
Under review as submission to TMLR

TESH-GCN: Text Enriched Sparse Hyperbolic Graph Con-
volutional Networks

Anonymous authors
Paper under double-blind review

Abstract

Heterogeneous networks, which connect informative nodes containing semantic information
with different edge types, are routinely used to store and process information in various real-
world applications. Graph Neural Networks (GNNs) and their hyperbolic variants provide
a promising approach to encode such networks in a low-dimensional latent space through
neighborhood aggregation and hierarchical feature extraction, respectively. However, these
approaches typically ignore metapath structures and the available semantic information.
Furthermore, these approaches are sensitive to the noise present in the training data. To
tackle these limitations, in this paper, we propose Text Enriched Sparse Hyperbolic Graph
Convolution Network (TESH-GCN). In TESH-GCN, we use semantic node information to
identify relevant nodes and extract their local neighborhood and graph-level metapath fea-
tures. This is done by applying a reformulated hyperbolic graph convolution layer to the
sparse adjacency tensor using the semantic node information as a connection signal. These
extracted features in conjunction with semantic features from the language model (for ro-
bustness) are used for the final downstream tasks. Experiments on various heterogeneous
graph datasets show that our model outperforms the state-of-the-art approaches by a large
margin on the task of link prediction. We also report a reduction in both the training time
and model parameters compared to the existing hyperbolic approaches through a reformu-
lated hyperbolic graph convolution. Furthermore, we illustrate the robustness of our model
by experimenting with different levels of simulated noise in both the graph structure and
text, and also, present a mechanism to explain TESH-GCN’s prediction by analyzing the
extracted metapaths.

1 Introduction

Heterogeneous networks, which connect informative nodes containing semantic information with different
edge types, are routinely used to store and process information in diverse domains such as e-commerce
(Choudhary et al., 2022), social networks (Leskovec & Mcauley, 2012), medicine (Cohen, 1992), and citation
networks (Sen et al., 2008). The importance of these domains and the prevalence of graph datasets linking
textual information has resulted in the rise of Graph Neural Networks (GNNs) and their variants. These
GNN-based methods aim to learn a node representation as a composition of the representations of nodes in
their multi-hop neighborhood, either via random walks (Perozzi et al., 2014; Grover & Leskovec, 2016), neural
aggregations (Hamilton et al., 2017; Kipf & Welling, 2017; Veličković et al., 2018), or Boolean operations
(Wu et al., 2020). However, basic GNN models only leverage the structural information from a node’s
local neighborhood, and thus do not exploit the full extent of the graph structure (i.e., the global context)
or the node content. In the context of e-commerce search, based on a consumer’s purchase of “[brand1]
shoes”, it is difficult to identify if they would also purchase “[brand2] shoes” or “[brand1] watch” merely
on the basis of the products’ nearest graph neighbors, however, global information on purchase behavior
could provide additional information in identifying and modeling such purchase patterns. Analysis into
such limitations has led to research into several alternatives that capture additional information such as
hyperbolic variants (Ganea et al., 2018; Chami et al., 2019) to capture the latent hierarchical relations and
hybrid models (Zhu et al., 2021; Yao et al., 2019) to leverage additional text information from the nodes in

1

Under review as submission to TMLR

the graph. In spite of their preliminary success, these aforementioned techniques fundamentally suffer from
several critical limitations such as non-scalability and lack of robustness to noise in real-world graphs when
applied in practice. Certain other attempts on aggregating a graph’s structural information (Ying et al.,
2021) utilize graph metrics such as centrality encoding and sibling distance to show improved performance
over other approaches. However, it is impractical to manually incorporate every one of the exhaustive set
of graph metrics available, leaving practitioners to search for a better approach to automatically detect
the most relevant graph features that can improve downstream tasks. For instance, metapaths have been
identified as heterogeneous paths between different nodes that preserve long-distance relations and have
proven to be effective message-passing paths in various graph problems (Fu et al., 2020). A metapath is
defined as a path in a heterogeneous graph that connects nodes of specific types through intermediate nodes
of specific types, where the intermediate nodes act as bridges between the specific types of nodes. For
example, consider a heterogeneous graph with nodes representing authors, papers, and venues, where edges
between them indicate authorship, paper publication, and paper presentation at a venue. A metapath of
length 3 that connects two authors could be Author Paper−−−−→ Venue−−−−→ Paper−−−−→Author, where the intermediate nodes
are papers and venue. These metapaths can capture long-distance relations between nodes of different types,
making them effective for message-passing in graph problems. However, due to computational constraints,
metapaths are typically only aggregated locally, meaning that only a local k-hop neighborhood of a node
in a heterogeneous graph is considered during the learning process. On the other hand, learning global
metapaths could capture long-term relations between the nodes. To learn metapaths, we need to encode the
path between two nodes and the semantic information contained in the path. Thus, The adjacency tensor
of a heterogeneous graph1 with a semantic signal can be used to extract both metapath information as well
as aggregate local neighborhood features. Efficiently encoding the entire adjacency tensor in training graph
neural models can thus help capture all relevant metapath features.

(a) Leveraging hierarchical struc-
tures and metapaths help us dis-
tinguish between items that are com-
plementary (also_buy) or alternatives
(also_view) of each other.

(b) Integrating semantic con-
tent with product features allows us
to match different products in the
catalogue with the query “[brand1]
footwear”.

(c) Product search requires
robustness to noise in the
hierarchical product graph
structure caused by miscate-
gorized items.

Figure 1: Challenges of graph representation learning in the E-commerce domain.

In addition to this, the nodes in the graph datasets also contain auxiliary information in different modalities
(generally text) such as product descriptions in e-commerce graphs and article titles in citation networks.
Such textual content can be encoded using popular transformer models (Devlin et al., 2019), and conse-
quently serve as an additional source of information. Thus, integrating these transformer models in the
graph’s representation learning process should improve the nodes’ feature content during message aggrega-
tion and enhance the node representations. Recent hybrid graph-text based techniques (Zhu et al., 2021;
Yao et al., 2019) also attempt to integrate the node representations with semantic embeddings by initializing
the node features with fixed pre-processed semantic embeddings. But, this does not completely leverage
the representational power of transformer networks which can learn the task-specific semantic embeddings.
Hence, we require a better approach that is able to focus both on the graph and text representation learning

1for a homogeneous graph, it will be a matrix

2

Under review as submission to TMLR

towards the downstream task. To summarize, in this paper, we aim to create a unified graph representation
learning methodology that tackles the following challenges (examples from the e-commerce domain given in
Figure 1):

1. Leveraging metapath structures: Existing GNN frameworks aggregate information only from a local neigh-
borhood of the graph and do not possess the ability to aggregate graph-level metapath structures. How-
ever, graph-level information can aid in several graph analysis tasks where node’s local neighborhood
information is insufficient, e.g., in Figure 1a, we note that local node-level information is unable to distin-
guish between the relations of “also_buy” and “also_view”, whereas, graph-level information allows us
to do make the differentiation. Indeed, when attempting to combine information from the entire graph,
existing methods suffer from over-smoothness (Oono & Suzuki, 2020). Moreover, the size of modern graph
datasets renders aggregating information from the full graph infeasible.

2. Incorporating hierarchical structures: Most of the real-world graphs have inherent hierarchies, which are
best represented in a hyperbolic space (rather than the traditional Euclidean space), e.g., the product
hierarchy shown in Figure 1a. However, existing hyperbolic GNNs (Ganea et al., 2018; Chami et al., 2019)
do not leverage the full graph when aggregating information due to both mathematical and computational
challenges.

3. Integrating textual (semantic) content: Previous methods for integrating semantic information of the
nodes are relatively ad-hoc in nature. For example, they initialize their node representations with text
embeddings for message aggregation in the GNNs (Zhu et al., 2021). Such methods fix the semantic
features and do not allow the framework to learn task-specific embeddings directly from the nodes’
original content, e.g., in Figure 1b, the product tokens “sneakers” and “sandals” are closer to the query
token “footwear” in the e-commerce domain which is not the case in a broader semantic context.

4. Robustness to noise: Real-world graphs are susceptible to noise and hence require robust graph represen-
tation learning mechanisms, especially in the presence of multiple forms of data (i.e., graph structure and
textual content), e.g., in Figure 1c, we observe that the task of product search is susceptible to noise in the
product catalogue due to miscategorized items. Previous approaches do not leverage the complementary
nature of graphs and text to improve robustness to noise in both of these modalities.

Figure 2: An overview of the proposed TESH-GCN model. The semantic signals are efficiently integrated
with the nodes’ local neighborhood and metapath structures extracted from the adjacency tensor.

To tackle the above challenges, we introduce Text Enriched Sparse Hyperbolic Graph Convolution Network
(TESH-GCN), a novel architecture towards learning graph representations (illustrated in Figure 2) for the
task of link prediction. In the case of heterogeneous graphs, the node adjacency information can be modeled
as a tensor and can be used to both aggregate local neighborhood as well as extract graph-level metapath
structures (Fu et al., 2020). However, real-world adjacency tensors are extremely sparse (≈ 99.9% entries are
zero)2. TESH-GCN leverages the sparsity to efficiently encode the entire adjacency tensor and automatically

2Sparsity ratios of our datasets are given in Table 1.

3

Under review as submission to TMLR

captures all the relevant metapath structures. We also utilize dense semantic signals from the input nodes
which improve the model’s robustness by making the representations conditional on both the graph and
text information. To capture the semantic information of the nodes, we leverage the recent advances in
language models (Devlin et al., 2019; Feng et al., 2020) and jointly integrate the essential components with
the above mentioned graph learning schemes. This allows nodes’ feature content to be passed through
the message aggregation and enhance performance on downstream tasks. In addition to this, our model’s
attention flow enables the extraction and comprehension of weighted inter-node metapaths that result in the
final prediction. Summarizing, following are the major contributions of this paper:

1. We introduce Text Enriched Sparse Hyperbolic Graph Convolution Network (TESH-GCN), which utilizes
semantic signals from input nodes to extract the local neighborhood and metapath structures from the
adjacency tensor of the entire graph to aid the prediction task.

2. To enable the coordination between semantic signals and sparse adjacency tensor, we reformulate the
hyperbolic graph convolution to a linear operation that is able to leverage the sparsity of adjacency
tensors to reduce the number of model parameters, training and inference times (in practice, for a graph
with 105 nodes and 10−4 sparsity this reduces the memory consumption from 80GB to 1MB). To the
best of our knowledge, no other method has utilized the nodes’ semantic signals to extract both local
neighborhood and metapath features.

3. Our unique integration mechanism, not only captures both graph and text information in TESH-GCN,
but also, provides robustness against noise in the individual modalities.

4. We conduct extensive experiments on a diverse set of graphs to compare the performance of our model
against the state-of-the-art approaches on link prediction and also provide an explainability method to
better understand the internal workings of our model using the aggregations in the sequential hyperbolic
graph convolution layers.

The rest of this paper is organized as follows: Section 2 discusses the related work in the areas of link
prediction and hyperbolic networks. Section 3 describes the problem statement and the proposed TESH-
GCN model. In Section 4, we describe the experimental setup, including the evaluation datasets, baseline
methods, and the performance metrics used to validate our model. Finally, Section 5 concludes the paper.

2 Related Work

In this section, we describe earlier works related to our proposed model, primarily in the context of graph
representation learning and hyperbolic networks.

2.1 Graph Representation Learning

Early research on graph representations relied on learning effective node representations, primarily, through
two broad methods, namely, matrix factorization and random walks. In matrix factorization based ap-
proaches (Cao et al., 2015), the sparse graph adjacency matrix A is factorized into low-dimensional dense
matrix L such that the information loss ∥LT L − A∥ is minimized. In the random walk based approaches
(Grover & Leskovec, 2016; Perozzi et al., 2014; Narayanan et al., 2017), a node’s neighborhood is collected
with random walks through its edges, and the neighborhood is used to predict the node’s representation in a
dense network framework. Earlier methods such as LINE (Tang et al., 2015) and SDNE (Wang et al., 2016)
use first-order (nodes connected by an edge) and second-order (nodes with similar neighborhood) proximity
to learn the node representations. These methods form a vector space model for graphs and have shown
some preliminary success. However, they are node-specific and do not consider the neighborhood informa-
tion of a node or the overall graph structure. In more recent works, aggregating information from a nodes’
neighborhood is explored using the neural network models. Graph neural networks (GNN) (Scarselli et al.,
2008), typically applied to node classification, aggregate information from a nodes’ neighborhood to predict
the label for the root node. Several approaches based on different neural network architectures for neigh-
borhood aggregation have been developed in recent years and some of the popular ones include GraphSage

4

Under review as submission to TMLR

(Hamilton et al., 2017) (LSTM), Graph Convolution Networks (GCN) (Kipf & Welling, 2017), and Graph
Attention Networks (GAT) (Veličković et al., 2018). Another line of work specifically tailored for heteroge-
neous graphs (Fu et al., 2020; Yang et al., 2021; Hu et al., 2020; Yun et al., 2019; Wang et al., 2019), utilizes
the rich relational information through metapath aggregation. These approaches, while efficient at aggregat-
ing neighborhood information, do not consider the node’s semantic attributes or the global graph structure.
In addition, there have been recent efforts to develop application-specific approaches such as OntoProtein
(Zhang et al., 2022) for protein ontologies and QA-GNN (Yasunaga et al., 2021) for question-answering
knowledge graphs. These approaches use semantic node embeddings to enhance KG reasoning algorithms.
However, they are limited to considering only the local node neighborhoods due to their reasoning objective
and are not suitable for capturing global structural information. In the proposed TESH-GCN model, we
aim to utilize the node’s semantic signal, in congruence with global adjacency tensor, to capture both the
node’s semantic attributes and its position in the overall graph structure.

2.2 Hyperbolic Networks

In recent research (Ganea et al., 2018), graph datasets have been shown to possess an inherent hierarchy
between nodes thus demonstrating a non-Euclidean geometry. In (Ganea et al., 2018), the authors provide
the gyrovector space model including the hyperbolic variants of the algebraic operations required to design
neural networks. The algebraic operations for the Poincaré ball of curvature c are the following: Möbius
addition (⊕c), exponential map (expc

x), logarithmic map (logc
x), Möbius scalar multiplication (⊗c), and

hyperbolic activation (σc).

x⊕c y =
(
1 + 2c⟨x, y⟩+ c∥y∥2)x +

(
1− c∥x∥2) y

1 + 2c⟨x, y⟩+ c2∥x∥2∥y∥2

expc
x(v) = x⊕c

(
tanh

(√
c
λc

x∥v∥
2

)
v√

c∥v∥

)
logc

x(y) = 2√
cλc

x

tanh−1 (√c∥ − x⊕c y∥
) −x⊕c y

∥ − x⊕c y∥

r ⊗c x = expc
0(rlogc

0(x)), ∀r ∈ R, x ∈ Hn
c

σc(x) = expc
0(σ(logc

0(x))) (1)

where λc
x = 2

(1−c∥x∥2) is the metric conformal factor. Based on these approaches, hyperbolic networks such as
HGNN (Ganea et al., 2018), HGCN (Chami et al., 2019), HAN (Gulcehre et al., 2019), and HypE (Choudhary
et al., 2021) have shown to outperform their Euclidean counterparts on graph datasets. However, these
approaches still focus on the nodes’ local neighborhood and not the overall graph structure. Furthermore,
hyperbolic transformations are performed on entire vectors and are thus inefficient on sparse tensors. In
our model, we utilize the β−split and β−concatenation operations (Shimizu et al., 2021) to optimize the
hyperbolic graph convolution for sparse adjacency tensors.

3 The Proposed model

In this section, we first describe the problem setup for link prediction on sparse heterogeneous graphs.3 We
then provide a detailed explanation of the different components of the proposed model and their functionality
in the context of link prediction. The overall architecture is depicted in Figure 3. The notations used in this
paper are provided in Appendix A.

3.1 Problem Setup

Let us consider a heterogeneous graph G = (V, E) with K edge types, where v ∈ V is the set of its nodes
and ek(vi, vj) ∈ E ∈ BK×|V |×|V | is a sparse Boolean adjacency tensor (which indicates if edge type ek exists

3Note that we use link prediction as a running example in this paper. Other tasks (node/graph classification) can be easily
performed by changing the loss function.

5

Under review as submission to TMLR

Figure 3: Architecture of our proposed model. The Hyperbolic Graph Convolution Encoder aggregates local
features in the early layers and global features in the later layers. The encoder also handles sparsity to reduce
both time and space complexity.

between nodes vi and vj or not). Each node vi also contains a corresponding text sequence si. The sparsity
of the adjacency tensor and hierarchy of the graph G is quantified by the sparsity ratio (R, Definition 1) and
hyperbolicity (δ, Definition 3), respectively. Higher sparsity ratio implies that E is sparser, whereas lower
hyperbolicity implies G has more hierarchical relations.
Definition 1. Sparsity ratio (R) is defined as the ratio of the number of zero elements to the total number
of elements in the adjacency tensor;

R = |ek(vi, vj) = 0|
|V |2

(2)

Definition 2. Homogenized Graph: Let G = (V, E) be a heterogeneous graph with a set of nodes V and a
set of edges E with K edge types. The homogenized version of G, denoted as G′, is obtained by replacing
each edge type ek ∈ E to common edge type e using the mapping function f(ek) = e ∀ek ∈ E.

The edge distance between nodes a and b in the homogenized graph G′, denoted by dist(a, b), is defined as the
shortest path length between a and b in the transformed graph. Here, the length of a path is defined as the
number of edges along the path a→ b.

Definition 3. For a graph G, the hyperbolicity (δ) is calculated as described in (Gromov, 1987). Let us say
(a, b, c, d) ∈ G is a set of vertices, and dist(a, b) indicates the edge distance between vertices a and b in a
homogenized version of graph G (defined in Def. 2). Let us define S1, S2 and S3 as:

S1 = dist(a, b) + dist(d, c)
S2 = dist(a, c) + dist(b, d)
S3 = dist(a, d) + dist(b, c)

Let M1 and M2 be the two largest values in (S1, S2, S3), then H(a, b, c, d) = M1 −M2 and δ(G) is given by:

δ(G) = 1
2 max

(a,b,c,d)∈G
H(a, b, c, d)

For the task of link prediction, given input nodes vi and vj with corresponding text sequence si and sj ,
respectively and an incomplete training adjacency tensor E, our goal is to train TESH-GCN to optimize a
predictor Pθ parameterized by θ such that;

yk = Pθ(z = 1|I)Pθ(y = k|I), where I = {vi, vj , si, sj , E},

θ = arg min
θ

(
−

K∑
k=1

ŷk log (yk)
)

6

Under review as submission to TMLR

where z is a Boolean indicator that indicates if an edge between the two nodes exists (z = 1) or not (z = 0)
and y is a class predictor for each k ∈ K edge types. ŷk is the probability of each class k ∈ K predicted by
TESH-GCN and yk is the ground truth class label.

3.2 Text Enriched Sparse Hyperbolic GCN

In this section, we describe the message aggregation framework of TESH-GCN, which allows us to aggregate
the node’s text-enriched local neighborhood and long metapath features (through semantic signals and
reformulated hyperbolic graph convolution) from sparse adjacency tensors in the hyperbolic space. In
this section, we detail the (i) methodology of integrating semantic features with graph tensors, (ii) sparse
HGCN layer to encode hierarchical and graph structure information efficiently, and (iii) aggregation through
self-attention to improve model robustness.

Figure 4: Adding semantic signals ti, tj ∈ RD=4 of nodes i and j to the sparse adjacency matrix Ak ∈ R64 of a
graph with |V | = 8 nodes and |E| = 8 edges. The nodes’ independent semantic dimensions are added to their
corresponding position in the independent adjacency matrix copies. This addition focuses the subsequent
convolution operation on the highlighted areas (due to the presence of non-zeros) to initiate the extraction
of graph features at the location of the input nodes.

Incorporating Semantics into Adjacency Tensor: To integrate the nodes’ textual information with the
graph structure, we enhance the adjacency tensor of the heterogeneous graph with semantic features of nodes.
We obtain semantic signals using a pre-trained language model (LM) developed by Song et al. (2020) to
encode each node’s textual data into a vector t ∈ RD. It should be noted that the dimensions of a semantic
vector are linearly independent and hence, each dimension corresponds to a unique independent semantic
feature. Due to this, we cannot simply add the semantic vectors to the adjacency matrix to incorporate
them. To overcome this issue, we propose a novel solution wherein we stack D-repetitions of the adjacency
matrix ek to form tensor Ak and add each independent semantic dimension t[d] ∈ t to a corresponding
adjacency matrix Ak[d] ∈ Ak. Moreover, we add the semantic dimension in the node’s position within the
adjacency matrix to maintain positional consistency. This ensures that the adjacency tensor Ak captures
the nodes’ semantic signals in their appropriate locations within the graph structure. Please refer to Figure
4 for a clear illustration of the entire process. An important consideration in this operation is that it does
increase the density of the adjacency matrix by 2

|V | . However, we observe that this increase has negligible

7

Under review as submission to TMLR

impact on the sparsity of real-world datasets (statistics provided in Table 1).

ti = LM(si), tj = LM(sj) (3)
Ak[d, i, :] = Ak[d, i, :] + ti[d], Ak[d, :, j] = Ak[d, :, j] + tj [d] ∀d = 1→ D (4)

where Ak[d, i, :] represents the ith row in the dth matrix of Ak and Ak[d, :, j] represents the jth column in
the dth matrix of Ak. ti[d] and tj [d] are the dth dimension of their respective semantic signals. The update
operations given above ensure that the adjacency tensor Ak contains information on the semantic signals at
the appropriate position in the graph structure. Thus, an efficient encoding of Ak allows us to capture the
underlying nodes’ structural information and semantic content. We achieve this through the sparse HGCN
layer.

(a) Early neighbor aggregation (b) Later metapath aggregation

Figure 5: Interpretation of the hyperbolic graph convolution. The first few layers aggregate neighborhood
information and the later layers aggregate graph-level metapath information. Darker cells indicate higher
weight values.

Sparse Hyperbolic Graph Convolution: To encode the graph structure and latent hierarchy, we need
to leverage the adjacency tensor’s sparsity in the hyperbolic space for computational efficiency. To achieve
this, we reformulate the hyperbolic graph convolution in the following manner. The graph convolution layer
has two operations, namely, feature transformation and aggregation, which are achieved through convolution
with a filter map of trainable curvature and pooling, respectively. For a matrix of size mr ×mc and filter
map f × f , graph convolution requires ≈ (mr − f)× (mc − f) operations. However, given the high sparsity
of adjacency matrices, operations on zero-valued cells will return zero gradients and, thus not contribute to
the learning process. Hence, we only apply the filter transformation to adjacency tensor cells with nonzero
values and ignore the zero-valued cells. For the dth input adjacency matrix with elements x ∈ Ak[d],

op,l = Wf,l ⊗cl
xp,l−1 ⊕cl

bl ∀xp,l−1 ̸= 0 (5)

ap,l = expcl
xp,l−1

(
αp logcl

xp,l−1
(op,l)∑

p αp logcl
xp,l−1

(op,l)

)
(6)

hp,l = σcl
(ap,l) (7)

where op,l represents the output of feature transformation at the layer l for non-zero input elements xp,l−1 of
previous layer’s l−1 adjacency tensor with learnable feature map Wf,l. cl and bl represent the Poincaré ball’s
curvature and bias at layer l, respectively. ⊗cl

and ⊕cl
are the Möbius operations of addition and scalar

multiplication, respectively. ap,l is the output of the scalar-attention (Vaswani et al., 2017) over the outputs
with attention weights αp and hp,l is the layer’s output after non-linear hyperbolic activation. The initial
layers aggregate the sparse neighborhoods into denser cells. As the adjacency tensors progress through the
layers, the features are always of a lower resolution than the previous layer (aggregation over aggregation),
and thus aggregation in the later layers results in graph-level metapath features, as depicted in Figure 5.
Note that the computational complexity of calculating op,l in sparse graph convolutions is O(V 2(1 − R))

8

Under review as submission to TMLR

when compared to O(V 2) of dense graph convolutions4. This indicates a reduction in the total number of
computations by a factor of (1−R) ≈ 10−4. Prior hyperbolic approaches could not utilize sparse convolutions
because the hyperbolic operation could not be performed on splits of the adjacency tensor but we enable this
optimization in TESH-GCN through the operations of β-split and β-concatenation (Shimizu et al., 2021),
formulated in Definition 4 and 5.

Let us say, the d-dimensional hyperbolic vector in Poincaré ball of curvature c is x ∈ Hd
c and βd = B

(
d
2 , 1

2
)

is a scalar beta coefficient, where B is the beta function. Then, the β-split and β-concatenation are defined
as follows.

Definition 4. β-split: The hyperbolic vector is split in the tangent space with integer length di : ΣD
i=1di = d

as x 7→ v = logc
0(x) = (v1 ∈ Rd1 , ..., vD ∈ RdD). Post-operation, the vectors are transformed back to the

hyperbolic space as v 7→ yi = expc(βdi
β−1

d vi).
Definition 5. β-concatenation: The hyperbolic vectors to be concatenated are transformed to the tan-
gent space, concatenated and scaled back using the beta coefficients as; xi 7→ vi = logc

0(xi), v :=
(βdβ−1

d1
v1, ..., βdβ−1

dD
vD) 7→ y = expc(v).

The final encoding of an adjacency tensor Ak is, thus, the output features of the last convolution layer
transformed to the tangent space with the logarithmic map hk,L = logcL

0 (hk,L)5.

Aggregation through Self-Attention: Given the encoding of adjacency tensor of all edge types Ak ∈ A,
we aggregate the adjacency tensors such that we capture their inter-edge type relations and also condition
our prediction on both the graph and text for robustness. To achieve this, we pass the adjacency tensor
encodings Ak ∈ A through a layer of self-attention (Vaswani et al., 2017) to capture the inter- edge type
relations through attention weights. The final encoder output out(A) concatenates the features of adjacency
tensor with the semantic embeddings to add conditionality on both graph and text information.

hk,L = αkhk,L∑
k αkhk,L

(8)

hL = h1,L ⊙ h2,L ⊙ · · · ⊙ hk,L (9)
out(A) = hL ⊙ ti ⊙ tj (10)

where αk are the attention weights of edge types and hL are the adjacency tensors’ features. The semantic
residual network connection sends node signals to the adjacency tensor and also passes information to the
multi-step loss function. The balance between semantic residual network and hyperbolic graph convolution
leads to robustness against noisy text or graphs (evaluated empirically in Section 4.6).

3.3 Multi-step Loss

In this work, we consider a generalized link prediction problem in heterogeneous networks where there are two
sub-tasks. (i) To predict if a link exists between two nodes and (ii) To predict the class/type of link (if one
exists). One method to achieve this goal is to add the non-existence of link as another class. Let us assume
we add a class z which indicates the existence of the link (z = 1) and z = 0 when the link is absent. Then,
for the task of link prediction, we need to support the independence assumption, i.e., z ⊥⊥ ek, ∀ek ∈ E,
which is not true. Prediction of an edge type ek is conditional on z = 1. Hence, we setup a multi-step loss
that first predicts the existence of a link and then classifies it into an edge type.

yk = Pθ(ek|x) = Pθ(z = 1|x)Pθ(y = ek|x) (11)

L(yk, ŷk) = −
K∑

k=1
ŷk log(yk) (12)

4Practically, for a graph with 105 nodes and a sparsity of 10−4, dense graph convolution requires 80GB of memory (assuming
double precision) for one layer, whereas, sparse graph convolution only requires 1MB of memory for the same. This allows us
to utilize the entire adjacency tensor, while previous approaches can only rely on the local neighborhood.

5The transformation from hyperbolic space to tangent space with logarithmic map is required for attention-based aggregation
as such formulation is not well-defined for the hyperbolic space.

9

Under review as submission to TMLR

where x and θ are the input and model parameters, respectively. L is the cross entropy loss that needs to be
minimized. Although we use this generalized link prediction as the task of interest in this paper, TESH-GCN
can be applied to any task such as node/graph classification by replacing the loss with the appropriate loss.

(a) Dimension of semantic signal (D) vs Memory and Ac-
curacy.

(b) No. of graph convolution layers (L) vs Memory and
Accuracy.

Figure 6: Effect of L and D parameters on memory required and accuracy performance of TESH-GCN on
Amazon dataset. Note that we use 16GB of Nvidia V100 GPU for our experiments. For higher than 16GB
of memory we place different components on different GPU and moving the tensors among different GPUs
adds an insignificant overhead.

3.4 Implementation Details

We implemented TESH-GCN using Pytorch (Paszke et al., 2019) on eight NVIDIA V100 GPUs with 16
GB VRAM. For gradient descent, we used Riemmanian Adam (Becigneul & Ganea, 2019) with standard
β values of 0.9 and 0.999 and an initial learning rate of 0.001. Number of dimensions (D) and number of
layers (L) is empirically selected based on performance-memory trade-off. Figure 6 presents the memory-
performance trade-off for different choices of parameters D and L. We observe that the D = 8 and L = 8
provides the best performance for the memory required. Hence, we chose them for the final implementation
of our model. For non-linearity, we used the hyperbolic activation function, given in Eq. (1). The sparsity
in the model variables is handled using the torch-sparse library6. While this library and other similar ones
handle the operational sparsity of the graphs, previous GNN-based approaches need to locally convert the
sparse tensors to the corresponding dense format for their layer operations. In TESH-GCN, the conversion is
not required because all operations in Sparse-HGCN are directly performed on the sparse tensor
as it only considers the non-zero elements of the tensor. Each convolution operation moves up
one-hop in the nodes’ neighborhood. Hence, the number of graph convolution layers should at least be the
maximum shortest path between any two nodes in the graph. For a dataset, this is empirically calculated by
sampling nodes from the graph and calculating the maximum shortest path between them. For the datasets
in our experiments, we used 8 layers (L = 8) to extract local neighborhoods in the early layers and metapath
structures in the later layers. The main adjacency tensor can be split either over the number of semantic
signals (D) or the number of edge types (K). We chose the latter because each adjacency tensor needed a
separate GPU and it was more efficient and convenient to control the training process, given that the number
of edge types is lesser than the number of semantic signals in our experiments. An algorithm for training
the TESH-GCN model is provided in Appendix B.Github link to the implementation will be provided upon
paper acceptance.

4 Experimental Setup

In this section, we describe our experimental setup and investigate the following research questions (RQs):
6https://github.com/rusty1s/pytorch_sparse

10

Under review as submission to TMLR

1. RQ1: Does TESH-GCN perform better than the state-of-the-art approaches for the task of link predic-
tion?

2. RQ2: What is the contribution of TESH-GCN’s individual components to the overall performance?
3. RQ3: How does TESH-GCN compare against previous approaches in time and space complexity?
4. RQ4: How robust is TESH-GCN against noise in the graph and its corresponding text?
5. RQ5: Can we comprehend the results of TESH-GCN?

Table 1: Dataset statistics including no. of nodes (V), edges (E), edge types (K), hyperbolicity (δ), and
sparsity ratio (R).

Dataset V E K δ R (%)
Amazon 368,871 6,471,233 2 2 99.99
DBLP 37,791 170,794 3 4 99.99
Twitter 81,306 1,768,149 1 1 99.97
Cora 2,708 5,429 1 11 99.92
MovieLens 10,010 1,122,457 3 2 99.00

4.1 Datasets Used

For the datasets, we select the following widely used publicly available network benchmark datasets where
the nodes contain certain semantic information in the form of text attributes. Also, the choice of the datasets
is driven by the diversity of their hyperbolicity to test performance on different levels of latent hierarchy
(lower hyperbolicity implies more latent hierarchy).

1. Amazon (He & McAuley, 2016) is a heterogeneous e-commerce graph dataset that contains electronic
products as nodes with title text connected by edges based on the purchase information. The edge types
are also_buy (products bought together) and also_view (products viewed in the same user session).

2. DBLP (Ji et al., 2010) is a heterogeneous relational dataset that contains papers, authors, confer-
ences, and terms from the DBLP bibliography website connected by three edge types: paper-author,
paper-conf and paper-term. For the semantic information, we include the paper’s titles, author’s names,
conference’s names, and the terms’ text.

3. Twitter (Leskovec & Mcauley, 2012) dataset is a user follower network graph with unidentifiable profile
information given as node’s features. The node features are pre-encoded to remove sensitive identifiable
information.

4. Cora (Rossi & Ahmed, 2015) is a citation graph that contains publications with title text and author
information connected by citation edges.

5. MovieLens (Harper & Konstan, 2015) dataset is a standard user-movie heterogeneous rating dataset
with three edge types: user-movie, user-user, and movie-genre. We utilize the movie’s title and
genre’s name as the textual information.

In the case of graph-based methods, we utilize the node features provided in the dataset as default, else we
utilize fixed-semantic vectors from the pretrained LM (Song et al., 2020). More detailed dataset statistics
such as the number of nodes, edges, edge types, along with hyperbolicity and sparsity are given in Table 1.

4.2 Baselines

The selection of our baseline models was driven by two key factors; the diversity of methods employed, and
their suitability to the datasets used in our experimental setup. To this end, we compare the performance of
the proposed model with the following state-of-the-art models in the following categories: text-based (1-3),
graph-based (4-6), and hybrid text-graph (7-9) approaches.

1. C-DSSM (Shen et al., 2014) is an extension of DSSM (Huang et al., 2013) that utilizes convolution layers
to encode character trigrams of documents for matching semantic features.

11

Under review as submission to TMLR

2. BERT (Devlin et al., 2019) is a popular transformer based language model that pre-trains on large
amount of text data and is fine-tuned on sequence classification task for efficient text matching.

3. XLNet (Yang et al., 2019) is an improvement over the BERT model which uses position invariant
autoregressive training to pre-train the language model.

4. GraphSage (Hamilton et al., 2017) is one of the first approaches that aggregate the neighborhood
information of a graph’s node. It includes three aggregators mean, LSTM (Hochreiter & Schmidhuber,
1997), and max pooling. For our baseline, we choose the best performing LSTM aggregator.

5. GCN (Kipf & Welling, 2017) utilizes convolutional networks to aggregate neighborhood information.

6. HGCN (Chami et al., 2019) utilizes convolutional networks in the hyperbolic space that typically per-
forms better than the Euclidean counterparts, especially, for datasets with low hyperbolicity (i.e., more
latent hierarchy).

7. TextGNN (Zhu et al., 2021) initializes node attributes with semantic embeddings to outperform previous
approaches especially for the task of link prediction.

8. TextGCN (Yao et al., 2019) constructs a word-document graph based on TF-IDF scores and then applies
graph convolution for feature detection towards link prediction between nodes.

9. Graphormer (Ying et al., 2021) adds manually constructed global features using spatial encoding, cen-
trality encoding, and edge encoding to the node vector to aggregate the neighborhood in a transformer
network architecture for graph-level prediction tasks.

4.3 RQ1: Performance on Link Prediction

To analyze the performance of TESH-GCN, we compare it against the state-of-the-art baselines using stan-
dard graph datasets on the task of link prediction. We input the node-pairs (vi, vj) with the corresponding
text sequence (si, sj) to the model and predict the probability that an edge type ek connects them as
yk = Pθ(ek|(vi, vj , si, sj)). We evaluate our model using 5-fold cross validation splits on the following stan-
dard performance metrics: Accuracy (ACC), Area under ROC curve (AUC), Precision (P), and F-score
(F1). For our experimentation, we perform 5-fold cross validation with a training, validation and test split
of 8:1:1 on the edges of the datasets. Table 2 provides the number of samples and sparsity of each split in
the dataset. The results on the test set are presented in Table 3.

Table 2: Splits of the dataset for the link prediction experiment (RQ1). N is the number of samples in each
split and R(%) provides the sparsity ratio of the split.

Dataset Training Validation Test
N R(%) N R(%) N R(%)

Amazon 5,176,986 99.99 647,123 99.99 647,124 99.99
DBLP 1,36,635 99.99 17,079 99.99 17,080 99.99
Twitter 1,414,519 99.97 176,815 99.99 176,815 99.99
Cora 4,343 99.94 543 99.99 543 99.99
MovieLens 897,966 99.10 112,245 99.88 112,246 99.88

From the experimental results, we observe that TESH-GCN is able to outperform the previous approaches by
a significant margin on different evaluation metrics. Additionally, we notice that the performance improve-
ment of hyperbolic models (HGCN and TESH-GCN) is more on datasets with lower hyperbolicity (higher
latent hierarchy). This shows that hyperbolic space is better at extracting hierarchical features from the
graph structures. Furthermore, we see that the performance decreases a little without the residual network.
However, it does not justify the additional parameters but it adds robustness against noisy graph and text
(evaluation in Section 4.6), so we use this variant in our final model. Another point of note is that text-based
frameworks are better than graph approaches in datasets with good semantic information such as Amazon,
whereas, graph-based approaches are better on well-connected graphs such as Cora. However, TESH-GCN is

12

Under review as submission to TMLR

Table 3: Performance comparison of our proposed model against several state-of-the-art baseline methods
across diverse datasets on the task of link prediction. Metrics such as Accuracy (ACC), Area under ROC
(AUC), Precision (P), and F-scores (F1) are used for evaluation. The rows corresponding to w/o Text,
w/o Hyperbolic, w/o Residual, and CE Loss represent the performance of TESH-GCN without the text
information, hyperbolic transformation, residual connections, and with standard cross entropy loss (instead
of multi-step loss), respectively. The best and second best results are highlighted in bold and underline,
respectively. The improvement of TESH-GCN is statistically significant over the best performing baseline
with a p-value threshold of 0.01.

Datasets Amazon DBLP Twitter Cora MovieLens
Models ACC AUC P F1 ACC AUC P F1 ACC AUC P F1 ACC AUC P F1 ACC AUC P F1

Te
xt

C-DSSM .675 .681 .677 .674 .518 .522 .519 .513 .593 .595 .588 .586 .693 .697 .696 .693 .664 .660 .658 .660
BERT .787 .793 .797 .784 .604 .605 .605 .603 .667 .664 .630 .641 .757 .763 .758 .751 .760 .764 .757 .752
XLNet .788 .793 .797 .785 .602 .602 .610 .604 .626 .626 .651 .654 .761 .768 .762 .758 .750 .758 .766 .754

G
ra

ph

GraphSage .677 .680 .679 .673 .520 .525 .519 .518 .591 .592 .588 .585 .809 .813 .813 .805 .660 .659 .662 .656
GCN .678 .679 .679 .674 .412 .412 .413 .401 .564 .566 .553 .545 .813 .817 .818 .814 .652 .652 .649 .650
HGCN .710 .715 .712 .703 .547 .548 .544 .533 .608 .605 .580 .598 .929 .934 .931 .923 .685 .697 .687 .677

H
yb

rid

TextGNN .742 .742 .744 .732 .567 .573 .573 .562 ..636 .636 .628 .621 .843 .848 .848 .840 .723 .724 .719 .712
TextGCN .817 .824 .818 .809 .624 .626 .625 .616 .671 .670 .660 .669 .862 .864 .870 .856 .789 .790 .783 .780
Graphormer .804 .808 .806 .804 .617 .619 .621 .612 .692 .693 .669 .666 .849 .851 .858 .849 .780 .780 .779 .771

O
ur

s

TESH-GCN .829 .836 .837 .836 .636 .640 .644 .640 .709 .710 .671 .670 .909 .901 .902 .908 .806 .814 .801 .801
w/o Text .784 .784 .784 .784 .599 .605 .612 .599 .645 .648 .648 .622 .854 .858 .842 .824 .759 .753 .756 .748
w/o Hyperbolic .677 .672 .678 .678 .522 .526 .531 .516 .577 .572 .554 .585 .787 .789 .781 .757 .655 .652 .651 .660
w/o Residual .826 .825 .829 .829 .629 .632 .640 .632 .699 .705 .662 .658 .937 .942 .929 .913 .796 .799 .788 .795
CE Loss .827 .830 .833 .832 .635 .635 .642 .639 .706 .707 .668 .665 .931 .939 .927 .916 .800 .805 .798 .795

able to maintain good performance in both the scenarios, demonstrating its ability to capture both semantic
and structural information from the dataset.

4.4 RQ2: Ablation Study

In this section, we study the importance of different components and their contribution to the overall
performance of our model. The different components we analyze in our ablation study are: (i) the semantic
text signal, (ii) the hyperbolic transformations, (iii) the residual network, and (iv) the multi-step loss. The
ablation study is conducted on the same datasets by calculating the evaluation metrics after freezing the
parameters of the component of interest in the model. The results of the study are presented in Table 3.

The results show that the text signal contributes to 7% performance gain in our model, implying the impor-
tance of utilizing the nodes’ semantic information in aggregating features from the adjacency tensors. The
hyperbolic transformations lead to a 18% increase in TESH-GCN’s performance, demonstrating the impor-
tance of hierarchical features in extracting information from graphs. This also provides additional evidence
of the latent hierarchy in the graph networks. Furthermore, removing the residual network shows a decrease
of 1% in our model’s performance which shows that text signals capture the semantic signal in the graph
convolution layers and the residual network works only towards increasing the robustness in the final link
prediction task. In addition to this, we notice that replacing multi-step loss with a standard cross entropy
loss (with non-existence of links added as another class) leads to a 2% reduction in performance. This
provides evidence for the advantages of conditioning link classification on link prediction (as in multi-step
loss) compared to a standard multi-class loss function.

4.5 RQ3: Complexity Analysis

One of the major contributions of TESH-GCN is its ability to efficiently handle sparse adjacency tensors in its
graph convolution operations. To compare its performance to previous graph-based and hybrid approaches,
we analyze the space and time complexity of our models and the baselines. The space complexity is studied
through the number of parameters and time complexity is reported using the training and inference times
of the models. We compare the space and time complexity of our models using large graphs of different
sparsity ratios (R) (by varying the number of edges/links on a graph with 104 nodes). The different sparsity

13

Under review as submission to TMLR

ratios considered in the evaluation are 1 − 10−r ∀r ∈ J0, 5K. Figure 7 and Table 4 shows the comparison
of different GCN based models’ training time on varying sparsity ratios and inference times on different
datasets, respectively. Table 5 presents the number of parameters and space complexity of the different
baselines in comparison to TESH-GCN. From the time complexity analysis, we notice that TESH-GCN

Figure 7: Comparison of training time (in seconds) of different GCN-based baseline methods on datasets
with varying sparsity ratios (R).

Table 4: Inference times (in milliseconds) of our model and various GCN-based baseline methods.

Models Amazon DBLP Twitter Cora MovieLens
GCN 719 723 728 735 744
HGCN 745 757 758 763 774
TextGNN 1350 1368 1375 1394 1395
TextGCN 1392 1416 1417 1431 1437
Graphormer 1423 1430 1441 1442 1458
TESH-GCN 787 794 803 817 822

Table 5: The number of non-trainable (in millions) and trainable (in thousands) parameters of all the
comparison methods. We also report the space complexity in terms of the number of nodes (V), maximum
text length (S), and sparsity measure

(
N = 1

1−R ≈ 104
)

7.

Model Non-Train (M) Train (K) Complexity
C-DSSM 0 38 O(S)
BERT 110 1600 O(S2)
XLNet 110 1600 O(S2)
GraphSage 0 4800 O(V 2)
GCN 0 4800 O(V 2)
HGCN 0 9600 O(2V 2)
TextGNN 110 6400 O(SV 2)
TextGCN 110 6400 O(SV 2)
Graphormer 100 7600 O(SV 2)
TESH-GCN 110 78 O

(
2SV 2

N

)
consistently takes much less training time than the other GCN-based and hybrid approaches in high sparsity
graphs. This shows that the current GCN-based approaches do not handle the sparsity of the adjacency
tensor. However, the overhead of specialized graph convolution layer in TESH-GCN leads to a poor time

7Note that, in the case of GNN-based networks, the basic formulations use sparse graph representations, which makes their
complexity linear in the number of edges. However, in practice, GPU machines do not support sparse representations, and
hence, GCNs need to be operated on dense adjacency matrices which leads to a time complexity of O(V 2).

14

Under review as submission to TMLR

Figure 8: -log(1-R) vs Inference time (in milliseconds). Comparison of inference time of different baselines
on a simulated dataset with 10,000 nodes and varying sparsity ratios (R).

complexity for cases with high graph density (R < 0.9). From the comparison of inference times, given
in Table 4, we notice that TESH-GCN’s inference time is comparable to the graph-based baselines and
significantly lesser than hybrid baselines. Figure 8 provides the effect of sparsity on the inference time of our
model and the baselines. We note that TESH-GCN is able to outperform other hybrid graph-text baselines
and needs similar inference time as the baselines that only consider the local neighborhood of its nodes.
TESH-GCN is faster for high sparsity graphs but the overhead of specialized graph convolutions takes more
time than other baselines on high density graphs.

The space complexity analysis clearly shows that TESH-GCN uses much lesser number of model parameters
than baselines with comparable performance. Also, the complexity shows the dependence of text-based
approaches on only the textual sequence length, whereas, the graph based are dependent on the number of
nodes. However, TESH-GCN is able to reduce the space complexity by a factor of the sparsity ratio and
only consider informative non-zero features from the adjacency tensors, leading to a decrease in the number
of trainable parameters.

(a) Nodes dropped (%) vs Accuracy (b) Text replaced (%) vs Accuracy (c) Hybrid noise (%) vs Accuracy

Figure 9: Comparison of the effect of different noise-inducing methods on the accuracy of our model and the
baselines. Noise is induced using (a) Node drop, (b) Text replacement, and (c) Hybrid noise (node drop and
text replacement).

4.6 RQ4: Model Robustness

To test the robustness of our model, we introduce varying levels of noise into the Amazon graph by (i) node
drop: dropping n% percentage of nodes, (ii) text replacement: replacing n% percentage of the text, and (iii)
hybrid noise: dropping n% of nodes and replacing n% of text. We compare the performance of our model and

15

Under review as submission to TMLR

the baselines across different values of n = 10, 20, 30, 40, and 50. The results for the robustness evaluation
are given in Figure 9.

First, we highlight the main observations, that node drop and text replacement only affects graph-based and
text-based approaches, respectively (and does not affect them vice versa). In the case of hybrid baselines,
we still note a decrease in performance for both the noise variants. This implies that the text and graph
features in the baselines do not complement each other. In the case of TESH-GCN, we note that both the
noise variants do not cause any significant performance loss. This shows that the complementary nature of
the semantic residual network and hyperbolic graph convolution network leads to an increased robustness
against noise in either the text or graph. In the third scenario with hybrid noise, we see a reduction of
≈ 25% performance in text-based and graph-based baselines and ≈ 50% in hybrid baseline with a 50% noise.
However, we notice that, although TESH-GCN is a hybrid model, we only observe a 25% performance loss
with 50% noise, implying the effectiveness of text-graph correspondence in the scenario of hybrid noise as
well. Thus, we conclude that TESH-GCN is robust against noise in either graph or text, but vulnerable,
albeit less than other hybrid baselines, to a joint attack on both the graph and text.

(a) Aggregating information from long metapaths. (b) Aggregating information from multiple metapaths.

Figure 10: Predictions showing TESH-GCN’s metapath aggregation ability over both text and graphs. The
local neighborhood and long metapath information is extracted in the early and later graph convolution
layers, respectively. The textual information is extracted using attention over the semantic residual network.
The colors assigned to the text match the color of the link through which the semantic information was
passed to the ultimate nodes for message aggregation and subsequently link prediction. The samples are
taken from the heterogeneous Amazon dataset.

4.7 RQ5: Model Explainability

Model comprehension is a critical part of our architecture as it helps us form a better understanding of
the results and explain the model’s final output. To understand TESH-GCN’s link prediction, we look
at the different metapaths that connect the input nodes as well as the text in the metapaths’ nodes that
receive the most attention (αk). For this, we follow the graph convolution and attention pooling operations
through the layers in the network and extract the most critical metapaths chosen by the model to arrive
at the prediction. The methodology for extracting the metapaths with their corresponding weightage in
the final link prediction is presented in Appendix B. Figure 10 depicts some metapaths extracted from the
Amazon dataset. In Figures 10a and 10b, we note that TESH-GCN aggregates information from multiple
long (4-hop) metapaths between the input nodes for prediction. Additionally, we see tokens in the node’s
text being emphasized (having higher attention weight) based on the edges through which they propagate
their semantic information, e.g., in Figure 10b, we observe that key tokens: Pirates of the Caribbean
and Necklace propagate the semantic information to match with additional relevant tokens such as Cursed
Aztec, Medallion, Pendant and coin to establish the edge also_buy between the input nodes. Thus, we

16

Under review as submission to TMLR

observe the role of different metapaths as well as semantic information in the message propagation towards
the downstream task of link prediction.

5 Conclusion

In this paper, we introduced Text Enriched Sparse Hyperbolic Graph Convolution Network (TESH-GCN),
a hybrid graph and text based model for link prediction. TESH-GCN utilizes semantic signals from nodes
to aggregate intra-node and inter-node information from the sparse adjacency tensor using a reformulated
hyperbolic graph convolution layer. We show the effectiveness of our model against the state-of-the-art
baselines on diverse datasets for the task of link prediction and evaluate the contribution of its different
components to the overall performance. Additionally, we demonstrate the optimized memory and faster
processing time of our model through space and time complexity analysis, respectively. Furthermore, we
also show TESH-GCN’s robustness against noisy graphs and text and provide a mechanism for explaining
the results produced by the model.

References
Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In International

Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=r1eiqi09K7.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global structural
information. In Proceedings of the 24th ACM international on conference on information and knowledge
management, pp. 891–900, 2015.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural net-
works. In Advances in Neural Information Processing Systems, pp. 4869–4880, 2019.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K. Reddy. Self-
supervised hyperboloid representations from logical queries over knowledge graphs. In Proceedings of
the Web Conference 2021, WWW ’21, pp. 1373–1384, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3449974. URL https://doi.org/10.
1145/3442381.3449974.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K. Reddy. ANTHEM:
Attentive hyperbolic entity model for product search. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, WSDM ’22, pp. 161–171, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450391320. doi: 10.1145/3488560.3498456. URL https:
//doi.org/10.1145/3488560.3498456.

Joel E. Cohen. Infectious Diseases of Humans: Dynamics and Control. JAMA, 268(23):3381–3381, 12 1992.
ISSN 0098-7484. doi: 10.1001/jama.1992.03490230111047. URL https://doi.org/10.1001/jama.1992.
03490230111047.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming and natural lan-
guages. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1536–1547, On-
line, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
139. URL https://aclanthology.org/2020.findings-emnlp.139.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. MAGNN: Metapath Aggregated Graph Neural Network
for Heterogeneous Graph Embedding, pp. 2331–2341. Association for Computing Machinery, New York,
NY, USA, 2020. ISBN 9781450370233. URL https://doi.org/10.1145/3366423.3380297.

17

https://openreview.net/forum?id=r1eiqi09K7
https://doi.org/10.1145/3442381.3449974
https://doi.org/10.1145/3442381.3449974
https://doi.org/10.1145/3488560.3498456
https://doi.org/10.1145/3488560.3498456
https://doi.org/10.1001/jama.1992.03490230111047
https://doi.org/10.1001/jama.1992.03490230111047
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.findings-emnlp.139
https://doi.org/10.1145/3366423.3380297

Under review as submission to TMLR

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In Advances in neural
information processing systems, pp. 5345–5355, 2018.

M. Gromov. Hyperbolic Groups, pp. 75–263. Springer New York, New York, NY, 1987. ISBN 978-1-4613-
9586-7. doi: 10.1007/978-1-4613-9586-7_3. URL https://doi.org/10.1007/978-1-4613-9586-7_3.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann,
Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas. Hyperbolic attention
networks. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJxHsjRqFQ.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp.
1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4), December 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL https://doi.
org/10.1145/2827872.

Ruining He and Julian J. McAuley. Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks,
and Ben Y. Zhao (eds.), Proceedings of the 25th International Conference on World Wide Web, WWW
2016, Montreal, Canada, April 11 - 15, 2016, pp. 507–517. ACM, 2016. doi: 10.1145/2872427.2883037.
URL https://doi.org/10.1145/2872427.2883037.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780,
11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.
9.8.1735.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In Proceedings
of The Web Conference 2020, WWW ’20, pp. 2704–2710, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380027. URL https://doi.org/
10.1145/3366423.3380027.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep structured
semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pp. 2333–2338, 2013.

Ming Ji, Yizhou Sun, Marina Danilevsky, Jiawei Han, and Jing Gao. Graph regularized transductive classi-
fication on heterogeneous information networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 570–586. Springer, 2010.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
7a614fd06c325499f1680b9896beedeb-Paper.pdf.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and Shan-
tanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005,
2017.

18

https://doi.org/10.1007/978-1-4613-9586-7_3
https://openreview.net/forum?id=rJxHsjRqFQ
https://openreview.net/forum?id=rJxHsjRqFQ
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1145/3366423.3380027
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2012/file/7a614fd06c325499f1680b9896beedeb-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/7a614fd06c325499f1680b9896beedeb-Paper.pdf

Under review as submission to TMLR

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classifi-
cation. In International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=S1ldO2EFPr.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:8026–8037, 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, pp. 701–710, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2956-9. doi: 10.1145/
2623330.2623732. URL http://doi.acm.org/10.1145/2623330.2623732.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and
visualization. In AAAI, 2015. URL https://networkrepository.com.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–106, 2008.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning semantic representations
using convolutional neural networks for web search. In Proceedings of the 23rd International Conference
on World Wide Web, WWW ’14 Companion, pp. 373–374, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450327459. doi: 10.1145/2567948.2577348. URL https://doi.org/
10.1145/2567948.2577348.

Ryohei Shimizu, YUSUKE Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=Ec85b0tUwbA.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-training
for language understanding. arXiv preprint arXiv:2004.09297, 2020.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th international conference on world wide web, pp. 1067–1077,
2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph Attention Networks. International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1225–1234, 2016.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The World Wide Web Conference, WWW ’19, pp. 2022–2032, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313562. URL
https://doi.org/10.1145/3308558.3313562.

Liwei Wu, Hsiang-Fu Yu, Nikhil Rao, James Sharpnack, and Cho-Jui Hsieh. Graph dna: Deep neighborhood
aware graph encoding for collaborative filtering. In International Conference on Artificial Intelligence and
Statistics, pp. 776–787. PMLR, 2020.

19

https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
http://doi.acm.org/10.1145/2623330.2623732
https://networkrepository.com
https://doi.org/10.1145/2567948.2577348
https://doi.org/10.1145/2567948.2577348
https://openreview.net/forum?id=Ec85b0tUwbA
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3308558.3313562

Under review as submission to TMLR

Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli Li, and Liqiang Nie. Hgat: Heterogeneous graph
attention networks for semi-supervised short text classification. ACM Transactions on Information Systems
(TOIS), 39(3):1–29, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xl-
net: Generalized autoregressive pretraining for language understanding. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):7370–7377, Jul. 2019. doi: 10.1609/aaai.v33i01.
33017370. URL https://ojs.aaai.org/index.php/AAAI/article/view/4725.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. QA-GNN: Rea-
soning with language models and knowledge graphs for question answering. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 535–546, Online, June 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.45. URL https://aclanthology.org/2021.naacl-main.45.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.
URL https://openreview.net/forum?id=OeWooOxFwDa.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer net-
works. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https:
//proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf.

Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng, Qiang Zhang, Ji-
azhang Lian, and Huajun Chen. Ontoprotein: Protein pretraining with gene ontology embedding. In
International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
yfe1VMYAXa4.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang, Liangjie Zhang,
Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph neural network in sponsored
search. In Proceedings of the Web Conference 2021, WWW ’21, pp. 2848–2857, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3449842. URL
https://doi.org/10.1145/3442381.3449842.

A Notations Table

The notations used in this paper are defined in Table 6.

20

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/4725
https://aclanthology.org/2021.naacl-main.45
https://openreview.net/forum?id=OeWooOxFwDa
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://openreview.net/forum?id=yfe1VMYAXa4
https://openreview.net/forum?id=yfe1VMYAXa4
https://doi.org/10.1145/3442381.3449842

Under review as submission to TMLR

Table 6: Notations used in the paper.

Notation Description
G the heterogeneous graph
V set of nodes in graph G
K number of edge types in the graph G
E K × |V | × |V |-sized boolean adjacency tensor
ek |V | × |V |-sized adjacency matrix edge of type k in E

ek(vi, vj) boolean indicator of edge type k between nodes vi and vj

R sparsity ratio
δ(G) hyperbolicity of graph G
Pθ model with parameters θ

yk probability that input sample belongs to class k

si textual tokens of node vi

LM(x) D-sized vector from language model LM of textual tokens x

ti D-sized encoded text vector of tokens si

Ak D × |V | × |V |-sized stack of adjacency matrix ek

Wf,l filter weights for feature transformation in lth layer
op,l output of feature transformation in lth layer
αp attention weights for feature aggregation in the lth layer
ap,l output scaled by αp in the lth layer
hp,l final output of the lth convolution layer
αk attention weight of the encoding kth adjacency matrix

hk,L attention scaled encoding of the kth adjacency matrix
hL output of the sparse hyperbolic convolution layers

out(A) final output of TESH-GCN for input adjacency tensor A
ŷk ground truth labels of edge type k

L(yk, ŷk) cross-entropy loss over ŷk and yk

21

Under review as submission to TMLR

B Algorithms

Algorithm 1 provides the pseudocode for training the TESH-GCN model. The methodology for extracting
the metapaths with their corresponding weightage in the final link prediction is presented in Algorithm 2.

Algorithm 1: TESH-GCN training
Data: Training data (vi, si, vj , sj , ŷk) ∈ E;
Output: Predictor Pθ;

1 Initialize model parameters θ;
2 for number of epochs; until convergence do
3 l = 0; # Initialize loss
4 for {(vi, si, vj , sj , ŷk) ∈ E} do
5 ti ← LM(si), tj ← LM(sj);
6 for ek ∈ E do
7 # Stack D-repetitions of adjacency

matrix
8 Ak = stack(Ek, D);
9 Ak[d, i, :] = ti[d], Ak[d, j, :] = tj [d]

10 x0 = Ak

11 # Run through L graph convolution
layers

12 for l : 1→ L do
13 op,l =

W f ⊗cl
xp,l−1 ⊕cl

bl ∀xp,l−1 ̸= 0

14 ap,l = expcl

(
αp logcl (op,l)∑
p

αp logcl (op,l)

)
15 hp,l = σcl

(ap,l)
16 end
17 hk,L = hp,l

18 end
19 # Attention over outputs
20 hk,L = αkhk,L∑

k
αkhk,L

21 hL = h1,L ⊙ h2,L ⊙ ...⊙ hk,L

22 out(A) = hL ⊙ ti ⊙ tj

23 # Predicted class probability
24 yk = softmax(dense(out(A)))
25 l = l + L(yk, ŷk) # Update loss
26 end
27 θ ← θ −∇θl; # Update parameters
28 end
29 return Pθ

Algorithm 2: Metapath Explanations
Input: Input (vi, si, vj , sj), Predictor Pθ;
Output: Metapath set M , Class prediction yk;

1 Initialize metapath set M = ϕ;
2 ti ← LM(si), tj ← LM(sj);
3 for ek ∈ E do
4 Initialize metapath for ek, Mk = ϕ;
5 # stack D-repetitions of adjacency matrix
6 Ak = stack(Ek, D);
7 Ak[d, i, :] = ti[d], Ak[d, j, :] = tj [d]
8 x0 = Ak

9 # Run through L graph convolution layers
10 for l : 1→ L do
11 op,l = W f ⊗cl

xp,l−1 ⊕cl
bl ∀xp,l−1 ̸= 0

12 ap,l = expcl

(
αp logcl (op,l)∑
p

αp logcl (op,l)

)
13 hp,l = σcl

(ap,l)
14 Mk = Mk ∪ arg maxp hp,l

15 end
16 hk,L = hp,l

17 end
18 # Attention over outputs
19 hk,L = αkhk,L∑

k
αkhk,L

20 # Extracted metapath Mk with attention weight
αk

21 M = M ∪ (Mk, αk)
22 hL = h1,L ⊙ h2,L ⊙ ...⊙ hk,L

23 out(A) = hL ⊙ ti ⊙ tj

24 # Predicted class probability
25 yk = softmax(dense(out(A)))
26 return M, yk

22

	Introduction
	Related Work
	Graph Representation Learning
	Hyperbolic Networks

	The Proposed model
	Problem Setup
	Text Enriched Sparse Hyperbolic GCN
	Multi-step Loss
	Implementation Details

	Experimental Setup
	Datasets Used
	Baselines
	RQ1: Performance on Link Prediction
	RQ2: Ablation Study
	RQ3: Complexity Analysis
	RQ4: Model Robustness
	RQ5: Model Explainability

	Conclusion
	Notations Table
	Algorithms

