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ABSTRACT

Normalizing flows are powerful non-parametric statistical models that function
as a hybrid between density estimators and generative models. Current learning
algorithms for normalizing flows assume that data points are sampled indepen-
dently, an assumption that is frequently violated in practice, which may lead to
erroneous density estimation and data generation. We propose a likelihood objec-
tive of normalizing flows incorporating dependencies between the data points, for
which we derive a flexible and efficient learning algorithm suitable for different
dependency structures. We show that respecting dependencies between observa-
tions can improve empirical results on both synthetic and real-world data.

1 INTRODUCTION

Density estimation and generative modeling of complex distributions are fundamental problems in
statistics and machine learning and significant in various application domains. Remarkably, normal-
izing flows (Rezende & Mohamed, 2015; Papamakarios et al., 2021) can solve both of these tasks
at the same time. Furthermore, their neural architecture allows them to capture even very high-
dimensional and complex structured data (such as images and time series). In contrast to other deep
generative models such as variational autoencoders (VAEs), which only optimize a lower bound on
the likelihood objective, normalizing flows optimize the likelihood directly.

Previous work on both generative models and density estimation with deep learning assumes that
data points are sampled independently from the underlying distribution. However, this modelling as-
sumption is oftentimes heavily violated in practice. Figure 1 illustrates why this can be problematic.
A standard normalizing flow trained on dependent data will misinterpret the sampling distortions in
the training data as true signal (Figure 1c. Our proposed method, on the other hand, can correct for
the data dependencies and reconstruct the original density more faithfully (Figure 1d).

The problem of correlated data is very common and occurs in many applications. Consider the
ubiquitous task of image modeling. The Labeled Faces in the Wild (LFW, (Huang et al., 2008))
data set consists of facial images of celebrities, but some individuals in the data set are grossly
overrepresented. For example, George W. Bush is depicted on 530 images, while around 70% of the
individuals in the data set only appear once. A generative model trained naively on these data will
put considerably more probability mass on images similar to George W. Bush, compared to the less
represented individuals. Arguably, most downstream tasks, such as image generation and outlier
detection, would benefit from a model that is less biased towards these overrepresented individuals.

In the biomedical domain, large cohort studies involve participants that oftentimes are directly
related (such as parents and children) or indirectly related (by sharing genetic material due to a
shared ancestry)—a phenomenon called population stratification (Cardon & Palmer, 2003). These
dependencies between individuals play a major role in the traditional analyses of these data and re-
quire sophisticated statistical treatment (Lippert et al., 2011), but current deep-learning based non-
parametric models lack the required methodology to do so. This can have considerable negative
impact on downstream tasks, as we will show in our experiments.

In finance, accurate density estimation and modeling of assets (e.g., stock market data) is essential
for risk management and modern trading strategies. Data points are often heavily correlated with
one another, due to time, sector, or other relations. Traditionally, financial analysts often use copulas
for the modeling of non-parametric data, which themselves can be interpreted as a simplified version
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(a) True distribution, sam-
pled independently

(b) True distribution, sam-
pled with dependencies

(c) Distribution learned by
standard normalizing flow,
trained on dependent data

(d) Distribution learned by
normalizing flow adjusted
for dependencies, trained
on dependent data

Figure 1: Example setting with synthetic data sampled with inter-instance dependencies. Training
a standard normalizing flow on this data biases the model. Adjusting for the dependencies during
training recovers the true underlying distribution.

of normalizing flows (Papamakarios et al., 2021). Copulas commonly in use, however, are limited
in their expressivity, which has led some authors even to blame the 2007-2008 global financial crisis
on the use of inadequate copulas (Salmon, 2009). Many more examples appear in other settings,
such as data with geospatial dependencies, as well as in time series and video data.

In certain settings from classical parametric statistics, direct modeling of the dependencies in max-
imum likelihood models is analytically feasible. For linear and generalized linear models, depen-
dencies are usually addressed either with random effects in linear mixed models (Jiang & Nguyen,
2007) or sometimes only by the inclusion of fixed-effects covariates (Price et al., 2006). Recent
work in deep learning introduced concepts from random effects linear models into deep learning for
prediction tasks such as regression and classification (Simchoni & Rosset, 2021; Xiong et al., 2019;
Tran et al., 2020). In federated learning of generative models, researchers usually deal with the break
of the non-i.i.d. assumptions with ad hoc methods and without consideration of the statistical impli-
cations (Augenstein et al., 2020; Rasouli et al., 2020). These methods also only consider block-type,
repeat-measurement dependencies for multi-source integration. To the best of our knowledge, both
deep generative models and deep density estimation so far lack the tools to address violations against
the independence assumption in the general setting and in a well-founded statistical framework.

In this work we show that the likelihood objective of normalizing flows naturally allows for the
explicit incorporation of data dependencies. We investigate several modes of modeling the depen-
dency between data points, appropriate in different settings. We also propose efficient optimization
procedures for this objective. We then apply our proposed method to three high-impact real-world
settings. First, we model a set of complex biomedical phenotypes and show that adjusting for the
genetic relatedness of individuals leads to a considerable increase in statistical testing power in a
downstream genome-wide association analysis. Next, we consider two image data sets, one with
facial images, the other from the biomedical domain, leading to less biased generative image mod-
els. In the last application, we use normalizing flows to better model the return correlations between
financial assets. In all experiments, we find that adjustment for dependencies can significantly im-
prove the model fit of normalizing flows.

2 METHODS

In this section we describe our methodology for training normalizing flows from dependent data.
First, we will derive a general formulation of the likelihood under weak assumptions on the depen-
dencies among observations. Afterwards, we will investigate two common settings in more detail.

2.1 BACKGROUND: LIKELIHOOD WITH INDEPENDENT OBSERVATIONS

A normalizing flow is an invertible function t : Rp → Rp that maps a p-dimensional noise variable
u to a p-dimensional synthetic data variable x. The noise variable u is usually distributed following
a simple distribution (such as a Np(0, Ip) or U[0,1]p ), for which the density is explicitly known and
efficiently computable. By using the change of variable formula, the log-density can be explicitly
computed as

log(px(x)) = log(pu(u))− log(|det Jt(u)|),
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where u := t−1(x) and Jt(u) is the Jacobian matrix of t in u.

Given a data set x1, . . . , xn, if the observations are independent and identically distributed, the full
log-likelihood function readily factorizes into its respective marginal densities:

log(px(x1, . . . , xn)) =

n∑
i=1

log(px(xi)) =

n∑
i=1

log(pu(ui))− log(|det Jt(ui)|).

The function t is usually chosen in such a way that both the inverse t−1 and the determinant of the
Jacobian Jt can be efficiently evaluated, e.g. using coupling layers (Dinh et al., 2017). Therefore,
all of the terms in the likelihood can be explicitly and efficiently computed and the likelihood serves
as the direct objective for optimization.

2.2 LIKELIHOOD WITH DEPENDENCIES

Assuming the data points are identically distributed, but not independently distributed, the joint
density does not factorize anymore. A model trained on non-independent data but under indepen-
dence assumptions will hence yield biased results for both density estimation and data generation.

We can derive the non-independent setting as follows. Let T : Rn×p → Rn×p be the normalizing
flow applied on all data points together, i.e.,

U = T−1(X) = T−1(x1, . . . , xn) =

 t−1(x1)
⊤

. . .
t−1(xn)

⊤

 .

X, U ∈ Rn×p are now matrix-variate random variables. We can still apply the change of variable
formula, but on the n× p → n× p transformation T , instead of the p → p transformation t:

log(pX(X)) = log(pU (U))− log(|det JT (U)|).
If T is understood on np instead of n × p space, it becomes clear that the Jacobian JT is a block-
diagonal matrix,

JT (U) =

 Jt(u1) 0 . . . 0
0 Jt(u2)
. . .
0 . . . Jt(un)

 ,

for which the determinant is readily available: det JT (U) =
∏n

i=1 Jt(ui). In other words, the log-
abs-det term in the normalizing flow objective remains unchanged even under arbitrary dependence
structure.

The density pU (U), however, is challenging and generally not tractable, and we will consider dif-
ferent assumptions on the joint distribution of U .

In the most general case, we could assume that each ui is marginally distributed as a U[0,1]p vari-
able, with arbitrary dependence structure across observations. This is a direct extension of standard
copulas to matrix-variate variables. As learning general copulas is extremely challenging even in rel-
atively low dimensional settings (Jaworski et al., 2010), we focus in this work only on the equivalent
of a Gaussian copula:
Assumption 2.1. We assume that the dependency within U can be modeled by a matrix normal
distribution MN with independent columns (within observations), but correlated rows (between
observations):

U ∼ MNn,p(0, C, Ip) ≜ Nnp(0, Ip ⊗ C).

Here, ⊗ denotes the Kronecker product.

We can model the columns of U with a 0-mean vector and Ip-covarianace, as the normalizing flow t
is usually chosen to be expressive enough to transform a Np(0, Ip) into the desired data distribution.
We note that this assumption means that we cannot model all forms of latent dependencies so it
constitutes a trade-off between expressivity and tractability.

Now we can state the full likelihood in the non-i.i.d. setting:

log(pX(X)) = −
n∑

i=1

log(|det Jt(ui)|)−
np

2
log(2π)− p

2
log(det(C))− 1

2
tr(U⊤C−1U). (1)
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2.3 SPECIFIC COVARIANCE STRUCTURES

We investigate different assumptions on the covariance structure in the latent dependency model.
The most general case is a fully unspecified covariance matrix, e.g. parametrized as the lower-
triangular Cholesky decomposition of its inverse, C = L−1L−⊤ with n(n + 1)/2 parameters. In
this case, the determinant can be efficiently computed, as det(C) = det(L−1L−⊤) = det(L−1)2 =∏n

i=1(L
−1)2i,i. Matrix products with C−1 can also be evaluated reasonably fast. However, this

parametrization requires optimizing O(n2) additional parameters, which is unlikely to yield useful
estimates and may be prone to overfitting.

Instead, we consider two different assumptions on C that are very common in practice and give a
reasonable trade-off between expressivity and statistical efficiency.

2.3.1 KNOWN AND FIXED COVARIANCE MATRIX

In many settings, side information can yield relationship information, given in the form of a fixed
relationship matrix G. The covariance matrix then becomes C = λIn+(1−λ)G with only parameter
λ ∈ [0, 1] to be determined.

This setting is commonly assumed for confounding correction in genetic association studies, where
G is a genetic relationship matrix (where the entries are pairwise genetic relationships computed
from allele frequencies (Lippert et al., 2011)) or based on pedigree information (e.g., a parent-child
pair receives a relationship coefficient of 0.5 and a grandparent-grandchild pair of 0.25 (Visscher
et al., 2012)). Similarly, for time-related data, we can define relationship via, e.g., a negative expo-
nential function: Ci,j = exp(−γ(ti − tj)

2), where the hyperparameter γ > 0 is a time-decay factor
and ti and tj are the measurement time points of observations i and j, respectively.

More generally, G itself can again be a mixture of multiple relationships G =
∑R

r=1 Gr, where Gr

denote multiple sources of relatedness. In this work, we consider G to be fully specified and only
estimate λ.

If the sample size is moderate (say, below 50k), an efficient approach to optimizing λ (Lippert et al.,
2011) consists of first computing the spectral decomposition of G = QΛQ⊤ (with diagonal Λ and
orthogonal Q) and noticing that λIn+(1−λ)G = Q(λIn+(1−λ)Λ)Q⊤. Then, the log-determinant
and the trace are

log(det(C)) =

n∑
i=1

log(λ+ (1− λ)Λi,i), and

tr(U⊤C−1U) = tr((Q⊤U)⊤(λIn + (1− λ)Λ)−1Q⊤U).

The rotation matrix Q makes mini-batch estimation of the trace term inefficient, as Q will either
mix U across batches or requires a full re-evaluation of Q(λIn + (1− λ)Λ)−1Q⊤ after each update
to λ, i.e., in every mini-batch. Instead, we optimize the parameters of the normalizing flow and λ
in an alternating two-step procedure, see Section 2.4.2. Note that the main additional cost of this
procedure, the spectral decomposition of G, is independent of λ and only needs to be performed
once for a given relationship matrix G.

For larger sample sizes, there still exist practical algorithms for estimating the variance component
(Loh et al., 2015). In practice, G is also often sparse or can be approximated sparsely (e.g., by setting
all elements with absolute value below a fixed threshold to 0). This can greatly accelerate parameter
estimation and is usually accurate enough in practice (Jiang et al., 2019). More generally, different
matrix structures may allow for additional speed-ups, but we defer this investigation to future work.

2.3.2 BLOCK-DIAGONAL, EQUICORRELATED COVARIANCE STRUCTURE

In the next setting, we consider a block-diagonal covariance matrix C with equicorrelated correla-
tion matrices Ci ∈ Rni×ni as blocks:

C =

 C1 0 . . . 0
0 C2

. . .
0 . . . CN

 , where Ci =

 1 ρi . . . ρi
ρi 1
. . .
ρi . . . 1

 .
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with ρi ∈ (0, 1) (we ignore the case of potentially anti-correlated blocks). In other words, there is
no dependence between blocks, and there is a constant dependence within blocks. We assume that
the block structure is known ahead and we only need to find the parameters ρi. For each block there
is either no (ni = 1) or only one (ni > 1) parameter to be learned.

The assumption of equicorrelated blocks is reasonable in settings with repeat measurements of iden-
tical objects or individuals. E.g., in a facial image data set, certain individuals may have multiple
images. This setting is similar to the setting of high-cardinality categorical features in prediction
models (Simchoni & Rosset, 2021).

Both the determinant and the inverse of each block can be efficiently computed ((Tong, 2012), Prop.
5.2.1 & 5.2.3):

det(Ci) = (1 + (ni − 1)ρi)(1− ρi)
ni−1, and (C−1

i )j,k =


1+(ni−2)ρi

(1−ρi)(1+(ni−1)ρi)
if j = k

−ρi

(1−ρi)(1+(ni−1)ρi)
otherwise.

2.4 OPTIMIZATION

2.4.1 MINI-BATCH ESTIMATION

The full likelihood in Equation 1 can be computed explicitly but does not lend itself easily to stochas-
tic optimization with mini-batches. Note that the log-abs-det term decomposes nicely into indepen-
dent observations and the next two terms are independent of the observations. Only the trace term is
problematic for mini-batch estimation, so we propose an unbiased stochastic estimator for it.
Proposition 2.2. Given a mini-batch of size b ≥ 2 and ξ ∈ {0, 1}n a variable indicating batch
inclusion (i.e., xi is in batch iff ξi = 1;

∑n
i=1 ξi = b) and A := C−1, the stochastic trace estimator

t̄rξ =
n

b

n∑
i=1

ξiAi,iu
⊤
i ui + 2

n(n− 1)

b(b− 1)

∑
i<j

ξiξjAi,ju
⊤
i uj (2)

is unbiased, i.e., Eξ[t̄rξ] = tr(U⊤AU).

The proof can be found in Appendix A. The trace estimator t̄rξ only depends on observations ui =
t−1(xi) within the batch and can be efficiently computed, assuming A = C−1 can be efficiently
evaluated, which is the case for the parametrizations discussed in Section 2.3.

2.4.2 TRAINING SCHEDULES

From here on, we distinguish between the true parameters λ and ρi, and the parameters estimated
by our model, λ̂, ρ̂i.

Known & Fixed Covariance Joint optimization between λ̂ and the parameters of the flow is
possible, but would require in each step a full re-evaluation tr(U⊤C−1U) across the full data set,
instead of just the current mini-batch. This makes this training scheme infeasible. Instead, we
propose two different methods to optimize both the flow parameters and variance component λ̂.
First, we can use a simple grid search over different possible values for λ̂ and choose the best
according to performance on a validation set.

Second, we can use an alternating descent approach. In this case, we alternate between optimiz-
ing only the parameters of the flow model for a number of epochs (with a version of mini-batch
stochastic gradient descent) and only optimizing λ̂ for a number of epochs (with gradient descent).
At the beginning of every flow-parameter training stage, we compute the current A = C−1 for
the given λ̂ and can then compute all mini-batch likelihood estimates using the trace estimator in
Equation 2 without the need for recomputation. At the beginning of every λ̂ training stage, we
only once compute the rotated noise variables Q⊤U for the full data set and can then optimize the
derivative of the full objective with respect to λ̂ very efficiently. The trace can be computed as
tr((Q⊤U)⊤(λ̂In + (1 − λ̂)Λ)−1Q⊤U) or as tr(Q⊤U(Q⊤U)⊤(λ̂In + (1 − λ̂)Λ)−1) due to the
cyclical trace property, but in our experiments we found that this was not a bottleneck computation.
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Table 1: Results in terms of the test-data negative log-likelihoods for synthetic data with equicorre-
lated blocks (top) and fixed covariance (bottom), averaged over 10 random seeds (lower = better).
Significantly better results are in bold (one-sided paired t-test, α = 0.05). Baseline is the same
model without taking dependencies into consideration.

Algorithm Abs Crescent CrescentCubed Sign SineWave

Equicorrelated Baseline 1.513 2.021 3.010 1.519 2.070
Blocks Grid Search 1.379 1.885 2.938 1.420 1.983

Joint 1.475 2.005 3.067 1.501 2.087

Fixed Baseline 1.590 2.144 3.262 1.818 2.353
Covariance Grid Search 1.376 1.866 2.944 1.443 2.040

Alternating 1.361 1.869 2.915 1.430 2.064

To yield values in the interval [0, 1], we chose to parametrize λ̂ as the output of a sigmoid function
λ̂ = σ(λ̂raw), where λ̂raw ∈ R is the raw optimization parameter. We tried different sigmoidal
parametrizations, but those had little effect on the outcome.

Equicorrelated Blocks In the case of equicorrelated blocks, we also propose two different training
schemes. First, we can again use a simple grid search over a single joint parameter ρ̂ = ρ̂1 = . . . =
ρ̂N . Alternatively, if there are only very few blocks, a grid search for all ρ̂i is possible, although the
exploration space grows exponentially with the number of blocks N .

Second, due to the simple computations of det(C) and C−1 in this case, we can also perform a joint
optimization over the flow parameters and all ρ̂i. We again parametrize ρ̂is with raw parameters
pushed through a sigmoid function as for λ̂.

3 EXPERIMENTAL EVALUATION

We validate on both synthetic and real-world data that our novel training scheme can help alle-
viate sampling biases when training normalizing flows. On real-world data with non-independent
data, the ground-truth dependency structure is usually not known, making the evaluation inherently
challenging. Therefore, we first investigate simulated settings where we can explicitly control the
dependencies. Our evaluation metric in all settings is the negative log-likelihood (NLL) on a holdout
test set. For the imaging experiments, we also report bits per dimension (bpd), a linear transforma-
tion of the NLL. Additional details for all experiments can be found in Appendix B

3.1 SYNTHETIC DATA EXPERIMENTS

3.1.1 EQUICORRELATED DATA

In the first setting, we simulate a draw with repeat measurements, inducing an equicorrelated depen-
dency structure as described in Section 2.3.2. For each block, we draw one ρi ∼ Unif[0.5,0.99] and
define the full covariance matrix as in Section 2.3.2. Using this covariance matrix, we sample from
several non-parametric 2d distributions provided by Durkan et al. (2019). An example for the Abs
data set can be seen in Figure 1. For modelling the equicorrelated blocks, we choose both a grid
search over fixed parameters and joint gradient-based optimization of ρ̂i and the flow parameters.

Table 1 (top part) shows the result. Surprisingly, while the grid search clearly outperforms the
baseline, the joint optimization does not improve upon the model. For the Crescent data set we
also computed the distance of learned ρ̂is to true ρis for the best models (each block is counted
only once, independent of size). The baseline model had an average MSE of 0.57 (MAE: 0.74),
while grid search and joint optimization had MSEs of only 0.023 (MAE: 0.13) and 0.08 (MAE:
0.25), respectively. In an additional experiment, this time only on the Crescent data set, we
investigate how sensitive our model is to the strength of dependencies. In the data creation, we
only change the sampling of true dependency parameters ρi from a UnifI distribution, with inter-
val I ∈ {[0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1.0]}. The results are shown in Figure 2.
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Table 2: Results on real-world data, negative log-likelihoods on test data set, averaged over 10 ran-
dom seeds for UKB & Stock Pair data (lower = better). P-values for one-sided paired t-test against
baseline in parentheses. Baseline is same model without taking dependencies into consideration.

Algorithm UKB Biomarkers Stock Pairs ADNI (bpd) LFW (bpd)

Baseline 24.50 -5.69 7836.5 (2.760) 6481.6 (3.044)
Grid Search 24.27 (p = 0.002) -5.72 (p = 0.002) 7725.8 (2.721) 6334.7 (2.975)
Joint -5.71 (p = 0.003) 7715.8 (2.718) 6346.5 (2.980)
Alternating 24.04 (p = 0.00003)

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,1]
 range

1.85

1.90

1.95

2.00

2.05

2.10

NL
L

Baseline
Grid Search

Figure 2: Performance of baseline
model versus model adjusted for de-
pendencies, for different strengths of
dependencies (ρ).

At each of the five data set settings, a one-sided paired
t-test shows that the normalizing flow incorporating de-
pendencies outperforms the baseline (α = 0.05). As ex-
pected, for small dependencies in the true data, both mod-
els perform similarly, but our method is very robust and
barely decreases in performance up until the highest range
of sampling distortions.

3.1.2 KNOWN COVARIANCE

We next simulate the setting of a known covariance ma-
trix between different samples but with unknown variance
component λ. We use the covariance structure λI + (1 −
λ)G as in the equicorrelated case to generate correlated bi-
variate standard normal samples that again get non-linearly
transformed. In Table 1 (bottom part) we compare the re-
sults. Both the simple grid search and the alternating de-
scent approach perform considerably better than the naive
baseline algorithm that ignores the dependencies in the
data.

3.2 REAL-WORLD DATA

3.2.1 UKB BIOMARKERS

The UK Biobank (UKB, (Bycroft et al., 2018)) provides rich phenotyping and genotyping for a
large cross-section of the UK population. We investigate a number of blood biomarkers, whose
distribution starkly deviates from standard parametric distribution families. Usually, the data needs
to be quantile-transformed to match a normal distribution (Monti et al., 2022), which, however, can
decrease power of many statistical methods (McCaw et al., 2020). These biomarkers are well-known
to be highly heritable and subject to population stratification, a type of confounding due to joint
ancestry of unrelated individuals (Sinnott-Armstrong et al., 2021). We perform two experiments
on this data set, building non-parametric density model that can incorporate the distorting genetic
correlation between individuals.

Density modeling In the first experiment, we select the 3,223 individuals for whom all 30
biomarkers are available. Relatedness between two individuals is computed as the correlation co-
efficients between the individuals’ first 40 (unnormalized) genetic principal components (computed
from SNP microarray chip data provided by the UKB resource). We use this Matrix as the fixed
covariance structure and optimize over λ̂. This way of measurement of genetic relatedness between
individuals is very common in genetic association studies and has been shown to reliably correct
for population stratification (Price et al., 2006). We investigate the density estimation on the test
data. Due to the relatively small data set size, we re-run the same experiment 10 times with differ-
ent random splits between train, validation, and test set and also different network initializations.
The results in Table 2, first column, indicate that incorporating the dependencies can significantly
improve model fit, both using a grid search and using the alternating optimization scheme.
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Application in association studies A genome-wide association study (GWAS) is a frequentist hy-
pothesis testing procedure, in which a phenotype is tested for association against a large number of
individual genetic mutations (typically on the order of hundreds of thousands or millions of variants).
GWAS are a fundamental tool within multiple disciplines in the life sciences, such as in the medical
domain, in plant and in lifestock breeding, and have considerably contributed to the understanding
of the genetic architecture of complex traits (Visscher et al., 2017). State-of-the-art GWAS algo-
rithms model dependencies between individuals with random effects in a linear mixed model (LMM)
framework and can effectively control for both population stratification and (known and cryptic) re-
latedness between individuals (Yu et al., 2006). In this experiment, we perform multivariate GWAS,
testing for association between individual genetic variants with multiple phenotypes together.

Table 3: Number of loci associated with biomarker
groups at genome-wide significance level, avg. over 3
random seeds. Single: univariate, quantile-transformed
LMMs; Baseline: mvLMM on flow-transformed
biomarkers; Alternating: mvLMM on biomarkers trans-
formed with flow correcting for dependencies.

Biomarker group
(# biomarkers)

Single Baseline Alternating

Bone and joint (4) 18.7 12.0 16.3
Cardiovascular (8) 55.0 58.0 61.0
Diabetes (2) 5.3 5.3 6.7
Hormonal (4) 6.7 5.7 7.0
Liver (6) 29.7 32.3 35.0
Renal (6) 18.3 19.0 18.7

All 133.7 132.3 144.7

Due to the high computational cost
of multivariate LMMs (mvLMMs), we
split the 30 available biomarkers into
six disjoint groups of related biomark-
ers and subsample 10,000 individuals
per group. Rank-based normal trans-
formations are insufficient to transform
a vector of arbitrarily distributed ran-
dom variables into a multivariate normal
distribution, as would be necessary for
mvLMMs. This is due to the fact that
not all random vectors whose marginals
are normally distributed are also mul-
tivariate normally distributed; see Fig-
ure 3 for an illustration on the biomarker
data. Hence, mvLMMs can not be ap-
plied to quantile-transformed data. In-
stead, a standard method is to test for
association with each biomarker in the
group independently, take the minimum
of the p-values over all biomarkers in the group, and perform a Bonferroni-correction for the number
of biomarkers in the group. We propose to instead use a normalizing flow to transform the biomarker
group into a multivariate normal vector and then apply the mvLMM on this transformed data. We use
both a baseline normalizing flow without consideration of the data dependencies, and our proposed
method with the alternating optimization scheme. More details can be found in Appendix B.2.1.

We report the number of indepedent loci significantly associated with each group of biomarkers
in Table 3. While the baseline normalizing flow performs similarly to the naive single-dimension
approach, taking care of the dependencies can boost the number of found loci by more than 8%.

We believe these findings may also significantly improve the analysis of more complex intermediate
phenotypes, such as in full-imaging GWA studies (Kirchler et al., 2022). To the best of our knowl-
edge, this is the first time that normalizing flows have been used for GWAS in this style, although
Hansen et al. (2021) recently used normalizing flows in a different GWAS setting.

3.2.2 IMAGE MODELING

Image modeling is a major research area for normalizing flows, with applications in image synthesis
(Kingma & Dhariwal, 2018), outlier detection (Schirrmeister et al., 2020), and semi-supervised
learning (Izmailov et al., 2020). Repeat measurements are very common in image data sets, and
without adjusting for dependencies, overrepresentation biases will translate into biased generative
models, as well. We investigate two prominent examples.

ADNI brain imaging The Alzheimer’s Disease Neuroimaging Initiative (ADNI, (Jack Jr et al.,
2008)) is a longitudinal study of Alzheimer’s Disease (AD) progression, so many of the individuals
in the study are imaged multiple times. Prior work on similar data has shown that causal effects
can be modeled in generative image models using explicit confounding factors such as age and
sex (Pawlowski et al., 2020). Here we show that we can also model the i.i.d.-violations using our
proposed method. The data set comprises 1,820 individuals with each individual having between
1 and 35 images (mean: 7.03, median: 6) and a total of 12,799 images. We model these repeat

8



Under review as a conference paper at ICLR 2023

measurements with the equicorrelated model and use a Glow-type image normalizing flow (Kingma
& Dhariwal, 2018) as our base architecture.

LFW face images LFW (Huang et al., 2008) consists of 13,233 facial images of 5,749 celebrities,
where each individual has between 1 and 530 images (mean: 2.3, median: 1). We again model these
repeat measurements with the equicorrelated block model and the same Glow-type architecture as
for the ADNI data set.

The results on both data sets show that incorporating dependencies improves the likelihood fit on
the holdout test data set. We note that this does not necessarily translate into a higher quality for
individual images, but rather into a better fit of the full distribution.

3.2.3 STOCK DATA PAIRS

A range of different stock trading and risk management strategies require accurate modeling of the
behavior of different stocks (Kole et al., 2007). We focus on modeling the daily returns for two
pairs of correlated stocks, which is used, e.g., in pair trading strategies (Stander et al., 2013). A
pairs trading strategy can utilize a probabilistic model of stock returns as follows: each day, one
can assess if a given stock pair lies outside of a high-confidence region given the model. If the
pair behaves anomalously and one stock underperforms compared to the other stock, a trader can
hedge these two stocks against each other. The trader would “buy long” the underperforming stock
and “sell short” the overperforming stock, with the implicit assumption that in the future the two
prices will revert back to a high-confidence region. Here, we use the pairs AAPL-MSFT (Apple &
Microsoft) and MA-V (Mastercard & Visa), each starting from initial public offering (IPO) of the
later of the pair, until late 2017, using publicly available data at close time. A single data point is the
2d daily logarithmic return of one of the two pairs of stocks. For example, MA closed on 2012/06/21
with a price of $40.737 and on 2012/06/22 at $42.080, while V closed at $28.661 and $29.976
for those two days. The associated data point then is (log(42.08/40.737), log(29.976/28.661)) =
(0.0324, 0.0449), and a corresponding data point for the same days for AAPL-MSFT is in the data
set. We split data into train (70%), validation (15%), and test (15%) data temporally (non-randomly)
to counteract information leakage. Since Apple and Microsoft had their respective IPOs in the
1980s and Visa and Mastercard theirs in the 2000s, the AAPL-MSFT pair is overrepresented in the
training data, while both pairs are equally represented in the validation and test data. We use the
equicorrelated dependency model with two blocks, one for AAPL-MSFT and one for MA-V. The
distribution fit for the equicorrelated model is slightly improved using the data dependencies, but
again shows that a joint optimization appears to be inferior to a simple grid search.

4 CONCLUSION

We have shown that through a simple adaptation in the likelihood loss of normalizing flows, we
can integrate flexible data dependencies into the training objective, which can also be trained with
mini-batch SGD. Experimental evaluation of synthetic and real-world data showed that our method
can significantly improve the fit of probabilistic models. In future work, we’re especially interested
how our method can be extended to other generative models such as VAEs and if it can be combined
with other debiasing methods such as causal DAGs as done by Pawlowski et al. (2020).

Our method is not without limitations. The trace estimator in Equation 2 is unbiased, but has a high
variance due to the overweighting of the off-diagonal terms. This can lead to unstable gradient
estimates, especially in the early stages of training. In addition, joint optimization of ρ̂is with
the flow parameters counterintuitively only sometimes leads to better results. We believe further
improvements to the optimization schemes might alleviate these issues.

We also note that, if the goal is density estimation or generative modeling, incorporating depen-
dencies into the normalizing flow objective is not necessary in all cases with dependent data. For
example, in the case of equicorrelated repeat measurements with identical block-sizes, no improve-
ments can be expected. This is because no region of the sampling space is overrepresented relative to
the other regions. Only when some blocks are larger than others (or with more general, unbalanced
covariance matrices), adjustment for dependencies makes sense. However, if we are interested in
full likelihood evaluation over the whole data set instead of just density estimation in individual data
points, the results will differ.
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A PROOF OF PROPOSITION 2.2

We have

Eξ[t̄rξ] =
n
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n∑
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i ui + 2
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For the first term, we know that Eξ[ξi] = b/n, so
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For the second term, we first note that

Eξ[ξiξj ] = Eξ[ξiEξ[ξj |ξi]] =
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Then we get
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⊤
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Adding the two terms back together, we get the trace term.

B EXPERIMENTAL DETAILS

All experiments were implemented in PyTorch (Paszke et al., 2019) and PyTorch Lightning, using
the normalizing flow implementations provided by Nielsen et al. (2020). In all settings, we use the
Adamax optimizer (Kingma & Ba, 2015) and reduce the learning rate with an exponential decay.
Weight decay (chosen as described below) is always only applied to the weights of the normalizing
flows, not on the dependency parameters λ̂ and ρ̂i.
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B.1 SYNTHETIC DATA

B.1.1 EQUICORRELATED DATA

We sample block-sizes from a Pareto II distribution with shape parameter α = 0.5 and mini-
mum value 1, rounded to integer values. We clip block-sizes to a maximum of 1,000 and draw
new blocks until all blocks together sum to n = 10, 000 samples. For each block, we draw one
ρi ∼ Unif[0.5,0.99] and define the full covariance matrix as in Section 2.3.2. Using this covari-
ance matrix, we sample non-independently from a bivariate standard normal distribution. We non-
linearly transform these data into complex shapes (Abs, Crescent, CrescentCubed, Sign,
and SineWave) provided by Durkan et al. (2019), for a more challenging density estimation task.
We repeat all experiments 10 times with different random seeds.

As a base flow model, we choose rational quadratic spline flows (Durkan et al.,
2019), which are state-of-the-art for these challenging data sets. For modelling the
equicorrelated blocks, we choose both a grid search over fixed parameters ρ̂ ∈
{0.01, 0.025, 0.05, 0.1, 0.175, 0.25, 0.375, 0.5, 0.6, 0.67, 0.75, 0.9} and joint gradient-based opti-
mization of ρ̂i and the flow parameters, with starting values for ρ̂i ∈ {0.01, 0.1, 0.25, 0.5}. We
train all models for 100 epochs, perform a small hyperparameter sweep over learning rate (in
{0.001, 0.003, 0.01, 0.03}) and weight decay (in {0.001, 0.01, 0.1}), and choose the best model
for each setting based on early stopping and validation set performance (which is sampled without
dependencies).

B.1.2 KNOWN COVARIANCE

In this setting, we simulate a known covariance matrix between n = 5, 000 different samples but
with unknown variance component λ. We first draw a lower-triangular matrix L, with diagonals
all set to 1 and all elements below the diagonal drawn independently from Unif[0.5,0.99]. We use
G = norm(LL⊤) as our covariance structure, where norm normalizes the covariance matrix to a
correlation matrix (with all-1s on the diagonal). We then use the covariance structure λI+(1−λ)G
as in the equicorrelated case to generate correlated bivariate standard normal samples that again get
non-linearly transformed. We fix λ = 0.5 in all experiments, and experiments are again repeated 10
times.

For the grid search, we choose λ̂ ∈ {0.99, 0.975, 0.95, 0.9, 0.825, 0.75, 0.625, 0.5, 0.4, 0.33, 0.25,
0.1} (note that λ corresponds to 1− ρ) and for the alternating optimization scheme, we initialize λ̂
from {0.99, 0.9, 0.75, 0.5}. We train for 100 epochs in the baseline and in grid search; for the alter-
nating optimization, we train for 5 stages of 25 epochs for the flow optimization, with 4 stages of 100
gradient descent updates of λ̂ inbetween. Remaining parameters are chosen as in the equicorrelated
simulations.

B.2 REAL-WORLD DATA

B.2.1 UKB BIOMARKERS

We used an architecture with 16 affine coupling layers, where the fully connected networks have
layers input-128-128-output for each block, Swish activation functions, and a batch-size of
256, as well as a step-wise exponentially-decaying learning rate schedule.

As in the synthetic experiment, for grid searches we search over λ̂ ∈ {0.99, 0.975, 0.95, 0.9, 0.825,
0.75, 0.625, 0.5, 0.4, 0.33, 0.25, 0.1} and for the alternating optimization scheme, we initialize λ̂
from {0.99, 0.9, 0.75, 0.5}. For both grid search and baseline, we do a hyperparameter sweep over
the learning rate (in {0.001, 0.003, 0.01, 0.03}), weight decay (in {0.001, 0.01, 0.1}), and number
of epochs (25 or 50; in a preliminary exploratory sweep we found that more epochs only lead to
overfitting). For the alternating optimization, we chose the same learning rate & weight decay grid,
and additionally optimized over the learning rate for λ̂ (in {0.03, 0.1, 0.3}) and the number of epochs
in the main stages (5 or 25). We alternated for 4 stages, and λ̂-optimization stages went for 100 steps
each.
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(a) Original data. (b) Data after marginal quantile-transformation.

(c) Data after transformation with standard normaliz-
ing flow.

(d) Data after transformation with normalizing flow
correcting for dependencies.

Figure 3: Marginal histograms (diagonals) and 2-d histograms of pairwise joint distributions for the
group of “Hormonal” biomarkers.

14



Under review as a conference paper at ICLR 2023

GWAS experiment For each biomarker group, we selected 10,000 individuals at random from
those individuals that had values for the corresponding biomarkers. For flow training, we used the
same architecture and training as for the previous Biomarker experiment. Based on the results from
the previous experiment, we fixed learning rates at 0.03 (learning rate for λ = 0.1) and weight-decay
on the weights at 0.01. To adjust for fixed covariate effects (age, sex, and genotyping batch), we
projected out covariates from the raw phenotypes with a standard linear regression. For the baseline
model, we trained for 250 epochs (this performed considerably better than the fewer epochs in the
prior experiment). For the alternating flow, we again trained for 4 alternating steps with 25 (flow-
stage) and 100 (λ-stage) epochs each. We performed each experiment three times with random seeds
for both the selection of individuals and for flow initialization & data loading.

Figure 3 shows the pairwise joint distributions for the Biomarker group “Hormonal” (after covariates
were projected out). Figure 3a shows the original data; Figure 3b shows this data after marginals
were transformed using a quantile transformation to standard normal values - it is clearly visible
that although the marginals are normally distributed, the joint distribution is far from multivariate
normal. Figures 3c & 3d show the data after being transformed with normalizing flows, without and
with correcting for dependencies.

Genotype filtering was performed with Plink (Purcell et al., 2007), setting minimum minor al-
lele frequency MAF ≥ 0.1% and Hardy-Weinberg equilibrium p-value p = 0.001; and linkage-
disequilibrium (LD) pruning with R2 = 0.8 and 500kb window. Both univariate (“Single”) and
multivariate (“Baseline”, “Alternating”) GWAS were performed using the GEMMA software ver-
sion 0.98.5 (Zhou & Stephens, 2012) with score tests (option -lmm 3) and centered relatedness
matrix (option -gk 1). For other GEMMA options we used the defaults, hence, final results were
further pruned for MAF ≥ 5%. This resulted in approximately 500,000 genotypes per experiment,
but slightly varying between different random seeds and different biomarker groups, and a resulting
genome-wide significance threshold of α = 0.05/num geno ≈ 10−7.

Loci were identified using the Plink clumping utility, defining a locus as a group of significantly
associated SNPs (single-nucleotide polymorphisms) that were both close spatially (within a 250kb
window) and in LD with R2 ≥ 0.1.

B.2.2 IMAGE MODELING

For both data sets we used a Glow-like architecture with 2 scales and 12 steps per scale, as imple-
mented by Nielsen et al. (2020). We grid-searched for ρi ∈ {0.01, 0.025, 0.05, 0.075, 0.1, 0.15}
and for joint optimization we initialized with the same parameters. ADNI models were trained for
200 and LFW models for 400 epochs, all with a batch-size of 64. All models were trained with a
batch-size of 64 and learning rate and weight decay of 0.001 on a single A100 GPU. Due to compute
constraints, no further hyperparameter exploration was performed.

ADNI brain imaging The data are T1-weighted MRI, preprocessed and standardized with a brain
atlas registration pipeline, using brain extraction, linear alignment, non-linear alignment, and debi-
asing. The resulting images are more homogeneous than the raw images and thus easier to model.
We select the axial-view centered slices and resize them to 64×64 grayscale images. The ρ̂i chosen
by the best final model with joint optimization ranged between 0.066 and 0.081.

LFW Here, we used 32 × 32 RGB images. The ρ̂i chosen by the best final model with joint
optimization ranged between 0.052 and 0.15, while the best model with grid optimization was with
ρ̂i = 0.15.

B.2.3 STOCK DATA PAIRS

For the stock data, we used an affine coupling normalizing flow with 8 layers of
input-64-64-output dimensions and swish activation function. Grid search and joint search
were initialized with the same values as in the synthetic experiment. We performed a hyperparame-
ter sweep over learning rate ({0.001, 0.003, 0.01, 0.03}), weight decay ({0.001, 0.01, 0.1}) and ran
all models for 100 epochs and a batch size of 256.
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C COMPUTATIONAL CONSIDERATIONS

Additional compute & memory requirements for incorporating dependencies depend mostly on the
type of dependencies and on the optimization scheme. In our implementation, baseline runs were
implemented as special cases of the flow with dependencies (i.e., ρi = 0 or λ = 1), which makes
fair empirical comparison challenging.

C.1 EQUICORRELATED BLOCKS

Grid optimization A single run with fixed dependency parameter ρi > 0 will have almost iden-
tical run times as the baseline method with ρi = 0, as the base distribution likelihood evaluation
is not a bottleneck. Since all ρi are identical, there is virtually no additional memory requirement.
However, as the full network needs to be trained for each of the Mgrid grid values tested, the grid
evaluation scheme takes roughly Mgridtbaseline

Joint optimization In this setting, N (number of blocks) parameters ρi need to additionally be
estimated and stored in memory, but in all cases considered in this paper this was strongly dominated
by the number of parameters in the model (e.g., in LFW, the normalizing flow model had ∼ 90M
parameters, but only a few thousand extra parameters for the individuals. For very slim models and
a very large number of blocks, this relationship may change.

C.2 FIXED COVARIANCE

For the fixed-covariance case, a full spectral decomposition is necessary prior to training, which is
(in practice) an O(n3) operation. It also requires storing the full spectral decomposition in memory.
Standard linear algebra libraries used in PyTorch or Numpy & SciPy only support spectral decom-
positions up to several 10k and oftentimes become unreliable beyond that. Therefore, using fixed
covariance schemes is infeasible for larger-scale problems using out-of-the-box software.

Grid optimization For the fixed grid schedule, mini-batch estimation requires quadratic time in
the size of the mini-batch, due to the stochastic trace estimator in Equation 2. However, for batch-
sizes used in our settings, this was still dominated by the neural architecture shared with the baseline
flow architecture. The log-det-Jacobian can be cached and the remaining parts are identical to the
baseline flow, so each individual epoch has very similar time requirements to the baseline model.
Analogously to the equicorrelated blocks grid optimization, we still need to perform Mgrid runs,
although the same spectral decomposition can be used for all those runs.

Alternating optimization The main training stage for the flow parameters has identical computa-
tional considerations as the grid optimization procedure. However, for optimizing λ̂ in every other
training stage, first the full data set needs to pushed through the normalizing flow and then rotated
with the orthogonal matrix Q⊤ from the spectral decomposition. Despite this, the alternating train-
ing procedure was dominated by the original spectral decomposition and the main training stage of
the flow.

D ADNI IMAGES
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(a) Train images (b) Baseline (c) Grid Search (d) Joint

Figure 4: Random samples of ADNI train images and images generated by the normalizing flow
models.
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