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ABSTRACT

We propose the Semantically-Adaptive UpSampling (SA-UpSample), a general
and highly effective upsampling method for the layout-to-image translation task.
SA-UpSample has three advantages: 1) Global view. Unlike traditional upsam-
pling methods (e.g., Nearest-neighbor) that only exploit local neighborhoods, SA-
UpSample can aggregate semantic information in a global view. 2) Semantically
adaptive. Instead of using a fixed kernel for all locations (e.g., Deconvolution),
SA-UpSample enables semantic class-specific upsampling via generating adap-
tive kernels for different locations. 3) Efficient. Unlike Spatial Attention which
uses a fully-connected strategy to connect all the pixels, SA-UpSample only con-
siders the most relevant pixels, introducing little computational overhead. We ob-
serve that SA-UpSample achieves consistent and substantial gains on six popular
datasets. The source code will be made publicly available.

1 INTRODUCTION

The layout-to-image translation task aims to translate input layouts to realistic images (see Fig. 1(a)),
which have many real-world applications and draw much attention from the community (Park et al.,
2019; Liu et al., 2019; Jiang et al., 2020; Tang et al., 2020). For example, Park et al. (2019) propose
GauGAN with a novel spatially-adaptive normalization to generate realistic images from semantic
layouts. Liu et al. (2019) propose CC-FPSE, which predicts convolutional kernels conditioned on
the semantic layout and then generate the images. Tang et al. (2020) propose LGGAN with several
local generators for generating realistic small objects. Despite the interesting exploration of these
methods, we can still observe artifacts and blurriness in their generated images because they always
adopt the nearest-neighbor interpolation to upsample feature maps and then to generate final results.

Feature upsampling is a key operation in the layout-to-image translation task. Traditional upsam-
pling methods such as nearest-neighbor, bilinear, and bicubic only consider sub-pixel neighborhood
(indicated by white circles in Fig. 1(b)), failing to capture the complete semantic information, e.g.,
the head and body of the dog, and the front part of the car. Learnable upsampling methods such as
Deconvolution (Noh et al., 2015) and Pixel Shuffle Shi et al. (2016) are able to obtain the global
information with larger kernel size, but learns the same kernel (indicated by the white arrows in
Fig. 1(c)) across the image, regardless of the semantic information. Other feature enhancement
methods such as Spatial Attention (Fu et al., 2019) can learn different kernels (indicated by different
color arrows in Fig. 1(d)), but it still inevitable captures a lot of redundant information, i.e., ‘grasses’
and ‘soil’. Also, it is prohibitively expensive since it needs to consider all the pixels.

To fix these limitations, we propose a novel Semantically-Adaptive UpSampling (SA-UpSample)
for this challenging task in Fig. 1(e). Our SA-UpSample dynamically upsamples a small subset of
relevant pixels based on the semantic information, i.e., the green and the tangerine circles represent
the pixels within the dog and the car, respectively. In this way, SA-UpSample is more efficient than
both Deconvolution, Pixel Shuffle, and Spatial Attention, and can capture more complete semantic
information than traditional upsampling methods such as the nearest-neighbor interpolation.

We perform extensive experiments on six popular datasets with diverse scenarios and different image
resolutions, i.e., Cityscapes (Cordts et al., 2016), ADE20K (Zhou et al., 2017), COCO-Stuff (Cae-
sar et al., 2018), DeepFashion (Liu et al., 2016), CelebAMask-HQ (Lee et al., 2020), and Facades
(Tyleček & Šára, 2013). We show that with the help of SA-UpSample, our framework can syn-
thesize better results compared to several state-of-the-art methods. Moreover, an extensive ablation

1



Under review as a conference paper at ICLR 2021

(a) Input Layout (b) Nearest, etc. (c) Deconvolution (d) Spatial Attention (e) SA-UpSample

Figure 1: Comparison with different feature upsampling and enhancement methods on the layout-to-
image translation task. Given two locations l′ (indicated by red and megenta squares) in the output
feature map f ′, our goal is to generate these locations by selectively upsampling several points
N(l, k) (indicated by circles) in the input feature map f .

study shows the effectiveness of SA-UpSample against other feature upsampling and enhancement
methods for the layout-to-image translation task.

2 RELATED WORK

Feature Upsampling. Traditional upsampling methods such as nearest-neighbor and bilinear inter-
polations use spatial distance and hand-crafted kernels to capture the correlations between pixels.
Recently, several deep learning methods such as Deconvolution (Noh et al., 2015) and Pixel Shuffle
Shi et al. (2016) are proposed to upsample feature maps using learnable kernels. However, these
methods either exploit semantic information in a small neighborhood or use a fixed kernel. Some
other works of super-resolution, inpainting, denoising (Mildenhall et al., 2018; Wang et al., 2019;
Jo et al., 2018; Hu et al., 2019) also explore using learnable kernels. However, the settings of these
tasks are significantly different from ours, making their methods cannot be used directly.

Layout-to-Image Translation tries to convert semantic layouts into realistic images (Park et al.,
2019; Liu et al., 2019; Jiang et al., 2020; Tang et al., 2020; Zhu et al., 2020a; Ntavelis et al., 2020;
Zhu et al., 2020b). Although existing methods have generated good images, we still see unsatisfac-
tory aspects mainly in the generated content details and intra-object completions, which we believe
is mainly due to they always adopt the nearest-neighbor interpolation to upsample feature maps and
then generate final results. To fix this limitation, we propose a novel Semantically-Adaptive Up-
Sampling (SA-UpSample) for this task. To the best of our knowledge, we are the first to investigate
the influence of feature upsampling on this challenging task.

3 SEMANTICALLY-ADAPTIVE UPSAMPLING (SA-UPSAMPLE)

An illustration of the proposed Semantically-Adaptive UpSampling (SA-UpSample) is shown in
Fig. 2, which mainly consists of two branches, i.e., the Semantically-Adaptive Kernel Genera-
tion (SAKG) branch predicting upsample kernels according to the semantic information, and the
Semantically-Adaptive Feature Upsampling (SAFU) branch selectively performs the feature upsam-
pling based on the kernels learned in SAKG. All components are trained in an end-to-end fashion
so that the two branches can benefit from each other.

Specifically, given a feature map f∈RC×H×W and an upsample scale s, SA-UpSample aims to
produce a new feature map f ′∈RC×Hs×Ws. For any target location l′=(i′, j′) in the output f ′,
there is a corresponding source location l=(i, j) at the input f , where i=bi′/sc, j=bj′/sc. We
denote N(l, k) as the k×k sub-region of f centered at the location l in, i.e., the neighbor of the
location l. See Fig. 1 and 2 for illustration.

3.1 SEMANTICALLY-ADAPTIVE KERNEL GENERATION (SAKG) BRANCH

This branch aims to generate a semantically-adaptive kernel at each location according to the se-
mantic information, which consists of four modules, i.e., Feature Channel Compression, Semantic
Kernel Generation, Feature Shuffle, and Channel-wise Normalization.
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Figure 2: Overview of the proposed SA-UpSample, which consists of two branches, i.e., SAKG
and SAFU. SAKG branch aims to generate semantically-adaptive kernels according to the input
layout. SAFU branch aims to selectively upsample the feature f∈C×H×W to the target one
f ′∈C×Hs×Ws based on the kernels learned in SAKG, where s is the expected upsample scale.

Feature Channel Compression. This module is used to reduce the network parameters and com-
putational cost. Specifically, the input feature f is fed into a convolution layer with 1×1 kernel to
compress the input channel from C to C ′, making SA-UpSample with fewer network parameters.

Semantic Kernel Generation. This module receives the feature fc∈RC′×H×W as input (where H
and W denotes the height and width of the feature map) and ties to generate different semantically-
adaptive kernels, which can be represented as fk∈Rk2s2×H×W , where k is the semantically-adaptive
upsampling kernel size and s is the expected upsample scale.

Feature Shuffle. We then feed the feature fk through a feature shuffle layer for rearranging ele-
ments in fk, leading to a new feature map fs∈Rk2×Hs×Ws, where k2=k×k represents the learned
semantic kernel. Note that the learned semantic kernels are quit different at different locations l′, as
shown in Fig. 1 and 3.

Channel-wise Normalization. After that, we perform a channel-wise softmax operation on each
semantic kernel fs to obtain the normalized kernel fn, i.e., the sum of the weight values in k2 is
equal to 1. In this way, we can guarantee that information from the combination would not explode.
Also, the semantically-adaptive kernels can encode where to emphasize or suppress according to the
semantic information.

3.2 SEMANTICALLY-ADAPTIVE FEATURE UPSAMPLING (SAFU) BRANCH

This branch aims to upsample the input feature f based on the kernel fn learned in the SAKG
branch in a semantically-adaptive way, which contains four modules, i.e., Feature Spatial Expansion,
Sliding Local Block Extraction, Feature Reshape, and Upsampling Feature Selection.

Feature Spatial Expansion. The input feature f is fed into this module to expand the size of spatial
from H×W to Hs×Ws. Specifically, we adopt the nearest interpolation to achieve this process.

Sliding Local Block Extraction. Then the expanded feature fe∈RC×Hs×Ws is fed into this module
to extract sliding local block of each location in fe, leading to the new feature fl∈RCk2×Hs×Ws.

Feature Reshape. Thus, we reshape fl by adding a dimension, resulting in a new feature
fr∈RC×k2×Hs×Ws. In this way, we can do multiplication between the reshaped local block fr
and the learned kernel fn.

Upsamling Feature Selection. Finally, the feature map fr and the kernel fn learned in the SAKG
branch are fed into the Upsampling Feature Selection module to generate the final feature map
f ′∈RC×Hs×Ws by an weighted sum manner. The computation process at the location l=(i, j) can
be expressed as follow,

f ′ =

bk/2c∑
p=−bk/2c

bk/2c∑
q=−bk/2c

fr(i+ p, j + q)× fn(p, q). (1)

In this way, the pixels in the learned kernel fn contributes to the upsampled pixel l′ differently, based
on the semantic information of features instead of the spatial distance of locations. The semantics
of the upsampled feature map can be stronger than the original one, since the information from
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Figure 3: Visualization of learned semantically-adaptive kernels on COCO-Stuff. In each row, we
show three representative locations with different color squares in the generated image. The other
three images are learned semantically-adaptive kernels for those three locations, with correspond-
ing color arrows summarizing the most-attended regions for upsampling the target location. We
observe that the network learns to allocate attention according to regions within the same semantic
information, rather than just spatial adjacency.

relevant points in a local region can be more attended, and the pixels with the same semantic label
can achieve mutual gains, improving intra-object semantic consistency.

3.3 WHY DOES THE SA-UPSAMPLE WORK BETTER?

A short answer is that it can better preserve semantic information against common upsampling
methods. Specifically, while other upsampling methods such as nearest-neighbor interpolation and
Deconvolution are essential parts in almost all the state-of-the-art image generation (Radford et al.,
2016) and translation (Park et al., 2019) models, they tend to ‘pollute’ semantic information when
performing feature upsampling since it would inevitably incorporate contaminating information
from irrelevant regions (see Fig. 1).

In contrast, the proposed SA-UpSample performs feature upsampling by using itself, i.e., it uses the
pixels belonging to the same semantic label to upsample the feature maps. Hence, the generator can
better preserve semantic information. It enjoys the benefit of feature upsampling without losing the
input semantic information. In Fig. 3, we show some examples of the learned semantically-adaptive
kernels. We can easily observe that the proposed SA-UpSample upsamples features by leveraging
complementary features in the regions of the same semantic information than local regions of fixed
shape to generate consistent objects/scenarios, further confirming our motivations.

3.4 OPTIMIZATION OBJECTIVE AND TRAINING DETAILS

We follow GauGAN (Park et al., 2019) and use three losses as our training objective, i.e.,
L=λganLgan+λfLf+λpLp, where Lgan, Lf and Lp represent adversarial, discriminator feature
matching, and perceptual loss, respectively. We set λgan=1, λf=10, and λp=10 in our experi-
ments. We use the multi-scale discriminator (Park et al., 2019) as our discriminator. Moreover,
we set C ′=64, k=5 and s=2 in the proposed SA-UpSample. We replace the upsampling layers in
GauGAN with our SA-UpSample layers. The proposed method is implemented by using PyTorch
(Paszke et al., 2019). We conduct the experiments on NVIDIA DGX1 with 8 32GB V100 GPUs.

4 EXPERIMENTS

Datasets. We first follow GauGAN (Park et al., 2019) and conduct experiments on Cityscapes
(Cordts et al., 2016), ADE20K (Zhou et al., 2017), and COCO-Stuff (Caesar et al., 2018). Then
we conduct experiments on three more datasets with diverse scenarios. 1) Facades (Tyleček &
Šára, 2013) contains different city images with diverse architectural styles. The training and test set
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(a) Cityscapes. (b) Facades.

Figure 4: Qualitative comparison on Cityscapes and Facades. From left to right: Input, CC-
FPSE (Liu et al., 2019), GauGAN (Park et al., 2019), GauGAN+SA-UpSample (Ours), and GT.

(a) DeepFashion. (b) CelebAMask-HQ.

Figure 5: Qualitative comparison on DeepFashion and CelebAMask-HQ. From left to right: Input,
GauGAN (Park et al., 2019), GauGAN+SA-UpSample (Ours), and GT.
Table 1: User study. The numbers indicate the percentage of users who favor the results of our
method (i.e., GauGAN+SA-UpSample) over GauGAN.

AMT ↑ Cityscapes ADE20K COCO-Stuff DeepFashion Facades CelebAMask-HQ

Ours vs. GauGAN 63.8 65.7 62.4 60.1 58.3 70.5

sizes are 378 and 228, respectively. We resize the images to 512×512 for high-resolution layout-
to-image translation tasks. 2) CelebAMask-HQ (Lee et al., 2020) contains face images with 19
semantic facial attributes. The training and test set sizes are 24,183 and 2,842, respectively. We also
resize the images to 512×512. 3) DeepFashion (Liu et al., 2016) contains human body images. The
training and test set sizes are 30,000 and 2,247, respectively. We resize the images to 256×256, and
use a well-trained model (Li et al., 2019) to extract input semantic layouts for this dataset.

Evaluation Metrics. We follow GauGAN (Park et al., 2019) and use mean Intersection-over-Union
(mIoU), pixel accuracy (Acc), and Fréchet Inception Distance (FID) (Heusel et al., 2017) as the
evaluation metrics on Citysacapes, ADE20K, and COCO-Stuff. For DeepFashion, CelebAMask-
HQ, and Facades, we use FID and LPIPS (Zhang et al., 2018) as the evaluation metrics.

4.1 COMPARISONS WITH STATE-OF-THE-ART

Qualitative Comparisons. We first compare SA-UpSample with GauGAN (Park et al., 2019) on
DeepFashion, CelebAMask-HQ, and Facades. Note that we used the source code provided by the
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(a) ADE20K. (b) COCO-Stuff.

Figure 6: Qualitative comparison on ADE20K and COCO-Stuff. From left to right: Input, CC-
FPSE (Liu et al., 2019), GauGAN (Park et al., 2019), GauGAN+SA-UpSample (Ours), and GT.

(a) Cityscapes. (b) CelebAMask-HQ.

Figure 7: (a) Visualization of generated semantic maps compared with those from GauGAN (Park
et al., 2019) on Cityscapes. Most improved regions are highlighted in the ground truths with white
dash boxes. (b) Comparison in a zoomed-in manner on CelebAMask-HQ.

Table 2: Quantitative comparison on DeepFashion, Facades, and CelebAMask-HQ.

Method DeepFashion Facades CelebAMask-HQ

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
GauGAN (Park et al., 2019) 22.8 0.2476 116.8 0.5437 42.2 0.4870
+SA-UpSample (Ours) 20.8 0.2446 112.4 0.5387 33.6 0.4788

authors to generate the results of GauGAN on these three datasets for fair comparisons. Visualization
results are shown in Fig. 4(b) and 5. We can see that the model with SA-UpSample generates more
photo-realistic results than the original GauGAN. Moreover, we compare GauGAN and the proposed
method in a zoomed-in manner on CelebAMask-HQ in Fig. 7(b). We can see that the model with our
SA-UpSample can generate more vivid content than the original GauGAN model, further validating
the effectiveness of SA-UpSample. Lastly, we compare the proposed method with GauGAN and
CC-FPSE (Liu et al., 2019) on Cityscapes, ADE20K, and COCO-Stuff. Comparison results are
shown in Fig. 4(a) and 6. We can see that our method produces more clear and visually plausible
results than both leading methods, further demonstrating our design motivation.

User Study. We follow the same evaluation protocol of GauGAN and also perform a user study. The
results compared with the original GauGAN are shown in Table 1. We see that users strongly favor
the results generated by our proposed method on all datasets, further validating that the generated
images by our upsampling method are more photo-realistic.

Quantitative Comparisons. Although the user study is more suitable for evaluating the quality of
the generated images, we also follow GauGAN and use mIoU, Acc, FID, and LPIPS for quantitative
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Figure 8: Qualitative comparison of different upsampling methods on Cityscapes. Key differences
are highlighted by red boxes.

Table 3: Quantitative comparison on Cityscapes, ADE20K, and COCO-Stuff. The results of other
methods are reported from their papers.

Method Cityscapes ADE20K COCO-Stuff

mIoU ↑ Acc ↑ FID ↓ mIoU ↑ Acc ↑ FID ↓ mIoU ↑ Acc ↑ FID ↓
CRN (Chen & Koltun, 2017) 52.4 77.1 104.7 22.4 68.8 73.3 23.7 40.4 70.4
SIMS (Qi et al., 2018) 47.2 75.5 49.7 - - - - - -
Pix2pixHD (Wang et al., 2018) 58.3 81.4 95.0 20.3 69.2 81.8 14.6 45.7 111.5
CC-FPSE (Liu et al., 2019) 65.5 82.3 54.3 43.7 82.9 31.7 41.6 70.7 19.2
PIS (Dundar et al., 2020) 64.8 82.4 96.4 - - - 38.6 69.0 28.8
TSIT (Jiang et al., 2020) 65.9 82.7 59.2 38.6 80.8 31.6 - - -
LGGAN (Tang et al., 2020) 68.4 83.0 57.7 41.6 81.8 31.6 - - -
GauGAN (Park et al., 2019) 62.3 81.9 71.8 38.5 79.9 33.9 37.4 67.9 22.6
+SA-UpSample (Ours) 65.5 82.5 48.3 39.8 80.7 32.0 39.0 69.1 20.1

evaluation. The results compared with several leading methods are shown in Tables 2 and 3. Firstly,
we observe that the model with SA-UpSample achieves better results compared with GauGAN on
DeepFashion, CelebAMask-HQ, and Facades in Table 2. Moreover, we can see that our method
(i.e., GauGAN+SA-UpSample) achieves competitive results compared with other leading methods
on Cityscapes, ADE20K, and COCO-Stuff in Table 3. Notably, LGGAN (Tang et al., 2020) achieves
better results than our method, however, it trains each local generator for each semantic class, leading
to more parameters and the training time will be significantly increased when increasing the number
of semantic classes.

Visualization of Generated Semantic Maps. We follow GauGAN and adopt the pretrained DRN-
D-105 (Yu et al., 2017) on the generated Cityscapes images to produce semantic maps. The results
compared with those produced by GauGAN are shown in Fig. 7(a). We see that the method with our
proposed SA-UpSample generates more semantically-consistent results than the original GauGAN.

4.2 ABLATION STUDIES

Baselines. We conduct an extensive ablation study on Cityscapes to evaluate the effectiveness of
the proposed SA-UpSample. As shown in Table 4, B1, B2, and B3 are three traditional upsampling
methods. B4 and B5 are two learnable upsampling methods. B6 is the Spatial Attention module
proposed in (Fu et al., 2019). B7 is our proposed SA-UpSample.

Ablation Analysis. We first compare the proposed SA-UpSample with different upsampling strate-
gies (i.e., B1-B5). The results of the ablation study are shown in Table 4 and Fig. 8. We can see that
the proposed SA-UpSample achieves significantly better FID than other upsampling methods in Ta-
ble 4, indicating that the design of effective upsampling methods is critical for this challenging task.
We also observe that the proposed SA-UpSample generates more photo-realistic and semantically-
consistent results with fewer artifacts than other upsampling methods in Fig. 8. Moreover, we add
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(a) Cityscapes. (b) ADE20K. (c) COCO-Stuff.

(d) CelebAMask-HQ. (e) DeepFashion.

Figure 9: Exemplar applications of the proposed method on different datasets.

the Spatial Attention module (Fu et al., 2019) to GauGAN, obtaining 56.2 on FID. We can see that
our method still significantly outperforms Spatial Attention.

Table 4: Quantitative comparison of different feature up-
sampling and enhancement methods on Cityscapes.

No. Method FID ↓ Params ↓
B1 Nearest-Neighbor Upsampling 58.7 93.0M
B2 Bilinear Upsampling 52.9 93.0M
B3 Bicubic Upsampling 54.4 93.0M
B4 Deconvolution (Noh et al., 2015) 54.0 98.6M
B5 Pixel Shuffle (Shi et al., 2016) 59.1 143.2M
B6 Spatial Attention (Fu et al., 2019) 56.2 97.4M
B7 SA-UpSample (Ours) 48.3 93.4M

Comparisons of Model Parameters.
We also compare the number of gen-
erator parameters with different base-
lines. The results are shown in Ta-
ble 4. Traditional upsampling meth-
ods B1-B3) have the same number of
parameters. Also, we can see that the
proposed SA-UpSample achieves su-
perior model capacity than the learn-
able upsampling methods (i.e., B4 and
B5) and Spatial Attention.

Generalization of SA-UpSample. Our SA-UpSample is general and can be seamlessly integrated
into existing GANs. Thus, to validate the generalization ability of SA-UpSample, we further conduct
more experiments on Facades. Specifically, we replace the upsampling layers in CC-FPSE (Liu
et al., 2019) with our SA-UpSample. We observe that the CC-FPSE model with SA-UpSample
further decreases FID from 93.98 to 90.49, validating the generalization ability of SA-UpSample.

4.3 APPLICATIONS

Semantic Manipulation. Our model also supports semantic manipulation. For instance, we can
replace the building with trees in Fig. 9(a), insert a bed in the room in Fig. 9(b), add a few zebras to
the grass in Fig. 9(c), or remove earrings and eyeglasses from faces in Fig. 9(d). These applications
provide users more controllability during the translation process.

Multi-Modal Synthesis. By using a random vector as the input of the generator, our model can
perform multi-modal synthesis (Zhu et al., 2017). The results are shown in Fig. 9(e). We can see
that our model generates different outputs from the same input layout.

5 CONCLUSION

We present a novel Semantically-Adaptive UpSampling (SA-UpSample), a highly effective upsam-
pling method for the layout-to-image translation task. We observe that SA-UpSample consistently
boosts the generation performances on six datasets with diverse scenarios. More importantly, SA-
UpSample introduces little computational overhead and can be readily plugged into existing GAN
architectures to solve other tasks.
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