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ABSTRACT

Mixup is a hit data-dependent augmentation technique that entails two sub-tasks:
mixed sample generation and classification. This paper comprehensively studies
the objective of mixup generation and proposes Scenario-Agnostic Mixup (SAMix)
to address the two remaining challenges in this field at once:
(i) Huge performance variation over scenarios caused by trivial solutions. The
objective of mixup generation narrows to selected sample pairs rather than the
whole observed data manifold, which gives rise to the hassle of trivial solutions, re-
sulting in drastic variations in sample mixing performance over different scenarios.
(ii) Self-supervised learning (SSL) dilemma for online training policies. While
recent online training policies can generate out-of-manifold samples on supervised
learning (SL), simply applying them to SSL scenarios leads to subpar performance.
We hypothesize and verify the objective function of mixup generation as optimizing
local smoothness between two mixed classes subject to global discrimination from
the other classes. Thus, we propose η-balanced mixup loss for complementary
learning of the two sub-objectives. For the generation model, a label-free generator,
Mixer, is designed to generate non-trivial mixed samples with great transferability.
To reduce the computational cost from online training, we further introduce a pre-
trained version, SAMixP , which is more applicable and achieves more favorable
generalizability. Extensive experiments on 12 SL and SSL image benchmarks show
the consistent superiority of SAMix compared with state-of-the-art methods.

1 INTRODUCTION

By generating symmetric mixed data and labels, data mixing, or mixup, has significantly improved
the generalization ability of deep neural networks (DNNs) in discriminative representation learning
across a wide range of scenarios (Zhang et al., 2018; Kim et al., 2020; Lee et al., 2021). Despite
its widespread application, the mixed sample generation policy necessitates an explicit hand-crafted
design (e.g., linear interpolation, or random local patch replacement). Instead, the offline-optimizable
mixup strategies utilize labels to pinpoint task-relevant targets (e.g., gradCAM (Selvaraju et al., 2019))
so as to generate semantically mixed samples in which, for instance, the saliency information from
corresponding data can be maximized offline (Kim et al., 2020; Uddin et al., 2021; Kim et al., 2021).
Zhu et al. (2020) learns a mixup generator by supervised adversarial training. These hand-crafted
mixup methods are shown in the red box of Figure 2. Their performance varies greatly over scenarios.

As of late, it is a common practice to incorporate linear mixup methods with a contrastive learning
paradigm (Kalantidis et al., 2020; Lee et al., 2021; Shen et al., 2021). More recently, AutoMix (Liu
et al., 2022b) introduces a novel perspective to make the mixup framework parameterized and can
be trained online. Although these online-optimizable methods have attained significant gains on
supervised learning (SL) tasks, they still do not exploit the underlying structure of the whole observed
data manifold, resulting in trivial solutions without the label guidance, which makes them fail to apply
to self-supervised learning (SSL) scenarios (discussed in Section 2). The problem then naturally
arises as to whether it is possible to design a more generalized and trained mixup policy that can
be applied to both SL and SSL scenarios. To achieve this goal, there are two remaining challenges
to be solved: (i) how to keep the mixup performance stable over different scenarios by solving
trivial solutions; (ii) how to make the online training policies generalizable for SSL scenarios.

1



Under review as a conference paper at ICLR 2024

ImageNet (SL)
ResNet-50

ImageNet (SSL)
ResNet-50

STL-10 (SSL)
ResNet-50

CIFAR-10 (SL)
ResNet-18

CIFAR-100 (SL)
WRN-28-8

Tiny-ImageNet (SL)
ResNeXt-50

FMNIST (SL)
ResNet-18

CUB-200 (SL)
ResNeXt-50

FGVC-Aircraft (SL)
ResNeXt-50

iNatualist-2017 (SL)
ResNeXt-101

iNatualist-2018 (SL)
ResNet-50

Place205 (SL)
ResNet-50

77.7 78.4 79.1 79.8

Vanilla
Mixup

CutMix
ManifoldMix

SaliencyMix
FMix

PuzzleMix
ResizeMix

AutoMix
SAMix

67.9

68.2

68.6

69.0

89.9

90.9

91.8

92.8

95.7

96.4

97.1

97.8

82.2

83.5

84.8

86.0

66.3

68.5

70.8

73.1

95.495.896.296.6

83.7

85.0

86.2

87.4

84.4

85.3

86.2

87.1

64.6

66.0

67.4

68.8

62.8

63.5

64.3

65.1

63.3

63.7

64.1

64.5

Figure 1: Performance radar plots of mixup benchmark
on a wide range of scenarios with ResNet variants, in-
cluding 10 supervised learning (SL) datasets and 2 self-
supervised (SSL) tasks on STL-10 and IN-1K.
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Figure 2: Illustration of SAMix, which ex-
ploits local and global information for mixup
generation while exerting no dependency on
labels. Labels are required for the mixed
samples in green boxes but not for the blue
ones. The solid line denotes that the local
relationship influences the mixed sample di-
rectly, whereas the dashed one indicates that
samples of the other classes serve as global
constraints on the current mixed data.

In this paper, we propose Scenario-Agnostic Mixup (SAMix), a unified mixup framework as shown
in Figure 2 that employs η-balanced mixup loss (in Section 3.1) for treating mixup generation and
classification differently from local and global perspectives. At the same time, specially designed
Mixer (in Section 3.2) generate mixed samples adaptively either at instance-level or cluster-level to
tackle trivial solutions. Moreover, to further eliminate the risk of poor applicability and computational
overhead in optimization, we propose a pre-trained version, SAMixP , which employs a pre-trained
Mixer to generate mixed samples for balancing performance and speed for downstream applications.
Surprisingly, SAMixP can achieve competitive or slightly better performance than the online SAMix
on classification tasks. Extensive experiments show the consistent superiority and generalizability of
SAMix across 12 SL and SSL image benchmarks. Our contributions are summarized as follows:

• We first unravel the mixup learning objective into local and global terms and further analyze
their corresponding properties (local smoothness and global discrimination) for mixup
generation, then targeted propose η-balanced loss to boost the mixup generation quality.
• We propose a label-free mixed sample generator, Mixer, with mixing attention and non-linear

content modeling which tackles the trivial solution problem effectively under the online
optimizable framework and thus makes it more generalizable for a wide range of scenarios.
• Incorporating the label-free Mixer and η-balanced loss, a unified scenario-agnostic mixup

training framework, SAMix, is proposed with consistent impressive performance that tackles
the two problems and supports online and pre-trained pipelines for both SL and SSL tasks.
• Built upon SAMix framework, a pre-trained version SAMixP is provided, which brings

SAMix more favorable performance-efficiency trade-offs and better generalizability across
multifarious visual downstream tasks.

2 PRELIMINARIES

Given a finite set of i.i.d samples, X = [xi]
n
i=1 ∈ RD×n, each data xi ∈ RD is drawn from a mixture

of, say C, distributions D = {Dc}Cc=1. Our basic assumption for discriminative representations
is that each component distribution Dc has relatively low-dimensional intrinsic structures, i.e., the
distribution Dc is constrained on a sub-manifold, sayMc with dimension dc � D. The distribution
D of X is consisted of sub-manifolds,M = ∪Cc=1Mc. We seek a low-dimensional representation
zi ∈ M of xi by learning a continuous mapping by a network encoder, fθ(x) : x 7−→ z with the
parameter θ ∈ Θ, which captures intrinsic structures ofM and facilitates the discriminative tasks.

Here we consider mixup as a generation task into discriminative representation learning to form a
closed-loop framework. Then we have two mutually benefited sub-tasks: (a) mixed data generation
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and (b) classification. As for the sub-task (a), we define two functions, h(·) and v(·), to generate
mixed samples and labels with a mixing ratio λ ∼ Beta(α, α). Given the mixed data, (b) defines a
mixup training objective to optimize the representation space between instances or classes.

Mixup classification as the main task. Since we aim to seek a good representation to facilitate
discriminative tasks, the mixed samples should be diverse and well-characterized. The mixed samples
with semantic information can be easily obtained by parametric learning, while it becomes a challenge
without supervision. Therefore, two types of mixup classification objective Lθ,ω can be defined
for class-level and instance-level mixup training. As for parametric training, given two randomly
selected data pairs (xi, yi) and (xj , yj), the mixed data is generated as xm = h(xi, xj , λ) and
ym = v(yi, yj , λ). The objective of the class-level mixup is as,

`CE(ym, pm) = λ`CE(ym, pm) + (1− λ)`CE(ym, pm). (1)

Notice that we fix v(·) as the linear interpolation in our discussions, i.e., v(yi, yj , λ) , λyi+(1−λ)yj .
Symmetrically, we denote h(·) as a pixel-wise mixing policy with element-wise product � for
most input mixup methods (Zhang et al., 2018; Yun et al., 2019; Kim et al., 2020), i.e., xm =
si � xi + sj � xj , where si ∈ RH×W is a pixel-wise mask and sj = 1 − si. Notice that each
coordinate sw,h ∈ [0, 1]. We can generate xm with a pair of randomly selected samples (xi, xj) and
formulate mixup infoNCE loss for instance-level mixup:

`NCE(zm) = λ`NCE(zm, zi) + (1− λ)`NCE(zm, zj), (2)

where zm, zi and zj denote the corresponding representations. The major difference with Eq. 1 is that
the augmentation view that generates zm is not from the same view, i.e., zi and zj , as the objective
function, which is effective in retaining task-relevant information, details in A.5.1.

Mixup generation as the auxiliary task. Unlike the learning object on the unmixed data X in
Sec. 2, the performance of (b) mixup classification mainly depends on the quality of (a) mixup
generation. We thus regard (a) as an auxiliary task to (b) and model h(·) as a sub-network Mφ

with the parameter φ ∈ Φ, called Mixer. Specifically, (a) aims to generate a pixel-wise mask
s ∈ RH×W for mixing sample pairs. The mixup mask si should directly related to λ and the contents
of (xi, xj). Practically, ourMφ takes l-th layer feature maps zl ∈ RCl×Hl×Wl and λ value as the
input, Mφ : xi, xj , z

l
i, z

l
j , λ 7−→ xm. The generation process ofMφ can be trained by a mixup

generation loss as Lgenφ , and a mask loss designed for generated mask si denoted as Lmaskφ . Formally,
we have the mixup generation loss as Lφ = Lclsφ + Lmaskφ , and the final learning objective is,

min
θ,ω,φ

Lθ,ω + Lφ. (3)

Both Lθ,ω and Lφ can be optimized alternatively in a unified framework using a momentum pipeline
with the stop-gradient operation (Grill et al., 2020; Liu et al., 2022b), as shown in Figure 5(b) (left).
In SSL, however, this framework can easily make the generator fall into a trivial solution. To
solve this problem, we propose a novel mixup loss function and a generator architecture, Mixer.
Combining the two can fully exploit the ability of mixup in learning discriminative features.

3 SAMIX FOR DISCRIMINATIVE REPRESENTATION LEARNING

3.1 LEARNING OBJECTIVE FOR MIXUP GENERATION

Typically the objective function Lφ corresponding to the mixup generation is consistent with the
classification in parametric training (e.g., `CE). In this work, we argue that mixup generation is aimed
to optimize the local term subject to the global term. The local term centers on the classes of sample
pairs to be mixed, while the global term introduces the constraints of other classes. For example,
`CE is the global term whose each class produces an equivalent effect on the final prediction without
focusing on the relevant classes of the current sample pair. At the class level, to emphasize the local
term, we introduce a parametric binary cross-entropy (pBCE) loss for the generation task. Formally,
assuming yi and yj belong to the class a and class b, pBCE can be summarized as:

`CE+ (pm) = −λyi,a log pm − (1− λ)yj,b log pm, (4)
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Figure 4: Visualization of trivial (using linear C and self-attention) and non-trivial solutions (using
the proposed non-linear CNC and mixing attention) for SAMix-I on STL-10 and IN-1k datasets.

where yi,a = 1 and yi,b = 1 denote the one-hot label for class a and b. Notice that we use `+ and `−
to represent the local and global terms, and `− for the parametric loss refers to `CE . Symmetrically,
we have a non-parametric binary cross-entropy mixup loss (BCE) for CL:

`NCE+ (zm) = −λ log pm,i − (1− λ) log pm,j , (5)

where pm,i = exp(zmzi/t)
exp(zmzi/t)+exp(zmzj/t)

and its `− refers to `NCE .
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Figure 3: Analysis of the learning objective of Mixer on Tiny
ImageNet with ResNet-18. Left: the results of various losses on
the SL task (left y axis) and the CL task (right y axis). Right: the
effect of using various negative weights η.

Balancing local and global
terms. Given that both local
and global terms can contribute
to mixup generation, we conduct
empirical analysis on the impor-
tance of each term in both the
SL and SSL scenarios to build
a more balanced learning objec-
tive. We first analyze the prop-
erties of both terms with two hy-
pothesizes: (i) the local term `+
determines the generation perfor-
mance, (ii) the global term `−
improves global discrimination but is sensitive to class information. To verify these properties, we
design an empirical experiment based on the proposed Mixer on Tiny (see A.5). The main difference
between the mixup CE and infoNCE is whether to adopt parametric class centroids. Therefore, we
compare the intensity of class information among unlabeled (UL), pseudo labels (PL), and ground
truth labels (L). Notice that PL is generated by ODC (Zhan et al., 2020) with the cluster number
C. The class supervision can be imported to mixup infoNCE loss by filtering out negative samples
with PL or L as (Khosla et al., 2020) denoted as infoNCE (L) and infoNCE (PL). As shown in
Figure 3 (left), our hypothesizes are verified in the SL task (as the performance decreases from CE(L)
to pBCE(L) and CE(PL) losses), but the opposite result appears in the CL task. The performance
increases from InfoNCE(UL) to InfoNCE(L) as the false negative samples are removed (Robinson
et al., 2021; Khosla et al., 2020) while trivial solutions occur using BCE(UL) (in Figure 6). Therefore,
we propose it is better to explicitly import class information as PL for instance-level mixup to generate
”strong” inter-class mixed samples while preserving intra-class compactness.

SAMix with η-balanced generation objectives. In practice, we provide two versions of learning
objective: the mixup CE loss with PL as the class-level version (SAMix-C), and the mixup infoNCE
loss as the instance-level one (SAMix-I). Then, we hypothesize that the best performing mixed
samples should be close to the sweet spot: achieving λ local smoothness between two classes or
neighborhood systems while globally discriminating from the other classes or instances. Built upon
this view, we specially design an η-balanced mixup loss as the objective of mixup generation,

`η = `+ + η`−, η ∈ [0, 1]. (6)

As shown in Figure 3 (right), we empirically analyze the performance of employing various η in
Eq. 6 on Tiny and find out that using η = 0.5 performs the best on both the SL and CL tasks. In the
end, we provide the learning objective, Lclsφ , `CE+ + η`CE− , with L for class-level mixup and with
PL for SAMix-C, Lclsφ , `NCE+ + η`NCE− for SAMix-I (more details in A.2).
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Figure 5: (a) The network architecture of the proposed Mixer for mixup generation. (b) Framework
comparison of the popular AutoMix online pipeline (left) and our pre-trained pipeline (right). X and
Z denote the input and corresponding feature maps from the Momentum Encoder. Blue modules are
not updated by back-propagation. The online pipeline optimizes Mixer and Encoder alternatively,
while our pre-trained one adopts pre-trained Mixer on large datasets.

3.2 DE NOVO MIXER FOR MIXUP GENERATION

While AutoMix introduces the online MixBlock to adaptively learn mixup generation policy, there are
still three key limitations in practice: (a) fail to encode the mixing ratio λ on small datasets; (b)
trivial solutions when performing CL tasks; (c) the online training pipeline leads to far more
computational costs than MixUp. Our MixerMφ solves these issues on an individual basis.

Adaptive λ encoding and mixing attention. Since a randomly sampled λ should directly guide
mixup generation, the predicted mask s should be semantically proportional to λ. Nevertheless,
previous work regards λ as the prior knowledge and concatenates λ to input feature maps, which
might fail to encode λ properly (detailed analysis in A.6.1). We propose an adaptive λ encoding as,

zli,λ = (1 + γλ)zli, (7)

where γ is a learnable scalar constrained to [0, 1]. Notice that γ is initialized to 0 during training. As
shown in Figure 5(a), we compute the mixing relationship between two samples by a new mixing
attention: we concatenate (zli,λ, z

l
j,1−λ) as the input, z̃l = concat(zli,λ, z

l
j,1−λ), and compute the

attention matrix as,

Pi,j = ψ(
(WP z̃

l)T ⊗WP z̃
l

N (z̃l)
), (8)

where ψ(·) is the softmax function,N (z̃l) denotes a normalization factor, and ⊗ is matrix multiplica-
tion. Notice that the mixing attention provides both the cross-attention between zli,λ and zlj,λ and the
self-attention of each feature itself.

Non-linear content modeling. In vanilla self-attention mechanism, the content sub-module C is a
linear projection, Ci = Wz z̃

l, where Wz denotes a 1× 1 convolution. However, we find the training
process of this structure is unstable when performing CL tasks with the linear C in the early period
and sometimes trapped in trivial solutions, such as all coordinates on si predicted as a constant. As
shown in Figure 4, we visualize Ci and Pi,j of trivial and non-trivial results and find that the trivial si
is usually caused by a constant Ci. We hypothesize that trivial solutions happen earlier in the linear
C than in Pi,j , because it might be unstable to project high-dimensional features to 1-dim linearly.
Hence, we design a non-linear content modeling sub-module CNC that contains two 1×1 convolution
layers with a batch normalization layer and a ReLU layer in between, as shown in Figure 5(a). To
increase the robustness and randomness of mixup training, we add a Dropout layer with a dropout
ratio of 0.1 in CNC . Formally, MixerMφ can be written as,

si = U

(
σ
(
ψ
( (WP z̃

l)T ⊗WP z̃
l

N (z̃l)

)
⊗ CNC(zli,λ)

))
. (9)
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Figure 6: Visualization of the mixed samples from Mixer within various learning scenarios on IN-1k
and iNat2017. Note that λ = 0.5 and η = 0.5 if the balance coefficient η is included. CL(C) and
CL(I) denote using SAMix-C and SAMix-I, respectively.

Pre-trained pipeline v.s. Online pipeline. Even though current online-optimized mixup meth-
ods (Liu et al., 2022b) outperform their handcrafted counterparts by a substantial margin, the compu-
tational cost is intolerable, especially for large datasets. On large-scale benchmarks, it is empirically
evident that the samples generated by SAMix in both early and late training phases or with different
CNN encoders vary little. Thus, we hypothesize that, akin to knowledge distillation (Dabouei et al.,
2021), the online training Mixer can be replaced with a pre-trained one. From this view, we
design a pre-trained SAMix pipeline, denoted as SAMixP , as shown in Figure 5(b). Extensive
experiments lead us to the following conclusions: (i) SAMixP pre-trained on large datasets achieves
comparative or slightly better performance than the online SAMix on relevant datasets with lower
computational cost. (ii) SAMixP with lightweight CNN encoders (e.g., ResNet-18) yields better
performance than the heavy ones (e.g., ResNet-101). (iii) SAMixP exhibits better transferabilities
than the popular AutoMixP . (iv) The online training pipeline is still irreplaceable on small-scale
datasets (e.g., CIFAR and CUB).

Prior knowledge of mixup. We summarize the commonly adopted prior knowledge (Kim et al.,
2020; Dabouei et al., 2021) for mixup as two aspects: (a) adjusting the mean of si correlated with λ,
and (b) balancing the smoothness of local image patches while maintaining discrimination of xm.
Based on them, we introduce λ adjusting and modifying the mask loss Lmaskφ (details in A.2).

3.3 EMPIRICAL ANALYSIS AND DISCUSSION

To showcase the impact of local and global constraints on mixup generation, we visualize mixed
samples generated by Mixer on various scenarios with different types of class clustering distributions,
i.e., uniform general classification scenarios on IN-1K, and imbalanced fine-grained scenarios on
iNat2017. In Figure 6, It is evident that SAMix captures robust underlying data structure from
both class- and instance-level effectively and thus can sidestep trivial solutions and then increase its
applicability for SSL.

Class-level. Within the supervised tasks, global constraint localizes significant features by discrim-
inating them from the other classes, while the local term is apt to preserve more information tied
to the two given samples and classes. For instance, comparing the mixed results with and without
η-balanced mixup loss, it was found that pixels of the foreground target were of interest to Mixer.
When the global constraint is balanced (η = 0.5), the foreground target is retained more completely.
Notably, the Mixer we proposed remains invariant to the background for the more challenging
fine-grained classification while at the same time preserving discriminative features.

Instance-level. Since no label is available for SSL, the global and local terms are transformed from
class to instance level. Similar results are shown in the top row of Figure 6, and the only difference is
that SAMix-C exhibits a more precise target correspondence compared to SAMix-I via introducing
class information by PL, which further indicates the importance of the information of classes. If we
only focus on local relationships, Mixer can only generate mixed samples with fixed patterns as the
last two results in the top row of Figure 6. These failures imply the importance of global constraints.
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4 EXPERIMENTS

We first evaluate SAMix for supervised learning (SL) in Sec. 4.1 and self-supervised learning (SSL)
in Sec. 4.2, and then perform ablation studies in Sec. 4.3. Nine benchmarks are used for evaluation:
CIFAR-100 (Krizhevsky et al., 2009), Tiny-ImageNet (Tiny) (Chrabaszcz et al., 2017), ImageNet-1k
(IN-1k) (Russakovsky et al., 2015), STL-10 (Coates et al., 2011), CUB-200 (Wah et al., 2011),
FGVC-Aircraft (Aircraft) (Maji et al., 2013), iNaturalist2017/2018 (iNat2017/2018) (Horn et al.,
2018), and Place205 (Zhou et al., 2014). All experiments are conducted with PyTorch and reported
the mean of 3 trials. SAMix uses α = 2 and the feature layer l = 3 while SAMixP is pre-trained
100 epochs with ResNet-18 (SL tasks) or ResNet-50 (SSL tasks) on IN-1k. A momentum training
coefficient for SAMix is increased from 0.999 to 1 in a cosine curve. The median validation top-1
accuracy of the last 10 epochs is recorded.

4.1 EVALUATION ON SUPERVISED IMAGE CLASSIFICATION

CNNs and ViTs are used as backbone networks, including ResNet (R), Wide-ResNet
(WRN) (Zagoruyko & Komodakis, 2016), ResNeXt-32x4d (RX) (Xie et al., 2017), DeiT (Tou-
vron et al., 2021), and Swin Transformer (Liu et al., 2021). We employ PyTorch training procedures
Paszke et al. (2019) by default: an SGD optimizer with cosine scheduler Loshchilov & Hutter
(2016). A special case in Table 4: RSB A3 (using LAMB optimizer (You et al., 2020) for R-50) in
timm (Wightman et al., 2021) and DeiT (using AdamW optimizer (Loshchilov & Hutter, 2019) for
DeiT-S and Swin-T) training recipes are fully adopted on IN-1k. MCE and MBCE denote mixup
cross-entropy and mixup binary cross-entropy in RSB A3. For a fair comparison, grid search is
performed for hyper-parameters α ∈ {0.1, 0.2, 0.5, 1, 2, 4} of all mixup variants. We follow hyper-
parameters in original papers by default. ∗ denotes arXiv preprint works, † and ‡ denote reproduced
results by official codes and originally reported results, the rest are reproduced (see A.3 and A.4).

Comparison and discussion Table 3 illustrates the results on small-scale and fine-grained clas-
sification tasks. SAMix consistently improves classification performance over the previous best
algorithm, AutoMix, with the improved Mixer. Notably, SAMix significantly improved the mixup
performance on CUB-200 and Aircraft by 1.24% and 0.78% based on ResNet-18, and continued
to expand its dominance on Tiny by bringing 1.23% and 1.40% improvement on ResNet-18 and
ResNeXt-50. As for the large-scale classification task, we benchmark popular mixup methods in
Table 1, 2, and 4, SAMix and SAMixP outperform all existing methods on IN-1k, iNat2017/2018
and Places205. Surprisingly, SAMixP yields comparable or even better performance than SAMix
with lower computational cost.

Table 1: Top-1 Acc (%) of image classification on IN-1k
training 100-epoch and 300-epoch using procedures.

PyTorch 100ep PyTorch 300ep
Methods R-18 R-34 R-50 R-101 RX-101 R-18 R-34 R-50 R-101
Vanilla 70.04 73.85 76.83 78.18 78.71 71.83 75.29 77.35 78.91
Mixup 69.98 73.97 77.12 78.97 79.98 71.72 75.73 78.44 80.60
CutMix 68.95 73.58 77.17 78.96 80.42 71.01 75.16 78.69 80.59
ManifoldMix 69.98 73.98 77.01 79.02 79.93 71.73 75.44 78.21 80.64
SaliencyMix 69.16 73.56 77.14 79.32 80.27 70.21 75.01 78.46 80.45
FMix∗ 69.96 74.08 77.19 79.09 80.06 70.30 75.12 78.51 80.20
PuzzleMix 70.12 74.26 77.54 79.43 80.63 71.64 75.84 78.86 80.67
ResizeMix∗ 69.50 73.88 77.42 79.27 80.55 71.32 75.64 78.91 80.52
AutoMix 70.50 74.52 77.91 79.87 80.89 72.05 76.10 79.25 80.98
SAMixP 70.83 74.95 78.06 80.05 80.98 72.27 76.28 79.39 81.10
SAMix 70.85 74.96 78.11 80.02 81.03 72.33 76.35 79.40 81.06

Table 2: Top-1 Acc (%) of image classifica-
tion on iNat2017/2018 and Places205.

iNat2017 iNat2018 Places205
Method R-50 RX-101 R-50 RX-101 R-18 R-50
Vanilla 60.23 63.70 62.53 66.94 59.63 63.10
Mixup 61.22 66.27 62.69 67.56 59.33 63.01
CutMix 62.34 67.59 63.91 69.75 59.21 63.75
ManifoldMix 61.47 66.08 63.46 69.30 59.46 63.23
SaliencyMix 62.51 67.20 64.27 70.01 59.50 63.33
FMix∗ 61.90 66.64 63.71 69.46 59.51 63.63
PuzzleMix 62.66 67.72 64.36 70.12 59.62 63.91
ResizeMix∗ 62.29 66.82 64.12 69.30 59.66 63.88
AutoMix∗ 63.08 68.03 64.73 70.49 59.74 64.06
SAMixP 63.38 68.23 65.16 70.56 59.82 64.35
SAMix 63.32 68.26 64.84 70.54 59.86 64.27

Table 3: Top-1 Acc (%) of supervised image classification on
CIFAR-100, Tiny-ImageNet, CUB-200 and Aircraft.

CIFAR-100 Tiny-ImageNet CUB-200 FGVC-Aircraft
Method R-18 RX-50 WRN-28-8 R-18 RX-50 R-18 RX-50 R-18 RX-50
Vanilla 78.04 81.09 81.63 61.68 65.04 77.68 83.01 80.23 85.10
Mixup 79.12 82.10 82.82 63.86 66.36 78.39 84.58 79.52 85.18
CutMix 78.17 81.67 84.45 65.53 66.47 78.40 85.68 78.84 84.55
ManifoldMix 80.35 82.88 83.24 64.15 67.30 79.76 86.38 80.68 86.60
SaliencyMix 79.12 81.53 84.35 64.60 66.55 77.95 83.29 80.02 84.31
FMix∗ 79.69 81.90 84.21 63.47 65.08 77.28 84.06 79.36 84.85
PuzzleMix 80.43 82.57 85.02 65.81 66.92 78.63 84.51 80.76 86.23
ResizeMix∗ 80.01 81.82 84.87 63.74 65.87 78.50 84.77 78.10 84.08
AutoMix∗ 82.04 83.64 85.16 67.33 70.72 79.87 86.56 81.37 86.69
SAMix 82.30 84.42 85.50 68.89 72.18 81.11 86.83 82.15 86.80

Table 4: Top-1 Acc (%) of image
classification on IN-1k.

R-50 (A3) DeiT-S Swin-T
Methods MCE MBCE MCE MCE
Mixup+CutMix 76.49 78.08 79.80 81.20
Mixup 76.01 77.66 79.65 81.01
CutMix 76.47 77.62 79.78 81.23
AttentiveMix 76.78 77.46 80.32 81.29
SaliencyMix 76.85 77.93 79.32 81.37
PuzzleMix 77.27 78.02 79.84 81.47
TransMix‡ - - 80.70 80.80
TokenMix‡ - - 80.80 80.60
AutoMix∗ 77.45 78.34 80.75 80.80
SAMixP 77.80 78.73 80.87 80.80
SAMix 78.33 78.45 80.94 81.87
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Table 5: Top-1 Acc (%) of linear classification for
pre-trained models on STL-10.

R18 R50
CL method Method 400ep 800ep 400ep 800ep
MoCo.V2 - 81.50 85.64 84.89 89.68

Mixup 84.51 87.93 88.24 92.20
ManifoldMix 84.17 87.70 88.06 91.65
CutMix 84.28 87.60 87.51 90.81

MoCo.V2 SaliencyMix 84.33 87.27 87.35 90.77
FMix∗ 84.43 87.68 88.14 91.56
ResizeMix∗ 83.88 87.25 86.88 90.83

MoCo.V2 SAMix-I 85.44 88.58 88.87 92.41
SwAV† (C) - 81.10 85.56 84.35 88.79
MoCo.V2(C) Inter-Intra? 84.89 87.85 88.33 92.24
MoCo.V2(C) PuzzleMix? 84.98 88.07 88.40 91.98
MoCo.V2(C) SAMix-C 85.60 88.63 88.91 92.45

Table 6: Top-1 Acc (%) of linear classification
pre-trained on Tiny-ImageNet and ImageNet-1k.

Tiny IN-1k
CL method Method R18 R50 R18 R50
MoCo.V2 - 38.29 42.08 52.85 67.66
MoCo.V2 Mixup 41.24 46.61 53.03 68.07
MoCo.V2 CutMix 41.62 46.24 52.98 68.28
MoCo.V2 SaliencyMix 41.14 46.13 53.06 68.31
MoCo.V2(C) PuzzleMix? 41.86 46.72 53.46 68.48
MoCHi† Mixup+latent 41.78 46.55 53.12 68.01
i-Mix† Mixup+latent 41.61 46.57 53.09 68.10
UnMix‡ Mixup+latent - - - 68.60
WBSIM‡ Mixup+CutMix - - - 68.40
MoCo.V2 SAMix-I 41.97 47.23 53.75 68.76
MoCo.V2 SAMix-IP 43.57 48.10 53.72 68.82
MoCo.V2(C) SAMix-C 43.68 47.51 53.93 68.86

Table 7: Top-1 Acc (%) of linear classification of ResNet-
50 pre-trained with various SSL methods on IN-1k.
Method SimCLR MoCo.V1 BYOL SwAV SimSiam MoCo.V3
PT Epoch 200 200 300 200 200 300
- 61.6 61.0 72.3 69.1 70.0 72.8
Mixup 61.6 61.2 72.4 69.2 70.1 72.8
CutMix 61.8 61.5 72.5 69.5 70.3 73.0
i-Mix†(2-Mix) 61.7 61.4 - 69.4 - 72.8
SDMP†(3-Mix) 62.3 61.7 - - - 73.5
SAMix-IP 62.2 61.7 72.6 69.8 70.4 73.2
SAMix-CP 62.4 61.9 72.8 69.9 70.5 73.4

Table 8: Top-1 Acc (%) of linear classifica-
tion of ViT-S pre-trained on IN-1k.
Method MoCo.V2 BYOL SwAV MoCo.V3
PT Epoch 300 300 300 300
- 72.7 71.4 73.5 73.2
CutMix 72.6 71.2 73.6 73.0
i-Mix†(2-Mix) 71.8 - 73.3 72.7
DACL†(1-Mix) 72.5 - - 72.9
SDMP†(3-Mix) 72.9 - - 73.8
SAMix-IP 72.8 72.7 73.6 73.4
SAMix-CP 72.9 72.8 73.8 73.6

4.2 EVALUATION ON SELF-SUPERVISED LEARNING

Then, we evaluate SAMix on various SSL tasks pre-training on STL-10, Tiny, and IN-1k. We adopt
all hyper-parameter configurations from MoCo.V2 unless otherwise stated. We compared SAMix in
three dimensions in CL: (i) compare with other mixup variants, based on our proposed cross-view
pipeline, and whether the predefined cluster information is given (denotes by C) or not, as shown in
Table 5. (ii) longitudinal comparison with CL methods that utilize mixup variants or Mixup+latent
space mixup strategies in Table 6, including MoCHi (Kalantidis et al., 2020), i-Mix (Lee et al., 2021),
Un-Mix (Shen et al., 2021), and WBSIM (Chu et al., 2022), where all comparing methods are based
on MoCo.V2 except SwAV (Caron et al., 2020). (iii) extend SAMixP and mixup variants to various
CL baselines based on ResNet-50 and ViT-S in Table 7 and Table 8, compared with DACL (Verma
et al., 2021) and SDMP (Ren et al., 2022) (using three mixup augmentations). In these tables, ?
denotes our modified methods (PuzzleMix∗ uses PL and Inter-Intra∗ combines inter-class CutMix
with intra-class Mixup, and n-Mix denotes the types of mixup variants used in the SSL method.

Linear Classification Following the linear classification protocol proposed in MoCo, we train
a linear classifier on top of frozen backbone features with the supervised train set. We train 100
epochs using SGD with a batch size of 256. The initialized learning rate is set to 0.1 for Tiny and
STL-10 while 30 for IN-1k, and decay by 0.1 at epochs 30 and 60. As shown in Table 5, SAMix-I
outperforms all the linear mixup methods by a large margin, while SAMix-C surpasses the saliency-
based PuzzleMix when PL is available. And SAMix-I has both global and local properties through
infoNCE and BCE losses. Meanwhile, Table 6 demonstrates that both SAMix-I and SAMix-C
surpass other CL methods combined with the predefined mixup. Overall, SAMix-C yields the best
performance in CL tasks, indicating it provides task-relevant information with the help of PL. Table 7
and Table 8 verify the generalizability of SAMixP variants on popular CL baselines, which achieve
comparable performances to recently proposed algorithms that combine n-Mix with CL.

Downstream Tasks Following the protocol in MoCo, we evaluate transferable abilities of the
learned representation of comparing methods to object detection task on PASCAL VOC (Everingham
et al., 2010) and COCO (Lin et al., 2014) in Detectron2 (Wu et al., 2019). We fine-tune Faster
R-CNN (Ren et al., 2015) with pre-trained models on VOC trainval07+12 and evaluate on the
VOC test2007 set. Similarly, Mask R-CNN (He et al., 2017) is fine-tuned (2× schedule) on the
COCO train2017 and evaluated on the COCO val2017. SAMix still achieves comparable performance
among state-of-the-art mixup methods for CL. Please refer to A.5.5 for more results.
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Figure 7: (a) Hyper-parameter α for mixup. (b) The cluster number C for SAMix-C in CL tasks on
Tiny. (c) Top-1 accuracy v.s. training time on IN-1k based on ResNet-50 with 100 epochs. (d) Top-1
accuracy v.s. training time v.s. GPU memory (G) on CIFAR-100 based on DeiT-S with 300 epochs.

4.3 ABLATION STUDY Table 9: Ablation of learning
objectives in the SSL tasks.

Objective STL-10 Tiny
BCE 85.25 41.28
infoNCE 85.36 41.85
infoNCE (η = 0.5) 85.44 41.97
CE (PL) 85.56 42.36
CE (PL)+infoNCE 85.41 42.12
CE (PL, η = 0.5) 85.60 42.53

Table 10: Ablation of modules
in Mixer and the η-balanced loss.

Designed module SL CL
Mixing attention 67.17 40.58
+Adaptive λ 67.95 41.82
+Non-linear content 68.46 42.45
+Lmask 68.57 42.68
+λ adjusting 68.61 43.14
+`η (η = 0.5) 68.82 43.68

We conduct ablation studies in four aspects: (i) Mixer: Table 10
verifies the effectiveness of each proposed module in both SL
and CL tasks on Tiny. The first three modules enable Mixer to
model non-linear mixup relationships, while the next two modules
enhance Mixer, especially in CL tasks. (ii) Learning objectives:
We analyze the effectiveness of proposed `η with other losses,
as shown in Table 9. Using `η for the mixup CE and infoNCE
consistently improves the performance both for the CL task on
STL-10 and Tiny. (iii) Time complexity analysis: Figure 7 (c)
shows computational analysis conducted on the SL task on IN-
1k using PyTorch 100-epoch settings. Notice that the overall
accuracy v.s. time efficiency of both SAMix and SAMixP are
superior to other methods. (iv) Hyper-parameters: Figure 7 (a)
and (b) show ablation results of the hyper-parameter α and the
clustering number C for SAMix-C. We empirically select α=2.0
and C = 200 as default.

5 RELATED WORK

Class-level Mixup for SL There are four types sample mixing policies for class-level mixup: linear
mixup of input space (Zhang et al., 2018; Yun et al., 2019; Hendrycks et al., 2020; Harris et al., 2020;
Qin et al., 2020) and latent space (Verma et al., 2019; Faramarzi et al., 2020), saliency-based (Uddin
et al., 2021; Kim et al., 2020; 2021), generation-based (Zhu et al., 2020; Venkataramanan et al.,
2022), and learning mixup generation and classification end-to-end (Liu et al., 2022b; Dabouei
et al., 2021). More recently, mixup designed for ViTs optimizes mixing policies with self-attention
maps (Chen et al., 2022; Liu et al., 2022a). SAMix belongs to the fourth type and learns both class-
and instance-level mixup relationships, and its pre-trained SAMixP eliminates high time-consuming
problems of this type of method. Additionally, some researchers Park et al. (2022); Chen et al. (2022);
Liu et al. (2023) improve class mixing policies upon linear mixup. Please refer to A.7 for details.
Instance-level Mixup for SSL A complementary method to learn better instance-level representa-
tion is to apply mixup in SSL scenarios Lee et al. (2021). However, most existing approaches are
limited to employing linear mixup variants, such as applying MixUp and CutMix in the input or latent
space mixup (Kalantidis et al., 2020; Chu et al., 2022; Verma et al., 2021; Ren et al., 2022) for SSL
without ground-truth labels. SAMix improves SSL performance by learning mixup policies online.

6 CONCLUSIONS AND LIMITATIONS

This paper study and decompose objectives for mixup generation as local-emphasized and global-
constrained terms to adaptively learn a robust sample mixing policy at both class- and instance-level.
SAMix provides a unified mixup framework with both online and pre-trained pipelines to boost
discriminative representation learning based on improved η-balanced loss and Mixer. Moreover, a
more applicable pre-trained version SAMixP is provided. As a limitation, the Mixer only takes two
samples as input and conflicts when the task-relevant information is overlapping. For future work, we
suppose that k-mixup (k≥2) or conflict-aware Mixer can be the promising avenue to improve mixup.
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A APPENDIX

The Appendix section is structured as follows:

(1.1) Appendix A.1 introduces dataset information used in the experiments.
(2.2) Appendix A.2 provides implementations of SAMix for supervised and contrastive learning.
(3.3) Appendix A.3 provides hyper-parameter settings for compared methods in image classification

experiments.
(4.4) Appendix A.4 introduces implementation details and experiment settings of compared con-

trastive learning methods.
(5.5) Appendix A.5 provides experiment analysis and results for Sec. 3, including analysis of training

pipeline and loss design for instance-level mixup, studying properties of inter- and intra-class
instance mixup, Comparison of different objectives for mixup generation, and estimating
mutual information between mixed and original samples.

(6.6) Appendix A.6 visualizes mixing attention, content modeling, the effect of losses, and compari-
son with existing methods.

(7.7) Appendix A.7 we further provide extensive related work of mixup augmentations and self-
supervised learning.

A.1 BASIC SETTINGS

Reproduction details. We use OpenMixup (Li et al., 2022) implemented in PyTorch (Paszke et al.,
2019) as our code-base for both supervised image classification and contrastive learning (CL) tasks.
Except results marked by † and ‡, we reproduce most experiment results of compared methods,
including Mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), ManifoldMix (Verma et al., 2019),
SaliencyMix (Uddin et al., 2021), FMix (Harris et al., 2020), and ResizeMix (Qin et al., 2020).
Dataset information. We briefly introduce image datasets used in Sec. 4: (1) CIFAR-
100 (Krizhevsky et al., 2009) contains 50k training images and 10K test images of 100 classes.
(2) ImageNet-1k (IN-1k) (Krizhevsky et al., 2012) contains 1.28 million training images and 50k
validation images of 1000 classes. (3) Tiny-ImageNet (Tiny) (Chrabaszcz et al., 2017) is a rescaled
version of ImageNet-1k, which has 100k training images and 10k validation images of 200 classes.
(4) STL-10 (Coates et al., 2011) benchmark is designed for semi- or unsupervised learning, which
consists of 5k labeled training images for 10 classes 100K unlabelled training images, and a test set
of 8k images. (5) CUB-200-2011 (CUB) (Wah et al., 2011) contains over 11.8k images from 200
wild bird species for fine-grained classification. (6) FGVC-Aircraft (Aircraft) (Maji et al., 2013)
contains 10k images of 100 classes of aircraft. (7) iNaturalist2017 (iNat2017) (Horn et al., 2018)
is a large-scale fine-grained classification benchmark consisting of 579.2k images for training and
96k images for validation from over 5k different wild species. (8) PASCAL VOC (Everingham
et al., 2010) is a classical objection detection and segmentation dataset containing 16.5k images
for 20 classes. (9) COCO (Lin et al., 2014) is an objection detection and segmentation benchmark
containing 118k scenic images with many objects for 80 classes.

A.2 IMPLEMENTATION OF SAMIX

Online training pipeline. We provide the detailed implementation of SAMix in SL tasks. As
shown in Figure 5(b) (left), we adopt the momentum pipeline (Grill et al., 2020; Liu et al., 2022b)
to optimize Lθ,ω for mixup classification and Lφ for mixup generation in Eq. 3 in an end-to-end
manner:

θtq, ω
t
q ← argmin

θ,ω
Lθt−1

q ,ωt−1
q
, (10)

φt ← argmin
φ
Lθtk,ωt

k
+ Lφt−1 , (11)

where t is the iteration step, θq, ωq and θk, ωk denote the parameters of online and momentum
networks, respectively. The parameters in the momentum networks are an exponential moving
average of the online networks with a momentum decay coefficient m, taking θk as an example,

θtk ← mθt−1k + (1−m)θtq. (12)
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The training process of SAMix is summarized as four steps: (1) using the momentum encoder to
generate the feature maps Zl for MixerMφ; (2) generating Xq

mix and Xk
mix by Mixer for the online

networks and Mixer; (3) training the online networks by Eq. 10 and the Mixer by Eq. 11 separately;
(4) updating the momentum networks by Eq. 12.

Prior knowledge of mixup. As we discussed in Sec. 3.2, we introduce some prior knowledge to
the Mixer from two aspects: (a) To adjust the mean of si correlated with λ, we introduce a mask loss
that aligns the mean of si to λ, `µ = βmax(|λ − µi| − ε, 0), where µi = 1

HW

∑
h,w si,h,w is the

mean and ε = 0.1 as a margin. Meanwhile, we propose a test time λ adjusting method. Assuming
µi < λ, we adjust each coordinate on si as ŝi = µi

λ si, and ŝj = 1− ŝi. (b) To balance the smoothness
of local image patches and the discrimination (e.g., variance) of xm, we adopt a bilinear upsampling
as U(·) for smoother masks and propose a variance loss to encourage the sparsity of learned masks,
`σ = 1

WH

∑
w,h(µi − sw,h)2. We summarize the mask loss as, Lmaskφ = β(`µ + `σ), where β is a

balancing weight. β is initialized to 0.1 and linearly decreases to 0 during training.

A.3 SUPERVISED IMAGE CLASSIFICATION

Hyper-parameter settings. As for hyper-parameters of SAMix, we follow the basic setting in
AutoMix for both SL and SSL tasks: SAMix adopts α = 2, the feature layer l = 3, the bilinear
upsampling, and the weight β = 0.1 which linearly decays to 0. We use η = 0.5 for small-scale
datasets (CIFAR-100, Tiny, CUB and Aircraft) and η = 0.1 for large-scale datasets (IN-1k and
iNat2017). As for other methods, PuzzleMix (Kim et al., 2020), Co-Mixup (Kim et al., 2021), and
AugMix (Hendrycks et al., 2020) are reproduced by their official implementations with α = 1, 2, 1
for all datasets. As for mixup methods reproduced by us, we provide dataset-specific hyper-parameter
settings as follows. For CIFAR-100, Mixup and ResizeMix use α = 1, and CutMix, FMix and
SaliencyMix use α = 0.2, and ManifoldMix uses α = 2. For Tiny, IN-1k, and iNat2017 datasets,
ManifoldMix uses α = 0.2, and the rest methods adopt α = 1 for median and large backbones
(e.g., ResNet-50). Specially, all these methods use α = 0.2 (only) for ResNet-18. For small-scale
fine-grained datasets (CUB-200 and Aircraft), SaliencyMix and FMix use α = 0.2, and ManifoldMix
uses α = 0.5, while the rest use α = 1.

A.4 CONTRASTIVE LEARNING

Implementation of SAMix-C and SAMix-I. As for SSL tasks, we adopt the cross-view objective,
`NCE(z

τq
i , z

τk
i ) + `NCE(zm), where zi = zτki and zj = zτkj , for instance-level mixup classification

in all methods (except for † and ‡marked methods). We provide two variants, SAMix-C and SAMix-I,
which use different learning objectives of mixup classification. The basic network structures (an
encoder fθ and a projector gω) are adopted as MoCo.V2 (Chen et al., 2020b). Similar to SAMix in
SL tasks, SAMix-C employs a parametric cluster classification head gCψ for online clustering (Caron
et al., 2018; Zhan et al., 2020) to provide pseudo labels (PL) to calculate Lclsφ . It takes feature vectors
from the momentum encoder as the input (optimized by Eq. 11) and has no impact on the mixup
classification objective for the online networks. Meanwhile, SAMix-I employs the instance-level
classification loss for both Lθ,ω and Lclsφ . Moreover, we use the proposed η-balanced mixup loss
Lclsφ for both SAMix-C and SAMix-I with η = 0.5 and the objective Lφ for Mixer.

Hyper-parameter settings. As for Table 5 and Table 6, all compared CL methods use MoCo.V2
pre-training settings except for SwAV (Caron et al., 2020), which adopts ResNet-50 (He et al., 2016)
as the encoder fθ with two-layer MLP projector gω and is optimized by SGD optimizer and Cosine
scheduler with the initial learning rate of 0.03 and the batch size of 256. The length of the momentum
dictionary is 65536 for IN-1k and 16384 for STL-10 and Tiny datasets. The data augmentation strategy
is based on IN-1k in MoCo.v2 as follows: Geometric augmentation is RandomResizedCrop with
the scale in [0.2, 1.0] and RandomHorizontalFlip. Color augmentation is ColorJitter
with {brightness, contrast, saturation, hue} strength of {0.4, 0.4, 0.4, 0.1} with a probability of 0.8,
and RandomGrayscale with a probability of 0.2. Blurring augmentation uses a square Gaussian
kernel of size 23× 23 with a std uniformly sampled in [0.1, 2.0]. We use 224×224 resolutions for
IN-1k and 96×96 resolutions for STL-10 and Tiny datasets. As for Table 7 and Table 8, we follow
the original setups of these CL baselines (SimCLR (Chen et al., 2020a), MoCo.V1 (He et al., 2020a),
MoCo.V2 (Chen et al., 2020b), BYOL (Grill et al., 2020), SwAV (Caron et al., 2020), SimSiam (Chen

16



Under review as a conference paper at ICLR 2024

Same-view Cross-view
(a) (b) (c)

Figure 8: (a) Graphical models and information diagrams of same-view and cross-view training
pipeline for instance-level mixup. Taking the cross-view as an example, xm = h(xτ2i , x

τ2
j , λ), the

λ region denotes the corresponding information partition for λI(z
τq
m , z

τk
i ) and the 1− λ region for

(1−λ)I(z
τq
m , z

τk
j ). (b) Linear evaluation (top-1 accuracy on STL-10) of whether to use the cross-view

pipeline and to combine the original infoNCE loss with the mixup infoNCE loss. (c) A heat map of
linear evaluation (top-1 accuracy on Tiny) represents the effects of using MixUp and CutMix as the
inter-class (y-axis) and intra-class mixup (x-axis) using various α.

& He, 2021), and MoCo.V3 (Chen et al., 2021)) using OpenMixup (Li et al., 2022) implementations.
Notice that MoCo.V3 is specially designed for vision Transformers Dosovitskiy et al. (2021) while
other CL baselines are originally proposed with CNN architecture. Meanwhile, we employ the
contrastive learning objectives with mixing augmentations for BYOL and SimSiam proposed in
BSIM (Chu et al., 2022) because these CL baselines adopt the MSE loss between positive sample
pairs instead of the infoNCE loss (Eq. ??).

CL methods with Mixup augmentations. In Sec. 4.2, we compare the proposed SAMix variants
with general Mixup approaches proposed in SL and well-designed CL methods with Mixups. As for
the general Mixup variants implemented with CL baselines, Mixup (Zhang et al., 2018), Manifold-
Mix (Verma et al., 2019), CutMix (Yun et al., 2019), SaliencyMix (Uddin et al., 2021), FMix (Harris
et al., 2020), ResizeMix (Qin et al., 2020), PuzzleMix (Kim et al., 2020), and out proposed SAMix
only use the single Mixup augmentation. As for the CL methods applying Mixup augmentations,
DACL (Verma et al., 2021) employs the vanilla Mixup, MoCHi (Kalantidis et al., 2020), i-Mix (Lee
et al., 2021), UnMix (Shen et al., 2021), WBSIM (Chu et al., 2022) use two types of Mixup strategies
in the input image and the latent space of the encoder, SDMP (Ren et al., 2022) randomly applies
three types of input space Mixups (Mixup, CutMix, and ResizeMix). Therefore, SDMP can achieve
competitive performances as SAMix variants in Table 7 and Table 8.

Evaluation protocols. We evaluate the SSL representation with a linear classification protocol
proposed in MoCo (He et al., 2020b) and MoCo.V3 (Chen et al., 2021) for ResNet and ViT variants,
which trains a linear classifier on top of the frozen representation on the training set. For ResNet
variants, the linear classifier is trained 100 epochs by an SGD optimizer with the SGD momentum of
0.9 and the weight decay of 0. We set the initial learning rate of 30 for IN-1k as MoCo, and 0.1 for
STL-10 and Tiny with a batch size of 256. The learning rate decays by 0.1 at epochs 60 and 80. For
ViT-S, the linear classifier is trained 90 epochs by the SGD optimizer with a batch size of 1024 and
a basic learning rate of 12. Moreover, we adopt object detection task to evaluate transfer learning
abilities following MoCo, which uses the 4-th layer feature maps of ResNet (ResNet-C4) to fine-tune
Faster R-CNN (Ren et al., 2015) with 24k iterations on the trainval07+12 set and Mask R-CNN (He
et al., 2017) with 2× training schedule (24-epoch) on the train2017 set.

A.5 EMPIRICAL EXPERIMENTS

A.5.1 CROSS-VIEW TRAINING PIPELINE FOR INSTANCE-LEVEL MIXUP

We first analyze the learning objective of instance-level mixup classification for contrastive learning
(CL) as discussed in Sec. 2. As shown in Figure 8 (a), there are two possible objectives for instance-
level mixup defined in Eq. 2: the same-view, max

θ,ω
λI(z

τq
m , z

τq
i ) + (1− λ)I(z

τq
m , z

τq
j ), and cross-view

objective, max
θ,ω

λI(z
τq
m , z

τk
i ) + (1 − λ)I(z

τq
m , z

τk
j ). We hypothesize that the cross-view objective

yields better CL performance than the same-view because the mutual information between two
augmented views should be reduced while keeping task-relevant information (Tian et al., 2020b; Tsai
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et al., 2021). To verify this hypothesis, we design an experiment of various mixup methods with
α = 1 on STL-10 with ResNet-18. As shown in Figure 8 (b), we compare using the same-view or
cross-view pipelines combined with using `NCE(z

τq
i , z

τk
i ) + `NCE(zm) or only using `NCE(zm).

We can conclude: (i) Degenerated solutions occur when using the same-view pipeline while using the
cross-view pipeline outperforms the CL baseline. It is mainly caused by degenerated mixed samples
which contain parts of the same view of two source images. Therefore, we propose the cross-view
pipeline for the instance-level mixup, where zi and zj in Eq. 2 are representations of xτki and xτkj .
(ii) Combining both the original and mixup infoNCE loss, `NCE(z

τq
i , z

τk
i ) + `NCE(zm), surpasses

only using one of them, which indicates that mixup enables fθ to learn the relationship between local
neighborhood systems.

A.5.2 ANALYSIS OF INSTANCE-LEVEL MIXUP

As we discussed in Sec. A.5.1, we propose the cross-view training pipeline for instance-level
mixup classification. We then discuss inter- and intra-class proprieties of instance-level mixup.
As shown in Figure 8 (c), we adopt inter-cluster and intra-cluster mixup from {Mixup, CutMix}
with α ∈ {0.2, 1, 2, 4} to verify that instance-level mixup should treat inter- and intra-class mixup
differently. Empirically, mixed samples provided by Mixup preserve global information of both source
samples (smoother), while samples generated by CutMix preserve local patches (more discriminative).
And we introduce pseudo labels (PL) to indicate different clusters by clustering method ODC (Zhan
et al., 2020) with the class (cluster) number C. Based on experiment results, we can conclude that
inter-class mixup requires discriminative mixed samples with strong intensity while the intra-class
needs smooth samples with low intensity. Moreover, we provide two cluster-based instance-level
mixup methods in Table 5 and 6 (denoting by ∗): (a) Inter-Intra∗. We use CutMix with α ≥ 2 as
inter-cluster mixup and Mixup with α = 0.2 as an intra-cluster mixup. (b) PuzzleMix∗. We introduce
saliency-based mixup methods to SSL tasks by introducing PL and a parametric cluster classifier
gCψ after the encoder. This classifier gCψ and encoder fθ are optimized online like AutoMix and
SAMix mentioned in A.2. Based on Grad-CAM (Selvaraju et al., 2019) calculated from the classifier,
PuzzleMix can be adopted on SSL tasks.

A.5.3 ANALYSIS OF MIXUP GENERATION OBJECTIVES

In Sec. 3.1, we design experiments to analyze various losses for mixup generation in Figure 3 (left)
and the proposed η-balanced loss in Figure 3 (right) for both SL and SSL tasks with ResNet-18 on
STL-10 and Tiny. Basically, we assume both STL-10 and Tiny datasets have 200 classes on their
100k images. Since STL-10 does not provide ground truth labels (L) for 100k unlabeled data, we
introduce PL generated by a supervised pertained classifier on Tiny as the ”ground truth” for its 100k
training set. Notice that L denotes ground truth labels, and PL denotes pseudo labels generated by
ODC (Zhan et al., 2020) with C = 200.

As for the SL task, we use the labeled training set for mixup classification (100k on Tiny v.s. 5k on
STL-10). Notice that SL results are worse than using SSL settings on STL-10, since the SL task only
trains a randomly initialized classifier on 5k labeled data. Because the infoNCE and BCE loss require
cross-view augmentation (or they will produce trivial solutions), we adopt MoCo.V2 augmentation
settings for these two losses when performing the SL task. Compared to CE (L), we corrupt the
global term in CE as CE (PL) or directly remove them as pBCE (L) to show that pBCE is vital to
optimizing mixed samples. Similarly, we show that the global term is used as the global constraint by
comparing BCE (UL) with infoNCE (UL), infoNCE (PL), and infoNCE (L).

As for the SSL task, we verify the conclusions drawn from the SL task and conclude that (a) the local
term optimizes mixup generation directly, corresponding to the smoothness property, and (b) the
global term serves as the global constraint corresponding to the discriminative property. Moreover,
we verified that using the η-balanced loss as Lclsφ yields the best performance on SL and SSL tasks.
Notice that we use η = 0.5 on small-scale datasets and η = 0.1 on large-scale datasets for SL tasks
and use η = 0.5 for all SSL tasks.

A.5.4 ANALYSIS OF MUTUAL INFORMATION FOR MIXUP

Since mutual information (MI) is usually adopted to analyze contrastive-based augmentations (Tian
et al., 2020a;b), we estimate MI between xm of various methods and xi by MINE (Belghazi et al.,
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Image A infoNCE BCE infoNCE(   )Image B
Figure 9: Visualization of loss effect. Both infoNCE and BCE loss have different emphases: infoNCE
shows a similar effect of supervised fine-grained classification, focusing on fragmented and essential
features, while BCE focuses on object completeness.

2018) with 100k images in 64×64 resolutions on Tiny-ImageNet. We sample λ = from 0 to 1 with
the step of 0.125 and plot results in Figure 7 (d). Here, we see that SAMix-C and SAMix-I with more
MI when λ ≈ 0.5 perform better.

A.5.5 RESULTS OF DOWNSTREAM TASKS

In Sec. 4.2, we evaluate transferable abilities of the learned representation of self-supervised methods
to object detection task on PASCAL VOC (Everingham et al., 2010) and COCO (Lin et al., 2014). In
Table 11, the online SAMix-C and the pre-trained SAMix-IP achieve the best detection performances
among the compared methods and significantly improves the baseline MoCo.V2 (e.g., SAMix-C
gains 0.9% AP and +0.7% APb over MoCo.V2). Notice that MoCHi, i-Mix, and UnMix introduce
mixup augmentations in both the input and latent spaces, while our proposed SAMix only generates
mixed samples in the input space.

Table 11: Transferring to object detection with Faster R-CNN on VOC and Mask R-CNN on COCO.
Faster R-CNN Mask R-CNN

CL Method Methods AP AP50 AP75 APb APb50 APb75
MoCo.V2 - 56.9 82.2 63.4 40.6 60.1 44.0
MoCo.V2 Mixup 57.4 82.5 64.0 41.0 60.8 44.3
MoCo.V2 CutMix 57.3 82.7 64.1 41.1 60.8 44.4
MoCo.V2 Inter-Intra? 57.5 82.8 64.2 41.2 60.9 44.4
MoCHi† input+latent 57.1 82.7 64.1 41.0 60.8 44.5
i-Mix† input+latent 57.5 82.7 64.2 - - -
UnMix‡ input+latent 57.7 83.0 64.3 41.2 60.9 44.7
WBSIM‡ input 57.4 82.8 64.2 40.7 60.8 44.2
MoCo.V2 SAMix-I 57.5 83.1 64.2 41.2 61.0 44.5
MoCo.V2 SAMix-IP 57.8 83.2 64.3 41.3 61.1 44.6
MoCo.V2 SAMix-C 57.7 83.1 64.4 41.3 61.1 44.7

A.6 VISUALIZATION OF SAMIX

A.6.1 MIXING ATTENTION AND CONTENT IN MIXER

In Sec. 3.2, we discuss the trivial solutions of Mixer, which usually occur in SSL tasks. Given the
sample pair (xi, xj) and λ = 0.5, we visualize the content Ci and Pi,j to compare the trivial and
non-trivial results in the SSL task on STL-10, as shown in Figure 4. As we can see, both Ci and Pi,j
from the trivial solutions have extremely large or small scale values while Ci generated by CNCL
containing more balanced values. Since the attention weight Pi,j is normalized by softmax, we
hypothesize that Ci more likely causes trivial solutions. To verify our hypothesis, we freeze WP in
the original MB and compare the original linear content projection Wz with the non-linear content
modeling. The results confirm that the non-linear module can prevent large-scale values on Ci and
eliminate the trivial solutions.

A.6.2 EFFECTS OF MIXUP GENERATION LOSS

In addition to Sec.3.3, we further provide visualization of mixed samples using the infoNCE (Eq. 2),
BCE (Eq. 5), and η-balanced infoNCE loss (Eq. 6) for Mixer. As shown in Figure 9, we find that
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mixed samples using infoNCE mixup loss prefer instance-specific and fine-grained features. On
the contrary, mixed samples of the BCE loss seem only to consider discrimination between two
corresponding neighborhood systems. It is more inclined to maintain the continuity of the whole
object relative to infoNCE. Thus, combining both the characteristics, the η-balanced infoNCE loss
yields mixed samples that retain both instance-specific features and global discrimination.

A.6.3 VISUALIZATION OF MIXED SAMPLES IN SAMIX

SAMix in various scenarios. In addition to Sec. 3.3, we visualize the mixed samples of SAMix in
various scenarios to show the relationship between mixed samples and class (cluster) information.
Since IN-1k contains some samples in CUB and Aircraft, we choose the overlapped samples to
visualize SAMix trained for the fine-grained SL task (CUB and Aircraft) and SSL tasks (SAMix-I
and SAMix-C). As shown in Figure 10, mixed samples reflect the granularity of class information
adopted in mixup training. Specifically, we find that mixed samples using infoNCE mixup loss (Eq.2)
is more closely to the fine-grained SL because they both have many fine-grained centroids.

Comparison with PuzzleMix in SL tasks. To highlight the accurate mixup relationship modeling
in SAMix compared to PuzzleMix (standing for saliency-based methods), we visualize the results
of mixed samples from these two methods in the supervised case in Figure 11. There is three main
difference: (a) bilinear upsampling strategy in SAMix makes the mixed samples smoother in local
patches. (b) adaptive λ encoding and mixing attention enhances the correspondence between mixed
samples and λ value. (c) η-balanced mixup loss enables SAMix to balance global discriminative and
fine-grained features.

Comparison of SAMix-I and SAMix-C in SSL tasks. As shown in Figure 12, we provide more
mixed samples of SAMix-I and SAMix-C in the SSL tasks to show that introducing class information
by PL can help Mixer generate mixed samples that retain both the fine-grained features (instance
discrimination) and whole targets.

A.7 DETAILED RELATED WORK

Contrastive Learning. CL amplifies the potential of SSL by achieving significant improvements on
classification (Chen et al., 2020a; He et al., 2020b; Caron et al., 2020), which maximizes similarities
of positive pairs while minimizing similarities of negative pairs. To provide a global view of CL,
MoCo (He et al., 2020b) proposes a memory-based framework with a large number of negative
samples and model differentiation using the exponential moving average. SimCLR (Chen et al., 2020a)
demonstrates a simple memory-free approach with large batch size and strong data augmentations
that is also competitive in performance to memory-based methods. BYOL (Grill et al., 2020) and
its variants (Chen & He, 2021; Chen et al., 2021) do not require negative pairs or a large batch
size for the proposed pretext task, which tries to estimate latent representations from the same
instance. Besides pairwise contrasting, SwAV (Caron et al., 2020) performs online clustering while

Image A SL CL CL Image B
Figure 10: Visualization of SAMix in various scenarios on CUB and Aircraft. Given images A and B,
the middle three mixed samples are generated by SAMix with λ = 0.5 trained in the fine-grained SL
task and the SSL tasks (SAMix-C and SAMix-I).
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enforcing consistency between multi-views of the same image. Barlow Twins (Zbontar et al., 2021)
avoids the representation collapsing by learning the cross-correlation matrix of distorted views of
the same sample. Moreover, MoCo.V3 (Chen et al., 2021) and DINO (Caron et al., 2021) are
proposed to tackle unstable issues and degenerated performances of CL based on popular Vision
Transformers (Dosovitskiy et al., 2021).

Mixup. MixUp (Zhang et al., 2018), convex interpolations of any two samples and their unique
one-hot labels were presented as the first mixing-based data augmentation approach for regularising
the training of networks. ManifoldMix (Verma et al., 2019) and PatchUp (Faramarzi et al., 2020)
expand it to the hidden space. CutMix (Yun et al., 2019) suggests a mixing strategy based on the
patch of the image, i.e., randomly replacing a local rectangular section in images. Based on CutMix,
ResizeMix (Qin et al., 2020) inserts a whole image into a local rectangular area of another image
after scaling down. FMix (Harris et al., 2020) converts the image to Fourier space (spectrum domain)
to create binary masks. To generate more semantic virtual samples, offline optimization algorithms
are introduced for the saliency regions. SaliencyMix (Uddin et al., 2021) obtains the saliency using
a universal saliency detector. With optimization transportation, PuzzleMix (Kim et al., 2020) and
Co-Mixup (Kim et al., 2021) present more precise methods for finding appropriate mixup masks
based on saliency statistics. SuperMix (Dabouei et al., 2021) combines mixup with knowledge
distillation, which learns a pixel-wise sample mixing policy via a teacher-student framework. More
recently, TransMix (Chen et al., 2022) and TokenMix (Liu et al., 2022a) are proposed specially
designed Mixup augmentations for Vision Transformers (Dosovitskiy et al., 2021). Differing from
previous methods, AutoMix (Liu et al., 2022b) can learn the mixup generation by a sub-network
end-to-end, which generates mixed samples via feature maps and the mixing ratio. Orthogonal to the
sample mixing strategies, some researchers Park et al. (2022); Chen et al. (2022); Liu et al. (2023)
improve the label mixing policies upon linear mixup.

Mixup for contrastive learning. A complementary method for better instance-level representation
learning is to use mixup on CL (Kalantidis et al., 2020; Shen et al., 2021). When used in collaboration
with CE loss, Mixup and its several variants provide highly efficient data augmentation for SL by
establishing a relationship between samples. Most approaches are limited to linear mixup methods
without a ground-truth label. For example, Un-mix (Shen et al., 2021) attempts to use MixUp in the
input space for self-supervised learning, whereas the developers of MoChi (Kalantidis et al., 2020)
propose mixing the negative sample in the embedding space to increase the number of hard negatives
but at the expense of classification accuracy. i-Mix (Lee et al., 2021), DACL (Verma et al., 2021),
BSIM (Chu et al., 2022) and SDMP (Ren et al., 2022) demonstrated how to regularize contrastive
learning by mixing instances in the input or latent spaces. We introduce an automatic mixup for SSL
tasks, which adaptively learns the instance relationship based on inter- and intra-cluster properties
online.
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Figure 11: Visualization of PuzzleMix v.s. SAMix for SL tasks on IN-1k. In every four rows, the
upper and lower two rows represent mixed samples generated by PuzzleMix and SAMix, respectively.
λ value changes from left (λ = 0) to right (λ = 1) by an equal step.
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Figure 12: Visualization of SAMix-I v.s. SAMix-C for SSL tasks on IN-1k. In every four rows, the
upper and lower two rows represent mixed samples generated by SAMix-I and SAMix-C, respectively.
λ value changes from left (λ = 0) to right (λ = 1) by an equal step.
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