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Abstract

Multimodal sentiment analysis aims to uncover001
human affective states by integrating data from002
multiple sensory sources. However, previous003
studies have focused on optimizing the model004
architecture, neglecting the impact of objec-005
tive function settings on model performance.006
Given this, this study introduces a new frame-007
work - DMMSA, which integrates uni and mul-008
timodal sentiment analysis tasks, utilizes the009
intrinsic correlation of sentimental signals, and010
enhances the model’s understanding of com-011
plex sentiments. In addition, it reduces task012
complexity by incorporating coarse-grained013
sentiment analysis. Meanwhile, the frame-014
work embeds a contrastive learning mechanism015
within the modality, enhancing the ability to016
distinguish between similar and dissimilar fea-017
tures. We conducted experiments on CH-SIMS,018
MOSI, and MOEI. The results showed that019
DMMSA outperformed the baseline method020
in classification and regression tasks when the021
model structure was unchanged, and only the022
optimization objectives were replaced.023

1 Introduction024

Multimodal Sentiment Analysis (MSA) revolves025

around integrating and synergistic parsing of di-026

verse heterogeneous data modalities (Yang et al.,027

2024; Du et al., 2024; Liu et al., 2024), encompass-028

ing many information forms such as text, visual,029

auditory, and even biometric markers. (Sun et al.,030

2023) With the evolution of social media ecosys-031

tems and the proliferation of multimedia content,032

information presentation has evolved from pure033

text to richly illustrated content, culminating in034

today’s prevalent video-based information (Yang035

et al., 2023; Huang et al., 2024).036

Traditional unimodal sentiment analysis is con-037

fined mainly to the textual domain (Zeng et al.,038

2024). In contrast, MSA encompasses a compre-039

hensive interpretation of multiple perceptual chan-040

nels, including visual cues (e.g., facial expression,041

scene color, and body movement) and audio char- 042

acteristics (e.g., pitch amplitude, frequency distri- 043

bution, and speech tempo) (Hu et al., 2022; Ging 044

et al., 2020). MSA has garnered significant atten- 045

tion in recent research. On the one hand, human 046

sentimental expression inherently possesses cross- 047

modal properties, with text, speech, and even haptic 048

cues intricately interwoven to form sentiments, ren- 049

dering a single modality insufficient to fully unveil 050

the complexity of sentiments. (Lu et al., 2024; Shi 051

et al., 2024) On the other hand, MSA technolo- 052

gies, through their deep fusion of multiple signal 053

sources, significantly enhance the accuracy of sen- 054

timent recognition and understanding, fulfilling the 055

high-precision sentimental intelligence demands 056

in domains such as intelligent customer service, 057

VR/AR experience optimization, and precise men- 058

tal health assessment (Truong and Lauw, 2019; 059

Feng et al., 2024). 060

Multimodal fusion has emerged as a core tech- 061

nique for understanding video contexts, demon- 062

strating its value across numerous downstream 063

tasks (Liang et al., 2022; Mai et al., 2022; Sun 064

et al., 2020). Prior research has proposed a series 065

of fusion techniques for MSA. For instance, Yu 066

et al (Yu et al., 2020). employ a self-supervised 067

joint learning strategy called self-mm, it integrating 068

discriminative information learned from individual 069

unimodal tasks with shared similarity information 070

from the multimodal task during the late fusion 071

stage, thereby enhancing model performance. 072

While multimodal fusion techniques are crucial 073

for models (Fu et al., 2024; Jiang et al., 2024), 074

setting optimization objectives is equally indispens- 075

able in model construction (Yang et al., 2023). Suit- 076

able optimization objectives effectively guide the 077

model towards continuous performance optimiza- 078

tion throughout training (Yang et al., 2023). More- 079

over, as shown in Figure 1, optimization objective 080

setting and model structure optimization focus on 081

different modules, complementing each other. 082

1



Figure 1: (a) Illustrates critical and secondary modules in the process of optimizing model architecture. Such
approaches focus on enhancing the unimodal feature extraction and multimodal feature fusion modules. (b) Presents
the modules of primary concern in our work. We concentrate on improving model performance by setting appropriate
optimization objectives while maintaining the unchanged structure of other modules.

Figure 2: An example from the CH-SIMS dataset.

In MSA tasks, unimodal sentiments directly im-083

pact overall sentiments (Aslam et al., 2023; Truong084

and Lauw, 2019; Liu et al., 2019). As shown in085

Figure 2, each modality carries unique sentimental086

tendencies. Therefore, the model should be able to087

consider both uni and multimodal sentiments com-088

prehensively. Another challenge faced by MSA089

tasks lies in their broad range of sentiment ratings.090

For example, the MOSI dataset requires models to091

accurately map samples to the sentiment intensity092

scale of [-3,+3], increasing the prediction difficulty.093

Given these challenges, we propose DMMSA, a094

Dynamic Tuning and Multi-Task Learning MSA095

model. DMMSA ensures the model can capture096

unimodal signals in detail and integrate multimodal097

information through collaborative optimization of098

unimodal and multimodal tasks. The model is099

equipped with a text-oriented contrastive learning100

module to promote feature decoupling and enhance101

the depth and accuracy of sentimental understand-102

ing. Furthermore, incorporating coarse-grained103

sentiment classification tasks to converge the pre-104

diction range has improved the accuracy of sen-105

timent intensity determination. We implemented106

Global Dynamic Weight Generation(GDWG) to107

avoid negative transfer effects and achieve joint ad-108

justment of model parameters, thereby maximizing109

overall performance.110

The main contributions of this paper can be sum-111

marized as follows:112

1. We propose the Multi Nt-Xent loss to guide113

the model in decomposing unimodal features and 114

establishing text-centered contrastive relations. 115

2. By employing coarse-grained sentiment anal- 116

ysis tasks, we effectively converge the prediction 117

range, reducing the complexity of modeling senti- 118

mental intensity. 119

3. To address the issue of unequal convergence 120

rates among different tasks during multitask train- 121

ing, we propose the GDWG strategy, effectively 122

mitigating negative transfer effects arising from 123

such mismatches. 124

Our model is evaluated on three benchmark 125

datasets: CH-SIMS[6], MOSI[9], and MOSEI[10]. 126

The results showed that DMMSA outperformed 127

the baseline method in classification and regression 128

tasks when the model structure was unchanged, 129

and only the optimization objectives were replaced. 130

Additionally, we conduct comprehensive ablation 131

studies, substantiating the efficacy of each compo- 132

nent within our proposed architecture. 133

2 Related Work 134

2.1 Multimodal Sentiment Analysis 135

As a core topic in affective computing research, 136

MSA has primarily been focused on representa- 137

tion learning and multimodal fusion strategies by 138

past scholars. In representation learning, Wang 139

et al (Wang et al., 2019). introduced the Re- 140

current Attended Variation Embedding Network 141

(RAVEN), tailored for fine-grained structural mod- 142

eling of non-verbal subword sequences, dynam- 143

ically adjusting word-level representations in re- 144

sponse to non-verbal cues. Regarding multimodal 145

fusion techniques, Zaden et al (Zadeh et al., 2017). 146

designed the Tensor Fusion Network to deeply 147

model intra-modal and inter-modal relationships 148

in online video analysis, addressing the transient 149

variability of spoken language, sign language, and 150

audio signals. Subsequently, they advanced the 151
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Memory Fusion Network (Zadeh et al., 2018),152

employing attention mechanisms for interactive in-153

formation integration across different views. Sun154

et al (Sun et al., 2023)., attentive to heterogeneity155

issues, proposed an attention-based cross-modal156

fusion scheme that facilitates modal interactions157

through attention mechanisms, promoting the effec-158

tive alignment of distinct modal features. However,159

these efforts overlooked the potential impact of op-160

timization objective design on model performance.161

Yu et al (Yu et al., 2020). recognized the signifi-162

cant influence of unimodal sentimental expressions163

on overall affective states, leading to the construc-164

tion of the CH-SIMS dataset, encompassing both165

uni- and multimodal sentiment intensity measures.166

Their study employed the L1 loss function for mul-167

timodal and unimodal sentiment analysis as a joint168

optimization objective. Experimental results re-169

vealed that incorporating unimodal sentiment anal-170

ysis tasks enhanced the model’s accuracy in pre-171

dicting holistic sentimental dispositions. Yang et al.172

(Yang et al., 2023). decomposed unimodal repre-173

sentations into similarity and dissimilarity compo-174

nents, utilizing a text-centric contrastive learning175

approach. However, when implementing multi-176

task learning, they failed to adequately account for177

potential negative transfer effects resulting from178

pronounced disparities in task convergence rates179

and loss scales.180

In contrast, the DMMSA model introduces a181

GDWG mechanism, enabling the model to adap-182

tively adjust task weights based on the relative rates183

of loss decrease during training, effectively miti-184

gating the detrimental impact of negative transfer185

on model performance. Moreover, DMMSA incor-186

porates coarse-grained sentiment analysis tasks to187

constrain the prediction scope.188

2.2 Contrastive Learning189

Contrastive learning systematically constructs and190

discriminates between feature differences in pos-191

itive and negative sample pairs to reveal intrinsic192

structural relationships within data (Hu et al., 2022;193

Yang et al., 2023; Khosla et al., 2021; Lei et al.,194

2021). This strategy has proven particularly ef-195

fective in multimodal feature fusion research (Li196

et al., 2020). Specifically, Radford et al (Radford197

et al., 2021). employed multimodal contrastive198

learning techniques to align image-text pairs, ef-199

fectively alleviating inherent data heterogeneity200

between visual and textual modalities and foster-201

ing widespread application in diverse multimodal202

downstream tasks such as visual question answer- 203

ing and caption generation. Similarly, Akbari et al 204

(Akbari et al., 2021). trained a vision-audio-text 205

translation model using the same contrastive learn- 206

ing approach, successfully achieving deep align- 207

ment among these three modalities. 208

In performing MSA tasks, Yang et al. (Yang 209

et al., 2023). devised two contrastive learning 210

mechanisms, intra-modal contrast, and inter-modal 211

contrast, to guide the model toward generating fea- 212

tures that embody homogeneity across modalities 213

and capture heterogeneity between them. This strat- 214

egy ensures that the model attends equally to com- 215

monalities and differences in modal interactions 216

during modeling. Nonetheless, while this method 217

yielded promising results, it did not address the lim- 218

itation of traditional NT-Xent loss functions, which 219

are tailored for single positive pair settings and 220

ill-suited for scenarios involving multiple positive 221

pairs; NT-Xent loss is 222

LNTX = −
∑

(a,p)∈P

log
exp(sim(a, p)/τm)∑

(a,k)∈N∪P
exp(sim(a, k)/τm)

(1) 223

where, τm is the temperature coefficient control- 224

ling the similarity distribution. (a, p) and (a, k) 225

denote positive and negative sample pairs, respec- 226

tively. N represents the set of negative pairs, while 227

P signifies the set of positive pairs. Assuming the 228

model has already converged, the formula can be 229

further simplified as follows: 230

LNTX = −
∑

(a,p)∈P

log
1

n
(2) 231

where, the symbol n denotes the number of pos- 232

itive sample pairs. Observing the above formula, 233

it becomes evident that when dealing with a single 234

positive pair scenario, i.e., n = 1, the Contrastive 235

Loss (CL) value precisely equals zero. However, 236

the CL manifestly fails to converge to zero in sit- 237

uations involving more than one positive pair, i.e., 238

n > 1. In light of this limitation, this paper, while 239

leveraging contrastive learning strategies to aid the 240

model in extracting both similar and dissimilar fea- 241

tures, proposes an improvement to the NT-Xent 242

loss function tailored to accommodate multiple pos- 243

itive instances, namely the Multi NT-Xent loss: 244

LMNTX = − log

∑
(a,p)∈P

exp(sim(a, p)/τm)∑
(a,k)∈N∪P

exp(sim(a, k)/τm)
(3) 245

246Under the condition of model convergence, the 247

loss function can be further simplified as: 248

LMNTX = − log
n

n
(4) 249
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250 Consequently, the model is effectively guided in251

its contrastive learning tasks, whether faced with a252

single positive pair or multiple ones.253

3 Methodology254

3.1 Problem Formulation255

MSA aims to decipher sample sentimental states256

by harnessing multiple signals, encompassing text257

(It), visual (Iv), and audio (Ia) modalities. Task258

types within this domain are typically categorized259

into two broad classes: classification and regres-260

sion. Focusing on the latter, the proposed DMMSA261

model takes It, Iv, and Ia as inputs, yielding an262

output sentimental intensity value y∗, constrained263

within the actual interval [−R,R], where R defines264

the upper and lower bounds of the sentiment score.265

3.2 Model Architecture266

The overall architecture of the DMMSA model is267

depicted in Figure 3, following a processing flow268

outlined as follows: Given an input sample, uni-269

modal data sources (It, Iv, Ia) are first subjected270

to feature extraction through dedicated unimodal271

encoders. Subsequently, a feature decomposition272

layer disassembles the encoded unimodal features,273

extracting similarity and dissimilarity components.274

Ultimately, these decomposed features are fed into275

a multimodal MLP module, which generates the276

final sentiment analysis output.277

In pursuit of optimized model training, DMMSA278

is engineered to concurrently execute four tasks:279

① Fine-grained Multimodal Sentiment Regression280

(MSR), aimed at precise quantification of sentimen-281

tal intensity; ② Coarse-grained Multimodal Senti-282

ment Classification (MSC), serving to restrict the283

prediction space; ③ Unimodal Sentiment Analysis,284

reinforcing the learning of unimodal representa-285

tions; and ④ Contrastive Learning, enhancing the286

model’s discriminative ability between similar and287

dissimilar features. Strategically, the integration288

of unimodal and multimodal sentiment tasks en-289

courages the model to account for both multimodal290

and unimodal sentiments, while the coarse-grained291

classification task imposes a bounded prediction292

scope, enhancing localizationaccuracy. Contrastive293

learning further refines feature discriminability.294

When constructing the loss function to multitask295

joint training, we introduce a GDWG mechanism296

cognizant of the potential disparity in gradient up-297

date rates among different tasks. This method is de-298

signed to balance the gradient descent rates across299

all tasks, effectively mitigating negative transfer 300

effects arising from gradient misalignment and en- 301

suring the stability and efficiency of the overall 302

learning process. The resultant aggregate loss is 303

LMSA = LMSR + LMSC + λUniLUni + λCLLCL (5) 304

where, λ denotes the weights assigned to each 305

task by the GDWG method. LMSR represents the 306

loss for Multimodal Sentiment Regression, LMSC 307

stands for the loss associated with Multimodal Sen- 308

timent Classification, LUni signifies the loss for 309

Unimodal Sentiment Analysis, and LCL denotes 310

the Contrastive Learning loss. MSA is the core 311

task of our model. To ensure the stability and co- 312

herence of its learning process, we have fixed the 313

weights associated with LMSR and LMSC , which 314

are closely tied to the performance of the MSA task. 315

Meanwhile, we adjust the weights of the Luni and 316

LCL tasks to enhance the MSA task’s learning effi- 317

cacy while minimizing any potential perturbations 318

they may introduce to the learning trajectory of the 319

MSA task. 320

LMSR: The Multimodal Sentiment Regression 321

loss aims to guide the model in integrating signals 322

from different modalities to estimate the sentimen- 323

tal intensity of samples accurately. Herein, we feed 324

the fused decomposed similarity and dissimilarity 325

features into a Multimodal MLP for sentiment in- 326

tensity prediction, associating its output with the 327

given multimodal sentimental intensity labels via 328

a Smooth L1 loss function to derive this loss. The 329

formulaic expression is as follows: 330

y
∗
= MLP ([Ts;Td;As;Ad;Vs;Vd]) (6) 331

332
Lmul =

{
0.5 ∗ ( y∗−y

φ )2, if( y∗−y
φ ) < 1

(y∗ − y) − 0.5φ, otherwise

}
(7) 333

where y∗ represents the predicted result, y repre- 334

sents the multimodal sentiment label, and φ con- 335

trols the smoothness. 336

LMSC : The Multimodal Sentiment Classifica- 337

tion loss aims to guide the model in coarse-grained 338

categorization of sentimental states, thereby con- 339

straining the prediction space and facilitating pre- 340

cise targeting in sentiment analysis tasks. Here, 341

we first map the sentimental intensity labels of 342

samples to predefined sentimental polarity cate- 343

gories (e.g., positive, negative, neutral) according 344

to pre-established rules, forming an sentimental 345

polarity label set. Subsequently, the decomposed 346

multimodal features are effectively concatenated 347

and passed as input to a sentiment classifier, which 348
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Figure 3: The overall framework of the DMMSA model.

yields the probability distribution for each sam-349

ple across various sentimental polarities. Finally,350

the classifier’s predicted probability distribution is351

compared with the actual assigned sentimental po-352

larity labels, with the cross-entropy loss function353

employed to quantify the loss between the two. The354

specific formulaic expression is as follows:355

yMSC = Classifier([Ts;Td;As;Ad;Vs;Vd]) (8)356

357
LMSC = −

1

N

N∑
i=1

C∑
c=1

yi,c log(y
i,c
MSC) (9)358

where, N denotes the number of samples, and C359

represents the number of categories.360

LUni: The Unimodal Sentiment Analysis loss361

aims to guide the model in delving into the362

sentimental information embedded within each363

modality. Here, to ensure consistent treatment364

of modal features, we feed the similarity fea-365

tures (Ts, Vs, As) and dissimilarity features366

(Td, Vd, Ad) of each modality separately into a367

weight-sharing multilayer perceptron (MLP) layer.368

The MLP layer outputs six sentiment predictions369

u∗ = MLP ([Ts, Td, As, Ad, Vs, Vd]), with simi-370

larity features used to infer the multimodal senti-371

ment label y and dissimilarity features employed372

to predict the corresponding unimodal sentiment373

labels yt/v/a. In the absence of unimodal labels,374

the dissimilarity feature prediction task adjusts to375

predict the multimodal label y instead, maintaining 376

the coherence of model training. Finally, a Smooth 377

L1 loss function is employed for each prediction to 378

measure the loss between the prediction and the re- 379

spective ground truth label u = [y, y, y, yt, yv, ya]. 380

The specific formulaic expression is as follows: 381

Lmul =

{
0.5 ∗ (u∗−u

φ )2, if(u∗−u
φ ) < 1

(u∗ − u) − 0.5φ, otherwise

}
(10) 382

383LCL: The Contrastive Loss aims to guide the 384

model in effectively performing feature decompo- 385

sition, allowing it to discern similarities and dis- 386

similaritys among features sensitively. Here, con- 387

sidering that text modality data often assumes a 388

dominant role in MSA tasks, with other modal- 389

ities providing auxiliary information to enhance 390

prediction accuracy, we opt to use text data as the 391

reference anchor for constructing positive and neg- 392

ative sample pairs [3]. The specific configuration 393

is as follows: 394

N = {(Ts, Td), (Ts, Vd), (Ts, Ad)} (11) 395

396P = {(Ts, Vs), (Ts, As)} (12) 397

398Subsequently, we employ our proposed Multi 399

NT-Xent Loss to guide the model in maximizing 400

similarity between positive sample pairs while min- 401

imizing similarity between negative sample pairs. 402

The calculation formula for Multi NT-Xent Loss is 403

given by Equation (3). 404
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Dataset Train Valid Test Total
CH-SIMS 1368 456 457 2281
MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856

Table 1: Dataset-specific partitioning details.

3.3 Global Dynamic Weight Generation405

In multitasking learning scenarios, distinct tasks406

often exhibit asynchronous convergence patterns,407

leading specific tasks to stabilize prematurely or408

tardily [7][8]. This inconsistency in convergence409

rates can engender negative transfer, where the410

learning process of one task adversarially impacts411

the performance of other tasks, thereby compro-412

mising overall model effectiveness. To address this413

challenge, we introduce a GDWG mechanism. This414

mechanism aims to adaptively adjust the relative415

weights of individual tasks during training, specif-416

ically by assessing the descent rate of each task’s417

loss function at every training stage and, based on418

these assessments, generating weight values for419

each task. The specific mathematical expression is420

presented below:421

wk(t − 1) =
Lk(t − 1)

Lk(1)
(13)422

423 λk(t − 1) =
exp(wk(t − 1)/τ)

J∑
j

exp(wj(t − 1)/τ)

(14)424

where, wk(t) denotes the relative decay rate of425

task k at the t-th training stage, λk(t) represents426

the weight value assigned to task k at stage t, and427

Lk(t) signifies the loss incurred by task k at stage428

t. J signifies the total number of tasks subject to429

adjustment, while τ is a temperature coefficient430

that governs the magnitude of weight updates, with431

smaller values indicating greater weight update am-432

plitude. All tasks under consideration are initially433

assigned equal weights during the model’s initial-434

ization phase. Subsequently, their actual loss values435

at the first training stage, Lk(1), serve as respective436

baseline loss references.437

4 Experiments438

4.1 Datasets439

To evaluate the performance of the DMMSA model,440

we selected three representative MSA datasets: CH-441

SIMS (Yu et al., 2020), MOSI (Zadeh et al., 2016),442

and MOSEI (Zadeh et al., 2018). CH-SIMS, a re-443

source for MSA in Chinese, comprises 2,281 video444

samples, with sentiment labels expressed as scores445

within the continuous interval [-1, +1]. MOSI, an446

English dataset, includes 2,199 video clips and em-447

ploys a [-3, +3] sentimental intensity rating system.448

Model Acc-3(↑) Acc-5(↑) MAE(↓) Corr(↑)
LF-DNN 66.91 41.62 0.420 0.612
MFN(A) 65.73 39.47 0.435 0.582
LMF 64.68 40.53 0.441 0.576
TFN 65.12 39.30 0.432 0.591
Mult(A) 64.77 37.94 0.453 0.561
Self-MM 64.73 43.15 0.414 0.598
ConFEDE 68.36 43.72 0.3924 0.6351
DMMSA 69.63 46.92 0.3778 0.66

Table 2: Results of the Comparative Experiments on
the CH-SIMS Dataset.

MOSEI, an extended English MSA collection de- 449

rived from MOSI, significantly expands the scale 450

to 22,856 video segments, maintaining the [-3, +3] 451

sentiment scoring range. The specific details of the 452

dataset division are presented in Table 1. 453

4.2 Baseline Models and Evaluation Metrics 454

We compared our method with LF-DNN (Yu 455

et al., 2020), MFN (Zadeh et al., 2018), 456

LMF (Liu Z, 2018), TFN (Zadeh et al., 2017), 457

MulT(A) (Tsai et al., 2019), self-MM (Yu et al., 458

2021), MISA(A) (Hazarika et al., 2020), MAG- 459

BERT (Rahman et al., 2020), Self-MM (Yu et al., 460

2021), and ConFEDE (Yang et al., 2023). 461

We report the model’s performance on classifi- 462

cation and regression tasks following prior work. 463

For classification, we compute theaccuracy of 3- 464

class prediction (Acc-3) and 5-class prediction 465

(Acc-5) on CH-SIMS, as well as theaccuracy of 466

2-class prediction (Acc-2) and 7-class prediction 467

(Acc-7) on MOSI and MOSEI. Here, Acc-2 and 468

F1-score for MOSI and MOSEI are reported in 469

two forms: "negative/non-negative" and "nega- 470

tive/positive" (excluding 0). We present Mean Ab- 471

solute Error (MAE) and Pearson correlation (Corr) 472

regarding regression. All metrics except MAE are 473

better when higher. 474

4.3 Controlled Experiment 475

Tables 2 and 3 summarize the performance compar- 476

ison of various methods. The listed experimental 477

results are based on the average of five runs with 478

different random seeds, with the performance data 479

for all baseline models except ConFEDE sourced 480

from published literature. 481

On the CH-SIMS dataset, DMMSA demon- 482

strates superior overall performance in classifica- 483

tion and regression tasks compared to all baseline 484

models. Relative to the baseline model ConFEDE, 485

we achieve increases of 1.27% in Acc-3 and 3.20% 486

in Acc-5. This phenomenon is primarily attributed 487

to the coarse-grained sentiment analysis task inte- 488

grated into DMMSA, enhancing the model’s classi- 489

fication task performance. Moreover, DMMSA ex- 490
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Model MOSI MOSEI
Acc-2 F1 Acc-7 MAE Corr Acc-2 F1 Acc-7 MAE Corr

LF-DNN (Yu et al., 2020) 77.52/78.63 77.46/78.63 34.52 0.955 0.658 80.60/82.74 80.85/82.52 50.83 0.58 0.709
MFN(A) (Zadeh et al., 2018) 77.4/- 77.3/- 34.1 0.965 0.632 78.94/82.86 79.55/82.85 51.53 0.573 0.718
LMF (Baltrušaitis et al., 2018) -/82.5 -/82.4 33.2 0.917 0.695 80.54/83.48 80.94/83.36 51.59 0.576 0.717
TFN (Zadeh et al., 2017) -/80.8 -/80.7 34.9 0.901 0.698 78.50/81.89 78.96/81.74 51.60 0.573 0.714
MulT(A) (Tsai et al., 2019) -/83.0 -/82.8 40.0 0.871 0.698 81.15/84.63 81.56/84.52 52.84 0.559 0.733
MISA(A) (Hazarika et al., 2020) 81.8/83.4 81.7/83.6 42.3 0.783 0.776 83.6/85.5 83.8/85.3 52.2 0.555 0.756
MAG-BERT (Rahman et al., 2020) 82.13/83.54 81.12/83.58 41.43 0.790 0.766 79.86/86.86 80.47/83.88 50.41 0.583 0.741
ConFEDE (Yang et al., 2023)* 83.85/85.55 83.83/85.76 43.82 0.725 0.789 80.7/84.38 81.2/84.32 51.96 0.555 0.753
DMMSA* 83.97/85.70 83.92/85.70 45.39 0.710 0.793 82.63/86.27 83.04/86.21 53.91 0.527 0.777

Table 3: Comparison experiment results on MOSI and MOSEI. In Acc-2 and F1, the left side of "/" represents
"negative/non-negative", and the right side represents "negative/positive".

Figure 4: The evolution of MAE over epochs for dif-
ferent optimization strategies on the MOSI validation
dataset. The "Cross" represents DMMSA incorporating
the coarse-grained sentiment analysis task, whereas the
"Non_Cross" corresponds to DMMSA with the coarse-
grained sentiment analysis task removed. Circles mark
the lowest MAE values.

hibits notable advancements in MAE and Corr met-491

rics. This result is because it incorporates uni and492

multimodal sentiment analysis to capture their in-493

terdependencies effectively, and it embeds a coarse-494

grained sentiment analysis task that contributes to495

constraining the sentimental prediction scope and496

simplifying the sentiment analysis task. As illus-497

trated in Figure 4, DMMSA exhibits more minor498

MAE fluctuations and faster convergence during499

training compared to the model without the inclu-500

sion of coarse-grained sentiment analysis, further501

substantiating the positive role of this task in model502

optimization.503

To further validate the efficacy of our proposed504

approach, we conducted experiments on the MOSI505

and MOSEI datasets lacking unimodal sentiment506

labels. Table 3 presents the results. DMMSA507

outperforms all baseline models on both datasets,508

demonstrating its exceptional performance even509

when unimodal sentiment labels are unavailable.510

This phenomenon is mainly due to the design of511

the contrastive learning task. As shown in Figure 5,512

even when unimodal feature labels are missing, the513

Figure 5: The similarity between similar and dissimi-
larity features. "CL" denotes the similarity of a model
incorporating the contrastive learning task. "No_CL"
represents the similarity of a model removing the con-
trastive learning task. "T", "I", and "A" respectively
denote text, image, and audio modalities, with "S" and
"D" signifying similarity features and dissimilarity fea-
tures, respectively.

model can still be guided by the contrastive learn- 514

ing task to identify and separate uni and multimodal 515

features effectively. 516

Of particular concern is that DMMSA’s im- 517

provement in Acc-5, MAE, and Correlation met- 518

rics exceeds its improvement in Acc-2 and Acc-3. 519

This phenomenon stems from the higher require- 520

ments for model performance and feature quality 521

in complex tasks compared to simple tasks; sim- 522

ple tasks often only require lower-level features to 523

achieve good performance, while the advantage of 524

DMMSA lies in extracting higher-quality features, 525

so its performance gain is more significant when 526

task difficulty increases. 527

To confirm this hypothesis, we designed an in- 528

cremental experiment; Table 4 presents the results. 529

We can observe that the performance of DMMSA 530

on Acc-2 has reached convergence when trained 531

with 60% data, and its performance will not im- 532

prove with the increase of training data. On the 533

contrary, the performance of DMMSA on Acc-7 534

and regression tasks continuously improves with 535

the increase of training data. 536
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Data Acc-2 F1 Acc-7 MAE Corr
MOSEI 82.63/86.27 83.04/86.21 53.91 0.527 0.777
MOSEI*0.8 82.41/86.15 82.87/86.14 53.39 0.532 0.772
MOSEI*0.6 83.77/86.12 84.01/85.99 52.77 0.538 0.769
MOSEI*0.4 82.78/86.09 83.16/86.03 53.36 0.540 0.767
MOSEI*0.2 80.68/85.03 81.27/85.06 52.37 0.551 0.760
MOSEI*0.1 81.89/85.08 82.33/85.04 52.18 0.552 0.755

Table 4: Performance of DMMSA under varying
amounts of training data.

4.4 Ablation Study and Analysis537

We conducted an ablation study on the proposed538

method to investigate the individual contributions539

of each module to model performance. Table 5540

shows the results.541

We can observe that the model’s performance de-542

creases to varying degrees under the three ablation543

strategies. "w/o MSC" exhibits decreases across544

all performance metrics. The decline can primarily545

be attributed to the loss of practical constraints on546

the sentimental prediction range after removing the547

MSC task. As Figure 6 illustrates, when the MSC548

task is incorporated, the model performs a prelimi-549

nary prediction of the sample’s sentiments, which550

confines its regression prediction search space (as551

denoted by "MSC" in Figure 6). For instance, if552

the model preliminarily assigns the sample to the553

"Negative" sentiment region, it restricts subsequent554

predictions to occur only within this area, thereby555

preventing excessive divergence from the actual556

sentimental state.557

Model Acc-3 Acc-5 MAE Corr
DMMSA 69.63 46.92 0.3778 0.66
w/o MSC 68.41 44.68 0.3807 0.656
w/o CL 69.41 46.74 0.3828 0.651
w/o GDWG 69.32 46.17 0.3776 0.663

Table 5: The ablation experiments on CH-SIMS. "w/o
CL" signifies the exclusion of the contrastive learn-
ing(CL) task.

Under the "w/o CL" configuration, the model’s558

MAE and Corr indicators significantly decreased.559

This result is mainly because the core objective of560

CL tasks is to assist the model in effectively dis-561

tinguishing and extracting similar and dissimilar562

features from single modalities. Once the CL task563

is removed, the model loses the feature discrimina-564

tion ability promoted by this mechanism, making it565

difficult to accurately distinguish and utilize these566

critical sentimental features. So, it weakens its567

performance in regression tasks.568

In the setting "w/o GDWG," the model exhibits569

a mild upward trend in performance on regression570

tasks, whereas a marked decline is observed in its571

efficacy on classification tasks. The underlying572

cause of this phenomenon lies in the model’s loss573

Figure 6: Visualizing sentiment intensity range, with
"MSC" denoting sentiment intensity prediction scope
when incorporating MSC tasks and "No_MSC" indicat-
ing the scope without it.

of the effective regulatory mechanism for gradi- 574

ent convergence rates and magnitude differences 575

among various tasks during the training cycle. As 576

a result, the model tends to over-optimize a sin- 577

gle task at the expense of neglecting the learning 578

requirements of other tasks, culminating in an evi- 579

dent imbalance in overall performance. The core 580

function of the GDWG module resides in its abil- 581

ity to dynamically adjust the weight allocation for 582

each task based on the real-time global descent rate 583

of respective task loss functions. It prevents the 584

model from overly concentrating on any particular 585

task to the detriment of the learning progress of 586

other tasks, thereby effectively mitigating learning 587

skew arising from inter-task competition. 588

5 Conclusion 589

This study introduces DMMSA, an affective anal- 590

ysis framework that integrates multi-task learning 591

strategies with dynamic tuning mechanisms to en- 592

hance the accuracy of modeled understanding of 593

complex human sentiments by exploiting intrinsic 594

correlations between uni-modal and multimodal 595

sentimental signals. Specifically, DMMSA sys- 596

tematically extracts and decomposes sentiment rep- 597

resentations from multimodal inputs into similar- 598

ity and dissimilarity components, which are then 599

deepened through coarse-grained sentiment classi- 600

fication tasks and contrastive learning mechanisms 601

acting on the interplay of sentimental representa- 602

tions. To comprehensively validate the DMMSA, 603

we evaluate it on three representative MSA datasets: 604

CH-SIMS, MOSI, and MOSEI. Experimental re- 605

sults demonstrate that DMMSA surpasses various 606

benchmark models across all overall performance 607

metrics on all datasets. Moreover, through a series 608

of ablation experiments, we further substantiate the 609

indispensable contribution of each constituent mod- 610

ule within DMMSA to the overall performance im- 611

provement, thereby affirming this design’s method- 612

ological soundness and effectiveness. 613
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6 Limitation614

Although we have alleviated the negative transfer615

effects caused by differences in task convergence616

rates using the Global Dynamic Weight Genera-617

tion (GDWG) strategy, this problem still exists and618

becomes a key factor restricting the performance619

improvement of DMMSA. Table 4 shows that as620

the training sample size increases, the performance621

of DMMSA on Acc-2 decreases, while on Acc-622

5, MAE, and Correlation indicators, it shows an623

upward trend. Therefore, the focus of subsequent624

research will be exploring the optimization path of625

GDWG to suppress negative transfer more effec-626

tively.627
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A Baseline 803

LF-DNN: Concatenating unimodal features and 804

analyzing sentiments. (Yu et al., 2020) 805

MFN: Firstly, employ LSTM for View-specific 806

interaction. Then, utilize the attention mechanism 807

for Cross-view interaction, and finally summa- 808

rize through time with a Multi-view Gated Mem- 809

ory. (Zadeh et al., 2018) 810

LMF: By parallelly decomposing tensors and 811

weights, utilize modality-specific low-rank factors 812

to perform multimodal fusion. (Liu Z, 2018) 813

TFN: The authors propose a novel model called 814

Tensor Fusion Network (TFN), which can learn 815

end-to-end dynamics within and across modalities. 816

It adopts a new multimodal fusion method (ten- 817

sor fusion) to model the dynamics across modali- 818

ties. (Zadeh et al., 2017) 819

MulT: The core of MulT lies in its cross-modal 820

attention mechanism, which offers a potential cross- 821

modal adaptation by directly attending to low-level 822

features in other modalities to fuse multimodal in- 823

formation. (Tsai et al., 2019) 824

MISA: The model learns Modality-Invariant and 825

Modality-Specific representation spaces for each 826
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Encoder(T) Bert-base(Chinese/uncased)
Encoder(V/A) Transformer Encoder[1]

Single-modal Learning rate 0.00001(T),0.0001(V/A)
Batch size 64(T),128(V/A)
Epochs 150(T),300(V/A)
Epochs 50(CH,SI),25(SEI)

Fusion stage Learning rate 0.00001(CH,SI),0.00005(SEI)
Batch size 32(CH),16(MOSI),4(MOSEI)

Table 6: Parameter settings for the single-modal stage.
T represents text, V represents visual, and A represents
audio.

2-class 3-class 5-class
[-1,0] [-1,-0.1] [-1,-0.7]

Sentiment (0,1] (-0.1,0.1] (-0.7,-0.1]
Intensity (0.1,1] (-0.1,0.1]

(0.1,0.7]
(0.7,1.0]

Table 7: Classification Label Division Method of the
CH-SIMS Dataset

modality to obtain better modality representations827

for the fused input. (Hazarika et al., 2020)828

MAG-BERT: Enhancing model performance829

by applying multimodal adaptation gates at differ-830

ent layers of the BERT backbone. (Rahman et al.,831

2020)832

Self-MM: First, utilize a self-supervised label833

generation module to obtain unimodal labels, then834

jointly learn multimodal and unimodal representa-835

tions based on multimodal labels. (Yu et al., 2021)836

ConFEDE: Firstly, decompose unimodal fea-837

tures into Modality-Invariant and Modality-838

Specific features through feature decomposition.839

Subsequently, utilize multi-task learning to com-840

bine multimodal sentiment analysis, unimodal sen-841

timent analysis, and contrastive learning tasks to842

optimize model training. (Yang et al., 2023)843

B Experiment844

B.1 Experiment Setting845

All experiments were conducted on an NVIDIA846

Tesla A100 GPU. Our remaining experimental set-847

tings were consistent with the previous state-of-the-848

art model, ConFEDE. Table 6 presents the param-849

eter settings for the unimodal training and multi-850

modal fusion stages.851

B.2 Methods for Multimodal Sentiment852

Classification Labeling853

CH-SIMS: For this dataset, we have defined 2-854

class, 3-class, and 5-class classification tasks repre-855

senting three different difficulty levels. The specific856

divisions are shown in the table 7:857

MOSI and MOSEI: For these two datasets, we858

have defined 2-class, 3-class, 5-class, and 7-class859

2-class 3-class 5-class 7-class
[-3,0) [-3,-0.5) [-3,-1.5) [-3,-2.5)
[0,3] [-0.5,0.5) [-1.5,-0.5) [-2.5,-1.5)

[0.5,3] [-0.5,0.5) [-1.5,-0.5)
Sentiment [0.5,1.5) [-0.5,0.5)
Intensity [1.5,3] [0.5,1.5)

[1.5,2.5)
[2.5,3]

Table 8: Classification Label Division Method of the
MOSE and MOSEI Dataset

classification tasks. The specific division details 860

are shown in the table 8. 861
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