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Abstract

Multimodal sentiment analysis aims to uncover
human affective states by integrating data from
multiple sensory sources. However, previous
studies have focused on optimizing the model
architecture, neglecting the impact of objec-
tive function settings on model performance.
Given this, this study introduces a new frame-
work - DMMSA, which integrates uni and mul-
timodal sentiment analysis tasks, utilizes the
intrinsic correlation of sentimental signals, and
enhances the model’s understanding of com-
plex sentiments. In addition, it reduces task
complexity by incorporating coarse-grained
sentiment analysis. Meanwhile, the frame-
work embeds a contrastive learning mechanism
within the modality, enhancing the ability to
distinguish between similar and dissimilar fea-
tures. We conducted experiments on CH-SIMS,
MOSI, and MOEI. The results showed that
DMMSA outperformed the baseline method
in classification and regression tasks when the
model structure was unchanged, and only the
optimization objectives were replaced.

1 Introduction

Multimodal Sentiment Analysis (MSA) revolves
around integrating and synergistic parsing of di-
verse heterogeneous data modalities (Yang et al.,
2024; Du et al., 2024; Liu et al., 2024), encompass-
ing many information forms such as text, visual,
auditory, and even biometric markers. (Sun et al.,
2023) With the evolution of social media ecosys-
tems and the proliferation of multimedia content,
information presentation has evolved from pure
text to richly illustrated content, culminating in
today’s prevalent video-based information (Yang
et al., 2023; Huang et al., 2024).

Traditional unimodal sentiment analysis is con-
fined mainly to the textual domain (Zeng et al.,
2024). In contrast, MSA encompasses a compre-
hensive interpretation of multiple perceptual chan-
nels, including visual cues (e.g., facial expression,

scene color, and body movement) and audio char-
acteristics (e.g., pitch amplitude, frequency distri-
bution, and speech tempo) (Hu et al., 2022; Ging
et al., 2020). MSA has garnered significant atten-
tion in recent research. On the one hand, human
sentimental expression inherently possesses cross-
modal properties, with text, speech, and even haptic
cues intricately interwoven to form sentiments, ren-
dering a single modality insufficient to fully unveil
the complexity of sentiments. (Lu et al., 2024; Shi
et al., 2024) On the other hand, MSA technolo-
gies, through their deep fusion of multiple signal
sources, significantly enhance the accuracy of sen-
timent recognition and understanding, fulfilling the
high-precision sentimental intelligence demands
in domains such as intelligent customer service,
VR/AR experience optimization, and precise men-
tal health assessment (Truong and Lauw, 2019;
Feng et al., 2024).

Multimodal fusion has emerged as a core tech-
nique for understanding video contexts, demon-
strating its value across numerous downstream
tasks (Liang et al., 2022; Mai et al., 2022; Sun
et al., 2020). Prior research has proposed a series
of fusion techniques for MSA. For instance, Yu
et al (Yu et al., 2020). employ a self-supervised
joint learning strategy called self-mm, it integrating
discriminative information learned from individual
unimodal tasks with shared similarity information
from the multimodal task during the late fusion
stage, thereby enhancing model performance.

While multimodal fusion techniques are crucial
for models (Fu et al., 2024; Jiang et al., 2024),
setting optimization objectives is equally indispens-
able in model construction (Yang et al., 2023). Suit-
able optimization objectives effectively guide the
model towards continuous performance optimiza-
tion throughout training (Yang et al., 2023). More-
over, as shown in Figure 1, optimization objective
setting and model structure optimization focus on
different modules, complementing each other.
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Figure 1: (a) Ilustrates critical and secondary modules in the process of optimizing model architecture. Such
approaches focus on enhancing the unimodal feature extraction and multimodal feature fusion modules. (b) Presents
the modules of primary concern in our work. We concentrate on improving model performance by setting appropriate

optimization objectives while maintaining the unchanged structure of other modules.
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Figure 2: An example from the CH-SIMS dataset.

In MSA tasks, unimodal sentiments directly im-
pact overall sentiments (Aslam et al., 2023; Truong
and Lauw, 2019; Liu et al., 2019). As shown in
Figure 2, each modality carries unique sentimental
tendencies. Therefore, the model should be able to
consider both uni and multimodal sentiments com-
prehensively. Another challenge faced by MSA
tasks lies in their broad range of sentiment ratings.
For example, the MOSI dataset requires models to
accurately map samples to the sentiment intensity
scale of [-3,+3], increasing the prediction difficulty.

Given these challenges, we propose DMMSA, a
Dynamic Tuning and Multi-Task Learning MSA
model. DMMSA ensures the model can capture
unimodal signals in detail and integrate multimodal
information through collaborative optimization of
unimodal and multimodal tasks. The model is
equipped with a text-oriented contrastive learning
module to promote feature decoupling and enhance
the depth and accuracy of sentimental understand-
ing. Furthermore, incorporating coarse-grained
sentiment classification tasks to converge the pre-
diction range has improved the accuracy of sen-
timent intensity determination. We implemented
Global Dynamic Weight Generation(GDWG) to
avoid negative transfer effects and achieve joint ad-
justment of model parameters, thereby maximizing
overall performance.

The main contributions of this paper can be sum-
marized as follows:

1. We propose the Multi Nt-Xent loss to guide

the model in decomposing unimodal features and
establishing text-centered contrastive relations.

2. By employing coarse-grained sentiment anal-
ysis tasks, we effectively converge the prediction
range, reducing the complexity of modeling senti-
mental intensity.

3. To address the issue of unequal convergence
rates among different tasks during multitask train-
ing, we propose the GDWG strategy, effectively
mitigating negative transfer effects arising from
such mismatches.

Our model is evaluated on three benchmark
datasets: CH-SIMS|[6], MOSI[9], and MOSEI[10].
The results showed that DMMSA outperformed
the baseline method in classification and regression
tasks when the model structure was unchanged,
and only the optimization objectives were replaced.
Additionally, we conduct comprehensive ablation
studies, substantiating the efficacy of each compo-
nent within our proposed architecture.

2 Related Work

2.1 Multimodal Sentiment Analysis

As a core topic in affective computing research,
MSA has primarily been focused on representa-
tion learning and multimodal fusion strategies by
past scholars. In representation learning, Wang
et al (Wang et al., 2019). introduced the Re-
current Attended Variation Embedding Network
(RAVEN), tailored for fine-grained structural mod-
eling of non-verbal subword sequences, dynam-
ically adjusting word-level representations in re-
sponse to non-verbal cues. Regarding multimodal
fusion techniques, Zaden et al (Zadeh et al., 2017).
designed the Tensor Fusion Network to deeply
model intra-modal and inter-modal relationships
in online video analysis, addressing the transient
variability of spoken language, sign language, and
audio signals. Subsequently, they advanced the



Memory Fusion Network (Zadeh et al., 2018),
employing attention mechanisms for interactive in-
formation integration across different views. Sun
et al (Sun et al., 2023)., attentive to heterogeneity
issues, proposed an attention-based cross-modal
fusion scheme that facilitates modal interactions
through attention mechanisms, promoting the effec-
tive alignment of distinct modal features. However,
these efforts overlooked the potential impact of op-
timization objective design on model performance.

Yuetal (Yuetal., 2020). recognized the signifi-
cant influence of unimodal sentimental expressions
on overall affective states, leading to the construc-
tion of the CH-SIMS dataset, encompassing both
uni- and multimodal sentiment intensity measures.
Their study employed the L1 loss function for mul-
timodal and unimodal sentiment analysis as a joint
optimization objective. Experimental results re-
vealed that incorporating unimodal sentiment anal-
ysis tasks enhanced the model’s accuracy in pre-
dicting holistic sentimental dispositions. Yang et al.
(Yang et al., 2023). decomposed unimodal repre-
sentations into similarity and dissimilarity compo-
nents, utilizing a text-centric contrastive learning
approach. However, when implementing multi-
task learning, they failed to adequately account for
potential negative transfer effects resulting from
pronounced disparities in task convergence rates
and loss scales.

In contrast, the DMMSA model introduces a
GDWG mechanism, enabling the model to adap-
tively adjust task weights based on the relative rates
of loss decrease during training, effectively miti-
gating the detrimental impact of negative transfer
on model performance. Moreover, DMMSA incor-
porates coarse-grained sentiment analysis tasks to
constrain the prediction scope.

2.2 Contrastive Learning

Contrastive learning systematically constructs and
discriminates between feature differences in pos-
itive and negative sample pairs to reveal intrinsic
structural relationships within data (Hu et al., 2022;
Yang et al., 2023; Khosla et al., 2021; Lei et al.,
2021). This strategy has proven particularly ef-
fective in multimodal feature fusion research (Li
et al., 2020). Specifically, Radford et al (Radford
et al., 2021). employed multimodal contrastive
learning techniques to align image-text pairs, ef-
fectively alleviating inherent data heterogeneity
between visual and textual modalities and foster-
ing widespread application in diverse multimodal

downstream tasks such as visual question answer-
ing and caption generation. Similarly, Akbari et al
(Akbari et al., 2021). trained a vision-audio-text
translation model using the same contrastive learn-
ing approach, successfully achieving deep align-
ment among these three modalities.

In performing MSA tasks, Yang et al. (Yang
et al., 2023). devised two contrastive learning
mechanisms, intra-modal contrast, and inter-modal
contrast, to guide the model toward generating fea-
tures that embody homogeneity across modalities
and capture heterogeneity between them. This strat-
egy ensures that the model attends equally to com-
monalities and differences in modal interactions
during modeling. Nonetheless, while this method
yielded promising results, it did not address the lim-
itation of traditional NT-Xent loss functions, which
are tailored for single positive pair settings and
ill-suited for scenarios involving multiple positive
pairs; NT-Xent loss is

2 : exp(sim(a, p)/Tm)
Lyrx = — log :
(a,p)EP Z(a,k)ENUPeXp(Slm(a’k)/Tm)

where, 7,, is the temperature coefficient control-

ling the similarity distribution. (a,p) and (a, k)
denote positive and negative sample pairs, respec-
tively. IV represents the set of negative pairs, while
P signifies the set of positive pairs. Assuming the
model has already converged, the formula can be
further simplified as follows:

1
Lyrtx = — E log — 2)
(a,p)EP n

where, the symbol n denotes the number of pos-

itive sample pairs. Observing the above formula,
it becomes evident that when dealing with a single
positive pair scenario, i.e., n = 1, the Contrastive
Loss (CL) value precisely equals zero. However,
the CL manifestly fails to converge to zero in sit-
uations involving more than one positive pair, i.e.,
n > 1. In light of this limitation, this paper, while
leveraging contrastive learning strategies to aid the
model in extracting both similar and dissimilar fea-
tures, proposes an improvement to the NT-Xent
loss function tailored to accommodate multiple pos-
itive instances, namely the Multi NT-Xent loss:

S wyep EXP(sim(a, ) /)

3)

Lyntx = —log

(a k) ENUP exp(sim(a, k)/Tm)

Under the condition of model convergence, the
loss function can be further simplified as:

n
LyNnTx = —log o )



Consequently, the model is effectively guided in
its contrastive learning tasks, whether faced with a
single positive pair or multiple ones.

3 Methodology

3.1 Problem Formulation

MSA aims to decipher sample sentimental states
by harnessing multiple signals, encompassing text
(1), visual (I,), and audio (I,) modalities. Task
types within this domain are typically categorized
into two broad classes: classification and regres-
sion. Focusing on the latter, the proposed DMMSA
model takes Iy, [, and I, as inputs, yielding an
output sentimental intensity value y*, constrained
within the actual interval [— R, R], where R defines
the upper and lower bounds of the sentiment score.

3.2 Model Architecture

The overall architecture of the DMMSA model is
depicted in Figure 3, following a processing flow
outlined as follows: Given an input sample, uni-
modal data sources (I, I, I,) are first subjected
to feature extraction through dedicated unimodal
encoders. Subsequently, a feature decomposition
layer disassembles the encoded unimodal features,
extracting similarity and dissimilarity components.
Ultimately, these decomposed features are fed into
a multimodal MLP module, which generates the
final sentiment analysis output.

In pursuit of optimized model training, DMMSA
is engineered to concurrently execute four tasks:
@ Fine-grained Multimodal Sentiment Regression
(MSR), aimed at precise quantification of sentimen-
tal intensity; @ Coarse-grained Multimodal Senti-
ment Classification (MSC), serving to restrict the
prediction space; @ Unimodal Sentiment Analysis,
reinforcing the learning of unimodal representa-
tions; and @ Contrastive Learning, enhancing the
model’s discriminative ability between similar and
dissimilar features. Strategically, the integration
of unimodal and multimodal sentiment tasks en-
courages the model to account for both multimodal
and unimodal sentiments, while the coarse-grained
classification task imposes a bounded prediction
scope, enhancing localizationaccuracy. Contrastive
learning further refines feature discriminability.

When constructing the loss function to multitask
joint training, we introduce a GDWG mechanism
cognizant of the potential disparity in gradient up-
date rates among different tasks. This method is de-
signed to balance the gradient descent rates across

all tasks, effectively mitigating negative transfer
effects arising from gradient misalignment and en-
suring the stability and efficiency of the overall
learning process. The resultant aggregate loss is

Lysa=Lyusr+ Lvusce +AvuniLluni + AcrLer )

where, A denotes the weights assigned to each
task by the GDWG method. Lj;gg represents the
loss for Multimodal Sentiment Regression, Lssc
stands for the loss associated with Multimodal Sen-
timent Classification, Lgr,; signifies the loss for
Unimodal Sentiment Analysis, and Lcy, denotes
the Contrastive Learning loss. MSA is the core
task of our model. To ensure the stability and co-
herence of its learning process, we have fixed the
weights associated with Lj;sgr and Ljssc, which
are closely tied to the performance of the MSA task.
Meanwhile, we adjust the weights of the L,;,; and
Lc tasks to enhance the MSA task’s learning effi-
cacy while minimizing any potential perturbations
they may introduce to the learning trajectory of the
MSA task.

Ljrsr: The Multimodal Sentiment Regression
loss aims to guide the model in integrating signals
from different modalities to estimate the sentimen-
tal intensity of samples accurately. Herein, we feed
the fused decomposed similarity and dissimilarity
features into a Multimodal MLP for sentiment in-
tensity prediction, associating its output with the
given multimodal sentimental intensity labels via
a Smooth L1 loss function to derive this loss. The
formulaic expression is as follows:

y" = MLP([Ts; Ta; As; Ad; Vs; Val) (6)
L = {08 ()%, if (1) <1 %)
(y* —y) — 0.5, otherwise

where y* represents the predicted result, y repre-
sents the multimodal sentiment label, and ¢ con-
trols the smoothness.

Lrsc: The Multimodal Sentiment Classifica-
tion loss aims to guide the model in coarse-grained
categorization of sentimental states, thereby con-
straining the prediction space and facilitating pre-
cise targeting in sentiment analysis tasks. Here,
we first map the sentimental intensity labels of
samples to predefined sentimental polarity cate-
gories (e.g., positive, negative, neutral) according
to pre-established rules, forming an sentimental
polarity label set. Subsequently, the decomposed
multimodal features are effectively concatenated
and passed as input to a sentiment classifier, which
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Figure 3: The overall framework of the DMMSA model.

yields the probability distribution for each sam-
ple across various sentimental polarities. Finally,
the classifier’s predicted probability distribution is
compared with the actual assigned sentimental po-
larity labels, with the cross-entropy loss function
employed to quantify the loss between the two. The
specific formulaic expression is as follows:

ymsc = Classifier([Ts; Ta; As; Aa; Vs; Val)

N ©
1 1,C
Lyusc = -~ E E Yi,e log(yyrse)

i=1 c=1

®)

©

where, N denotes the number of samples, and C'
represents the number of categories.

Lirpni: The Unimodal Sentiment Analysis loss
aims to guide the model in delving into the
sentimental information embedded within each
modality. Here, to ensure consistent treatment
of modal features, we feed the similarity fea-
tures (15, Vi, A,) and dissimilarity features
(Ty, Va, Ag) of each modality separately into a
weight-sharing multilayer perceptron (MLP) layer.
The MLP layer outputs six sentiment predictions
u* = MLP([Ts, Ty, As, Ag, Vs, Vg]), with simi-
larity features used to infer the multimodal senti-
ment label y and dissimilarity features employed
to predict the corresponding unimodal sentiment
labels yt/ v/a_1In the absence of unimodal labels,
the dissimilarity feature prediction task adjusts to

predict the multimodal label y instead, maintaining
the coherence of model training. Finally, a Smooth
L1 loss function is employed for each prediction to
measure the loss between the prediction and the re-
spective ground truth label u = [y, v, v, y', v, y°].
The specific formulaic expression is as follows:

o }

Lcr: The Contrastive Loss aims to guide the
model in effectively performing feature decompo-
sition, allowing it to discern similarities and dis-
similaritys among features sensitively. Here, con-
sidering that text modality data often assumes a
dominant role in MSA tasks, with other modal-
ities providing auxiliary information to enhance
prediction accuracy, we opt to use text data as the
reference anchor for constructing positive and neg-
ative sample pairs [3]. The specific configuration
is as follows:

0.5 % (X=4)2if (%) <1
(u* — u) — 0.5¢, otherwise

(10)

N = {(Ts,Ta), (Ts, Va), (Ts, Aa) } an

P ={(Ts,Vs), (Ts, As)} (12)

Subsequently, we employ our proposed Multi
NT-Xent Loss to guide the model in maximizing
similarity between positive sample pairs while min-
imizing similarity between negative sample pairs.
The calculation formula for Multi NT-Xent Loss is
given by Equation (3).



Dataset Train Valid Test Total
CH-SIMS 1368 456 457 2281
MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856

Table 1: Dataset-specific partitioning details.
3.3 Global Dynamic Weight Generation

In multitasking learning scenarios, distinct tasks
often exhibit asynchronous convergence patterns,
leading specific tasks to stabilize prematurely or
tardily [7][8]. This inconsistency in convergence
rates can engender negative transfer, where the
learning process of one task adversarially impacts
the performance of other tasks, thereby compro-
mising overall model effectiveness. To address this
challenge, we introduce a GDWG mechanism. This
mechanism aims to adaptively adjust the relative
weights of individual tasks during training, specif-
ically by assessing the descent rate of each task’s
loss function at every training stage and, based on
these assessments, generating weight values for
each task. The specific mathematical expression is
presented below:

Li(t—1)
Li(1)
exp(wg(t —1)/7)

At = 1) = ————— (14)

> exp(w;(t —1)/7)

wi(t—1) = (13)

where, wy(t) denotes the relative decay rate of
task k at the t-th training stage, Ay (t) represents
the weight value assigned to task & at stage ¢, and
Ly (t) signifies the loss incurred by task k at stage
t. J signifies the total number of tasks subject to
adjustment, while 7 is a temperature coefficient
that governs the magnitude of weight updates, with
smaller values indicating greater weight update am-
plitude. All tasks under consideration are initially
assigned equal weights during the model’s initial-
ization phase. Subsequently, their actual loss values
at the first training stage, Ly (1), serve as respective
baseline loss references.

4 Experiments

4.1 Datasets

To evaluate the performance of the DMMSA model,
we selected three representative MSA datasets: CH-
SIMS (Yuetal., 2020), MOSI (Zadeh et al., 2016),
and MOSEI (Zadeh et al., 2018). CH-SIMS, a re-
source for MSA in Chinese, comprises 2,281 video
samples, with sentiment labels expressed as scores
within the continuous interval [-1, +1]. MOSI, an
English dataset, includes 2,199 video clips and em-
ploys a [-3, +3] sentimental intensity rating system.

Model Acc-3(1) Acc-5(1) MAEC(]) Corr(T)
LF-DNN 66.91 41.62 0.420 0.612
MEN(A) 65.73 39.47 0.435 0.582
LMF 64.68 40.53 0.441 0.576
TFN 65.12 39.30 0.432 0.591
Mult(A) 64.77 37.94 0.453 0.561
Self-MM 64.73 43.15 0.414 0.598
ConFEDE  68.36 43.72 0.3924 0.6351
DMMSA 69.63 46.92 0.3778 0.66

Table 2: Results of the Comparative Experiments on
the CH-SIMS Dataset.

MOSEI, an extended English MSA collection de-
rived from MOSI, significantly expands the scale
to 22,856 video segments, maintaining the [-3, +3]
sentiment scoring range. The specific details of the
dataset division are presented in Table 1.

4.2 Baseline Models and Evaluation Metrics

We compared our method with LF-DNN (Yu
et al.,, 2020), MFN (Zadeh et al.,, 2018),
LMF (Liu Z, 2018), TFN (Zadeh et al., 2017),
MulT(A) (Tsai et al., 2019), self-MM (Yu et al.,
2021), MISA(A) (Hazarika et al., 2020), MAG-
BERT (Rahman et al., 2020), Self-MM (Yu et al.,
2021), and ConFEDE (Yang et al., 2023).

We report the model’s performance on classifi-
cation and regression tasks following prior work.
For classification, we compute theaccuracy of 3-
class prediction (Acc-3) and 5-class prediction
(Acc-5) on CH-SIMS, as well as theaccuracy of
2-class prediction (Acc-2) and 7-class prediction
(Acc-7) on MOSI and MOSEI. Here, Acc-2 and
F1-score for MOSI and MOSEI are reported in
two forms: "negative/non-negative" and "nega-
tive/positive" (excluding 0). We present Mean Ab-
solute Error (MAE) and Pearson correlation (Corr)
regarding regression. All metrics except MAE are
better when higher.

4.3 Controlled Experiment

Tables 2 and 3 summarize the performance compar-
ison of various methods. The listed experimental
results are based on the average of five runs with
different random seeds, with the performance data
for all baseline models except ConFEDE sourced
from published literature.

On the CH-SIMS dataset, DMMSA demon-
strates superior overall performance in classifica-
tion and regression tasks compared to all baseline
models. Relative to the baseline model ConFEDE,
we achieve increases of 1.27% in Acc-3 and 3.20%
in Acc-5. This phenomenon is primarily attributed
to the coarse-grained sentiment analysis task inte-
grated into DMMSA, enhancing the model’s classi-
fication task performance. Moreover, DMMSA ex-



Model MOSI [ MOSEI
Acc-2 F1 Acc-7 MAE Corr Acc-2 F1 Acc-7 MAE Corr

LF-DNN (Yu et al., 2020) 77.52/78.63 77.46/78.63 34.52 0.955 0.658 80.60/82.74 80.85/82.52  50.83 0.58 0.709
MEN(A) (Zadeh et al., 2018) 77.4/- 77.3/- 34.1 0.965 0.632 78.94/82.86 79.55/82.85 51.53 0.573 0.718
LMF (Baltrugaitis et al., 2018) -/82.5 -/182.4 332 0.917 0.695 80.54/83.48 80.94/83.36  51.59 0.576  0.717
TFN (Zadeh et al., 2017) -/80.8 -180.7 349 0.901 0.698 78.50/81.89 78.96/81.74  51.60 0.573 0.714
MulT(A) (Tsai et al., 2019) -/83.0 -/82.8 40.0 0.871 0.698 81.15/84.63 81.56/84.52  52.84 0.559  0.733
MISA(A) (Hazarika et al., 2020) 81.8/83.4 81.7/83.6 423 0.783 0.776 83.6/85.5 83.8/85.3 52.2 0.555 0.756
MAG-BERT (Rahman et al., 2020) 82.13/83.54 81.12/83.58  41.43 0.790 0.766 79.86/86.86 80.47/83.88 50.41 0.583 0.741
ConFEDE (Yang et al., 2023)* 83.85/85.55 83.83/85.76  43.82 0.725 0.789 80.7/84.38 81.2/84.32 51.96 0.555 0.753
DMMSA* 83.97/85.70  83.92/85.70  45.39 0.710 0.793  82.63/86.27  83.04/86.21 53.91 0.527  0.777

Table 3: Comparison experiment results on MOSI and MOSEIL In Acc-2 and F1, the left side of "/" represents
"negative/non-negative", and the right side represents "negative/positive".
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Figure 4: The evolution of MAE over epochs for dif-
ferent optimization strategies on the MOSI validation
dataset. The "Cross" represents DMMSA incorporating
the coarse-grained sentiment analysis task, whereas the
"Non_Cross" corresponds to DMMSA with the coarse-
grained sentiment analysis task removed. Circles mark
the lowest MAE values.

hibits notable advancements in MAE and Corr met-
rics. This result is because it incorporates uni and
multimodal sentiment analysis to capture their in-
terdependencies effectively, and it embeds a coarse-
grained sentiment analysis task that contributes to
constraining the sentimental prediction scope and
simplifying the sentiment analysis task. As illus-
trated in Figure 4, DMMSA exhibits more minor
MAE fluctuations and faster convergence during
training compared to the model without the inclu-
sion of coarse-grained sentiment analysis, further
substantiating the positive role of this task in model
optimization.

To further validate the efficacy of our proposed
approach, we conducted experiments on the MOSI
and MOSEI datasets lacking unimodal sentiment
labels. Table 3 presents the results. DMMSA
outperforms all baseline models on both datasets,
demonstrating its exceptional performance even
when unimodal sentiment labels are unavailable.
This phenomenon is mainly due to the design of
the contrastive learning task. As shown in Figure 5,
even when unimodal feature labels are missing, the
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Figure 5: The similarity between similar and dissimi-
larity features. "CL" denotes the similarity of a model
incorporating the contrastive learning task. "No_CL"
represents the similarity of a model removing the con-
trastive learning task. "T", "I", and "A" respectively
denote text, image, and audio modalities, with "S" and
"D" signifying similarity features and dissimilarity fea-
tures, respectively.

model can still be guided by the contrastive learn-
ing task to identify and separate uni and multimodal
features effectively.

Of particular concern is that DMMSA’s im-
provement in Acc-5, MAE, and Correlation met-
rics exceeds its improvement in Acc-2 and Acc-3.
This phenomenon stems from the higher require-
ments for model performance and feature quality
in complex tasks compared to simple tasks; sim-
ple tasks often only require lower-level features to
achieve good performance, while the advantage of
DMMSA lies in extracting higher-quality features,
so its performance gain is more significant when
task difficulty increases.

To confirm this hypothesis, we designed an in-
cremental experiment; Table 4 presents the results.
We can observe that the performance of DMMSA
on Acc-2 has reached convergence when trained
with 60% data, and its performance will not im-
prove with the increase of training data. On the
contrary, the performance of DMMSA on Acc-7
and regression tasks continuously improves with
the increase of training data.



Data Acc-2 F1 Acc-7 MAE Corr

MOSEI 82.63/86.27  83.04/86.21 5391  0.527 0.777
MOSEI*0.8  82.41/86.15  82.87/86.14 5339  0.532  0.772
MOSEI*0.6  83.77/86.12  84.01/85.99 5277  0.538  0.769
MOSEI*0.4  82.78/86.09  83.16/86.03  53.36  0.540  0.767
MOSEI*0.2  80.68/85.03  81.27/85.06 5237  0.551  0.760
MOSEI*0.1  81.89/85.08  8233/85.04 5218  0.552  0.755
Table 4: Performance of DMMSA under varying

amounts of training data.

4.4 Ablation Study and Analysis

We conducted an ablation study on the proposed
method to investigate the individual contributions
of each module to model performance. Table 5
shows the results.

We can observe that the model’s performance de-
creases to varying degrees under the three ablation
strategies. "w/o MSC" exhibits decreases across
all performance metrics. The decline can primarily
be attributed to the loss of practical constraints on
the sentimental prediction range after removing the
MSC task. As Figure 6 illustrates, when the MSC
task is incorporated, the model performs a prelimi-
nary prediction of the sample’s sentiments, which
confines its regression prediction search space (as
denoted by "MSC" in Figure 6). For instance, if
the model preliminarily assigns the sample to the
"Negative" sentiment region, it restricts subsequent
predictions to occur only within this area, thereby
preventing excessive divergence from the actual
sentimental state.

Model Acc-3 Acc-5 MAE Corr
DMMSA 69.63 46.92 0.3778  0.66
w/o MSC 68.41 44.68 0.3807  0.656
w/o CL 69.41 46.74 0.3828  0.651
w/o GDWG  69.32 46.17 0.3776  0.663

Table 5: The ablation experiments on CH-SIMS. "w/o
CL" signifies the exclusion of the contrastive learn-
ing(CL) task.

Under the "w/o CL" configuration, the model’s
MAE and Corr indicators significantly decreased.
This result is mainly because the core objective of
CL tasks is to assist the model in effectively dis-
tinguishing and extracting similar and dissimilar
features from single modalities. Once the CL task
is removed, the model loses the feature discrimina-
tion ability promoted by this mechanism, making it
difficult to accurately distinguish and utilize these
critical sentimental features. So, it weakens its
performance in regression tasks.

In the setting "w/o GDWG," the model exhibits
a mild upward trend in performance on regression
tasks, whereas a marked decline is observed in its
efficacy on classification tasks. The underlying
cause of this phenomenon lies in the model’s loss
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Figure 6: Visualizing sentiment intensity range, with
"MSC" denoting sentiment intensity prediction scope
when incorporating MSC tasks and "No_MSC" indicat-
ing the scope without it.

of the effective regulatory mechanism for gradi-
ent convergence rates and magnitude differences
among various tasks during the training cycle. As
a result, the model tends to over-optimize a sin-
gle task at the expense of neglecting the learning
requirements of other tasks, culminating in an evi-
dent imbalance in overall performance. The core
function of the GDWG module resides in its abil-
ity to dynamically adjust the weight allocation for
each task based on the real-time global descent rate
of respective task loss functions. It prevents the
model from overly concentrating on any particular
task to the detriment of the learning progress of
other tasks, thereby effectively mitigating learning
skew arising from inter-task competition.

5 Conclusion

This study introduces DMMSA, an affective anal-
ysis framework that integrates multi-task learning
strategies with dynamic tuning mechanisms to en-
hance the accuracy of modeled understanding of
complex human sentiments by exploiting intrinsic
correlations between uni-modal and multimodal
sentimental signals. Specifically, DMMSA sys-
tematically extracts and decomposes sentiment rep-
resentations from multimodal inputs into similar-
ity and dissimilarity components, which are then
deepened through coarse-grained sentiment classi-
fication tasks and contrastive learning mechanisms
acting on the interplay of sentimental representa-
tions. To comprehensively validate the DMMSA,
we evaluate it on three representative MSA datasets:
CH-SIMS, MOSI, and MOSEI. Experimental re-
sults demonstrate that DMMSA surpasses various
benchmark models across all overall performance
metrics on all datasets. Moreover, through a series
of ablation experiments, we further substantiate the
indispensable contribution of each constituent mod-
ule within DMMSA to the overall performance im-
provement, thereby affirming this design’s method-
ological soundness and effectiveness.



6 Limitation

Although we have alleviated the negative transfer
effects caused by differences in task convergence
rates using the Global Dynamic Weight Genera-
tion (GDWG) strategy, this problem still exists and
becomes a key factor restricting the performance
improvement of DMMSA. Table 4 shows that as
the training sample size increases, the performance
of DMMSA on Acc-2 decreases, while on Acc-
5, MAE, and Correlation indicators, it shows an
upward trend. Therefore, the focus of subsequent
research will be exploring the optimization path of
GDWG to suppress negative transfer more effec-
tively.
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A Baseline

LF-DNN: Concatenating unimodal features and
analyzing sentiments. (Yu et al., 2020)

MEFN: Firstly, employ LSTM for View-specific
interaction. Then, utilize the attention mechanism
for Cross-view interaction, and finally summa-
rize through time with a Multi-view Gated Mem-
ory. (Zadeh et al., 2018)

LMF: By parallelly decomposing tensors and
weights, utilize modality-specific low-rank factors
to perform multimodal fusion. (Liu Z, 2018)

TFN: The authors propose a novel model called
Tensor Fusion Network (TFN), which can learn
end-to-end dynamics within and across modalities.
It adopts a new multimodal fusion method (ten-
sor fusion) to model the dynamics across modali-
ties. (Zadeh et al., 2017)

MulT: The core of MulT lies in its cross-modal
attention mechanism, which offers a potential cross-
modal adaptation by directly attending to low-level
features in other modalities to fuse multimodal in-
formation. (Tsai et al., 2019)

MISA: The model learns Modality-Invariant and
Modality-Specific representation spaces for each



Encoder(T) Bert-base(Chinese/uncased)
Encoder(V/A) Transformer Encoder[1]
Single-modal Learning rate 0.00001(T),0.0001(V/A)
Batch size 64(T),128(V/A)
Epochs 150(T),300(V/A)
Epochs 50(CH,SI),25(SEI)
Fusion stage Learning rate 0.00001(CH,SI),0.00005(SEI)
Batch size 32(CH),16(MOSI),4(MOSEI)

Table 6: Parameter settings for the single-modal stage.
T represents text, V represents visual, and A represents
audio.

2-class 3-class 5-class
[-1,0] [-1,-0.1] [-1,-0.7]
Sentiment  (0,1] (-0.1,0.1] (-0.7,-0.1]
Intensity (0.1,1] (-0.1,0.1]
(0.1,0.7]
(0.7,1.0]

Table 7: Classification Label Division Method of the
CH-SIMS Dataset

modality to obtain better modality representations
for the fused input. (Hazarika et al., 2020)

MAG-BERT: Enhancing model performance
by applying multimodal adaptation gates at differ-
ent layers of the BERT backbone. (Rahman et al.,
2020)

Self-MM: First, utilize a self-supervised label
generation module to obtain unimodal labels, then
jointly learn multimodal and unimodal representa-
tions based on multimodal labels. (Yu et al., 2021)

ConFEDE: Firstly, decompose unimodal fea-
tures into Modality-Invariant and Modality-
Specific features through feature decomposition.
Subsequently, utilize multi-task learning to com-
bine multimodal sentiment analysis, unimodal sen-
timent analysis, and contrastive learning tasks to
optimize model training. (Yang et al., 2023)

B Experiment

B.1 Experiment Setting

All experiments were conducted on an NVIDIA
Tesla A100 GPU. Our remaining experimental set-
tings were consistent with the previous state-of-the-
art model, ConFEDE. Table 6 presents the param-
eter settings for the unimodal training and multi-
modal fusion stages.

B.2 Methods for Multimodal Sentiment
Classification Labeling

CH-SIMS: For this dataset, we have defined 2-
class, 3-class, and 5-class classification tasks repre-
senting three different difficulty levels. The specific
divisions are shown in the table 7:

MOSI and MOSEI: For these two datasets, we
have defined 2-class, 3-class, 5-class, and 7-class
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2-class 3-class 5-class 7-class
[-3,0) [-3,-0.5) [-3,-1.5) [-3,-2.5)
[0,3] [-0.5,0.5) [-1.5,-0.5)  [-2.5,-1.5)
[0.5,3] [-0.5,0.5) [-1.5,-0.5)
Sentiment [0.5,1.5) [-0.5,0.5)
Intensity [1.5,3] [0.5,1.5)
[1.5,2.5)
[2.5.3]

Table 8: Classification Label Division Method of the
MOSE and MOSEI Dataset

classification tasks. The specific division details
are shown in the table 8.
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