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Abstract
Large language Models (LLMs), though grow-
ing exceedingly powerful, comprises of orders
of magnitude less neurons and synapses than the
human brain. However, it requires significantly
more power/energy to operate. In this work, we
propose a novel bio-inspired spiking language
model (LM) which aims to reduce the computa-
tional cost of conventional LMs by drawing moti-
vation from the synaptic information flow in the
brain. In this paper, we demonstrate a framework
that leverages the average spiking rate of neurons
at equilibrium to train a neuromorphic spiking LM
using implicit differentiation technique, thereby
overcoming the non-differentiability problem of
spiking neural network (SNN) based algorithms
without using any type of surrogate gradient. The
steady-state convergence of the spiking neurons
also allows us to design a spiking attention mech-
anism, which is critical in developing a scalable
spiking LM. Moreover, the convergence of av-
erage spiking rate of neurons at equilibrium is
utilized to develop a novel ANN-SNN knowl-
edge distillation based technique wherein we use
a pre-trained BERT model as “teacher” to train
our “student” spiking architecture. Our work is
the first one to demonstrate the performance of an
operational spiking LM architecture on multiple
different tasks in the GLUE benchmark.

1. Introduction
Large language Models (LLMs) are becoming increasingly
popular because of its broad applications in a variety of
natural language processing (NLP) tasks. LLMs like GPT-3
(Brown et al., 2020) has shown additional characteristics
such as emergent abilities (Wei et al., 2022) which can only
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be realized once the model size/compute increases above a
certain threshold. However, the immense power of LLMs
comes at the cost of huge energy consumption both during
the computationally expensive training phase as well as the
inference phase. In order to alleviate the operational com-
plexity of LLMs and explore for an energy/power efficient
solution, we aim to draw motivation from the brain.

Spiking neural networks (SNNs) (Ghosh-Dastidar & Adeli,
2009) are biologically inspired and communication between
two neurons in an SNN architecture occurs in the form of
spikes. This sparse spike-based information flow enables
event-driven computation and communication in neuromor-
phic hardware, thereby resulting in significant energy sav-
ings (Sengupta et al., 2019). SNN based architectures have
been also tested extensively on neuromorphic hardware like
Intel’s Loihi 2 processor (Davies et al., 2021) and have
demonstrated orders of magnitude energy efficiency.

In this work, backed by robust theoretical foundations and
empirical evidence, we explore a scalable framework for
training spiking LMs. We consider our spiking LM as a
dynamical system that, given an input, progressively con-
verges to a steady-state (over Tconv time steps). During the
“backward” phase, instead of learning through unrolling the
computational graph over the operated time steps (like in
BPTT), we leverage the convergence of the average spiking
rate (ASR) of the neurons to an equilibrium state during
the “forward” phase of learning. Upon convergence, we can
derive fixed-point equations from the underlying model and
subsequently employ implicit differentiation on the attained
steady-state to train the model parameters effectively. This
methodology offers exceptional memory efficiency during
training unlike BPTT, which requires a huge amount of
memory to store a large computational graph. It also elimi-
nates the need for surrogate gradient methods (Neftci et al.,
2019) by implicitly calculating gradients, thereby overcom-
ing the non-differentiability problem of spiking models.

In transformer (Vaswani et al., 2017) based LMs as dis-
cussed in this paper, the attention mechanism serves as a
vital component. However, vanilla attention mechanism
is fundamentally non-spiking in nature, as it relies on se-
quences of real-valued vectors for the Query, Key, and Value
components. In this paper, we present a spiking attention
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mechanism that utilizes spike-based inputs and operates
over the number of time steps (Tconv) required for model
convergence. The convergence of ASR of the neurons at
equilibrium allows us to draw a close equivalence between
the ASR of the spiking attention layer and vanilla attention.

Training LMs from scratch is a significant time and resource-
intensive process. The additional overheads of training a
spiking LM from scratch prompted us to seek out more profi-
cient approaches for training our model. Knowledge distilla-
tion (KD) (Hinton et al., 2015) allows for faster and efficient
transfer of knowledge from a trained “teacher” model to
a possibly smaller in size “student” model. In this paper,
we leverage the steady state ASR of the spiking LM and
propose a novel ANN-SNN KD framework involving the
ASR at equilibrium of specific intermediate layers of the
“student” model and the activation of target layers of a larger
pre-trained “teacher” model.

2. Methods
In this section, we will explore the architecture of our pro-
posed model and will then delve into understanding the
layerwise neural dynamics of the model at equilibrium to
develop a scalable training framework. We will then lever-
age the neural dynamics at equilibrium to develop a novel
ANN-SNN Knowledge distillation technique for efficient
training of our spiking LM.

2.1. Spiking Neural Networks

The fundamental building block of the proposed spiking
architecture comprises of leaky integrate and fire (LIF) neu-
rons. A discrete time representation of the dynamics for the
ith neuron, can be described as follows,

ui[t+ δ] = γui[t] +
∑
j

(wijsj [t]) + bi,

si[t+ 1] = S(ui[t+ δ]),

ui[t+ 1] = ui[t+ δ]− Vthsi[t+ 1]

(1)

where, γ is the leak factor; sj is the spike from the jth

input neuron; wij is the weight of the synapse between
the pre- and post-synaptic neurons; t + δ represents an
intermediate time step representation to determine if the
neuron has fired; bi represents a bias term; S is the non-
differentiable Heaviside function for spike generation (using
threshold Vth) and subtraction is used as reset mechanism.

2.2. Architecture

The high-level building block of the proposed spiking LM
comprises of Spiking Encoder (SE) layers, which are similar
to individual encoder layers in a transformer-based BERT
(Devlin et al., 2018) architecture. Both intra and inter-layer
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Figure 1. High-level overview of the SpikingBERT model. During
the “forward” phase of learning, the network is simulated over
Tconv time steps, i.e., until the ASR of the neurons of each layer
converges to an equilibrium.

communication in the SE layers occur using spikes at every
time step during the “forward” phase and spiking LIF neu-
rons are fundamental units in its design. As shown in Fig. 1,
each SE layer consists of a Spiking Attention layer followed
by fully connected layers viz. Intermediate Layer-1 (IL-
1), Intermediate Layer-2 (IL-2) and an output layer, all of
which operate using spikes. Details of each of these layers
are added in the Appendix A & B. The model converges
over Tconv time steps during the “forward” phase to settle
to an equilibrium state. As discussed earlier, each of the
spiking neurons of the model have membrane potential, u,
which are updated at every time step during convergence.
The membrane potential of a layer i > 1, at time t+ 1, is,

ui[t+ 1] = γui[t] +W(i−1)(s(i−1)[t+ 1]) + bi

−Vthsi[t+ 1]
(2)

where, W(i−1) is an operation (as formulated by each indi-
vidual layer) defined on a set of spikes from previous layers.
The described LIF neurons propagate information using
spikes that are generated following Eqn. 1.

The average spiking rate (ASR) of a neuron at layer i can
be defined as, ai[t] =

∑t
τ=1 γt−τsi[τ ]∑t

τ=1 γt−τ . Given W(i−1) is a
linear operation, using Eqn. 2 and performing a weighted
(if γ < 1) average over time (with u[0] = 0, s[0] = 0) we
get, ai[t+ 1] = 1

Vth
(W(i−1)a(i−1)[t+ 1] + bi − ui[t+1]∑t

i=0 γi ).

Since, ai[t] represents ASR, its value is restricted within
[0,1]. Following previous work on implicit differentiation
at equilibrium (Xiao et al., 2021), as the average of input
converges to equilibrium x̄[t] → x∗, then the ASR of the
layers in the spiking architecture converges to equilibrium
points: ai[t] → a∗i (with bounded random error in case of
LIF neurons). At equilibrium, the ASR a∗i of layer i is,

a∗i = σ(
1

Vth
(W(i−1)(a

∗
i−1) + bi)) (3)
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(a)                                                                                           (b)

Figure 2. Results obtained after passing a randomly sampled input
from SST-2 dataset through SpikingBERT4. (a) Graph showing
mean (over number of neurons) of the ASR of different sub-layers
in an SE layer against the operating time steps. (b) The y-axis
on the left depicts mean (over number of neurons) of the ASR
of a random spiking attention layer. Along the right y-axis, the
“Difference Norm” between the output of the steady-state equation
of the chosen spiking attention layer and the calculated ASR is
shown. Time steps used for convergence in shown along the x-axis.

where clipping function σ(x) bounds the values within [0,1].

Like the linear operations, the layers with non-linear opera-
tions such as spiking attention also converges to a steady-
state ASR as is empirically validated in this paper (Fig. 2a).
Steady-state equations like Eqn. 3 are leveraged during
training. Thus, for the spiking attention layer, we formulate
a surrogate steady state equation at equilibrium given as,

a∗(attn) = σ(
1

Vth
(Attn(a∗x, a

∗
k, a

∗
v) + b(attn)) (4)

where, a∗x is the ASR of the layer used to form Query, a∗k
is the ASR of the Key and a∗v is the ASR of the Value.
Empirical justification of choosing the above surrogate is
shown in Fig 2b. The operational details of the spiking
attention mechanism and further empirical justification of
the defined equation is discussed in the Appendix B.

We leverage only the ASR values at equilibrium to compute
error-gradients using implicit differentiation at equilibrium
(Xiao et al., 2021) as shown below,

∂L(a∗)

∂θ
= −∂L(a∗)

∂a∗
(J−1

gθ
|a∗)

∂fθ(a
∗)

∂θ
(5)

where, L is the loss function used, gθ(a) = fθ(a)− a, f is
the steady-state equation of ASR, J−1 is the inverse Jaco-
bian of gθ when a = a∗, i.e., ASR computed at equilibrium.
Hence, unlike BPTT, we eliminate the need to store all the
intermediate states. Additional details regarding training is
discussed in Appendix C.

2.3. ANN-SNN KD using Equilibrium States

The proposed architecture and training mechanism guaran-
tee the steady-state convergence of ASR of neurons across
all layers in the models (Fig. 2a), including the internal
representational layers. This enables us to develop an ANN-
SNN based KD framework, using the intermediate layer
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Figure 3. High-level overview of transformer layer based KD at
equilibrium (following Eqn. 6) from a “teacher” LM to a spiking
“student” LM.

ASR at equilibrium and the activations of internal layers of
the “teacher” BERT models. In order to make the learning
faster and more efficient, we propose transferring knowl-
edge from a pre-trained LM, such as BERT, to our spiking
LM. KD is done over the internal layers such as transformer
layers, embedding-layer as well as the prediction layer.

To perform transformer layer-based distillation, we utilize
the output layer of each SE layer (Fig. 3). Subsequently,
we establish the loss function by comparing the ASR (at
equilibrium) of the output from each SE layer with the
activations of the corresponding mapped encoder layers in
the “teacher” model. The loss function using Mean Squared
Error (MSE) is formulated as follows,

Lhi = MSE(a∗hi
WTd

, Tf(hi)) (6)

where, a∗hi
is the ASR (at equilibrium) of the output neu-

rons of the ith SE layer in the “student” and Tf(hi) is the
output of the f(hi)

th layer of the “teacher”. WTd
is a linear

transformation that maps the “student” layer to the same
dimension as the corresponding “teacher” network layer.
Function f maps “student” layer hi to a specific target layer
in the “teacher” network. Additional details on the proposed
ANN-SNN KD is given in Appendix D.

3. Experimentation
In this section, we demonstrate the performance of our pro-
posed BERT-inspired spiking LM and evaluate it against
seven different tasks in the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al., 2018). The
results are shown in Table 1. We have added extensive
experimentation and dataset details in Appendix E & F.

3.1. Analysis of Power & Energy Efficiency

The proposed spiking LM consists of less number of pa-
rameters (4 layers and ≈ 50M params) than the “teacher”
BERT models (12 layers and ≈ 109M params) and in addi-
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Model QQP MNLI-m SST-2 QNLI RTE MRPC STS-B
CBoW (Wang et al., 2018) 75.00 57.10 79.50 62.50 71.90 75.00/83.70 70.60/71.10
BiLSTM (Wang et al., 2018) 85.30 66.70 87.50 77.00 58.50 77.90/85.10 71.60/72.00
BiLSTM + Attn, CoVe (Wang et al., 2018) 83.50 67.90 89.20 72.50 58.10 72.80/82.40 59.40/58.00
GenSen (Wang et al., 2018) 82.60 71.40 87.20 62.50 78.40 80.40/86.20 81.30/81.80
BERT5 + PF (Xu et al., 2021) 84.10 67.70 81.60 80.90 62.80 78.60/- -/81.10
NAS-BERT5 + PF (Xu et al., 2021) 85.70 74.20 84.90 83.90 67.00 80.00/- -/82.80
NAS-BERT5 + KD (Xu et al., 2021) 85.80 74.40 87.30 84.90 66.60 79.60/- -/83.00
NAS-BERT10 + PF (Xu et al., 2021) 88.40 76.00 88.60 86.30 68.70 81.50/- -/84.30
BERTTINY Adam (Frantar et al., 2021) 81.09 65.36 80.11 77.85 - 69.90/- 64.39/-
BERTMINI Adam (Frantar et al., 2021) 86.45 73.30 85.46 83.85 - 76.57/- 82.09/-
SpikingBERT4 86.82 78.10 88.19 85.20 66.06 79.17/85.15 82.20/81.90
TinyBERT4 (no DA) (Jiao et al., 2019) 88.50 80.60 90.50 87.00 68.20 82.40/- 86.20/85.70

Table 1. Results showing performance of our model (SpikingBERT4) against some standard models and other efficient implementations
of BERT on GLUE evaluation set. Accuracy is used as the metric for QQP, MNLI-m, SST-2, QNLI, RTE datasets while both accuracy
and F1 scores are reported for the MRPC dataset. For STS-B, we report Pearson/Spearman correlation.

tion to that it uses only accumulative (ACC) operations in
place of multiplicative and accumulative operations (MAC)
found in vanilla BERT models. Considering 45nm CMOS
technology, ACC operations exhibit an impressive energy
efficiency, consuming only 0.9pJ, which is over five times
(5.1) more efficient than MAC operations that demand 4.6pJ
(Han et al., 2015). For estimating the energy and power
efficiency of our spiking LM, we leverage the concept of
normalized operations (Lu & Sengupta, 2020), which con-
siders the spiking rates of each layer and corresponding
layer-wise operations. The total normalized OPS can be de-
fined as Norm#OPS =

∑
i IFRi∗Layer#OPSi+1∑

Layer#OPS , where
IFRi is the total number of spikes over inference time steps
averaged over number of neurons. Thus, energy-efficiency
factor of an SNN, which can be given by the ratio of energy
consumed by an iso-architecture ANN over the proposed
SNN can be expressed as: e = ( 1

5.1 ∗ Norm#OPS)−1.
SNNs operate on specific time steps, allowing them to dy-
namically balance accuracy and energy consumption. We
perform an extensive energy-accuracy tradeoff analysis on
the SST-2 dataset. After conducting general and task-based
KD, during the final training phase (on true labels), we
train a set of models with different Tconv to see its effect
on energy consumption and accuracy. Energy-efficiency
factor (e) and the obtained accuracy w.r.t the time steps
(Tconv) is shown in Fig. 4a. A suitable tradeoff can be
found at Tconv = 16, where we get accuracy close to the
highest value (2% difference) but we are able to achieve
twice energy-efficiency than a non-spiking model of same
size.

Moreover, by increasing Vth, we can reduce the ASR of neu-
rons at each layer, leading to a significant decrease in power
consumption. We perform an ablation study on the effects
of Vth on ASR, which is reported in Fig. 4b. Increasing Vth

intuitively also increases the convergence time steps, thus
making energy-consumption effectively similar. However,
it allows us to reduce the instantaneous power-consumption
considerably - ideal for edge computing.

(a)                                 (b)   

Figure 4. Results obtained on SST-2 dataset. (a) Variation of Ac-
curacy and Energy-efficiency factor (e) as Tconv increases. (b)
Variation in mean ASR per neuron in different sub-layers of
SpikingBERT4 following changes in Vth.

4. Conclusion and Future Works
Drawing inspiration from the astonishing intricacy of the
human brain, a complexity that outshines that of any current
LLM, we have the opportunity to leverage these insights in
crafting models that not only replicate biologically plausible
behavior but also offer energy-efficient solutions through
minimal power consumption. In this paper, we propose a
spiking LM and evaluate it against multiple tasks in the
GLUE benchmark. Leveraging steady-state convergence,
we introduced a spiking attention mechanism, proposed a
novel ANN-SNN based KD for faster and efficient learning
and explored training of Spiking LMs using implicit dif-
ferentiation, thereby overcoming multiple issues affecting
training of SNN models. Implementing our model on neu-
romorphic hardware such as Loihi 2 for inference will help
us develop a low-powered solution which can potentially be
implemented on edge devices.

Further endeavours can be made to extend this methodology
to design other spiking LMs such as GPT, etc. There is still
a performance gap between the proposed spiking LM and
BERT-based fine-tuned models. We can work towards clos-
ing this gap by delving into diverse spiking neuron models,
examining temporal encoding schemes, and incorporating
graded spikes, among other strategies. Additionally, we
can investigate energy-efficient linear attention mechanisms
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(Mia et al., 2023) to enhance overall efficiency.
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A. Additional Architectural Details
In this section, we explain the exact operations inside the intermediate layers (IL-1, IL-2) and output layers. The membrane
potential of LIF neurons in IL-1 sub-layer is given as,

u(IL1)[t+ 1] = γu(IL1)[t] + norm(W(IL1)sattn[t+ 1]

+sinput[t+ 1]) + b(IL1) − VthsIL1[t+ 1]
(7)

where, W(IL1) is a linear mapping, sattn[t] are the spikes fed from the spiking attention layer, sinput are the spikes from the
input layer and b(IL1) is the bias. The membrane potential of LIF neurons in the IL-2 sub-layer is given as,

u(IL2)[t+ 1] = γu(IL2)[t] + gelu(W(IL2)sIL1[t+ 1])

+b(IL2) − VthsIL2[t+ 1]
(8)

where, gelu is an activation function (approximately linear in the range [0,1]), W(IL2) is a linear mapping, sIL1[t] are the
spikes fed from the IL-1 layer and b(IL2) is the bias. The membrane potential of LIF neurons in the output layer is similar to
Eqn. 7, but the input are the spikes from the IL-2 layer.

Surrogate steady-state function at equilibrium for IL-1 can be formulated as, a∗(IL1) = σ( 1
Vth

(norm(W(IL1)a
∗
attn +

a∗input) + b(IL1))), for IL-2 as a∗(IL2) = σ( 1
Vth

(gelu(W(IL2)a
∗
IL1) + b(IL2))) and for output layer of each SE layer as

a∗(output) = σ( 1
Vth

(norm(W(output)a
∗
IL2 + a∗IL1) + b(output))).

Feedback connection: From a biological perspective, feedback connections are present in the human-brain and moreover
in some cases (Kubilius et al., 2019) shallower network with recurrent connections shows performance comparable or
better than deeper architectures. The connection (F ) is added from the output of the final SE layer to the first one in
order to introduce a feedback. The feedback connection is an optional component that adds to the model’s bio-plausibility.
The general formulations of steady-state ASR equations, developed subsequently, can be seamlessly applied to models
involving both feedback connections and those without any feedback. Unlike in vision-based tasks, feedback did not improve
performance considerably when compared with no-feedback scenario in our experiments with GLUE benchmark. However,
we still explore it on a theoretical level to maintain consistency with previous works (Xiao et al., 2021) and to encourage
future research on feedback enabled SNNs in other domains. Neuronal dynamics of input to the first layer considering
feedback connection is given below,

u1[t+ 1] = γu1[t] + Fs(N,out)[t]

+W0(x) + b1 − Vths1[t+ 1]
(9)

where, W0 provides the embedding of the input sequence x of length Ns and produces a sequence of vectors y ∈ RNs×Demb

(Demb is the encoding dimension), F is the weight of the feedback connection (if feedback is included), b1 is bias and
s(N,out)[t] are spikes generated from the N th SE layer in the previous time step.

B. Spiking Attention Mechanism
We propose a computationally efficient Spiking Attention mechanism where the inputs are processed as spikes from the
previous layer. The proposed attention operations of the module at time step t can be formulated as,

Attn(Sx(t), SK(t), SV (t)) =

π(s ∗Q(Sx(t))(SK(t))T ) · SV (t)
(10)

where, Q(Sx(t)) is obtained after passing input spikes (Sx(t)) at time t through a linear layer (WQ) for generating Query.
The spikes corresponding to the Key layer (SK(t)) is computed by passing the input spikes Sx(t) through a linear mapping
(WK ), connected to an LIF neuron layer, as illustrated in Fig. 1. SV (t) is obtained similarly using linear mapping (WV ). π
is usually the softmax function and s is a scaling factor where generally s = 1√

dk
, with dk being the encoding dimension

of Key. Recent work has shown that the non-linear normalization operation π is not always essential (Zhou et al., 2022).
The operations outlined in Eqn. 10 exhibit characteristics akin to spiking architectures. This is because performing the
aforementioned matrix multiplications entails multiplying a real-valued matrix with a matrix composed of spikes (i.e., ‘0’s
and ‘1’s) at each step. Thus, instead of requiring O(n3) floating point multiplicative and O(n3) accumulative operations,
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we can implement the attention mechanism utilizing only O(n3) accumulative operations - which has been shown to
significantly reduce computation cost in SNNs (Sengupta et al., 2019) (note that this is a first order estimate ignoring
memory transactions). The output of this module is passed through an LIF neuron, resulting in spikes that are fed to the next
layer (Fig. 1).

The empirical convergence of the ASR of attention layer is demonstrated in Fig. 2b. As discussed earlier, we construct
a surrogate steady-state function at equilibrium which helps us in efficient training of the model. The empirical rationale
for employing this specific functional form is substantiated by observing the reduction in the difference norm between the
output of the surrogate equation and the computed ASR of the layer at each timestep, as demonstrated in Fig. 2b. Thus,
using Eqn. 4 and considering no bias, Vth = 1 and no clamping function σ, we see that as the model converges in time, the
actual ASR of the spiking attention layer aattn[t] approximates vanilla attention given by Attn(ax[t], ak[t], av[t]).

C. Implicit Modeling
Implicit modeling takes a different approach by not explicitly defining the precise computation of a model’s output from its
input. Instead, it relies on imposing specific constraints on the model, ensuring that these constraints are met to achieve
the desired results. For example, consider a simple model represented by a function h. In order to formulate an explicit
model with input x ∈ X and output z ∈ Z, the following computation is performed: z = h(x). However, for formulating it
implicitly, a function g : X × Z → Rn is defined, such that g(x, z) = h(x)− z and the goal will be to find the root of the
equation: g(x, z) = 0. While this simple example demonstrates algebraic equations, these methodologies can be extended
to fixed-point equations, thereby paving the way for the development of DEQ (Bai et al., 2019).

Let us consider a fixed-point equation of the form z = fθ(z), where θ is the set of parameters. This fixed point equation
converges over time, i.e., after Tconv time steps zTconv

= z(Tconv+1), thereby reaching an equilibrium state. Similarly, as
before, we can form another equation namely, gθ(z) = fθ(z)− z. Here, the loss function L that we will be defining will
utilize the value of z at equilibrium, i.e., zTconv = z∗. Using implicit differentiation (Bai et al., 2019), the following relation
can be derived,

∂L(z∗)

∂θ
= −∂L(z∗)

∂z∗
(J−1

gθ
|z∗)

∂fθ(z
∗)

∂θ
(11)

where, J−1
gθ

|z∗ is the inverse Jacobian of gθ when z = z∗, i.e., at equilibrium. The proposed spiking LM architecture follows
a similar set of equations which will be described in the following section. Since the gradient is computed using implicit
differentiation on the converged steady-state, we avoid the non-differentiability issues of the spiking function (Neftci et al.,
2019). Furthermore, by computing gradients solely at the equilibrium state, there is no requirement to store intermediate
hidden states. This characteristic enhances the scalability and memory efficiency of this approach in comparison to BPTT.

After Tconv time steps, when SpikingBERT model converges to equilibrium, the dynamics of the steady-state ASR of
the underlying SNN can be mapped to a surrogate non-spiking architecture where the input and output of each layer are
the corresponding ASRs (a∗i ). The operation of individual layers in the surrogate network is given by the steady-state
equations as described earlier and can be simplified to the form, a∗i = li(a

∗
j , . . . ) where, lis are steady-state equations

corresponding to each layer like Eqn. 3 and 4. The parameters (a∗j , . . . ) associated with each layer (li) are defined
according to the specific operation. If we use feedback connection, the fixed-point equation of the first layer is of the form
a∗1 = l1(lM ◦ · · · ◦ l2(a∗1), x∗) where, l1(a, x) = σ( 1

Vth
(Fa+W0(x) + b1)) with M being the total number of individual

layers.

For the task of text classification, we use the last layer of the network, i.e., the output of the N th encoder layer given
as a∗N,out as an input to a linear classification function. Simulating the network for Tconv time steps, we can compute

aN,out[T ] =
∑

t(sN,out[t])

T (for simplicity of demonstration, γ = 1), which we can use as a∗N,out. Moreover, since the
behaviour at equilibrium is captured by the surrogate network using only ASR, we can simply perform backpropagation to
train the weights by leveraging Eqn. 11. Thus, instead of performing BPTT to train the underlying spiking architecture, we
use simple backpropagation to train the weights of the spiking LM using only equilibrium state ASR of neurons.
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D. Additional KD details
By leveraging the equilibrium state of the neurons, KD utilizes the converged ASR to its advantage. Consequently, we
employ implicit differentiation technique (Eqn. 5) for training using the equilibrium state of the intermediate layers. This
enables us to perform a faster and efficient layer-wise knowledge transfer from a pre-trained ANN-based LM to a smaller (in
size) spiking LM. Moreover, each spiking encoder layer within the “student” model incorporates a spiking attention layer
as described in Fig. 1. We strengthen knowledge transfer further by optimizing an MSE loss over the attention score at
equilibrium of the “student” network with the attention score of the corresponding mapped attention layer of the “teacher”
network (following the function f ). We also perform embedding layer level distillation by formulating a loss function
similar to Eqn. 6. We use ASR of the embedding layer (input to the first spiking encoder layer) and create an MSE loss
against the embedding layer of the “teacher”.

Post-transformer layer distillation, we also perform prediction layer distillation, following the works of (Hinton et al., 2015).
The loss at the prediction layer for classification tasks can be written as,

Lpred = CE(c(a∗pred)/t
′
, Tpred/t

′
) (12)

where, a∗pred is the ASR at equilibrium of the output of the final Spiking Encoder, c acts as a linear mapping and Tpred is the
output logits of the “teacher” network. CE is the cross-entropy loss function and t

′
is temperature.

Distillation is done in two different stages following (Jiao et al., 2019). Firstly, we perform general distillation where we use
a pre-trained general BERT model and use general domain data not specific to any particular task. Secondly, we perform
task specific distillation on datasets relevant to the particular task using a task-specific fine-tuned BERT model as a “teacher”.
By employing a two-staged distillation process, we significantly enhance the efficiency of our spiking LM development,
while also resulting in a substantially reduced “student” model size when compared to the “teacher”.

E. Dataset Details
The GLUE benchmark serves as a standardized testbed designed to assess the proficiency of a language model’s performance.
We selected seven distinct tasks from the GLUE benchmark, aiming to comprehensively assess our model across a set of
diverse NLP tasks. These tasks encompass a range of linguistic aspects, including similarity and paraphrasing, natural
language inference, and sentiment analysis—representing the three overarching categories that constitute the GLUE
benchmark. Among the seven chosen tasks, six pertain to text classification, while the remaining one involves a regression
task. The selected tasks and their corresponding datasets are briefly discussed below.

E.0.1. QUORA QUESTION PAIRS(QQP)

This dataset is a collection of question pairs from the QA-website Quora and the task involved is to determine whether two
questions are semantically similar or not.

E.1. Microsoft Research Paraphrase Corpus (MRPC)

This dataset consists of sentence pairs extracted from online news sources along with human annotated labels. The task is to
determine whether the sentences in the pair are semantically equivalent or not.

E.2. Semantic Textual Similarity Benchmark (STS-B)

This dataset consists of sentence pairs from different sources such as video and image captions, NLI data, etc. The task is to
assign a score between 1-5 to determine how similar the two sentences are. STS-B is a regression task.

E.3. Multi-Genre Natural Language Inference (MNLI)

This dataset consists of a crowd-sourced collection of sentence pairs consisting of a premise and a hypothesis. The task is to
determine whether the premise entails or contradicts the hypothesis or whether the relationship is neutral.
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E.4. Question-answering NLI (QNLI)

This dataset consists of question-paragraph pairs (from Wikipedia). The task is to determine whether the answer to the
question is present in the given paragraph.

E.5. Recognizing Textual Entailment (RTE)

This dataset consists of data from annual textual entailment challenges. Data created is based on news and Wikipedia. The
task is to predict whether one sentence is entailed from the other sentence or not.

E.6. Stanford Sentiment Treebank (SST-2)

This dataset consists of specific sentences from movie reviews and a label associated with them stating whether it is positive
or negative. Objective is to predict whether the sentiment of the sentence is positive or negative.

F. Additional Experimental Details
In this subsection, we briefly go over the implementation details and additional ablation studies performed to analyse our
model performance. The experiments were run on Nvidia RTX A5000 GPUs (8) each with 24GB memory and the CPU
used was Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (64).

F.1. Baselines & SpikingBERT Settings

To the best our knowledge, our proposed model is the first one to report and analyze the performance of a spiking LM on
different tasks from the GLUE benchmark. (Zhu et al., 2023) proposed a spiking based GPT architecture and it reported
80.39% accuracy on SST-2 dataset with a model (45M) comparable with our model size (50M). Using a larger model of
size 216M, SpikeGPT achieves 88.76%, which is comparable to our performance. Our model is able to demonstrate higher
accuracy with lower number of parameters primarily because of the KD technique used to train it as well as because of the
BERT-based architecture which is suitable for classification problems due to its bidirectional context understanding. In
addition to the above mentioned work, we focus primarily on comparing the performance of our architecture against existing
non-spiking methodologies that aims to reduce the complexity of base-BERT model. However, unlike the proposed model,
these methods are not applicable for a spiking implementation on neuromorphic chips such as Loihi 2 since all of them
are non-spiking architectures. Our goal for the comparisons is to show that low-powered Spiking LM with less trainable
parameters can achieve similar accuracy compared to other efficient LM implementations (number of parameters less than
50M). Moreover, since this is the first time spiking LMs have been evaluated against a benchmark, we did not use additional
techniques such as data augmentation (Jiao et al., 2019), etc. to boost model performance in order to delineate the core
advantages of our proposed training method.

Hyper-parameters Range Optimal
Tconv: General KD (5-150) 80
Tconv: Task-based IKD (5-150) 80
Vth (Threshold Voltage) (0.25 - 5.0) 1.0
γ (Leak term) (0.8 - 1.0) .99 (LIF); 1 (IF)
t
′

(Temperature) (0.1 - 10.0) 1.0
Batch Size: General KD (8-256) 128
Batch Size: Task-based IKD (8-128) [16,32]
Epochs: General KD - 5
Epochs: Task-based IKD - 20

Table 2. Hyper-parameters (explored range and optimal values) for SpikingBERT4 used across all datasets.

For all the tasks, we keep the maximum sequence length at 128. The encoding dimension of the tokens in the input is 768
and the intermediate (IL-2) size of the model is 3072. In order to emphasize on the benefits of KD, SpikingBERT4 comprises
of only 4 SE blocks compared to 12 encoders blocks of BERT. Increasing the number of SE blocks will also improve the
overall model performance (Fig. 5). The model trained for reporting the results (Table 1) did not have a feedback, since
adding it did not increase accuracy.

During training of SpikingBERT, we perform general distillation first using English Wikipedia as text corpus and keeping the
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(a) (b)   

1
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Figure 5. (a) Graph illustrating mean (over number of neurons) of the ASR of the IL-1 sub-layer (in an SE layer) against the operating
time steps. This visualization contrasts scenarios where the final model employs normalization with those where normalization is omitted.
(b) Graph showing accuracy against time steps used for convergence during inference for SpikingBERT models with 2 and 4 SE layers.

sequence length at 128. Transformer (& Embedding) layer distillation following Eqn. 6 is performed and the “teacher” is a
pre-trained BERTBASE model (uncased). Following this, we perform task-based internal layer KD (IKD) with corresponding
fine-tuned BERT models and perform it both on the inner transformer layers and the embedding layer. Core hyper-parameters
associated are given in Table 2. We found that grouping IKD based on type of task (i.e., inference, similarity, etc.) at this
stage improves performance. For example, once a task-specific distillation is done using MNLI dataset, if we use that
distilled model (as “student”) and then perform task-specific distillation on QNLI dataset, we achieve higher accuracy on
QNLI dataset. After task-based IKD is done, we finally perform prediction-layer distillation following Eqn. 12 to develop
the final model. It is to be noted that if we directly train our model on true labels at this stage, we obtain similar results in
terms of accuracy. Without using the proposed KD, there is at least 4% to 5% drop in accuracy across all datasets.

F.2. Implementation Details

We have primarily used Python for writing the code of the described methodology. The pre-trained models for BERTBASE
and other task-based fine-tuned BERT models were taken from Huggingface. For updating the weights, we used BertAdam,
a modified variant of Adam optimizer with settings: b1 = 0.9, b2 = 0.999, ep = 1e − 6. Learning rate is kept at 4e-5
for general KD and 2e-5 for task-based KD as well as for prediction layer distillation. After successful general KD and
task-based IKD, only 2 to 4 epochs are enough for prediction-layer KD. General KD takes around 1 day on the GPU
specified in the paper (given Tconv = 125). Task-based IKD depends on Tconv as well as the size of the dataset (est. 8 hours
to a day). Prediction-layer distillation in general is a lot faster since accuracy converges within 2 to 4 epochs.

F.3. Ablation Studies

We performed a series of ablation studies to analyse the behavior of our model.

(a) Effect of normalization: For increased bio-plausibility, we trained a network without using layer normalization in Eqn.
7, thereby making the operation within those neurons completely linear. For the experiment performed on SST-2 dataset, we
first did 5 epochs of general KD and 10 epochs of task-based IKD (SST-2 specific) with the usual model architecture (with
normalization). Then we performed 10 epochs of task-based IKD (SST-2 specific) by removing the layer normalization
layer from IL-1 and output layers (since there is no normalization in IL-2 and spiking attention). The resulting final model
(without normalization) performed similar to the model with normalization. However, the time steps for convergence
increased considerably as shown in Fig 5(a). Though this is a preliminary observation, future explorations can be made to
understand the effects of normalization in spiking architectures. One further observation we noted during the experiments
was that, if a model was developed from scratch without normalization (i.e. without the additional steps done in the above
experiment like GD and task-based IKD with normalization), then there was around 4% drop in accuracy (in SST-2 dataset)
with the convergence behavior still remaining similar.

(b) Effect of increase in SE layers: In the paper, we used 4 SE layers in our spiking LM. Increasing the number of SE
layers results in increase of the model performance. We performed an experiment where we trained two different models,
viz. SpikingBERT2 (2 SE layers) and SpikingBERT4 (4 SE layers). After completing both general KD and task-based IKD
(SST-2 dataset) for the two models, we did prediction layer distillation on both networks for Tconv = 140. It is to be noted
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that unlike in the energy analysis study done in the main paper where we trained a set of models (with prediction-layer
distillation) for different values of Tconv , in this experiment we trained the networks using only Tconv = 140. In the graph
demonstrated in Fig. 5(b), we show accuracy w.r.t different values of convergence time steps (Tconv) used during inference.
Our focus in this paper was to delineate an efficient framework capable of training a deep spiking LM. Future research can
capitalize on the framework and focus on developing architectures with more number of layers (greater than four spiking
encoder layers).
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