
linear convolutional networks, 2018.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. 2015 IEEE International Conference on
Computer Vision (ICCV), Dec 2015b. doi: 10.1109/iccv.2015.123. URL http://dx.doi.
org/10.1109/ICCV.2015.123.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun
2016. doi: 10.1109/cvpr.2016.90. URL http://dx.doi.org/10.1109/cvpr.2016.90.

10

https://openreview.net/forum?id=S1eK3i09YQ
http://arxiv.org/abs/1803.03635
http://dx.doi.org/10.1093/imaiai/iaz007
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/cvpr.2016.90

Published as a conference paper at ICLR 2021

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jul 2017. doi: 10.1109/cvpr.2017.243. URL http://dx.doi.org/10.1109/
CVPR.2017.243.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pp. 2278–2324, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8572–8583. Curran
Associates, Inc., 2019.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data, 2018.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks, 2017.

Philip M. Long and Hanie Sedghi. Generalization bounds for deep convolutional neural networks,
2019.

David A. McAllester. Pac-bayesian model averaging. In Proceedings of the Twelfth Annual Confer-
ence on Computational Learning Theory, COLT ’99, pp. 164–170, New York, NY, USA, 1999.
Association for Computing Machinery. ISBN 1581131674. doi: 10.1145/307400.307435. URL
https://doi.org/10.1145/307400.307435.

Vaishnavh Nagarajan and J. Zico Kolter. Generalization in deep networks: The role of distance from
initialization, 2019.

Yuval Netzer, Tiejie Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning, 2014.

Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd: Path-normalized optimiza-
tion in deep neural networks, 2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pp. 1376–1401, 2015b.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring general-
ization in deep learning, 2017.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The role of
over-parametrization in generalization of neural networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=BygfghAcYX.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pp. 1177–1184, 2008.

11

http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1145/307400.307435
https://openreview.net/forum?id=BygfghAcYX

Published as a conference paper at ICLR 2021

Karthik Abinav Sankararaman, Soham De, Zheng Xu, W. Ronny Huang, and Tom Goldstein. The
impact of neural network overparameterization on gradient confusion and stochastic gradient
descent. ArXiv, abs/1904.06963, 2019.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In arXiv, 2020.

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on separable data.
In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=r1q7n9gAb.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739, 2020.

Vladimir Vapnik. Chervonenkis: On the uniform convergence of relative frequencies of events to
their probabilities. 1971.

Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via lipschitz
augmentation, 2019.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 30, pp. 4148–4158. Curran Associates, Inc., 2017.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models, 2020.

Lechao Xiao, Jeffrey Pennington, and Samuel S. Schoenholz. Disentangling trainability and general-
ization in deep learning. ArXiv, abs/1912.13053, 2019.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter
Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In Amos Storkey
and Fernando Perez-Cruz (eds.), Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research,
pp. 1998–2007, Playa Blanca, Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR. URL http:
//proceedings.mlr.press/v84/yin18a.html.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016. URL http:
//arxiv.org/abs/1611.03530.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine Learning, 109(3):467–492, Oct 2019. ISSN
1573-0565. doi: 10.1007/s10994-019-05839-6. URL http://dx.doi.org/10.1007/
s10994-019-05839-6.

12

https://openreview.net/forum?id=r1q7n9gAb
https://openreview.net/forum?id=r1q7n9gAb
http://proceedings.mlr.press/v84/yin18a.html
http://proceedings.mlr.press/v84/yin18a.html
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530
http://dx.doi.org/10.1007/s10994-019-05839-6
http://dx.doi.org/10.1007/s10994-019-05839-6

Published as a conference paper at ICLR 2021

A ORGANIZATION OF THE APPENDIX

• We describe the training procedure and datasets used throughout the paper in detail in
appendix C.

• In appendix D, we reproduce the extreme memorization phenomenon from Figure 2 on
CIFAR-100 and SVHN.

• In Section 3.2, Fig 4 shows how changing the scale of activation leads to a drop in gener-
alization performance in the case of ReLU activation and softmax cross-entropy loss. In
appendix E, we include results with multi-class hinge and squared losses.

• We include results when using linear activation with softmax cross-entropy loss in appendix
F.

• In appendix G, we discuss how Sigmoid function, when used as activation, responds to
scaling of initialization.

• Appendix H includes details on the exact architecture and hyperparameters used in Section
5.

B PROOF OF THEOREM 1

In this section we provide the missing proof of Theorem 1, restated below:

Theorem 1. Suppose each entry of W1 is initialized via a Gaussian with mean 0 and variance σ2.
Then for any x and x′, we have∣∣∣∣ E

W1

[〈φ(W1x), φ(W1x
′)〉]
∣∣∣∣ ≤ h exp

(
−σ

2‖x− x′‖2

2

)

Proof. Since each individual row of W1 is independent, it suffices to prove the statement for h = 1.
If x = 0 the statement is trivially true, so suppose x 6= 0. Let c = 〈x′,x〉

‖x‖2 and let ∆ = x′ − cx. Notice
that 〈∆, x〉 = 0 and ‖∆‖ ≤ ‖x− x′‖. We also have

W1x
′ = cW1x+W1∆

Notice that W1x is normally distributed with mean 0 and variance σ2‖x‖2. Further, W1∆ is normally
distributed with mean 0 and variance σ2‖∆‖2. Let A be a mean 0 random variable with variance
σ2‖x‖2 and B be a mean 0 random variable with variance σ2‖∆‖2. Notice that since 〈∆, x〉 = 0,
the joint distribution (W1x,W1x

′) is the same as that of (A, cA+B). Therefore we have:∣∣∣∣ E
W1

[〈φ(W1x), φ(W1x
′)〉]
∣∣∣∣ =

∣∣∣∣ E
A,B

[sin(A) sin(cA+B)]

∣∣∣∣
= |E[sin(A) sin(cA) cos(B) + sin(A) cos(cA) sin(B)]|
= |E[sin(A) sin(cA) cos(B)]|
= |E[sin(A) sin(cA)] E[cos(B)]|

≤ |E[cos(B)]| ≤ exp

(
−σ

2‖∆‖2

2

)

C DESCRIPTION OF THE TRAINING PROCEDURE AND DATASETS

We use the Tensorflow framework for conducting our empirical study and all of our code is included
as part of supplementary material. In every experiment, we train using SGD, without momentum,
with a constant learning rate of 0.01 and batch size of 256. We employ a p100 single-instance GPU for
each training run. For most of the experiments, the model is trained until it obtains perfect accuracy
on the training set, with only a few exceptions which are either unavoidable or requires extravagant
training iterations. For example, in the experiments involving linear activation, since none of the
datasets we use are completely linearly separable, we do not expect the net to get 100% accuracy on

13

Published as a conference paper at ICLR 2021

the training set. Another interesting case is the Sigmoid activation, for which the gradients starts to
saturate as the scale of the input to the Sigmoid function increases. Thus, we stop the training at a
point when at least one of the model in the study achieves perfect accuracy on the training set.

In our 2-layer MLP model, in almost all cases we use 1024 units for the hidden layer with exceptions
of 1) experiments with Sigmoid activation and 2) ReLU activation with squared loss. In both of
these cases, we increase the number of hidden units to 2048 in order to increase their training speed.
Number of units for the softmax layer depends on the number of output classes, which is 10 for
CIFAR-10 / SVHN, and 100 for CIFAR-100. The details of the ConvNet architecture are included in
appendix H. For any layer that doesn’t involve changing the initialization scale, for instance the top
layer in all our models, defaults to using Glorot uniform initializer (Glorot & Bengio, 2010). For
experiments corresponding to Sections 3 and 3.2, we refrain from employing bias variables in order
to match the setup exactly. For experiments in Section 5, all biases are initialized to zero.

We employ 3 image classification datasets each having 32x32 pixels color image as input. CIFAR-10
dataset (Krizhevsky, 2009) consists of 60000 images with 10 classes. Classes are balanced with
6000 images per class. Training set consists of 50000 images and 10000 test images. CIFAR-100
(Krizhevsky et al.) is very similar to CIFAR-10 except that it has 100 classes with 600 images per
class. Finally, The Street View House Numbers (SVHN) Dataset (Netzer et al., 2011) has images of
digits from house numbers obtained from Google Street View with a total of 10 classes. Training set
contains 73257 images and 26032 test images.

D SIN ACTIVATION

Figure 2 shows that increasing the scale of initialization for hidden layer weightsW1 in a 2-layer MLP
model leads to extreme memorization on CIFAR-10 dataset. Keeping everything else the same, we
reproduce the same phenomenon on two other datasets, namely, CIFAR-100 and SVHN respectively.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 6: Results when using sin activation function on CIFAR-100 dataset.

14

Published as a conference paper at ICLR 2021

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 7: Results when using sin activation function on SVHN dataset.

D.1 VARYING LEARNING RATES

Figure 2 also illustrates the lazy training phenomenon, in which gradients for the first layer are smaller
compared to the weights of the net. Thus, one might worry that the lack of generalization behavior
is due to some scaling mismatch between the weights and the gradients - essentially due to a poor
learning rate choice - rather than some modified implicit bias due to modified scaling. To investigate
this possibility, we conduct the following study where we selectively alter the learning rate for the
first layer. As shown in the figure below, we observe extreme memorization phenomenon when
the scale of the net is high across a wide range of learning rates. Note that increasing the learning
rate after a certain point induces the net to stop learning altogether i.e. it no longer achieves perfect
training accuracy.

As a special case, we also experiment with frozen first layer weights. Even though, in this case, the
net fails to achieve perfect training accuracy, we can still see the extreme memorization phenomenon
when the scale of initialization is high enough.

(a) Test accuracy (b) Train accuracy

Figure 8: Results when using sin activation function on CIFAR-10 dataset with scale of initialization set to 1.0
and varying learning rates for the first layer as shown in the plot.

15

Published as a conference paper at ICLR 2021

(a) Test accuracy (b) Train accuracy

Figure 9: Results when using sin activation function on CIFAR-10 dataset with scale of initialization set to
1e-2 and varying learning rates for the first layer as shown in the plot.

(a) Test accuracy (b) Train accuracy

Figure 10: Results when using sin activation function on CIFAR-10 dataset when the first layer weights are
frozen and varying scale of initialization as shown in the plot.

D.2 DOES DEPTH MATTER?

We also experiment with increasing the depth of the MLP from 2-layers to 4-layers. We find the
extremem memorization is present even in this case. We also see a similar decrease in generalization
performance in the case of ReLU.

(a) Test accuracy (b) Train accuracy (c) Hidden layer activations

Figure 11: Results when using sin activation function on CIFAR-10 dataset with 4-layer MLP.

16

Published as a conference paper at ICLR 2021

E RELU ACTIVATION

E.1 SOFTMAX CROSS ENTROPY

(a) Top layer gradients (b) Train accuracy (c) Logit gradients

Figure 12: Additional plots when using ReLU activation function with softmax cross-entropy on CIFAR-10
dataset.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 13: Results when using ReLU activation function with softmax cross-entropy on CIFAR-100 dataset.

17

Published as a conference paper at ICLR 2021

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 14: Results when using ReLU activation function with softmax cross-entropy on SVHN dataset.

E.2 HINGE LOSS

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 15: Results when using ReLU activation function with hinge loss on CIFAR-10 dataset.

18

Published as a conference paper at ICLR 2021

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 16: Results when using ReLU activation function with hinge loss on SVHN dataset.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 17: Results when using ReLU activation function with hinge loss on CIFAR-100 dataset.

E.3 DOES DEPTH MATTER?

Similar to sin activation, we see a decrease in generalization performance even in the case of ReLU,
despite increasing the depth.

19

Published as a conference paper at ICLR 2021

(a) Test accuracy (b) Train accuracy (c) Hidden layer activations

Figure 18: Results when using ReLU activation function on CIFAR-10 dataset with 4-layer MLP.

E.4 SQUARED LOSS

Note that when employing squared loss, we increase the number of hidden units from the usual 1024
units to 2048 in order to compensate for very low training speed. Also, we observed that increasing
the scale of initialization for W1 beyond a certain scale leads to divergence in training after a few
iterations. Thus, we recover the phenomenon of interest with much less aggresive increase in scale of
initialization i.e. we double the standard deviation instead of increasing it by ten times as done in
other experiments.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 19: Results when using ReLU activation function with squared loss on CIFAR-10 dataset.

20

Published as a conference paper at ICLR 2021

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 20: Results when using ReLU activation function with squared loss on CIFAR-100 dataset.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations (f) Logit gradients

Figure 21: Results when using ReLU activation function with squared loss on SVHN dataset.

F LINEAR ACTIVATION

21

Published as a conference paper at ICLR 2021

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 22: Results when using linear activation function with softmax cross entropy loss on CIFAR-10 dataset.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 23: Results when using linear activation function with softmax cross entropy loss on CIFAR-100 dataset.

22

Published as a conference paper at ICLR 2021

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 24: Results when using linear activation function with softmax cross entropy loss on SVHN dataset.

G SIGMOID ACTIVATION

Note that when employing Sigmoid activation, after a certain scale the hidden layer gradients start to
vanish. We try to compensate for this by increasing the number of hidden units to 2048.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 25: Results when using Sigmoid activation function on CIFAR10 dataset.

23

Published as a conference paper at ICLR 2021

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 26: Results when using Sigmoid activation function on CIFAR100 dataset.

(a) Hidden layer gradients (b) Top layer gradients (c) Test accuracy

(d) Train accuracy (e) Hidden layer activations

Figure 27: Results when using Sigmoid activation function on SVHN dataset.

H CONVNET ARCHITECTURE

Our goal is to recover the phenomenon that convolution and pooling operation leads to more aligned
representations. In order to do this, we construct a simple ConvNet architecture. We start with two
consecutive convolution and max pool operations, followed by a fully-connected and softmax layers.
Note that the last two layers fully connected and softmax are operationally the same as our 2-layer
MLP.

We keep all the other hyper parameters the same between training runs for all the architectures. All
the models are trained with SGD without momentum with learning rate set to 0.01 and batch size to
256.

24

Published as a conference paper at ICLR 2021

• Convolution layer 1: 32 filters with 5x5 kernel size followed by ReLU activation.
• Max pooling layer 1: pool size 3x3 with stride of 2x2
• Convolution layer 2: 64 filters with 5x5 kernel size followed by ReLU activation.
• Max pooling layer 2: pool size 3x3 with stride of 2x2
• Fully connected layer with 1024 hidden units followed by ReLU activation.
• Softmax layer with 10 output logits.

25

	Introduction
	Related Work
	Extreme memorization
	Sin activation
	Measuring Alignment

	Why should the scaling affect homogeneous activations ?
	Is alignment relevant more broadly?
	Conclusion and future work
	Acknowledgements
	Organization of the appendix
	Proof of Theorem 1
	Description of the training procedure and datasets
	Sin activation
	Varying learning rates
	Does depth matter?

	ReLU activation
	Softmax cross entropy
	Hinge loss
	Does depth matter?
	Squared loss

	Linear activation
	Sigmoid activation
	ConvNet architecture

