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Abstract

Chain-of-thought (CoT) reasoning in vision lan-001
guage models (VLMs) is crucial for improv-002
ing interpretability and trustworthiness. How-003
ever, current training recipes often relying on004
datasets dominated by short annotations with005
minimal rationales. In this work, we show that006
training VLM on short answers leads to poor007
generalization on reasoning tasks that require008
more detailed explanations. To address this lim-009
itation, we propose a two-stage post-training010
strategy that extends the usage of short answer011
data for enhanced CoT reasoning. First, we012
augment short answers with CoT reasoning013
generated by GPT-4o, enhancing the VLM’s014
CoT capabilities through fine-tuning. Second,015
we leverage short answers as outcome rewards016
for reinforcement learning. Specifically, short017
answers are used as correctness indicators to018
construct positive (correct) and negative (in-019
correct) pairs from model-generated reasoning020
chains. These pairs are then used to calibrate021
the model’s reasoning via Direct Preference Op-022
timization. Our experiments show significant023
improvements in CoT reasoning on benchmark024
datasets, along with enhanced generalization to025
direct answer prediction. This work provides026
a critical data resource for VLM CoT training027
and demonstrates the effectiveness of outcome028
rewards for multimodal models post-training.029

1 Introduction030

As VLMs are increasingly applied to more complex031

tasks, the ability to generate robust CoT reasoning032

becomes essential for improving interpretability033

and trustworthiness (Li et al., 2024; Liu et al., 2024;034

Chen et al., 2023a; Liu et al., 2023b,a; Bai et al.,035

2023). However, current training recipes often rely036

on datasets dominated by short answers with lim-037

ited rationales, potentially hindering the models’038

ability to generalize to tasks requiring comprehen-039

sive reasoning. In this work, we critically examine040

the effectiveness of short-answer data for reasoning041

capabilities and propose augmenting it to enhance 042

CoT reasoning during supervised fine-tuning (SFT) 043

and reinforcement learning (RL). 044

An example in fig. 1 asks for the number of 045

food items in a bar graph. A human would typi- 046

cally enumerate the bars and then calculate the total. 047

However, writing out this enumeration process is 048

far more cumbersome than simply providing the 049

short answer of “14.” Consequently, the annotated 050

training data is predominantly composed of short 051

answers, with minimal rationale provided. This 052

raises a critical research question: Does training on 053

direct prediction implicitly teach the model to per- 054

form chain-of-thought reasoning to derive correct 055

answers? Our findings indicate that after training 056

on 26k direct predictions from ChartQA, the ac- 057

curacy of direct predictions increased by 2.9 (70.2 058

to 73.1), while CoT prediction accuracy improved 059

by only 0.6 points (71.2 to 71.8), with CoT under- 060

performing direct prediction as a result. This sug- 061

gests that current training approaches have limited 062

effectiveness in enhancing CoT reasoning. 063

We hypothesize that developing CoT reasoning 064

capabilities requires explicit training on data that 065

includes detailed reasoning steps. To address the 066

scarcity of high quality CoT reasoning data, we 067

propose leveraging datasets with short ground truth 068

annotations and employing the GPT-4o model to 069

generate reasoning paths that lead to the correct an- 070

swer. Our approach encompasses a diverse range of 071

tasks, utilizing 9 datasets that demand different rea- 072

soning skills, including common world knowledge 073

(A-OKVQA (Schwenk et al., 2022)), chart inter- 074

pretation (ChartQA (Schwenk et al., 2022)), docu- 075

ment information localization (DocVQA (Mathew 076

et al., 2021), InfoVQA (Mathew et al., 2022)), 077

real-world text extraction (TextVQA (Singh et al., 078

2019)), scientific reasoning (AI2D (Kembhavi 079

et al., 2016), SQA (Lu et al., 2022)), and mathe- 080

matical reasoning (MathVision (Wang et al., 2024), 081

G-LLaVA (Gao et al., 2023)). We distilled a total 082
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Training data with 
Direct Prediction

Q: how many food items are there in the figure? Short Annotated 
Answer

Underlying rationale:
To cound the number for food items, I need to enumerate the items 
on y-axis. The first item is Lamb, followed by Corn, Barley, Rye, Beef 
...
Therefore, the total number is 14. 

Rationale 1 prediction is 13

Rationale 2 prediction is 14 correct answer

wrong answer
Rationale alignment

likely incorrect rationale

likely correct rationale

A. Does VLMs implicitly learn reasoning from direct prediction?

B. Leverage short annotation as outcome reward for reasoning alignment

Generation

Outcome 
judgement

Feedback/
alignment

Figure 1: The upper figure questions whether training exclusively on direct-answer prediction can effectively teach CoT
prediction. In the lower figure, we leverage short annotation as outcome reward for reasoning alignment, allowing the model to
improve with self-generated data.

of 193k CoT examples for SFT and the model,083

LLAVA-REASONER-SFT, demonstrates signifi-084

cant improvements in VLM chain-of-thought rea-085

soning performance.086

In the lower part of fig. 1, we propose further087

calibrating SFT model reasoning with short answer088

for outcome rewards (Sun et al., 2024; Setlur et al.,089

2024). Specifically, the model generates multiple090

CoT steps to to arrive at a final prediction, which is091

then compared against a provided short annotation.092

Rationales leading to correct predictions are more093

likely to be accurate, while those leading to incor-094

rect predictions are less so. By optimizing positive095

(likely correct) and negative (likely incorrect) ratio-096

nale pairs using DPO, we align the VLM towards097

a more accurate reasoning process. The aligned098

model, LLAVA-REASONER-DPO, demonstrates099

consistent performance improvements across all100

domains compared to its SFT counterpart. Addi-101

tionally, we find that the DPO model can act as102

a strong verifier to assign appropriate rewards for103

CoT reasoning, enabling more effective credit as-104

signment (Rafailov et al., 2024; Lu et al., 2024).105

Our key contributions are as follows:106

A. We provide a critical data resource, SHAREGPT-107

4O-REASONING, for VLM CoT reasoning, contain-108

ing 193k examples spanning various VQA109

B. We demonstrate the effectiveness of using out-110

come rewards with DPO for VLM, leveraging111

model-generated signals without requiring addi-112

tional human-labeled reward data.113

C. We show that the DPO model serves as a strong114

verifier for reasoning, paving the way for more115

effective vision-language reward modeling. 116

2 Related Work 117

VLM Reasoning Evaluation of the reasoning 118

capabilities of VLMs includes mathematics (Lu 119

et al., 2023; Wang et al., 2024), college-level ques- 120

tions (Yue et al., 2024), and science (Kembhavi 121

et al., 2016; Lu et al., 2022). Training free meth- 122

ods introduce scene decomposition (Mitra et al., 123

2024) or additional coarse and fine-grained local- 124

ization (Luan et al., 2024) to improve visual reason- 125

ing. Training methods (Zhang et al., 2024c; Chen 126

et al., 2023b; Zhang et al., 2024a; Gao et al., 2023) 127

focus on step-by-step solutions for math problems 128

or chart-based calculations, or highlighting bound- 129

ing box (Shao et al., 2024) for answering the related 130

questions. In this work, we extend CoT data be- 131

yond short-answer formats to cover a wider range 132

of tasks and conduct evaluations on a comprehen- 133

sive set of benchmark datasets. 134

VLM/LLM Alignment VLM alignment has uti- 135

lized preference modeling techniques, such as 136

DPO (Ouali et al., 2024; Deng et al., 2024; Yu 137

et al., 2024; Li et al., 2023; Gunjal et al., 2023; 138

Sun et al., 2023), and PPO (Sun et al., 2023), to 139

enhance factual accuracy and mitigate hallucina- 140

tion. For LLMs, prior work (Sun et al., 2024; Setlur 141

et al., 2024; Lu et al., 2024; Pang et al., 2024; Xie 142

et al., 2024) has employed RL with outcome re- 143

wards to improve CoT in mathematical tasks. In 144

this work, we demonstrate the effectiveness of out- 145

come rewards for aligning VLMs across a broad 146

range of reasoning tasks. 147

2



World/Common Sense Knowledge
Question: What are the 
horses being used for?
A. petting B. field work 

C. stomping D. riding

Rationale: In the image, there are two horses 
harnessed together, and they are standing on a field. 
The horses are equipped with harnesses and are 
attached to a piece of farming equipment. The ground 
shows signs of being freshly plowed, indicating that 
the horses are being used to pull the plow and turn 
the soil. Additionally, there are tractors in the 
background, further suggesting an agricultural setting. 
Answer: B. field work

Chart Understanding
Question: Is any of the bar 
less than 10%?

Rationale: The bar chart displays the share of 
respondents' opinions on a certain topic, divided 
by gender (Men and Women). … we look at the 
smallest percentages in each category. The 
smallest percentage is 11% for Men in the "They 
are downplaying the situation" category, and 15% 
for Women in the same category. Both of these 
values are above 10%.
Answer: No

Information Localization in Industrial Document
Question: Which university has the third largest student?
Rationale: ... By examining the heights of the bars, we can 
identify the universities with the largest student bodies: 
- The tallest bar represents Arizona State University. 
- ...
- The third tallest bar represents Penn State University. 
Thus, based on the visual data provided in the bar graph, 
the university with the third largest student body is: 
Answer: Penn State

Math Reasoning

Question: Add up the numbers on the balls. In which bowl is the result biggest?
Rationale: 
**Bowl A**: The balls are numbered 8, 7, 4, and 9.  Sum: 8 + 7 + 4 + 9 = 28 
**Bowl B**: The balls are numbered 4, 6, 7, and 9.  Sum: 4 + 6 + 7 + 9 = 26 
...  
Answer: A

Figure 2: Distillation of examples from various VLM task domains, highlighting the specific reasoning capabilities.

3 Method148

Our pipeline consists of three stages: (A) CoT data149

distillation from GPT-4o (section 3.1), (B) SFT150

with CoT (and direct) data to enable VLM CoT151

reasoning (section 3.2), and (C) Outcome reward152

RL for CoT reasoning enhancement (section 3.3).153

3.1 Reasoning Data Distillation154

We leverage VQA datasets with short annotations155

to augment them with rationales generated by the156

GPT-4o model. We collect 193k visual CoT in-157

stances to create the SHAREGPT-4O-REASONING158

dataset for community usage. We focus on the fol-159

lowing reasoning types as demonstrated in fig. 2:160

Real-World Knowledge includes A-OKVQA,161

which covers a broad range of commonsense rea-162

soning and real-world knowledge for answering163

questions.164

Chart Understanding includes ChartQA, which165

involves tasks like item comparison, counting, and166

numerical computation.167

Table 1: Statistics of
CoT data from differ-
ent sources.

Dataset Size
A-OKVQA 16.9k
ChartQA 26.0k
SQA 6.1k
AI2D 11.9k
InfoVQA 22.4k
DocVQA 37.3k
TextVQA 29.7k
MathVision 11.0k
G-LLaVA 30.3k
Total 193k

Textual Reasoning168

includes DocVQA, In-169

foVQA, and TextVQA,170

focusing on information171

localization and extraction172

in industrial documents173

and real-world image174

comprehension.175

Math and Science176

includes MathVision,177

G-LLaVA, SQA, and178

AI2D, focusing on sci-179

entific knowledge and180

mathematical reasoning.181

After distillation, we filtered out examples182

whose answer predicted by GPT-4o is different 183

from ground truth. The data statistics are presented 184

in table 1, and a comparison of answer lengths is 185

shown in fig. 3, highlighting that CoT responses 186

peak around 100 tokens, while direct answers are 187

typically under 5 tokens. The exact distillation 188

prompt is provided in appendix B. 189

100 200 300 400 500
#words

0.0%

0.5%

1.0% histogram of #words in CoT answer

0 5 10 15 20 25 30
#words

0.0%

50.0%

100.0% histogram of #words in direct answer

Figure 3: The distribution of word counts for CoT and
direct answer.

3.2 SFT for CoT Prediction 190

We choose LLaMA3-LLaVA-NeXT-8B as our 191

base architecture, whose weight is initialized with 192

the Open-LLaVA-NeXT weights (Chen and Xing, 193

2024). To ensure the model handles both direct and 194

chain-of-thought (CoT) predictions, we implement 195

two types of prompts during training. 196

Direct Prediction: For direct prediction tasks, we 197

use the prompt “Answer the question with a short 198

answer” for short-answer questions, and “Answer 199

with the option’s letter from the given choices di- 200

rectly” for multiple-choice questions. 201

CoT Prediction: For CoT prediction tasks, we use 202

the prompt “Generate a reason first and then output 203

a letter answer” for multiple-choice questions, and 204
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“Generate a reason first and then output a short205

answer” for short-answer questions. In the model’s206

response, the rationale is followed by the answer,207

which is formatted as “### Answer: ” to enable208

answer extraction during evaluation.209

3.3 RL for Enhanced Reasoning210

To further improve the quality of reasoning chains,211

we apply RL using the DPO algorithm to better212

align the model’s reasoning process toward more213

accurate predictions. The DPO algorithm requires214

both positive and negative responses. To generate215

these, we use the SFT model as the policy model216

(i.e., generator), producing 32 candidate predic-217

tions per question (temperature 1.0 for short an-218

swer and 1.2 for multiple-choice questions). Each219

prediction is compared with the ground truth to220

determine its correctness. Following the approach221

in (Dubey et al., 2024), we select instances with222

an accuracy between 0.25 and 0.85. From these,223

we randomly pair positive and negative responses,224

creating up to three pairs per question.225

Formally, the dataset is denoted as DDPO =226

{(V, x, yw, yl)}, where V is the image, x is the227

question, yw and yl are the positive and negative228

responses. The DPO objective is defined as below:229

LDPO (πθ;πref) = −E(V,x,yw,yl)∼DDPO

[

log σ

(
β log

πθ (yw | x,V)
πref (yw | x,V) − β log

πθ (yl | x,V)
πref (yl | x,V)

)]
,

230

where πθ is the policy model to be optimized and231

πref is the base reference model, both models are232

initialized with SFT weights. σ is the logistic func-233

tion and β is set to 0.1.234

4 SFT Experiments for CoT Learning235

In this section, we explore how SFT can enhance236

VLM reasoning by addressing two key research237

questions: (1) Can CoT reasoning be implicitly238

learned from short responses? and (2) How effec-239

tively can CoT be learned from GPT-4o distilled240

data?241

Due to space constraints, we provide the SFT ab-242

lation in appendix F, the data composition ablation243

in appendix G, and SOTA model comparisons in ap-244

pendix H. Additionally, we present reject-sampling245

finetuning experiments in appendix E with nearly246

no CoT distillation with significant improvements247

over the baseline models.248

193k CoT Distillation

Data Sources:

CoT Data: Direct Data: 193k Direct Data

Format Data: 450 CoT Sample 450 Direct Sample

Additional Math CoT: 16k G-LLaVA QA and Alignment

sample

Model Fine-tuning:

LLaVA-Next+Format 

Pretrain data mix: 2k data sampled from pre-train distribution

LLaVA-Reasoner
-SFT 

LLaVA-Next
+ Direct 

193k CoT Distillation 193k Direct Data
16k G-LLaVA QA and Alignment

2k PT mix

193k CoT Distillation
16k G-LLaVA QA and Alignment

2k PT mix450 Direct SampleLLaVA-Next
+ CoT 

450 Direct Sample450 CoT Sample 2k PT mix

450 CoT Sample 2k PT mix193k Direct Data

①

②

③

④

Figure 4: The upper section displays the data sources
used for the SFT experiments, while the lower section
illustrates the data composition for model training.

4.1 Training Setting 249

As shown in the upper part of fig. 4, we present 250

the data composition for SFT. The training data 251

includes CoT distillation (193k instances) from 252

table 1 and corresponding short answers (193k). 253

Additionally, for CoT data, we incorporate 16k 254

visual math examples from G-LLaVA. To main- 255

tain general instruction-following capability as the 256

base model, we include 2k randomly sampled in- 257

struction data from LLaVA pretraining (Liu et al., 258

2024). To ensure the SFT models can handle both 259

direct and CoT prompts during inference, we sam- 260

ple a small set of format-aligned data—50 exam- 261

ples from each of the 9 datasets—resulting in 450 262

instances. 263

In the lower part of fig. 4, we outline the 264

data composition for model training. Specifically, 265

LLAVA-NEXT-FORMAT (fig. 4 ①) serves as the 266

baseline model, trained exclusively on format- 267

aligned data to enforce the desired output format 268

without learning any task-specific reasoning skills. 269

In contrast, models in fig. 4 ② and ③ incorporate 270

either direct or CoT datasets, enabling the model 271

to be expert in one type of skill as well as follow- 272

ing the both direct and CoT prompt styles. Finally, 273

LLAVA-REASONER-SFT (fig. 4 ④) represents the 274

SFT model trained on both CoT and direct data, 275

making it to be expert in both types of reasoning. 276

We use the LLaMA3-LLaVA-NeXT-8B archi- 277

tecture, initializing the weights with Open-LLaVA- 278

NeXT. All Supervised Fine-Tuning (SFT) experi- 279

ments are trained for 1 epoch with a learning rate 280

of 5e-6 and a batch size of 32. The experiments are 281

conducted on 8 H100 GPUs. 282
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Table 2: SFT experiments with data composition in fig. 4: ① format alignment only, ② direct responses only, ③ CoT
responses only and ④ both direct and CoT responses. Inference is performed using both direct and CoT templates.
The best CoT prediction result is highlighted in orange, while the best direct prediction result is marked in blue. The
results demonstrate that combining CoT and direct responses during training leads to the best performance across
both types of prompts. Refer to section 4 for detailed analysis.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista Avg

LLaVA-Next direct 85.8 70.2 75.7 37.7 68.2 71.5 75.4 39.3 65.5
+ Format ① CoT 84.3 71.2 67 34.9 62.2 67.4 74.4 40.3 62.7
LLaVA-Next direct 86.4 73.7 78 45.4 71.9 78.8 91.5 43.2 71.1
+ Direct ② CoT 85.7 71.8 68.8 38.6 63.6 72.5 85.4 38.6 65.6
LLaVA-Next direct 84.9 71.8 81.2 45.7 72.1 75.3 85 41.9 69.7
+ Cot ③ CoT 85.1 82.2 81.2 49.7 69.9 77 91.3 49.2 73.2
LLaVA-Reasoner direct 85.4 76.1 82.9 50.6 73.1 79.4 90.4 44.3 72.8
-SFT ④ CoT 86.2 83.0 81.8 51.6 71.1 78.5 92.7 50.6 74.4

4.2 Evaluation Setting283

We evaluate our method using a range of bench-284

mark datasets, including A-OKVQA (Schwenk285

et al., 2022), ChartQA (Masry et al.,286

2022), DocVQA (Mathew et al., 2021), In-287

foVQA (Mathew et al., 2022), TextVQA (Mathew288

et al., 2021), AI2D (Kembhavi et al., 2016),289

ScienceQA (Lu et al., 2022), and MathVista (Lu290

et al., 2023). We also conduct more evaluation on291

general datasets OCRBench (Liu et al., 2023c),292

MMStar (Chen et al., 2024a), and MMMU (Yue293

et al., 2024) in later sections. The evaluation for294

A-OKVQA was implemented by us, while for the295

other datasets, we follow the evaluation protocols296

outlined in VLMEval (Duan et al., 2024).297

For CoT evaluation, answers are extracted after298

the pattern "###Answer: " before sent to evaluation.299

More comparison with LLaMA3-LLaVA-NeXT-300

8B model is shown appendix D and evaluation on301

GPT-4o is shown in appendix C.302

4.3 Can reasoning be implicitly learnt from303

direct prediction?304

Table 2 presents the performance of the models305

introduced in fig. 4. Since LLAVA-NEXT-8B306

training data contains very few CoT reasoning ex-307

amples, CoT performance of ① lags behind direct308

prediction across most tasks. The only improve-309

ment is observed in ChartQA and MathVista with a310

modest gain of +1.0 in CoT performance, showing311

CoT is helpful for calculation related tasks.312

When comparing model trained on direct only313

data (②) to that trained on format-aligned data (①),314

we observe an average gain of +5.6 in direct predic-315

tion accuracy (65.5 → 71.1) and a +2.9 improve-316

ment in CoT performance (62.7 → 65.6). Sur-317

prisingly, closer inspection of CoT performance in318

calculation-involved tasks, such as ChartQA and 319

MathVista, reveals only marginal gains (+0.6 for 320

ChartQA CoT) or even a performance drop (-1.7 321

on MathVista), which contrasts with the improve- 322

ments seen on the two tasks in ①. On text-rich 323

tasks, positive gains (>1) are observed, with the 324

most improvement seen in InfoVQA (+3.7). Sig- 325

nificant gains are also evident in science-related 326

tasks like AI2D (+5.1) and SQA (+11.0). Despite 327

these improvements, CoT performance still trails 328

behind direct prediction overall (CoT: 65.6 vs. di- 329

rect: 71.1). This result suggests that training on 330

direct only prediction may not effectively help with 331

CoT prediction. 332

4.4 How Effective is CoT Reasoning Data? 333

When comparing the model trained on CoT-only 334

data (③) with the one trained on format-aligned 335

data (①), we observe improvements in both di- 336

rect and CoT predictions. Direct prediction per- 337

formance increases by an average of +4.2 (65.5 338

→ 69.7), while CoT prediction improves signifi- 339

cantly by +10.5 (62.7 → 73.2). Notably, the CoT 340

performance of the model ③ surpasses its direct 341

prediction (73.2 CoT vs. 69.7 direct). Significant 342

gains are observed in calculation-intensive tasks 343

like ChartQA and MathVista, with increases of 344

+11.0 and +8.9 in CoT performance, respectively. 345

Interestingly, for text-rich tasks such as DocVQA, 346

InfoVQA, and TextVQA, the direct performance of 347

model ③ (trained on CoT-only data) outperforms 348

that of model ② (trained on direct-only data). This 349

suggests that even for text-heavy tasks, reasoning 350

processes, such as localizing information in docu- 351

ments or recognizing text in real-world scenarios, 352

may benefit from CoT training. The skills learned 353

from CoT training appear to generalize to direct 354
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Table 3: DPO experiment with LLAVA-REASONER-SFT as the base policy model. We compare two DPO datasets:
⑤ RLAIF-V (Yu et al., 2024) and ⑥ our preference dataset comprising A-OKVQA, ChartQA, and math. The best
CoT prediction is highlighted in orange. Our DPO dataset shows the better improvements in chain-of-thought
reasoning.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista Avg

LLaVA-Reasoner direct 85.4 76.1 82.9 50.6 73.1 79.4 90.4 44.3 72.8
-SFT ④ CoT 86.2 83.0 81.8 51.6 71.1 78.5 92.7 50.6 74.4
LLaVA-Reasoner direct 85.6 76.1 83.1 50.7 73.3 79.6 91.1 44.1 73.0
-RLAIF ⑤ CoT 86.7 83.0 82.4 50.8 71.4 79.1 92.9 50.8 74.6
LLaVA-Reasoner direct 85.4 76.4 83.1 51.2 73.3 79.4 90.8 44.2 73.0
-DPO-ours ⑥ CoT 87.0 84.2 82.7 52.7 71.5 79.5 92.6 52.1 75.3

prediction as well.355

When both CoT and direct data are combined356

(④), performance is further enhanced for both pre-357

diction types, with an average gain of +7.3 in di-358

rect prediction (65.5 → 72.8) and +11.7 in CoT359

prediction (62.7 → 74.4). This demonstrates that360

combining direct and CoT data yields the best over-361

all performance. Interestingly, in model ④, for 3362

out of 8 datasets (TextVQA, DocVQA, AI2D), di-363

rect prediction outperforms CoT prediction. We364

hypothesize that these tasks involve a significant365

proportion of concise fact extraction, where gen-366

erating long-form CoT responses may not provide367

additional benefits or even hurts. Further validation368

of this hypothesis will be explored in future work.369

5 RL for Enhanced CoT Reasoning370

In this section, we demonstrate the effectiveness371

of RL in further enhancing CoT reasoning. By372

leveraging short-answer feedback (section 3.3),373

we construct preference pairs across three do-374

mains: A-OKVQA (real-world knowledge rea-375

soning), ChartQA (chart interpretation), and math376

(MathVision and G-LLaVA). Although additional377

DPO data from other datasets could be incorpo-378

rated, data scaling and balancing will be addressed379

in future work.380

For the DPO dataset, we include 24.5k exam-381

ples from ChartQA, 18.3k from A-OKVQA, and382

22.0k from math domain, totaling 64.8k prefer-383

ence data pairs. We train LLAVA-REASONER-384

SFT on this dataset using a learning rate of 5e-7,385

a batch size of 32, and for 1 epoch. We found an386

additional trick to truncate the responses up to 90387

tokens to be crucial for DPO training (details in388

appendix I). To compare the effectiveness of differ-389

ent DPO datasets, we include RLAIF-V (Yu et al.,390

2024), which contains 80k DPO pairs representing391

the state-of-the-art dataset for aligning VLMs for392

reducing hallucinations. 393

5.1 Can DPO Calibrate Reasoning? 394

In table 3, we present the results of the DPO model 395

optimized on top of LLAVA-REASONER-SFT (④). 396

Model ⑤ uses the SOTA RLAIF-V (Yu et al., 2024) 397

data, while model ⑥ uses our dataset. We observe 398

that Model ⑤ shows a slight improvement in both 399

direct prediction (+0.2) and CoT prediction (+0.2), 400

whereas model ⑥ demonstrates a greater improve- 401

ment in CoT prediction (+1.1) with equal gains on 402

direct prediction. Interestingly, though only 3 out 403

of 8 datasets are selected to construct DPO pairs, 404

gains are observed across 7 out of 8 datasets ex- 405

cept for SQA with a slight decrease (92.9 → 92.6). 406

These results suggest that DPO dataset constructed 407

from model-generated rationales can effectively en- 408

hance reasoning accuracy and show generalization 409

across tasks. 410

5.2 DPO as Verifier for Re-ranking CoT 411

In fig. 5, we present the re-ranking results using the 412

DPO model as a verifier, following the approach 413

of (Zhang et al., 2024d; Hosseini et al., 2024; Lu 414

et al., 2024). The DPO reward score is calculated as 415

log
πdpo(y|x,V)
πsft(y|x,V) , where V represents the image, x the 416

question, and y the candidate answer. We explore 417

two re-ranking strategies: Best-of-N and Weighted 418

Voting. A Majority Voting (or self-consistency) 419

baseline is also included for comparison. 420

When trained with RLAIF-V data (⑤), the DPO 421

model demonstrates improvements as both a gen- 422

erator and verifier on A-OKVQA, likely due to 423

the dataset’s alignment with real-world images, 424

which matches the nature of A-OKVQA. Interest- 425

ingly, while model ⑤ does not show improvements 426

as a generator on ChartQA, it still produces posi- 427

tive results in best-of-N re-ranking, indicating that 428

the learned preferences can generalize across do- 429

mains. However, weighted voting does not lead 430
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Figure 5: The figures illustrate the performance of the DPO model as a verifier on ChartQA, A-OKVQA, and
MathVista. Compared to the model trained with RLAIF-V, the model trained on our reasoning data pairs consistently
shows improvement in both best-of-N selection and weighted voting.

SFT ④ RLAIF ⑤
Our-
DPO ⑥

OCRBench 62.0 63.7 63.7
MMStar 54.0 53.5 54.1
MMMU 40.1 42.3 42.6
Avg 52.0 53.2 53.5

Table 4: Generalization of DPO models
on OCRBench, MMStar and MMMU.
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Figure 6: DPO verifier performance on the MMMU dataset.

to any improvements, and no significant gains are431

observed in re-ranking for MathVision. In contrast,432

when trained with reasoning data pairs, LLAVA-433

REASONER-DPO (⑥) shows improvements across434

both re-ranking metrics, underscoring the effective-435

ness of DPO on reasoning data pairs.436

5.3 DPO CoT Prediction and Re-ranking437

Performance Generalization438

In table 4, we present the DPO CoT performance439

on OCRBench, MMStar, and MMMU. We observe440

that DPO models trained on both RLAIF and our441

datasets outperform the SFT baseline, with our442

DPO model trained on CoT reasoning pairs achiev-443

ing slightly better results.444

While the CoT prediction performance across445

DPO models is similar, fig. 6 highlights the pro-446

nounced effectiveness of our DPO verifier’s gener-447

alization on the MMMU dataset, which contains448

challenging college-level subject questions. We 449

provide re-ranking results for multiple-choice prob- 450

lems from the Dev+Val split (988/1050). The SFT 451

model with self-consistency shows steady improve- 452

ments, reaching 45.5% with 64 candidate votes. 453

LLAVA-REASONER-DPO, trained on reasoning 454

data pairs, demonstrates strong generalization on 455

MMMU by excelling in both weighted voting and 456

best-of-N voting during candidate re-ranking. 457

In contrast, the DPO model trained on RLAIF-V 458

(⑤) improves CoT predictions but fails to achieve 459

gains in re-ranking metrics, indicating its limita- 460

tions in distinguishing correct from incorrect rea- 461

soning on more complex data. We hypothesize that, 462

compared to ChartQA, the reasoning questions in 463

MMMU are more challenging and span a broader 464

range of subjects. The RLAIF-V dataset, being pri- 465

marily focused on the COCO image domain, may 466

lack sufficient coverage of this diversity, leading to 467
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Should be “right” side

Should be “Crescent”

Q: Which stage is shown at D?

Q: How many food item is shown in the bar graph?

A1:

A2:

A1:

A2:

Figure 7: Credit assignment of the DPO model on a portion of the responses from the ChartQA and AI2D datasets.
The DPO token-level reward is computed for each token, with the rewards normalized to have a mean of 0. Negative
scores are highlighted in cool colors (blue), while positive scores are highlighted in warm colors (orange). We
observe that the DPO model is particularly sensitive to the first mistakes or hallucinations introduced in the response.

weaker performance in re-ranking. These results468

underscore the potential of our approach for gener-469

alizing visual language reward models to reasoning470

tasks.471

5.4 DPO Credit Assignment472

While the DPO model is trained on pairwise data,473

prior works (Rafailov et al., 2024; Lu et al., 2024)474

have shown that DPO policies can learn to predict475

token-level rewards from binary preference data.476

These experiments primarily focused on math rea-477

soning with LLMs. In this work, we provide ex-478

amples of credit assignment learned by the VLM479

DPO, as shown in fig. 7. The token-level DPO480

reward can be expressed as log πdpo(yi|x,V)
πsft(yi|x,V) , where481

V represents the image, x the question, and yi the482

i-th token in the generated response. This reward483

reflects the relative confidence of the DPO model484

compared to the SFT model for a given token in a485

candidate response.486

In fig. 7, negative scores are shown in cool col-487

ors, while positive scores are shown in warm colors,488

with rewards normalized to a mean of 0. On the489

left, we observe that the DPO model is particu-490

larly sensitive to errors during chart interpretation491

from the ChartQA dataset. For instance, when the492

response incorrectly lists “Lamb” as “Beef” in a 493

chart reading task, the DPO model assigns a highly 494

negative score to this mistake. 495

On the right, we present examples from the 496

AI2D dataset. Here, a hallucination in the response, 497

such as incorrectly stating that the left side of the 498

moon is illuminated (the correct answer is the right 499

side), receives a low score. Additionally, when ex- 500

ternal knowledge is required to correctly identify 501

the moon’s phase as “Crescent” instead of “Gib- 502

bous,” the DPO model penalizes the incorrect “Gib- 503

bous” answer with a negative score. This indicates 504

that the DPO model is more sensitive to knowledge- 505

based errors than the SFT model, explaining its 506

superior performance on CoT reasoning tasks in 507

datasets such as AI2D. 508

6 Conclusion and Release 509

In this work, we aim to enhance VLM CoT rea- 510

soning by utilizing short-answer data through 1) 511

CoT augmentation and 2) outcome-based rewards 512

for RL. We have released the following resources: 513

1) SHAREGPT-4O-REASONING, a CoT reasoning 514

dataset with 193k examples spanning a wide range 515

of VQA tasks, 2) SFT and DPO training code, 3) 516

model checkpoints, and 4) Evaluation pipeline for 517

both the released model and GPT-4o. 518

8



7 Limitation519

First, we acknowledge that our work builds on ex-520

isting techniques, such as data distillation (Zhang521

et al., 2024d), VLM SFT (Chen and Xing, 2024),522

outcome-based rewards DPO (Sun et al., 2024;523

Setlur et al., 2024), with a stronger emphasis on ap-524

plication rather than the invention of new methods.525

Our contribution is demonstrated through experi-526

mental validation rather than the introduction of527

novel technology.528

Second, our approach relies on industrial-scale529

API usage, which may not be accessible to all re-530

searchers. We encourage researchers to leverage531

our released dataset or create their own using our532

provided prompts, subject to resource availability.533
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CONTENT OF APPENDIX767

In this paper, we aim to enhance chain-of-thought (CoT) reasoning in visual language models. In the768

main paper, we have discussed the CoT data distillation, supervised-finetuning (SFT) and reinforcement769

learning (Rl) with direct preference optimization (DPO) algorithm. In the appendix, we provide additional770

items that offer further insight into each aspect:771

A Workflow and Additional Figure;772

B SHAREGPT-4O-REASONING Data for VLM CoT Reasoning;773

C GPT-4o Evaluation and Prompt Optimization;774

D Baseline Evaluation;775

E Nearly Zero Data Learning for CoT Reasoning;776

F More SFT Ablation Experiments;777

G Ablation Tests on Data Composition;778

H SOTA Model Comparison;779

I More DPO Experiments;780
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A Workflow and additional figure 781

GPT-4o

How to get to Tech 
Camps?
Answer: turn right

Rationale:
In the image, we see a directional sign at the 
bottom that points towards "Tech Camps." The sign 
is green with a white border and a white arrow, 
indicating the direction in which one should 
navigate to reach the camps. The arrow on the sign 
is clearly pointing to the right. This suggests that to 
get to Tech Camps, one must follow the direction 
indicated by the right-pointing arrow on the sign.

Generate a 
rationale for the 
answer

SFT

(A) Rationale Distillation Given Short Annotation

Input: {image + question}
Output: {rationale + answer}

Based on the image you provided, the 
sign for “iD Tech Camps” is …

This image shows a sign of …
…

Answer: B

Answer: A

Rationale Predicted answer

(B) SFT with CoT Data

Sample

Rollout Generation (Rationale + Prediction)

(C) Preference Data Construction for DPO
Use the correctness of predicted answer as feedback.
Positive: reasoning that leads to correct answer.
Negative: reasoning that leads to wrong answer

Figure A.1: Workflow diagram showing: a) the use of GPT-4o to generate rationale given short annotations; b)
SFT of open-source VLM for CoT reasoning; c) Build preference dataset for reinforcement learning with DPO to
enhance reasoning.
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B SHAREGPT-4O-REASONING Data for VLM CoT Reasoning782

B.1 Prompt for GPT-4o Distillation783

Figure B.1 and fig. B.2 illustrate the GPT-4o system (task) prompt and the GPT-4o distillation prompt.784

We employ the same prompt across all VQA datasets for data distillation. Specifically, the input to the785

prompt consists of an image, a question, and a short answer. The short answer serves as a reference for786

GPT-4o to generate a CoT reasoning followed by a final answer after ’### Answer’. We show a few more787

examples in the next subsections.788

When provided with an image, a question, and a reference answer, generate a chain-of-thought step
that helps derive your own answer.
Your rationale should include detailed visual elements in order to derive the answer.

Figure B.1: GPT-4o system prompt for CoT distillation.

# Objective #
You are provided with an image, a question and a reference answer. Your job is to generate a
rationale that logically derives the answer from the visual clues.

#############

# Question #
{question}

#############

# Reference Answer #
{answer}

#############

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain the visual clues that help to derive the answer.
2. Don't state that the reference answer is correct or consistent to your finding. Your are writing
your own solution.
3. State your own derivation at the end with new line: ### Answer: <your answer>

#############

Figure B.2: GPT-4o prompt for CoT distillation.
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B.2 Filtering Mismatched Annotations in Distillation 789

In the GPT-4o prompt shown in fig. B.2, we treat the annotation as a reference answer and instruct GPT-4o 790

to generate its own solution based on that reference. In fig. B.3 and fig. B.4, we illustrate cases where the 791

GPT-4o-generated solution differs from the annotated answer. Upon human examination, we identified 792

errors in the annotations. For example, in fig. B.3, there are issues such as incorrect text recognition (e.g., 793

“dentist” misidentified as “heart”) and incorrect object identification (e.g., “beer” as “water”). In fig. B.4, 794

the annotation errors involve incorrect calculations in the left figure and miscounting in the right figure. 795

To ensure consistency and avoid potential errors, we filtered out examples where the GPT-4o generated 796

answer differs from the annotated answer. In SHAREGPT-4O-REASONING, we release the SFT CoT data 797

along with the original distillation and filtered examples for reference. 798

A-OKVQA Filtered Out Example #1
Question: What part of the body does Dr. Eng work on?
Options: A. heart, B. teeth, C. ears, D. lungs
Annotated Answer: A. heart

GPT-4o Response: 
The image shows a street view with several signs on 
the buildings. One prominent sign reads "DR. EILEEN 
ENG DENTIST" along with the address "207." The word 
"DENTIST" is clearly visible and indicates the profession 
of Dr. Eileen Eng. Dentists are medical professionals 
who specialize in the care of teeth. 

Given this information, it is clear that Dr. Eng works on 
teeth. 

### Answer: B. teeth

A-OKVQA Filtered Out Example #2

GPT-4o Response: 
The image shows a cooler with a glass door, allowing a 
clear view of its contents. The cooler is stocked with 
various bottles and cans. Upon closer inspection, the 
majority of the items inside the cooler appear to be 
bottles with labels and shapes that are typically 
associated with alcoholic beverages, such as beer. The 
bottles have different colors and designs, which are 
common for beer brands. There are no visible signs of 
soda cans, water bottles, or wine bottles. #

## Answer: A. beer

Question: What drink has the owner of this cooler stocked 
up on?
Options: A. beer, B. soda, C. water, D. wine
Annotated Answer: C. water

Figure B.3: An example from the A-OKVQA dataset highlights cases where the annotated answer does not match
the GPT-4o-generated answer. In these cases, the GPT-4o answers are correct, while the annotations contain labeling
errors. In the left figure, the sign reads “dentist” (correctly identified by GPT-4o), and the answer should relate to
‘teeth,’ not ‘heart’ as in the annotation. In the right figure, the fridge contains beer, but the annotation incorrectly
labels it as ‘water.’ Consequently, we filter out instances where the GPT-4o-generated answer does not match the
annotated answers.
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ChartQA Filtered Out Example #1
Question: How much money did "1917" and "Sonic The Hedgehog" earn?
Annotated Answer: 204.41

GPT-4o Response: 
To determine the combined earnings of "1917" and "Sonic The 
Hedgehog," we need to locate the earnings for each movie on the bar 
chart. 

1. The bar labeled "1917" shows earnings of 157.9 million U.S. 
dollars.

2. 2. The bar labeled "Sonic the Hedgehog" shows earnings of 146.06 
million U.S. dollars. 

To find the total earnings, we add these two amounts together: 

157.9 (for "1917") + 146.06 (for "Sonic The Hedgehog") = 303.96

### Answer: 303.96

ChartQA Filtered Out Example #2

GPT-4o Response: 
The bar chart displays the number of terrorist attacks in various 
countries in 2020. Each country is represented by a horizontal bar, with 
the length of the bar corresponding to the number of attacks. 

- Italy has the longest bar, indicating it had the highest number of 
terrorist attacks, with a total of 24 attacks. 

- France follows with the second longest bar, showing 15 attacks. -
Spain is next with 9 attacks. 

- Germany had 6 attacks. - Belgium had 2 attacks. 
- Greece, Netherlands, Czechia, Denmark, Poland, Bulgaria, Finland, 

and Sweden all had 0 attacks, as indicated by the absence of bars for 
these countries. 

From these visual clues, it is clear that the country with the highest 
number of terrorist attacks in 2020 is Italy. 

### Answer: Italy

Question: Which country had the highest number of terrorist attacks in 
2020?
Annotated Answer: Spain

Figure B.4: Filtered examples from the ChartQA dataset are shown. In the left figure, GPT-4o correctly identifies
‘1917’ and ‘Sonic The Hedgehog’ and provides the correct summation, while the annotated answer incorrectly lists
‘204.41’, which is the value for ’Bad Boys for Life’ and is unrelated to the question. In the right figure, GPT-4o
accurately ranks the numbers from highest to lowest, but the annotated answer incorrectly identifies ‘Spain’ as
having the highest value, when it should be the third largest.
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C GPT-4o Evaluation and Prompt Optimization 799

In this section, we present the prompts used for GPT-4o on benchmark datasets, including both direct and 800

Chain-of-Thought (CoT) predictions. Similar to the findings in (Borchmann, 2024), we observed that 801

GPT-4o’s performance is highly sensitive to prompt phrasing. We explored several sets of prompts and 802

selected the best-performing ones for reporting results. Specifically, we try to align our results with those 803

reported in (Li et al., 2024; Tong et al., 2024), Claude 3.5 Sonnet for Vision 1, among others. 804

Prompt Optimization We follow the process outlined in (Borchmann, 2024) to design effective GPT-4o 805

prompts for the benchmark datasets. A random subset of 200 instances is selected as a development set to 806

evaluate manually designed prompts. We manually inspect the predicted results and identify issues such 807

as the model being overly cautious in declining answers, incorrect output formatting, or style mismatches 808

with the ground truth labels. As an illustrative example, we detail the prompt optimization process using 809

ChartQA, and apply similar techniques to the other datasets. Finally, we provide the prompts used for 810

replicating our test results. 811

Table C.1: Prompt optimization on ChartQA for direct prediction evaluated with relaxed accuracy.

# Prompt
ChartQA
(relaxed

acc)

1 {Question} 2.7

2 {Question}
Answer the question directly.

32.3

3 Answer the question. Do not write a full sentence,
just provide a value.
Question: {Question}

56.4

4 Answer the question with following instruction:
1. Do not write a full sentence, just provide a
value.
2. Don’t include any unit, i.e. 56 instead of 56
meters
Question: {Question}

75.2

5 Answer the question with following instruction:
1. Do not write a full sentence, just provide a
value.
2. Don’t include any unit, i.e. 56 instead of 56
meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question: {Question}

80.3

We apply the prompts described in table C.1 to the development set and compare the predictions with 812

the ground truth to optimize the prompts. Specifically, when using prompts #1 or #2, GPT-4o often 813

generates full sentences instead of short answers. While prompt #3 produces a short answer, it often 814

includes units or special tokens. To address this, we refined the instructions in prompt #4 by specifying 815

that units should not be included in the final answer. This adjustment improved accuracy from 56.4 to 816

75.2. We also observed that the ground truth does not contain the % symbol, which could mismatch in 817

evaluation, and we explicitly include this rule in prompt #5. Finally, we applied the tuned prompt to the 818

test set, achieving an accuracy of 79.64 reported in table G.3. 819

1https://www.anthropic.com/news/claude-3-5-sonnet
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Table C.2: Prompt optimization on ChartQA for CoT prediction evaluated with relaxed accuracy.

System Prompt
ChartQA
(relaxed

acc)

When provided with an image and a question, generate
a rationale first and then derive an answer.
Your rationale should include detailed visual elements
in order to derive the answer.

# Prompt
1 Answer the question with following instruction:

1. Generate a rationale first and then derive an
answer.
2. Don’t include any unit, i.e. 56 instead of 56
meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

84.7

2 Prompt #1, removing system prompt 84.1

In table C.2, we first introduce output format instructions to guide GPT-4o in generating the correct820

CoT format, which aids in extracting the final answer. We reused the criteria from the direct prediction821

prompt to evaluate the results. Additionally, we found that including a system prompt typically leads to a822

0.5-point increase in score across datasets, although it does not improve direct answer prediction. We823

hypothesize that the system prompt helps GPT-4o adhere more closely to the CoT output format. Finally,824

we applied the tuned prompt to the test set, achieving an accuracy of 84.72 reported in table G.3.825

Following the prompt optimization steps outlined above, we provide the prompts used to replicate our826

GPT-4o test results in the next section.827
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C.1 GPT-4o Prompts for Evaluation 828

Table C.3 and table C.4 provide the optimized prompts for benchmark dataset evaluation. The tuning 829

process does not garantee the prompt is optimal, but that roughly matches the reported value from previous 830

papers (Li et al., 2024; Tong et al., 2024), Claude 3.5 Sonnet for Vision 2, among others. We include the 831

prompts for reference to replicate the GPT-4o results on benchmark datatsets. 832

Table C.3: Prompts for direct prediction with GPT-4o on benchmark datasets.

Dataset Prompt

A-OKVQA
AI2D
SQA
MMStar

Answer the question. Do not write a full sentence, just
provide a letter choice.
question
{Question}

ChartQA Answer the question with following instruction:
1. Do not write a full sentence, just provide a value.
2. Don’t include any unit, i.e. 56 instead of 56 meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question: {Question}

DocVQA
TextVQA
InfoVQA
OCRBench

Answer the question. Do not write a full sentence, just
provide a value.

Question: {question}

MathVista
MMMU

Answer the question. Do not write a full sentence, just
provide a value or letter choice.
{question}

2https://www.anthropic.com/news/claude-3-5-sonnet
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Table C.4: Prompts for CoT prediction with GPT-4o on benchmark datasets.

Dataset CoT Prompt
system
prompt

When provided with an image and a question, generate a
rationale first and then derive an answer.
Your rationale should include detailed visual elements in
order to derive the answer.

A-OKVQA
AI2D
SQA
MMStar

Answer the question with following instruction:
1. Generate a rationale first and then derive an answer.
2. For your final answer, provide a letter choice.

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

ChartQA Answer the question with following instruction:
1. Generate a rationale first and then derive an answer.
2. Don’t include any unit, i.e. 56 instead of 56 meters
3. Don’t include ’%’ sign, i.e. 56 instead of 56%

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

Continued on next page
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Table C.4 – continued from previous page
Dataset Prompt
DocVQA
InfoVQA

# Objective #
You are provided with an image, a question. Your job
is to generate a rationale first and then derive an answer.

###########

# Question #
{question}

###########

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain
descriptions of visual clue that help to derive the answer.
2. Conclude with ### Answer: <your answer>
3. Your final answer should be a single word or phrase.
4. If possible, copy the answer from document. Don’t add
or remove symbols, units, or titles.

###########

# Output Style #
<rationale>
### Answer: <your answer>

###########

Continued on next page
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Table C.4 – continued from previous page
Dataset Prompt
TextVQA # Objective #

You are provided with an image, a question. Your job
is to generate a rationale first and then derive an answer.

###########

# Question #
{question}

###########

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain
descriptions of visual clue that help to derive the answer.
2. Conclude with ### Answer: <your answer>
3. Your final answer should be a single word or phrase.
4. Output your answer in lower case.

###########

# Output Style #
<rationale>
### Answer: <your answer>

###########

OCRBench Answer the question with following instruction:
1. Generate a rationale first and then derive an answer.
2. Your answer should be a single word or phrase.

Question:
{question}

# Output Format #
<rationale>
### Answer: <your answer>

Continued on next page
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Table C.4 – continued from previous page
Dataset Prompt
MathVista
MMMU

# Objective #
You are provided with an image, a question. Your job is
to generate a rationale that logically derives an answer
from the visual clues.

###########

# Question #
{question}

###########

# Rationale Requirement #
1. Do not state an answer at the beginning. Explain step
by step logic to derive the answer.
2. Conclude with ### Answer: <your answer>

###########

Example output style:

<rationale>
### Answer: <your answer>

###########
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D Baseline Evaluation833

Table D.1: Evaluation of VLM performance on benchmark datasets with direct and CoT inference.

Dataset LLAVA-NEXT-8B LLAVA-NEXT-FORMAT

direct CoT direct CoT

A-OK 85.9 44.5 85.8 84.3
ChartQA 68.6 52.8 70.2 71.2
DocVQA 78.4 57.1 75.7 67.0
InfoVQA 36.6 25.8 37.7 34.9
TextVQA 67.2 41.6 68.2 62.2
AI2D 73.0 70.0 71.5 67.4
SQA 77.4 75.8 75.4 74.4
MathVista 37.3 25.3 39.3 40.3
OCRBench 57.7 59.7 59.1 56.6
MMStar 47.8 45.7 44.7 46.7
MMMU 42.8 37.6 41.8 37.7
Avg 61.2 48.7 60.9 58.4

In this section, we provide evaluation details for our base model, which uses the LLAMA3-LLAVA-834

NEXT-8B architecture with weights initialized from OPEN-LLAVA-NEXT. We selected OPEN-LLAVA-835

NEXT weights because the data and training pipelines were fully available at the time of model develop-836

ment, allowing us to avoid reliance on the unreleased real user interactions referenced in (Liu et al., 2024).837

The pretraining data for OPEN-LLAVA-NEXT consists of 1M image-text pairs, sourced from datasets838

such as ShareGPT4V, ALLaVA-Instruct-VFLAN-4V, DocVQA, SynDog-EN, ChartQA, DVQA, AI2D,839

and GeoQA+.840

When evaluating LLAVA-NEXT-8B, we identified several issues, such as the inability to follow the841

CoT prompt, refusal to answer questions, and generating irrelevant reasoning. In fig. D.1, we present842

randomly sampled examples from LLAVA-NEXT-8B with a temperature setting of 1.0 on a ChartQA843

test case. These examples demonstrate the model’s difficulty in adhering to the CoT prompt. In the first844

example, the model declines to answer the question. In the second to fourth examples, the model provides845

an answer first, followed by an explanation, which doesn’t effectively use thought process to answer the846

question. In the final example, the model generates a descriptive response instead of reasoning through847

the question, ultimately failing to provide an answer. This illustrates the model’s inconsistent handling of848

the prompt structure.849

Table D.1 presents the evaluation results for LLAVA-NEXT-8B. For CoT predictions, we use ChatGPT850

to extract a letter choice or short answer from the long-form model output, using the prompts shown in851

fig. D.2 and fig. D.3. However, due to LLAVA-NEXT-8B ’s inability to accurately follow the CoT format,852

its performance is significantly worse compared to direct predictions and our format-aligned model. For853

direct prediction, our LLAVA-NEXT-FORMAT has similar performance as that of LLAVA-NEXT-8B.854

In fig. D.4, we present the same example trained with our format-aligned data for CoT using only855

450 examples. The model successfully follows the CoT format by verbalizing the thought process and856

providing a short answer after "### Answer:". This allows us to use a rule-based extractor to retrieve857

answers, which also improves CoT performance, as shown in table D.1. However, the example also858

demonstrates that, while our data induces the CoT process, the reasoning remains incorrect. Sampling 32859

examples using the format in fig. D.4 resulted in 3 correct answers, yielding an accuracy of 9.4% for that860

case. As a result, only slight gain is observed on ChartQA for CoT prediction vs. direct prediction.861

Based on the above experiments, we report LLAVA-NEXT-8B as the baseline in the paper to avoid the862

difficulty in CoT evaluation and answer extraction of LLAMA3-LLAVA-NEXT-8B baseline.863
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ChartQA LLaVA-Next-8b CoT Example

Question: How many food item is shown in the bar graph? 
Generate a reason first and then output a short answer.

Sample #1: 
As the bar graph doesn’t contain any numerical data or labels, it's not possible to count the exact number of food 
items depicted in the illustration. For a precise answer, more information or a closer examination of the specific 
items in the image would be necessary. In generating an accurate response, attention should be paid to the visual 
cues and contextual details of the scene, which might hint at the types of food items being presented.

Sample #2: 
The bar graph displays ten different food items. These are arranged from left to right in descending order, with 
the first item being "Lamb." A reason for the descending order could be to represent the decreasing price index 
over time for that particular food item, but this is a common placement for descending bar graphs in general, so 
it's likely for readability of the labels.

Sample #3: 
The bar graph illustrates nine food items, which are Lamb, Corn, Barley, Rye, Beef, Wheat, Coffee, Peanuts, Palm 
Oil, and Pork. Each row represents one item, and the length of the horizontal bar corresponds to the commodity 
price index, a measure of food prices relative to their prices in 1900.

Sample #4: 
The bar graph shows eight food items. The reason for generating such a graph is to compare the long-term price 
trends of these food commodities over a century and a half, from 1850 to 2015. The graph is useful for 
understanding the pricing dynamics of these agricultural products, which can affect the economy, food security, 
and consumer affordability. The output reflects the historical price volatility and long-term increase in global food 
commodities, with the most significant increase in the price of grains like corn and barley, indicating their 
importance as staples in global food systems.

Sample #5:
Long-term price indices are a statistical measure of the evolution of the relative cost over time of a basket of 
goods. This particular bar graph is a comparison of the price indices of various food commodities over a century, 
representing an economic measure of the food prices in 1915 as a benchmark for relative price changes. The 
graph illustrates the historical cost of items in the food category, with the largest relative change indicated by the 
longest bars for items such as Lamb, Coffee, and Rice, and the smallest for Sugar and Cocoa.

Figure D.1: Randomly sampled examples from LLAVA-NEXT-8B with temperature=1.0 for a test case in ChartQA
reveal that the model struggles to effectively follow the CoT prompt. In Sample 1, the model refuses to answer the
question. In Samples 2-4, the model generates an answer first, followed by an explanation. In the final sample, the
model produces a description instead of reasoning through the question, without providing an answer.
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You are an AI assistant who will help me to match an answer with several options of a single-choice
question. You are provided with a question, several options, and an answer, and you need to find
which option is most similar to the answer. If the meaning of all options are significantly
different from the answer, output Z. Your should output a single uppercase character in A, B, C, D
(if they are valid options), and Z.
Example 1:
Question: What is the main object in image?
Options: A. teddy bear B. rabbit C. cat D. dog
Answer: a cute teddy bear
Your output: A
Example 2:
Question: What is the main object in image?
Options: A. teddy bear B. rabbit C. cat D. dog
Answer: Spider
Your output: Z
Example 3:
Question: {question}
Options: {options}
Answer: {answer}
Your output:

Figure D.2: ChatGPT answer extraction prompt for multiple-choices questions.

Your goal is to extract a short answer from a chain-of-thought prediction. You are given a question
and model prediction, the image is omitted.
You need to determine the answer from the prediction. If no answer can be derive, output NA.

###### Example 1 ######
### Question:
How many bars are there in the chart?
### Prediction:
The result shows bar graphs ..., counting the bars, there are a total of 8 bars.
### Your output:
8

###### Example 2 ######
### Question:
Determine the date appeared in the document.
### Prediction:
The figure displays a document on financial income ... the date 2008/01/15 appears at body of text.
### Your output:
2008/01/15

###### Your Task ######
### Question:
{question}
### Prediction:
{prediction}
### Your output:

Figure D.3: ChatGPT answer extraction prompt for short answer questions.
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ChartQA CoT Example of our LLaVA-NeXT-Format

Question: How many food item is shown in 
the bar graph? 
Generate a reason first and then output a 
short answer.

Sample #1: 
The bar graph shows the long-term price index in food commodities from 1850 to 2015, measured relative to real 
prices in 1900. Each bar represents a different food item and the lengths of the bars are proportional to the price 
index values. 

1. The y-axis lists various food commodities, such as Lamb, Corn, Barley, Rye, Beef, Wheat, Coffee, Tea, Peanuts, 
Palm Oil, Pork, Rice, and Cocoa. 

2. Each bar along the x-axis is associated with a specific food item, and they are ordered from left to right. 
Counting each distinct category name along the y-axis, there are 12 different food items shown in the bar 
graph. 

### Answer: 12

Sample #2: 
The bar graph is a visual representation of the long-term price index of various food commodities from 1850 to 
2015. Each bar is associated with a different food item, and the length of the bar represents the relative price 
change in terms of real prices in 1900.

By examining the horizontal axis, we can count the number of food items listed. The categories listed are Lamb, 
Corn, Barley, Rye, Beef, Wheat, Coffee, Peanuts, Palm Oil, Pork, Rice, Sugar, and Cocoa. 

To determine the number of food items, we need to count these categories. It should be noted that even though 
each bar represents a specific food item, the length of the bar or the dark blue shade at the top may represent 
different items. 

Upon counting the categories, we get the following:
1. 1 - Lamb
2. 1 - Corn
[omit]
13. 1 - Cocoa

Adding these up, we get a total of 13 food categories represented in the bar graph.

### Answer: 13

Figure D.4: Randomly sampled examples from LLAVA-NEXT-FORMAT with a temperature setting of 1.0, evaluated
on the same test case in ChartQA, show that after training on 450 format-aligned data, the model is able to follow
the CoT prompt by verbalizing the thought process and providing a short answer.
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E Nearly Zero Data Learning for CoT Reasoning864

Table E.1: We study a self-taught reasoner with minimal CoT data (only 450 format-aligned examples). LLAVA-
NEXT-DIRECT is used as the baseline, and our LLaVA-Next-STaR is trained with a rejection sampling method.
The best CoT predictions are highlighted in orange, and the best direct predictions are highlighted in blue. Our
rejection sampling method outperforms both CoT and direct prediction, with the exception of two data points.

Methods Prompting A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista

LLaVA-Next direct 86.4 73.7 78 45.4 71.9 78.8 91.5 43.2
+ Direct ② CoT 85.7 71.8 68.8 38.6 63.6 72.5 85.4 38.6
LLaVA-Next direct 85.9 74.6 79.2 47.4 72.1 79.5 92.2 44.4
-STaR CoT 85.9 77.9 75.8 44.0 25.1 76.6 86.8 42.0

In this section, we demonstrate how minimal CoT training data can enhance CoT reasoning capabilities.865

Specifically, we use only 450 CoT format-aligned examples alongside all available direct prediction866

data, with LLAVA-NEXT-DIRECT as the baseline. We apply rejection sampling fine-tuning (RFT)867

following (Sun et al., 2024; Setlur et al., 2024) to train a self-taught chain-of-thought reasoner, denoted868

as LLaVA-Next-STaR. From LLAVA-NEXT-DIRECT, we sample 32 CoT examples for each training869

instance and select those whose final predictions match the ground truth. Up to three positive examples870

are selected per question, resulting in a dataset of 260k RFT examples.871

As shown in table E.1, RFT training improves both CoT reasoning and direct predictions overall, with872

the exception of two data points. Notably, TextVQA shows a significant drop in CoT performance, which873

we will explore further in future work. Notable (>3%) gain is observed on ChartQA, DocVQA, InfoVQA,874

AI2D and MathVista, and roughly 1% gain is observed on direct prediction on those datasets as well.875

DPO Experiments Prior to the RFT experiments, we conducted DPO experiments on the ChartQA876

dataset under the same conditions as described in section 4. However, the improvements were modest,877

with a 72.3 (+0.5) gain in CoT prediction and a 74.2 (+0.5) gain in direct prediction. In contrast, RFT878

yielded a significant improvement, with 77.9 (+6.1) on CoT prediction and 74.6 (+0.9) on direct prediction.879

We hypothesize that for models with relatively weak CoT reasoning capabilities, RFT may be more880

effective in enhancing model performance, whereas DPO with preference modeling may be less impactful.881

We leave further analysis for future work.882
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F SFT Ablation Experiments 883

Table F.1: SFT Ablation Results: For each dataset, ‘-C’ indicates the inclusion of CoT data for training, and ‘-D’
indicates the inclusion of direct prediction data.

Methods Prompt A-OK ChartQA DocVQA InfoVQA TextVQA AI2D SQA MathVista

LLAVA-NEXT-FORMAT
direct 85.8 70.2 75.7 37.7 68.2 71.5 75.4 39.3

cot 84.3 71.2 67 34.9 62.2 67.4 74.4 40.3

ChartQA-C+D direct 85 74.9 75.8 36.5 68.2 72.2 77.4 42.8
cot 84.4 81.7 69 32.2 63.3 68.6 74.9 41.7

ChartQA-D direct 85.2 73.1 74.6 34.1 67.1 71.5 76.4 40.3
cot 84.3 71.8 62.4 31.8 58 66.3 74 35.5

ChartQA-C direct 85.1 70.8 74.5 35 67.9 71.6 76.9 35.3
cot 84.9 81.4 67.2 32.2 61.5 68.8 76.6 40.1

A-OK-C+D direct 86.2 69.2 75.4 37.7 67.3 70.7 77.5 38.8
cot 84.6 70.2 67.3 36 61.6 67.2 75.8 39.8

A-OK-D direct 85.1 69 75.3 38.5 66.9 72.2 76.1 39.5
cot 84 67.7 66.5 34.8 61.1 68.4 76 39.9

A-OK-C direct 84.4 69.4 75.8 37.4 67.9 69.2 77.3 34.6
cot 84.1 69.2 67.6 35.5 59.4 67.6 74.5 40.6

DocVQA-C+D direct 85.5 69.5 80.7 40.4 68.8 72 77.5 41.1
cot 83.9 70.9 80 40.2 64.1 68.2 73.4 39.3

DocVQA-D direct 85.5 66.5 77 39.1 68.2 70.8 76.3 41.9
cot 83.9 66 66.4 33.7 59.9 64.8 74.5 39.3

DocVQA-C direct 85.2 69.1 79.1 37.5 68.5 72 76.7 33.8
cot 84.4 71.2 78 38.5 63.5 68.5 74.1 38

InfoVQA-C+D direct 85.8 63.4 77.1 47.7 67.6 72.5 78.1 43.6
cot 85.3 65.4 72.6 47.5 62.4 69.4 74.6 37.8

InfoVQA-D direct 85.7 56.7 75 45.4 67 72.5 77.5 42.8
cot 83.7 53 63.5 37.8 58.2 67 75 37

InfoVQA-C direct 85.2 68.3 76.5 42.5 67.8 72.5 78.2 39
cot 83.7 63.4 71.1 46.3 59.9 67.4 74.3 37.6

TextVQA-C+D direct 85.1 69.8 75.5 38.7 73 71.9 76.9 42.6
cot 84.6 68.9 70.5 36.3 70.9 67.6 76.6 36.1

TextVQA-D direct 84.9 68.6 74.5 37.6 71.8 70.8 77 41.7
cot 84.4 63.3 64.2 33.2 64.2 66.1 73.6 38.2

TextVQA-C direct 84.6 69.1 74.6 36.9 71.4 71.9 77.1 36.6
cot 84.7 68.2 69.5 36.9 70.3 67.8 75.1 37.1

SQA-C+D direct 85.7 69 75 38.4 67.3 72.3 90.2 38.7
cot 83.1 71.2 66.5 35.6 58.9 66.9 90.4 40.8

SQA-D direct 84.9 68.1 74.3 37 66.8 72.2 89.2 41.3
cot 83 68.4 67.5 33.8 62.1 68.7 81.9 39.8

SQA-C direct 84 69.3 76 38.3 68.2 71.7 85 39.2
cot 82 69 65.3 34.4 58.3 66.6 88.8 39.4

AI2D-C+D direct 85.2 69.6 75.8 39 67.6 78 78.4 40.1
cot 83.8 70.2 68 35.9 60.7 76.3 76.6 42.1

AI2D-D direct 86.3 69.2 75.1 37.3 67.2 76.8 77.6 39.7
cot 82.7 67.6 66 33.7 61.4 71.7 74.4 38.3

AI2D-C direct 84.4 69.6 75.9 37.7 68.2 75 76.3 39.1
cot 83.1 70.2 65.9 35.6 59.9 75.1 74.5 39.5

math-C+D direct 85.3 68.5 75.5 37.8 67.3 71.7 77.4 42.7
cot 84.4 69.7 64.3 34.2 59.3 68.7 76.3 49

math-C direct 85.2 68.1 75.6 38 67.4 72 77.5 40.5
cot 84.3 70.6 66.2 34.7 59.8 68.2 78.4 45.4

math+ChartQA direct 85.3 70.9 75.7 36.8 67.8 71.7 78.3 41.9
cot 84.1 81.9 67 32.6 60.7 68.3 75.5 49.7

LLAVA-REASONER-SFT direct 85.4 76.1 82.9 50.6 73.1 79.4 90.4 44.3
cot 86.2 83.0 81.8 51.6 71.1 78.5 92.7 50.6

In table F.1, we present additional ablation experiments on SFT across each dataset, using three settings: 884

direct only, CoT only, and direct + CoT. Additionally, format-aligned data is incorporated during training 885

to enable the model to follow the specific direct or CoT format during inference. 886
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G Ablation Tests on Data Composition887

Table G.1: Effect of data composition on math reasoning. MV: MathVision, GL: G-LLaVA, MI: MathInstruct, MP:
MathPlus.

Data Config MathVista
(direct/CoT)

format only ① 39.3/40.3
MV 41.0/43.4
MV+GL 43.2/44.9
MV+GL+MP50k 42.3/45.6
MV+GL+MP100k 43.0/44.9
MV+GL+MI50k 43.1/45.0
MV+GL+MI100k 43.7/46.3
MV+GL+AI2D 44.1/46.4
MV+GL+SQA 43.1/47.3
MV+GL+ChartQA 43.2/50.4

Data Composition for Math. In table G.1, we examine the effectiveness of data composition on888

MathVista performance. We first include two visual math datasets: MathVision (MV) and G-LLaVA (GL).889

Including MV improves CoT performance by +3.1 over format only baseline (fig. 4 ①), while adding GL890

yields an additional gain of +1.5. Building on MV+GL, we incorporate several datasets that are potentially891

relevant to the task, including two math text-only datasets: MathPlus (MP) and MathInstruct (MI), two892

science datasets: SQA and AI2D, and ChartQA. Notably, ChartQA significantly boosts CoT performance893

(+5.5), while AI2D and SQA provide positive gains of +0.6 and +1.5, respectively. However, adding the894

math text datasets results in minimal improvement. Comparing inclusion of 100k MP vs 50k MP, more895

text data does not necessarily lead to better results. Therefore, we decided not to include them in training896

LLAVA-REASONER-SFT.897

Table G.2: Effect of data composition on science related tasks.

Data Config AI2D SQA
format only ① 67.4 74.4
AI2D 76.3 76.6
SQA 66.9 90.4
AI2D +SQA 76.7 91.2
AI2D +SQA +ChartQA 77.4 91.4

Data Composition for Science Tasks with CoT Prediction. In table G.2, we evaluate the impact898

of data composition on science datasets, including AI2D and SQA. Our results show that combining899

SQA and AI2D provides additional gains on both datasets, indicating that they are mutually beneficial.900

Furthermore, adding ChartQA contributes positively to both datasets, with a notable improvement of +0.7901

for AI2D.902
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Dataset GPT-4o Grok-1.5V Cambrian LLaVA-Reasoner-SFT LLaVA-Reasoner-DPO
direct/cot reported official prompt direct/cot direct/cot

A-OK 89.6/90.1 - 83.1* 85.4/86.2 85.4/87.0
ChartQA 79.6/84.7 76.1 73.3 76.1/83.0 76.4/84.2
DocVQA 90.3/90.8 85.6 77.8 82.9/81.8 83.1/82.7
InfoVQA 72.4/72.8 - 45.7* 50.6/51.6 51.2/52.7
TextVQA 78.1/75.4 78.1 71.7 73.1/71.1 73.3/71.5
AI2D 80.7/81.5 88.3 73.0 79.4/78.5 79.4/79.5
SQA 85.9/87.2 - 80.4 90.4/92.7 90.8/92.6
MathVista 54.8/63.4 52.8 49.0† 44.2/52.1
OCRBench 80.2/79.2 - 62.4 61.6/62.0 62.9/63.7
MMStar 55.1/64.7 - 50.3* 51.6/54.0 51.5/54.1
MMMU 57.8/63.6 53.6 42.7 41.6/40.0 42.4/42.6
Avg (of best) 77.9 - 64.5 68.8 69.5

Table G.3: Performance Comparison of GPT-4o, Grok-1.5V, Cambrian-7b, and our SFT/DPO Model. For Cambrian,
* indicates our replicated results, while others are adapted from (Tong et al., 2024), † indicate CoT prompt used for
evaluation. LLAVA-REASONER-SFT is our SFT model and LLAVA-REASONER-DPO is our DPO model.

H Comparing with SOTA model and GPT-4o 903

In table G.3, we compare the performance of GPT-4o and a recent state-of-the-art model, Cambrian (Tong 904

et al., 2024). For GPT-4o, we include both direct and CoT predictions, following the prompt optimization 905

steps outlined in (Borchmann, 2024), with the prompts detailed in appendix C. For Cambrian, we report 906

the numbers from (Tong et al., 2024) and replicated the results using the official checkpoint on MMStar, 907

InfoVQA, and A-OKVQA. Specifically for Cambrian, CoT predictions were used for the MathVista 908

dataset, while direct predictions were applied for the remaining datasets. 909

When compared to open-source models, GPT-4o outperforms on nearly all benchmark datasets, with 910

the exception of SQA. Notably, significant improvements from CoT predictions are observed on tasks 911

involving calculation or complex reasoning, such as ChartQA, MathVista, MMMU, and MMStar. 912

Cambrian-7B is trained on a dataset of 7 million open-source instruction-following examples. In 913

contrast, our model, fine-tuned on fewer than 400k instruction examples, outperforms Cambrian-7B on 914

most benchmark datasets, underscoring the effectiveness of incorporating CoT data. While we recognize 915

the challenge of comparing against other models, such as One-Vision (Li et al., 2024), MiniCPM-V (Yao 916

et al., 2024), X-Composer (Zhang et al., 2024b), and InternVL (Chen et al., 2024b), due to differences 917

in model architecture, training datasets, and evaluation pipelines, our primary focus is on studying the 918

effectiveness of CoT learning rather than competing for state-of-the-art performance on visual-language 919

tasks. 920
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I Additional DPO Experiments921

Table I.1: Truncating response length affects the final performance of DPO. No truncation leads to a decline in
performance, while truncating to 90 tokens empirically yields the best results.

Data/Truncate Len prompting 70 90 110 No Truncate SFT baseline

ChartQA
direct 76.5 76.2 76.7 75.9 76.1
CoT 83.9 84.2 81.8 80.6 83.0

A-OKVQA
direct 85.2 85.2 85.3 85.1 85.4
CoT 86.7 86.9 86.3 85.7 86.2

Truncating Responses for DPO In our initial experiments, we observed that truncating response922

length impacts the final performance of DPO. As shown in table I.1, no truncation results in a decline923

in performance, while truncating to 90 tokens empirically produces the best results. Consequently, we924

applied a 90-token truncation for the DPO experiments.925

Table I.2: Comparison of DPO with the RFT method. The upper part of the table presents the SFT baseline and the
DPO model, while the lower part shows the ablation results of RFT trained on each of the A-OK, ChartQA, and
math training datasets, as well as their combined results.

Methods prompting A-OK ChartQA MathVista

SFT baseline
direct 85.4 76.1 44.3
CoT 86.2 83.0 50.6

LLAVA-REASONER-DPO
direct 85.4 76.4 44.2
CoT 87.0 84.2 52.1

A-OKVQA direct 85.1 72.7 37.4
-RFT CoT 87.7 0.0 32.5

A-OKVQA direct 85.8 74.9 41.3
-RFT+Format CoT 86.3 80.2 46.5

ChartQA direct 85.4 75.0 42.6
-RFT CoT 86.7 83.9 52.0

ChartQA direct 85.9 75.8 44.4
-RFT+Format CoT 85.5 83.4 50.6

Math direct 85.3 76.0 32.4
-RFT CoT 86.7 67.3 50.9
Math direct 85.5 76.0 39.6

-RFT+Format CoT 85.5 82.0 50.0
Combined direct 85.3 75.4 37.8

-RFT CoT 85.4 84.4 49.0
Combined direct 85.0 75.5 43.0

-RFT+Format CoT 86.6 83.1 47.1

DPO vs. RFT Following appendix E, we examine the impact of RFT and compare it to the DPO926

method.927

In table I.2, for A-OKVQA, we observe that training with A-OKVQA RFT alone yields the best928

result for A-OKVQA; however, the model’s ability to generate short answers is entirely lost. When929

format-aligned data is added, there is a trade-off between performance on A-OKVQA and other datasets.930

When the datasets are combined for training, we see improvements only on ChartQA, while performance931

on A-OKVQA and MathVista declines. This indicates that balancing RFT across datasets is challenging,932

especially when the SFT model already performs relatively well on basic tasks. In contrast, the DPO933

model demonstrates consistent gains across datasets, showing better generalization.934
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