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ABSTRACT

Distillation techniques have substantially improved the sampling speed of diffu-
sion models, allowing of the generation within only one step or a few steps. How-
ever, these distillation methods require extensive training for each dataset, sam-
pler, and network, which limits their practical applicability. To address this limi-
tation, we propose a straightforward distillation approach, Distilled-ODE solvers
(D-ODE solvers), that optimizes the ODE solver rather than training the denoising
network. D-ODE solvers are formulated by simply applying a single parameter
adjustment to existing ODE solvers. Subsequently, D-ODE solvers with smaller
steps are optimized by ODE solvers with larger steps through distillation over a
batch of samples. Our comprehensive experiments indicate that D-ODE solvers
outperform existing ODE solvers, including DDIM, PNDM, DPM-Solver, DEIS,
and EDM, especially when generating samples with fewer steps. Our method
incur negligible computational overhead compared to previous distillation tech-
niques, enabling simple and rapid integration with previous samplers. Qualitative
analysis further shows that D-ODE solvers enhance image quality while preserv-
ing the sampling trajectory of ODE solvers.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have recently
gained attention as a promising framework for generative models, demonstrating state-of-the-art per-
formance across a wide range of applications. These models are designed to progressively remove
noise from a sample during training and generate new data samples from a predefined prior distri-
bution during inference. They have achieved notable success in various domains, including image
generation (Song et al., 2020b; Dhariwal & Nichol, 2021), text generation (Hoogeboom et al., 2021;
Austin et al., 2021), audio generation (Mittal et al., 2021; Lu et al., 2021), 3D shape generation (Cai
et al., 2020; Luo & Hu, 2021), video synthesis (Harvey et al., 2022; Yang et al., 2022b), and graph
generation (Niu et al., 2020; Vignac et al., 2023).

Despite their ability to produce high-quality samples and mitigate issues such as mode collapse (Sal-
imans et al., 2016; Zhao et al., 2018), the sampling process of diffusion models typically involves
a substantial number of network evaluations, rendering the process slow and computationally in-
tensive (Xiao et al., 2021). Consequently, recent research has concentrated on accelerating or opti-
mizing the sampling process while preserving the quality of generated samples (Song et al., 2020a;
Karras et al., 2022; Salimans & Ho, 2021). In particular, methods aimed at improving the sampling
efficiency of diffusion models can be broadly categorized into two groups: learning-free sampling
and learning-based sampling (Yang et al., 2022a).

Learning-free sampling can be applied to pre-trained diffusion models without additional training
and typically relies on efficient solvers for stochastic differential equations (SDEs) or ordinary dif-
ferential equations (ODEs) (Song et al., 2020b). For instance, DDIM (Song et al., 2020a) employs
a non-Markovian process to accelerate sampling. PNDM (Liu et al., 2021) introduces a pseudo-
numerical method for solving differential equations on given data manifolds. EDM (Karras et al.,
2022) utilizes Heun’s second-order method and demonstrates improved sampling quality compared
to the naive Euler’s method (Song et al., 2020b). More recently, methods like DPM-Solver (Lu et al.,
2022) and DEIS (Zhang & Chen, 2022) leverage the semi-linear structure of diffusion ODEs and
employ numerical methods of exponential integrators.
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On the other hand, learning-based sampling requires additional training to optimize specific learning
objectives, such as knowledge distillation (Salimans & Ho, 2021; Song et al., 2023) and optimized
discretization (Nichol & Dhariwal, 2021; Watson et al., 2021). For example, progressive distilla-
tion (Salimans & Ho, 2021) iteratively distills pre-trained diffusion models into a student model that
requires only half the number of sampling steps. Recently, Song et al. (2023) introduces consistency
models, which are trained to predict consistent outputs along the same ODE trajectory. Consistency
models can be trained independently or with knowledge distillation.

While learning-free and learning-based sampling have been studied independently, their combina-
tion remains relatively unexplored. In this paper, we propose a novel distillation method for diffusion
models, Distilled-ODE solvers (D-ODE solvers), that leverages the underlying principles of existing
ODE solvers. Our approach is grounded in a key observation that the outputs of denoising networks
exhibit high correlation within neighboring time steps. D-ODE solvers introduce a single additional
parameter to ODE solvers, optimized by minimizing the difference between the output of D-ODE
solvers with smaller steps (student) and that of ODE solvers with larger steps (teacher). Once the
optimal parameter for D-ODE solvers is established, it can be reused across different batches dur-
ing sampling, while keeping the denoising network fixed. Our method represents an intersection
of learning-free and learning-based sampling, employing a straightforward distillation process to
optimize D-ODE solvers while capitalizing on the sampling dynamics inherent in ODE solvers.

Our main contributions can be summarized as follows:

• We introduce Distilled-ODE solvers (D-ODE solvers), which transfer the knowledge from
ODE solvers with larger steps to those with smaller steps through a simple formulation.

• D-ODE solvers significantly reduce distillation times by optimizing existing ODE solvers
and eliminate the need for extensive parameter updates in pre-trained denoising networks.

• In quantitative studies, our new sampler outperforms state-of-the-art ODE solvers in terms
of FID scores on several image generation benchmarks.

2 BACKGROUND

Forward and reverse diffusion processes: The forward process {xt ∈ RD}t∈[0,T ] initiates with
x0 drawn from the data distribution pdata(x) and evolves to xT at timestep T > 0. Given x0, the
distribution of xt can be expressed as follows:

qt(xt|x0) = N (xt|αtx0, σ
2
t I), (1)

where αt ∈ R and σt ∈ R determine the noise schedule of the diffusion models, with the signal-to-
noise ratio (SNR) α2

t /σ
2
t strictly decreasing as t progresses (Kingma et al., 2021). This ensures that

qT (xT ), the distribution of xT , approximates pure Gaussian noise in practice.

The reverse process of diffusion models is approximated using a denoising network to iteratively
remove noise. Starting from xT , the reverse process is defined with the following transition (Ho
et al., 2020):

pθ(xt−1|xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)), (2)
where θ represents the trainable parameters in the denoising network, and µθ(xt, t) and Σθ(xt, t)
are the Gaussian mean and variance estimated by the network θ.

SDE and ODE formulation: Song et al. (2020b) formulate the forward diffusion process using a
stochastic differential equation (SDE) to achieve the same transition distribution as Equation 1:

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ pdata(x), (3)

where wt ∈ RD is the standard Wiener process, and f(t) and g(t) are functions of αt and σt. Song
et al. (2020b) also introduce the reverse-time SDE, which evolves from timestep T to 0, based on
Anderson (1982):

dxt = [f(t)xt − g2(t)∇x log qt(xt)]dt+ g(t)dw̄t, xT ∼ qT (xT ), (4)

where w̄t is the standard Wiener process in reverse time, and ∇x log qt(xt) is referred to as the
score function (Hyvärinen & Dayan, 2005). The randomness introduced by the Wiener process can
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be omitted to define the diffusion ordinary differential equation (ODE) in the reverse process, which
corresponds to solving the SDE on average:

dxt = [f(t)xt −
1

2
g2(t)∇x log qt(xt)]dt xT ∼ qT (xT ). (5)

The formulation of the probability flow ODE opens up possibilities for using various ODE solvers
to expedite diffusion-based sampling processes (Liu et al., 2021; Lu et al., 2022; Zhang & Chen,
2022; Karras et al., 2022).

Denoising score matching: To solve Equation 5 during sampling, the score function
∇x log qt(xt) must be estimated. Ho et al. (2020) propose estimating the score function using a
noise prediction network ϵθ such that ∇x log qt(xt) = −ϵθ(xt, t)/σt with xt = αtx + σtϵ. The
noise prediction network ϵθ is trained using the L2 norm, given samples drawn from pdata:

Ex∼pdata
Eϵ∼N (0,σ2

t I)
||ϵθ(αtx+ σtϵ, t)− ϵ||2. (6)

Here, Gaussian noise is added to the data x following the noise schedule (αt, σt), and the noise
prediction network predicts the added noise ϵ from the noisy sample.

Alternatively, the score function can be represented using a data prediction network xθ instead of ϵθ
with ∇x log qt(xt) = (xθ(xt, t)−xt)/σ

2
t . The data prediction network xθ is trained with following

L2 norm:
Ex∼pdata

Eϵ∼N (0,σ2
t I)

||xθ(αtx+ σtϵ, t)− x||2. (7)

It is worth noting that estimating the original data x is theoretically equivalent to learning to predict
the noise ϵ (Ho et al., 2020; Luo, 2022). While some works argue that predicting the noise empir-
ically results in higher quality samples (Ho et al., 2020; Saharia et al., 2022), Karras et al. (2022)
recently achieved state-of-the-art performance using the data prediction network. In this work, we
conduct comprehensive experiments with both noise and data prediction networks.

3 METHOD

As introduced in Section 1, our study aims to bridges the gap between learning-based and learning-
free sampling, leveraging the advantages of both approaches. We utilize the sampling dynamics of
ODE solvers while enhancing sample quality through a simple and efficient distillation process. This
section commences with a fundamental observation of the high correlation among denoising outputs,
which motivates the formulation of D-ODE solvers. We then delve into the details of transferring
knowledge from ODE solvers to D-ODE solvers.

3.1 CORRELATION BETWEEN DENOISING OUTPUTS

Figure 1: Heatmaps are drawn by cosine similarity among
denoising outputs with 1000-step DDIM on CIFAR-10.
Noise prediction model (left) and data prediction model
(right).

ODE solvers typically improve the
sampling process by exploiting the
denoising network’s output history,
allowing for the omission of many
intermediate steps. Hence, compre-
hending the connections between de-
noising outputs is paramount when
developing D-ODE Solvers. Our aim
is to create novel ODE solvers that
harness the benefits of sampling dy-
namics while keeping optimization
degrees of freedom to a minimum.

Figure 1 presents heatmaps based
on cosine similarity calculations be-
tween all denoising outputs from a 1000-step DDIM (Song et al., 2020a) run. We observe that
predictions from neighboring timesteps exhibit high correlations in both denoising networks, with
cosine similarities close to one. This observation suggests that denoising outputs contain redun-
dant and duplicated information, allowing us to skip the evaluation of denoising networks for most
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timesteps. For example, we can combine the history of denoising outputs to better represent the
next output, effectively reducing the number of steps required for accurate sampling. This idea is
implemented in most ODE solvers, which are formulated based on the theoretical principles of solv-
ing differential equations. These solvers often adopt linear combinations or multi-step approaches,
leveraging previous denoising outputs to precisely estimate the current prediction (Watson et al.,
2021; Liu et al., 2021; Karras et al., 2022; Lu et al., 2022; Zhang & Chen, 2022). Consequently,
ODE solvers can generate high-quality samples with far fewer timesteps compared to the thousand
steps of DDPM (Ho et al., 2020).

3.2 FORMULATION OF D-ODE SOLVER

We now introduce a D-ODE solver with a straightforward parameterization to distill knowledge
from ODE solvers. We begin by outlining a fundamental method for representing the new denois-
ing prediction D̃t at timestep t as a linear combination of current and previous denoising outputs
{Dθ(x̂k, k)}Tk=t:

D̃t =

T∑
k=t

λkDθ(x̂k, k), (8)

where x̂k represents the estimated sample, and λk ∈ R is a weight parameter at timestep k. We an-
ticipate that this new denoising prediction can approximate the denoising target and lead to improved
sample quality. Some ODE solvers adopt similar formulations to Equation 8 with numerically de-
termined {λk}Tk=t (Liu et al., 2021; Lu et al., 2022; Zhang & Chen, 2022).

One challenge with Equation (8) is that the value of the denoising prediction D̃t can be unstable
and volatile depending on the weights {λk}Tk=t. This instability is less likely to occur with care-
fully computed weights in ODE solvers, but convergence is not guaranteed when the weights are
optimized through distillation. To generate high-quality samples, the sampling process must follow
the true ODE trajectory on which the diffusion models were trained (Liu et al., 2021; Song et al.,
2023). In other words, the denoising network might not produce meaningful predictions for samples
outside the target manifold of data. This issue has been investigated from various perspectives in
recent papers (Xiao et al., 2021; Ning et al., 2023; Li et al., 2023).

In order to avoid these problems, we need to constrain Equation (8) so that it adheres to the previous
ODE trajectory. The new prediction D̃t can be defined as Equation (9):

D̃t = Dθ(x̂t, t) +

T∑
k=t+1

λk(Dθ(x̂t, t)−Dθ(x̂k, k)) (9)

≈ Dθ(x̂t, t) + λt(Dθ(x̂t, t)−Dθ(x̂t+1, t+ 1)). (10)

Furthermore, we empirically find that using only the denoising output from the previous timestep is
sufficient for distilling knowledge from the teacher sampling. Hence, we apply a first-order approx-
imation to obtain Equation (10). The mean of the new denoising prediction approximates that of
the original denoising output since the mean does not change significantly between timesteps t and
t + 1 (e.g., E[D̃t] ≈ E[Dθ(x̂t, t)]). This is a key feature of D-ODE solvers, as we aim to remain
on the same sampling trajectory as ODE solvers. In Section 5, we visually demonstrate that D-ODE
solvers can globally follow the trajectory of existing ODE solvers.

In conclusion, D̃t can replace existing outputs of the denoising network to build D-ODE solvers.
If ODE solvers already have their own rules for obtaining new denoising predictions, we can cal-
culate Equation (10) with their new predictions instead of the denoising output (e.g., Dθ(x̂t, t)).
Specific applications of D-ODE solvers can be found in Appendix D.1 and D.2. Additionally, we
also compare different formulations of D-ODE solvers in Appendix D.4.

3.3 DISTILLATION OF D-ODE SOLVER

Each denoising step in diffusion models typically comprises two parts: (1) a denoising network Dθ

and (2) an ODE solver S. Given an estimated noisy sample x̂t at timestep t, the denoising network
produces a denoising output d̂t = Dθ(x̂t, t), and the ODE solver subsequently generates the next
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Figure 2: The distillation of ODE Solver. C steps of teacher sampling are distilled into a single
step of student sampling. D-ODE Solver Sd is equipped with parameter λt to be optimized through
distillation while denoising network Dθ remains frozen for both teacher and student sampling.

sample x̂t−1 = S(d̂t, x̂t), utilizing the denoising output and the current noisy sample. While some
ODE solvers also utilize the history of denoising outputs {d̂k}Tk=t, we omit this notation here for
simplicity. This procedure is iterated until the diffusion models reach the estimated original sample
x̂0.

Now, we are ready to explain how ODE solvers with large steps can be distilled into D-ODE solvers
with small steps. In Figure 2, the teacher sampling process begins with the noisy sample at timestep
Ct and undergoes C denoising steps to generate a sample at timestep C(t − 1). The student sam-
pling process starts with a noisy sample at timestep t and obtains a sample at timestep t − 1 after
one denoising step. In order to optimize λt in the D-ODE solver, the teacher sampling is initially
performed for one batch to save intermediate samples {x̂(t)

k }Ct
k=C(t−1) as targets and the student

sampling is also executed to acquire intermediate samples {x̂(s)
k }tk=t−1 as predictions. Then, λ∗

t
is determined by minimizing the difference between the targets and the predictions on batch B as
follows:

λ∗
t = argmin

λt

Ex∈B ||x̂(t)
C(t−1) − Sd(Dθ(x̂

(s)
t , t), x̂

(s)
t ;λt)||2 (11)

= argmin
λt

Ex∈B ||x̂(t)
C(t−1) − x̂

(s)
t−1||2. (12)

The above equation is solved for every timestep t of the student sampling, yielding a set of optimal
λt values (e.g., λ∗ = {λ∗

1, λ
∗
2, ..., λ

∗
T }). Notably, λ∗ is estimated using only one batch of samples, a

process that typically takes just a few CPU minutes, and can be reused for other batches later.

Algorithm 1 outlines the overall sampling procedure of the D-ODE solver. When aiming to gener-
ate N samples, it is customary to divide N into M batches and sequentially execute the sampling
process for each batch B, which contains |B| = N/M samples (Line 3). For the first batch, the
teacher sampling is performed with denoising network Dθ and ODE solver S for CT steps to ob-
tain intermediate outputs, which will serve as target samples (Line 5). Subsequently, the student
sampling takes place for T steps with λ (Line 6). At this point, λ∗ is estimated and saved for each
timestep by solving Equation (12) (Line 7). Starting from the second batch onwards, sampling can
proceed using the same denoising network Dθ and D-ODE solver Sd equipped with λ∗ (Line 9). It
is important to note that the student’s samples can be generated in just T steps, which should exhibit
similar quality to the teacher’s samples generated over CT steps. The scale C and batch size |B| are
integer values determined prior to experiments, with ablation studies on these parameters presented
in Appendix F.

5



Under review as a conference paper at ICLR 2024

Algorithm 1 Sampling with D-ODE solver

1: Pre-trained denoising network Dθ, ODE solver S, D-ODE solver Sd

2: Number of batches M with size |B|, Student sampling steps T , Teacher sampling steps CT
3: for m = 1, ...,M do
4: if m = 1 then
5: {x̂(t)

k }CT
k=0 = Sampling(Dθ, S, CT ) ▷ Obtain teacher samples

6: {x̂(s)
k }Tk=0 = Sampling(Dθ, Sd, T ; λ) ▷ Obtain student samples

7: Estimate λ∗ = {λ∗
1, λ

∗
2, ..., λ

∗
T } with Equation (12)

8: end if
9: {x̂(s)

k }Tk=0 = Sampling(Dθ, Sd, T ; λ∗)
10: Save sample x̂

(s)
0

11: end for

4 EXPERIMENTS

In this section, we compare D-ODE solvers to ODE solvers across diverse image generation bench-
marks at various resolutions, including CIFAR-10 (32× 32), CelebA (64× 64), ImageNet (64× 64
and 128 × 128), FFHQ (64 × 64), and LSUN bedroom (256 × 256). We carry out comprehensive
experiments for both noise and data prediction models, each involving a distinct set of ODE solvers.
The Fréchet Inception Distance (FID) (Heusel et al., 2017) is measured with 50K generated samples
across various numbers of denoising function evaluations (NFE), following Lu et al. (2022). Our
reported FID scores are averages from three independent experiment runs with different random
seeds.

For the distillation of ODE solvers, we opt for a scale parameter of C = 10 and a batch size of
|B| = 100. However, due to GPU memory constraints in the case of LSUN bedroom, we use a batch
size of 25. It is noteworthy that, unless explicitly specified, DDIM serves as the primary teacher
sampling method for guiding the student sampling. This choice is informed by the consideration
that certain ODE solvers employ multi-step approaches during sampling, making it challenging
to set their intermediate outputs as targets for distillation. In contrast, DDIM generates a single
intermediate output per denoising step, simplifying the establishment of matching pairs between
DDIM targets and student predictions. More experimental details can be found in Appendix E.

(a) CIFAR-10 (32× 32) (b) CIFAR-10 (32× 32) (c) ImageNet (128× 128)

(d) CelebA (64× 64) (e) CelebA (64× 64) (f) LSUN bedroom (256× 256)

Figure 3: Image quality measured by FID ↓ with NFE ∈ {2, 5, 10, 25, 50, 100, 250}. For DPM-
Solver3 and DEIS3, we use 3 NFE instead of 2 NFE as the third-order method requires at least three
denoising outputs. Dotted lines denote ODE solvers while straight lines represent the applications
of the D-ODE solver to them. More experiments can be found in Appendix H.
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4.1 NOISE PREDICTION MODEL

We apply D-ODE solvers to discrete-time ODE solvers employed in the noise prediction model,
which includes DDIM (Song et al., 2020a), iPNDM (Zhang & Chen, 2022), DPM-Solver (Lu et al.,
2022), and DEIS (Zhang & Chen, 2022). For DPM-Solver and DEIS, we selected third-order meth-
ods. While these prior ODE solvers were primarily evaluated with NFE greater than 10, we also
conducted experiments with extremely small NFE such as 2 or 3, to assess the performance of D-
ODE solvers during the initial stages of the sampling process.

As shown in Figure 3a and 3d, D-DDIM outperforms DDIM when NFE exceeds 5, gradually con-
verging to FID score similar to that of DDIM as NFE increases. It is important to note that DDIM
with small NFE (2 or 5) lacks the capability to produce meaningful images, which is also reflected
in the performance of D-DDIM. iPNDM, a high-order method that utilizes previous denoising out-
puts, consistently exhibits improvements with the D-ODE solver formulation, except at 2 NFE. This
improvement is particularly notable for high-order methods like DPM-Solver3 and DEIS3. Specifi-
cally, D-DPM-Solver3 effectively alleviates the instability associated with multi-step approaches at
extremely small NFE values, surpassing the performance of DPM-Solver3 by a significant margin.
While DEIS3 already provides a precise representation of the current denoising prediction through
high-order approximation, Figure 3 illustrates that D-DEIS3 can further enhance the approximation
through distillation.

4.2 DATA PREDICTION MODEL

(a) CIFAR-10 (32× 32) (b) FFHQ (64× 64) (c) ImageNet (64× 64)

Figure 4: Image quality measured by FID ↓ with various NFE values (DDIM: {2, 5, 10, 25, 50,
100, 250} and EDM: {3, 5, 9, 25, 49, 99, 249}). Dotted lines denote ODE solvers and straight lines
represent the applications of the D-ODE solver to them. D-ODE solvers outperform ODE solvers,
especially for smaller NFE.

To conduct experiments on data prediction models, we followed the configuration outlined by Karras
et al. (2022). We applied the D-ODE solver to DDIM, rebuilt based on this configuration, and
EDM (Karras et al., 2022), which employs Heun’s second-order method. Notably, while Karras
et al. (2022) also re-implemented Euler-based samplers in their paper, we chose not to include them
in our experiments, as EDM demonstrates superior FID scores.

As depicted in Figure 4, D-ODE solvers outperform ODE solvers, especially for smaller NFE. For
instance, D-DDIM with 25 NFE can produce samples comparable to DDIM with 250 NFE in terms
of FID, resulting in a speedup of around 10 times. With increasing NFE, FID scores of both ODE
and D-ODE solvers asymptotically converge to each other. Given that the performance of student
sampling is closely tied to that of teacher sampling, it is natural to observe similar FID scores
for student and teacher sampling with larger NFE. Moreover, it is worth noting that around NFE
2, DDIM occasionally outperforms D-DDIM slightly. This observation suggests that the 2-step
DDIM may not possess sufficient capacity to effectively distill knowledge from teacher sampling,
particularly when DDIM is already generating noisy images (FID score exceeding 250).

4.3 COMPARISON WITH PREVIOUS DISTILLATION METHODS

The distillation process for D-ODE solvers typically requires only a few CPU minutes, adding neg-
ligible computational overhead to the entire sampling process. In contrast, previous distillation
techniques for diffusion models (Salimans & Ho, 2021; Meng et al., 2023; Song et al., 2023) neces-
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sitate the optimization of the entire parameters of the denoising network. As a result, these methods
demand a substantial amount of training time for each setting.

Table 1 directly compares the computational times required by each distillation method to reach 3
FID on CIFAR-10 given the same pre-trained denoising network. The total time encompasses the
distillation time following their configurations and the time taken for generating 50k samples. For
instance, D-EDM first optimizes λ and then proceeds with the sampling process, while consistency
distillation (CD) (Song et al., 2023) and progressive distillation (PD) (Salimans & Ho, 2021) need
numerous training iterations before executing a few-step sampling.

Table 1: Comparison on computational
time to achieve 3 FID. The unit of time
corresponds to the time required to gen-
erate 50k samples with 10-step DDIM.

Method D-EDM CD PD
Time 2.55 187.25 106.16

The results clearly demonstrate that optimizing ODE
solvers instead of the denoising network can significantly
reduce computational time and resource requirements
while achieving comparable sample quality. It is impor-
tant to note that the results may vary depending on the
training configuration of CD and PD, as the majority of
their time is consumed during the distillation process. In
this context, our method aligns well with the recent trend
of democratizing diffusion models by minimizing or circumventing extensive training that relies
on a large number of GPUs (Hang et al., 2023; Wang et al., 2023; Zheng et al., 2023; Wu et al.,
2023). Appendix C provides a detailed explanation for distillation methods in diffusion models and
Appendix G contains additional comparisons with other sampling methods.

5 ANALYSIS

This section includes visualizations of the sampling process and qualitative results. We begin by
conducting a visual analysis following the methodology of Liu et al. (2021) to assess the global and
local characteristics of the sampling process. Subsequently, we compare the quality of the generated
images produced by ODE solvers and D-ODE solvers.

Figure 5: The top row illustrates the change of norm comparing ODE and D-ODE solvers. The
bottom row presents the update path of two randomly selected pixels in the images. The result of
1000-step DDIM is drawn as the target trajectory and 10-step sampler is conducted for ODE and D-
ODE solvers. The figures are generated from 1000 samples using a noise prediction model trained
on CIFAR-10.

To facilitate the visualization of high-dimensional data, we employ two distinct measures: the
change in norm as a global feature and the change in specific pixel values as a local feature, as
proposed by Liu et al. (2021). In the top row of Figure 5, we observe that the norm of D-ODE
solvers closely follows the trajectory traced by the norm of ODE solvers. This observation suggests
that D-ODE solvers remain within the high-density regions of the data, exerting minimal influence
on the ODE trajectory. This aligns with our design objective of D-ODE solvers, ensuring that the
new denoising prediction should match the mean of the denoising output of ODE solvers, as dis-
cussed in Section 3.2. For reference, we also include the norm of DDIM with 1000 steps as it
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adheres to the target data manifold. In the bottom row of Figure 5, we randomly select two pixels
from the image and depict the change in their values, referencing the 1000-step DDIM as the target.
Clearly, the pixel values of D-ODE solvers exhibit closer proximity to the target than those of ODE
solvers. In conclusion, D-ODE solvers can achieve high-quality image generation by guiding their
pixels toward the desired targets while remaining faithful to the original data manifold.

(a) ImageNet (64× 64)

(b) FFHQ (64× 64)

Figure 6: Comparison of generated samples between ODE and D-ODE solvers. Data prediction
models are used with increasing NFE (DDIM: {2, 5, 10, 25, 50}, EDM: {3, 5, 9, 25, 49}).

In Figure 6, we present a comparison of the generated images produced by ODE and D-ODE solvers
using data prediction models trained on the ImageNet and FFHQ datasets. In general, our method
exhibits an improvement in image quality over ODE solvers, particularly for smaller NFE. DDIM
tends to generate blurry images with indistinct boundaries, while D-DDIM produces clearer images
with more prominent color contrast. EDM, especially with NFE smaller than 5, generates images
characterized by high noise levels and artifacts, leading to FID scores exceeding 250. In contrast,
D-EDM manages to generate relatively clear objects even at 5 NFE. More qualitative results can be
found in Appendix H.

6 CONCLUSION AND LIMITATIONS

In this work, we have introduced D-ODE solvers, a novel distillation method tailored for diffu-
sion models. D-ODE solvers are simply formulated by adding a single parameter to ODE solvers.
They efficiently distill knowledge from teacher sampling with larger steps into student sampling
with smaller steps, leveraging the sampling dynamics of existing ODE solvers. Our experiments
have demonstrated the effectiveness of D-ODE solvers in improving FID scores of state-of-the-art
ODE solvers, particularly for scenarios involving smaller NFE. Furthermore, through visual analy-
sis, we have gained insights into both the global and local features of our method and have observed
significant improvements in image quality.

However, the magnitude of improvement tends to be marginal or limited for large NFE values, ulti-
mately converging to the FID score of the teacher sampling process. Nevertheless, D-ODE solvers
remain an attractive option for enhancing sample quality with negligible additional computational
cost. Moreover, for the generation of high-resolution images, D-ODE solvers may not be sufficient
on their own, as they are parameterized by a single parameter. To better capture the intricate rela-
tionships among denoising outputs, one may explore the use of local-specific parameters, achieved
by dividing images into smaller grids or by working within the latent space of samples (Rombach
et al., 2022). While these possibilities are intriguing, we leave them for future work.
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A TRILEMMA OF GENERATIVE MODELS

Generative models face a trilemma characterized by three essential components, as outlined by Xiao
et al. (2021):

1. High-Quality Samples: Generative models should demonstrate the capacity to produce
high-quality samples.

2. Mode Coverage and Sample Diversity: They ought to exhibit mode coverage, ensuring
that generated samples are diverse and encompass various modes within the data distribu-
tion.

3. Fast Sampling: Efficient generative models should possess the ability to generate samples
rapidly.

For instance, generative adversarial networks (GANs) (Goodfellow et al., 2014; Brock et al., 2018)
excel in generating high-quality samples with just a single evaluation of the network. Nevertheless,
GANs often struggle with generating diverse samples, resulting in poor mode coverage (Salimans
et al., 2016; Zhao et al., 2018). Conversely, Variational Autoencoders (VAEs) (Kingma & Welling,
2013) and Normalizing Flows (Dinh et al., 2016) are designed to adequately ensure mode cover-
age but may suffer from low sample quality. Recently, diffusion models have emerged as a novel
class of generative models that can generate high-quality samples comparable to GANs (Dhariwal
& Nichol, 2021; Saharia et al., 2022), while also providing a rich variety of samples. However,
conventional diffusion models often require hundreds to thousands of network evaluations for sam-
pling, rendering them computationally expensive in practice. The primary bottleneck in the sampling
process of diffusion models is closely tied to the number of denoising network evaluations. Con-
sequently, numerous research works have explored techniques to expedite the sampling process by
either skipping or optimizing sampling steps while maintaining the quality of generated samples.
These techniques can be broadly classified into two categories: learning-based and learning-free
sampling methods (Yang et al., 2022a) as introduced in Section 1.

B NOISE AND DATA PREDICTION MODELS

The output of the denoising network should be parameterized to estimate the score function referring
to the reverse-time ODE in Equation 5. The score function represents the gradient of the logarithm
of the data distribution, indicating the direction of data with higher likelihood and less noise. One
straightforward approach for the parameterization is to directly estimate the original data x, in which
case the score function is estimated by calculating the gradient toward the original data given the
current noise level:

∇x log qt(xt) =
x̂θ(xt, t)− xt

σ2
t

. (13)
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Another approach indirectly designs the denoising network to predict noise ϵ, which represents the
residual signal infused in the original sample. In this case, the score function can be calculated as:

∇x log qt(xt) = − ϵ̂θ(xt, t)

σt
. (14)

While both noise and data prediction models are theoretically equivalent (Kingma et al., 2021; Luo,
2022; Karras et al., 2022), they reveal different characteristics during the sampling process.

Noise prediction models Noise prediction models may initially introduce significant discrepan-
cies between the ground truth noise and the predicted noise Benny & Wolf (2022). Since sampling
commences with highly noisy samples, the denoising network lacks sufficient information to ac-
curately predict noise Ho et al. (2020). Additionally, the magnitude of correction required at each
timestep is relatively small, necessitating multiple timesteps to rectify such deviations (Luo, 2022).

Data prediction models Data prediction models are known to offer better accuracy in the initial
stages of sampling, while noise prediction models become preferable in later stages. Predicting data
assists the denoising network in understanding the global structure of the target sample (Luo, 2022).
Empirical evidence shows that the predicted data is close to the ground truth at the beginning of
the sampling procedure (Ramesh et al., 2022; Guan et al., 2022). However, in the later stages when
substantial structures have already been formed and only minor noise artifacts need to be removed,
finer details become challenging to recover (Benny & Wolf, 2022). Essentially, the information
provided by early data prediction becomes less effective in the later stages of sampling.

Our experiments The difference between data and noise prediction models is also evident in
our experiments, as depicted in Figure 1. Predictions of ϵ in the initial sampling stages exhibit
higher correlation with each other than those in later stages, whereas predictions of x become more
correlated in the later stages compared to the earlier stages. In the case of noise estimation, a small
amount of noise remains in a sample for the last few timesteps, resulting in detailed and minor
changes to the sample with high variance. In conclusion, different details are modified at each
timestep during the later sampling process.

On the other hand, it is challenging for a x estimator to predict the original sample from the initial
noisy sample. However, its predictions become more consistent in the later stages of sampling as
the sample becomes less noisy. This observation aligns with the analysis presented in Benny & Wolf
(2022), which indicates that the variance of the x estimator gradually decreases with more sampling
steps, while the variance of the ϵ estimator abruptly increases in the last phase of sampling.

C KNOWLEDGE DISTILLATION IN DIFFUSION MODELS

Knowledge distillation (Hinton et al., 2015) was initially introduced to transfer knowledge from a
larger model (teacher) to a smaller one (student), with the student model being trained to imitate the
output of the teacher model. This concept can be applied to diffusion-based sampling processes to
merge several timesteps (teacher) into a single timestep (student) to accelerate generation speed.

Luhman & Luhman (2021) directly apply knowledge distillation to diffusion models by minimizing
the difference between the outputs of a one-step student sampler and the outputs of a multi-step
DDIM sampler. Thus, the student model is trained to imitate the output of the teacher model, being
initialized with a pre-trained denoising network to inherit knowledge from the teacher.

Subsequently, progressive distillation (Salimans & Ho, 2021) proposes an iterative approach to train
a student network to merge two sampling timesteps of the teacher network until it achieves one-step
sampling to imitate the entire sampling process. This allows the student network to gradually learn
the teacher’s sampling process, as learning to predict the output of two-step sampling is easier than
learning to predict the output of multi-step sampling. Given a pre-trained denoising network θ as the
teacher, Salimans & Ho (2021) first train a student network θ′ to predict the output of two sampling
timesteps of the teacher network. The student θ′ then becomes the new teacher and a new student
with parameter θ′′ is trained to combine two sampling timesteps of the new teacher network θ′ until
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the total timestep reaches one step. The student model is parameterized and initialized with the same
deep neural network as the teacher model, and progressive distillation is examined with the DDIM
sampler.

Meng et al. (2023) extend progressive distillation to scenarios involving classifier-free diffu-
sion guidance, achieving single-step or few-step generation for text-to-image generation, class-
conditioned generation, image-to-image translation, and image inpainting. They leverage a two-
stage approach to train a student model to match the combined output of the conditional and un-
conditional models first, and then apply progressive distillation by setting the student model as the
new teacher. Most of the configuration remains the same as Salimans & Ho (2021), mainly utilizing
DDIM sampler.

Recently, Song et al. (2023) proposes a new class of generative models called consistency models
which exploit the consistency property on the trajectory of a probabilistic flow ODE. They are trained
to predict the original sample from any point on the same ODE trajectory. During training, a target
network and an online network are utilized so that the online network is optimized to generate the
same output as the target network, while the target network is updated with an exponential moving
average. Consistency models can generate samples in a single step or a few steps by design and
are also capable of image inpainting, colorization, and super-resolution in a zero-shot fashion. They
can be trained either independently or via distillation, which is named as consistency training and
consistency distillation, respectively. In this paper, we are interested in consistency distillation in
comparison with our distillation method.

However, these distillation methods typically require extensive training to adapt to different pre-
trained models, datasets, and ODE solvers, which limits their practical applicability. In this paper,
we propose to optimize newly parameterized ODE solvers (D-ODE solvers) exclusively. This ap-
proach effectively distills the sampling process with larger steps into a new process with smaller
steps while keeping the pre-trained denoising network fixed. Because our method does not require
parameter updates for the denoising network, the distillation process can be completed in just a few
CPU minutes.

D IMPLEMENTATION DETAILS OF D-ODE SOLVERS

In this section, we explain the ODE solvers of our interest in detail and their application in the
framework of D-ODE solvers. We categorize ODE solvers into two distinct types based on the
nature of the diffusion timestep: discrete and continuous. Discrete-time ODE solvers include DDIM,
PNDM, DPM-Solver, and DEIS, where we built our code upon Lu et al. (2022), while continuous-
time ODE solvers contain re-implementations of DDIM and EDM based on the work done by Karras
et al. (2022).

D.1 D-ODE SOLVERS IN NOISE PREDICTION MODELS

DDIM (Song et al., 2020a) is formulated as a non-Markovian diffusion process of DDPM (Ho et al.,
2020), defining a deterministic generation procedure using implicit models. Given the estimated
sample x̂t at timestep t, their sampling process is expressed as follows:

x̂t−1 = αt−1

(
x̂t − σtϵθ(x̂t, t)

αt

)
︸ ︷︷ ︸

predicted x0

+σt−1 ϵθ(x̂t, t)︸ ︷︷ ︸
direction toward xt

. (15)

Here, (αt, σt) represents a predefined noise schedule. With the noise prediction model ϵθ, the new
denoising prediction D̃t, formulated by D-ODE solver, is defined as D̃t = ϵθ(x̂t, t)+λt(ϵθ(x̂t, t)−
ϵθ(x̂t+1, t+1)), referring to Equation (10). We then simply substitute the denoising prediction into
the sampling equation:

x̂t−1 = αt−1

(
x̂t − σtD̃t

αt

)
+ σt−1D̃t. (16)
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This equation defines D-DDIM with λt to be optimized through distillation. In cases where the
previous denoising output is unavailable (e.g., at timestep T ), we use the given noisy sample to
define the denoising prediction. This results in D̃

(0)
T = ϵθ(x̂T , T ) + λT (ϵθ(x̂T , T )− xT ) at initial

timestep T . The assumption that both xT and ϵθ(x̂T , T ) follow a Normal distribution N (0, σ2
t I)

in theory ensures that the mean of the denoising prediction remains consistent with the original
denoising output. It is expected that (ϵθ(x̂T , T )−xT ) contains information regarding the direction
toward the true xT−1 to some extent, which actually improves the FID score in practice. Thus, we
also apply this sampling recipe to other D-ODE solvers based on noise prediction models.

PNDM (Liu et al., 2021) is based on pseudo-numerical methods on the data manifold, built upon the
observation that classical numerical methods can deviate from the high-density area of data. PNDM
encapsulates DDIM as a simple case and surpasses DDIM with its high-order methods. However,
PNDM requires 12 NFE for the first 3 steps, making it challenging to compare with other methods
using a fixed NFE. Therefore, we opt for iPNDM (Zhang & Chen, 2022), which eliminates the need
for initial warm-up steps and outperforms PNDM while maintaining the pseudo-numerical sampling
process. iPNDM employs a linear combination of multiple denoising outputs to represent the current
denoising output while adhering to the sampling update path of DDIM, as shown below:

ϵ̂
(3)
t =

1

24
(55ϵθ(x̂t, t)− 59ϵθ(x̂t+1, t+ 1) + 37ϵθ(x̂t+2, t+ 2)− 9ϵθ(x̂t+3, t+ 3)), (17)

x̂t−1 = αt−1

(
x̂t − σtϵ̂

(3)
t

αt

)
+ σt−1ϵ̂

(3)
t , (18)

where ϵ̂t is approximated with three previous denoising outputs and then applied to DDIM sampling.
Therefore, the first three denoising outputs should be defined independently as follows:

ϵ̂
(0)
t = ϵθ(x̂t, t), (19)

ϵ̂
(1)
t =

3

2
ϵθ(x̂t, t)−

1

2
ϵθ(x̂t+1, t+ 1), (20)

ϵ̂
(2)
t =

1

12
(23ϵθ(x̂t, t)− 16ϵθ(x̂t+1, t+ 1) + 5ϵθ(x̂t+2, t+ 2)). (21)

Leveraging these newly defined denoising outputs ϵ̂t, we construct D-iPNDM, where the new de-
noising prediction D̃t can be defined as D̃t = ϵ̂t +λt(ϵ̂t − ϵ̂t+1). This leads to the same update rule
in Equation (16).

DPM-Solver (Lu et al., 2022) leverages the semi-linear structure of probabilistic flow ODEs by
solving the exact formulation of the linear part of ODEs and approximating the weighted integral
of the neural network with exponential integrators (Hochbruck & Ostermann, 2010). DPM-Solver
offers first-order, second-order, and third-order methods, with the first-order variant correspond-
ing to DDIM. DPM-Solver strategically divides the total sampling steps using these different-order
methods. For instance, DPM-Solver2 (second-order DPM-Solver) is employed 5 times to generate
a sample comprising 10 denoising steps, with the denoising network being evaluated twice within
DPM-Solver2. To achieve 15 denoising steps, DPM-Solver2 is applied 7 times, and DPM-Solver1
(or DDIM) is applied during the final denoising step.

In this section, we delve into the formulation of D-DPM-Solver2, and the application to DPM-
Solver3 follows a similar approach. First, we denote τt = log(αt/σt) as the logarithm of the
signal-to-noise ratio (SNR), and τt is a strictly decreasing function as t increases. Consequently, we
can establish an inverse function mapping from τ to t, denoted as tτ (·) : R → R. Now, we can
outline DPM-Solver2 with the following steps:

t− 1

2
= tτ (

τt−1 + τt
2

), (22)

x̂t− 1
2
=

αt− 1
2

αt
x̂t − σt− 1

2
(e

ht
2 − 1)ϵ̂θ(x̂t, t), (23)

x̂t−1 =
αt−1

αt
x̂t − σt−1(e

ht − 1)ϵ̂θ(x̂t− 1
2
, t− 1

2
). (24)

In these equations, ht = τt−1 − τt, and x̂t− 1
2

represents the intermediate output between timestep
t − 1 and t. Since DPM-Solver2 utilizes a two-stage denoising step, we must define two denoising
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predictions to formulate D-DPM-Solver2 with λt and λt− 1
2

optimized through distillation:

D̃t = ϵ̂θ(x̂t, t) + λt(ϵ̂θ(x̂t, t)− ϵ̂θ(x̂t+ 1
2
, t+

1

2
)), (25)

D̃t− 1
2
= ϵ̂θ(x̂t− 1

2
, t− 1

2
) + λt− 1

2
(ϵ̂θ(x̂t− 1

2
, t− 1

2
)− ϵ̂θ(x̂t, t)). (26)

These predictions are then used in Equation (23) and (24), respectively:

x̂t− 1
2
=

αt− 1
2

αt
x̂t − σt− 1

2
(e

ht
2 − 1)D̃t, (27)

x̂t−1 =
αt−1

αt
x̂t − σt−1(e

ht − 1)D̃t− 1
2
. (28)

Similar to DPM-Solver, DEIS (Zhang & Chen, 2022) employs an exponential integrator to leverage
the semi-linear structure of the reverse-time diffusion process. In particular, they propose the use of
high-order polynomials to approximate the non-linear term in ODEs as shown below:

Pr(t) =

r∑
j=0

Ctj ϵ̂θ(x̂t+j , t+ j) (29)

x̂t−1 =
αt−1

αt
x̂t + Pr(t). (30)

Here, {Ctj}rj=0 is numerically determined through weighted integration to approximate the true
ODE trajectory. DEIS offers several variants based on the numerical method used to estimate Ctj ,
and for our experiments, we choose tAB-DEIS as it exhibits the most promising results among the
variants. Additionally, Zhang & Chen (2022) explores DEIS for different values of r ∈ {1, 2, 3}
where larger values of r generally lead to improved approximations of the target denoising predic-
tion. It is worth noting that DDIM can be seen as a special case of tAB-DEIS with r = 0.

With reference to Equation (30), we define a new denoising prediction D̃t and D-DEIS as follows:

D̃t = Pr(t) + λt(Pr(t)− Pr(t+ 1)), (31)

x̂t−1 =
αt−1

αt
x̂t + D̃t. (32)

D.2 D-ODE SOLVERS IN DATA PREDICTION MODELS

In our study, we newly implement DDIM (Song et al., 2020a) in a continuous setting using a data
prediction model. We follow the configurations outlined by Karras et al. (2022). The sampling
process for this modified DDIM is defined as follows:

st =
xθ(x̂t, t)− x̂t

σt
, (33)

x̂t−1 = x̂t + (σt − σt−1)st, (34)

where st approximates the score function, directing toward the high-density area of the data, and the
denoising step is carried out in Equation (34) based on the difference in noise levels measured by
(σt−σt−1). Subsequently, the new denoising prediction of D-DDIM is defined as D̃t = xθ(x̂t, t)+
λt(xθ(x̂t, t)−xθ(x̂t+1, t+1)). This prediction is then incorporated into the sampling equation for
DDIM with the data prediction model as follows:

s̃t =
D̃t − x̂t

σt
, (35)

x̂t−1 = x̂t + (σt − σt−1)s̃t. (36)

Karras et al. (2022) introduced the EDM sampler based on Heun’s second-order method, which
achieved a state-of-the-art FID score on CIFAR-10 and ImageNet64. They utilized a novel ODE
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formulation, parameter selection, and modified neural architectures. The EDM sampling process is
shown as follows:

st =
xθ(x̂t, t)− x̂t

σt
, x̂′

t−1 = x̂t + (σt − σt−1)st, (37)

s′t =
xθ(x̂

′
t−1, t− 1)− x̂′

t−1

σt−1
, x̂t−1 = x̂t + (σt − σt−1)(

1

2
st +

1

2
s′t). (38)

The first stage of EDM is equivalent to DDIM, and then the score function is more accurately
estimated in the second stage by linearly combining two estimations. Notably, 18 steps of EDM
sampling correspond to 35 NFE, as one step of EDM involves two network evaluations, and Equation
(38) is not computed at the last step. To construct D-EDM, we define two denoising predictions as
D̃t = xθ(x̂t, t) + λt(xθ(x̂t, t) − xθ(x̂

′
t+1, t + 1)) and D̃′

t = xθ(x̂
′
t−1, t − 1) + λt(xθ(x̂

′
t−1, t −

1)− xθ(x̂t, t)). Consequently, the sampling steps for D-EDM are described as follows:

s̃t =
D̃t − x̂t

σt
, x̂′

t−1 = x̂t + (σt − σt−1)s̃t, (39)

s̃′t =
D̃′

t − x̂′
t−1

σt−1
, x̂t−1 = x̂t + (σt − σt−1)(

1

2
s̃t +

1

2
s̃′t). (40)

D.3 VARIOUS INTERPRETATIONS OF D-ODE SOLVERS

New denoising prediction D̃t in D-ODE solvers is formulated based on the observation that de-
noising outputs are highly correlated and that it is essential to retain the same mean as the original
outputs. We can rewrite the definition of our denoising prediction as follows:

D̃t = Dθ(x̂t, t) + λt (Dθ(x̂t, t)−Dθ(x̂t+1, t+ 1)) . (41)

The above formulation can be interpreted to calculate interpolation (or extrapolation) between the
current and previous denoising outputs to estimate the target output. Therefore, D-ODE solvers can
be seen as the process of dynamically interpolating (or extrapolating) the denoising outputs with λt

optimized through distillation. Similarly, Zhang et al. (2023) proposed the use of extrapolation on
the current and previous estimates of the original data x̂t. They argued that extrapolating between
two predictions includes useful information toward the target data by refining the true mean estima-
tion. Although accurate extrapolation requires grid search for parameter tuning, they demonstrated
improvements in the FID of various ODE solvers.

Another interpretation is based on the work of Permenter & Yuan (2023), who matched the denoising
process to gradient descent applied to the Euclidean distance function under specific assumptions.
They reinterpreted diffusion models using the definition of projection onto the true data distribution
and proposed a new sampler by minimizing the error in predicting ϵ between adjacent timesteps.
Their sampler corresponds to D-DDIM with λt = 1 selected via grid search, and it outperforms
DDIM and PNDM.

The last interpretation is that D-ODE solvers accelerate the convergence of sample generation in
a way similar to how momentum boosts optimization in SGD (Sutskever et al., 2013). Just as
SGD with momentum utilizes the history of previous gradients to speed up parameter updates in a
neural network, D-ODE solvers leverage previous denoising outputs to accelerate the convergence
of sampling. An interesting future direction could explore whether advanced optimizers used in
machine learning models (Kingma, 2014; Duchi et al., 2011; Ruder, 2016) can be effectively applied
to diffusion models.

D.4 VARIOUS FORMULATIONS OF D-ODE SOLVERS

To validate D-ODE solvers, we explore different formulations of D-ODE solvers. For example, we
can estimate parameters for each denoising output separately instead of optimizing a single param-
eter λt, which we name D-DDIM-Sep. Additionally, we use the first-order equation in Equation (9)
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to achieve our denoising prediction. We also formulate a second-order approximation, which we
call D-DDIM2. All methods are presented below for comparison, with dt = Dθ(x̂t, t):

DDIM : dt, (42)

D-DDIM : D̃t = dt + λt(dt − dt+1), (43)

D-DDIM-Sep : D̃t = dt + λt1dt + λt2dt+1, (44)

D-DDIM2 : D̃t = dt + λt1(dt − dt+1) + λt2(dt − dt+2). (45)

Table 2: Comparison on various D-ODE solver formulations. FID is measured on CIFAR-10 with a
noise prediction model and the best FID is bolded.

NFE 10 25 50
DDIM 18.85 9.79 7.17
D-DDIM 8.67 8.18 6.55
D-DDIM-Sep 79.21 26.40 11.50
D-DDIM-2 18.75 9.83 7.21

We examined the four formulations mentioned above on CIFAR-10 with different NFE, while all
other configurations for distillation and sampling remained the same. The results are summarized
in Table 2. Surprisingly, D-DDIM outperforms all other formulations, and D-DDIM-Sep worsens
the FID score. This result can be interpreted as the sampling process not converging for D-DDIM-
Sep. As we pointed out in Section 3.2, separately estimated parameters may deviate from the target
trajectory of ODE solvers. This is due to the fact that λt1 and λt2, determined by distillation, can
be volatile without any constraints and may not reflect the general sampling rules across different
batches. D-DDIM2 also does not improve the FID score of DDIM. One possible reason for this is
that parameters optimized on one batch may not be applicable to others. Since the two parameters
are optimized on only one batch, fine-grained estimation of denoising predictions, like D-DDIM2,
may not be valid for all batches.

E EXPERIMENT DETAILS

Model Architectures For noise prediction models, we follow the architectures and configurations
of Ho et al. (2020); Dhariwal & Nichol (2021), utilizing their pre-trained models. Specifically,
we adopt the model architecture and configuration in DDPM (Ho et al., 2020) for experiments on
CIFAR-10 and CelebA 64× 64. For ImageNet 128× 128 and LSUN Bedroom 256× 256, we use
the corresponding network architecture from Dhariwal & Nichol (2021). In experiments with data
prediction models, we utilize the configurations and pre-trained models from Karras et al. (2022) for
CIFAR-10, FFHQ 64× 64, and ImageNet 64× 64.

Distillation Configurations As outlined in Algorithm 1, we first perform teacher sampling with
CT steps to set target samples, followed by student sampling with T steps to match the student’s
output with the teacher’s targets. For most D-ODE solvers, we use DDIM sampling as the teacher
sampling method, as it generates one output per denoising step, enabling one-to-one matching be-
tween targets and predictions. For iPNDM and DEIS, we use themselves as the teacher method
for distillation, respectively (e.g., DEIS with CT steps as the teacher and D-DEIS with T steps as
the student). Although they use a linear combination of previous denoising outputs to estimate cur-
rent denoising predictions, the sampling dynamics are the same as DDIM. Therefore, the teacher’s
targets and student’s predictions can be easily matched (details in Section D.1).

Moreover, student sampling is performed sequentially to optimize λ in D-ODE solvers. In other
words, λt is first estimated via distillation and then the next sample is generated with optimized
D-ODE solvers at timestep t during student sampling. This approach helps stabilize the sampling
process, as λt+1 is estimated based on previously generated samples from D-ODE solvers with λ∗

t .
This can alleviate exposure bias (Ranzato et al., 2016; Ning et al., 2023) with precisely estimated λ.
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Sampling Details For simplicity, we adopt uniformly divided timesteps for all ODE solvers. We
generate 50K samples and report the mean FID score calculated after three runs with different seeds.
All experiments are conducted using GPUs, including NVIDIA TITAN Xp, Nvidia V100, and
Nvidia A100. We fix the scale C = 10 and batch size |B| = 100, except for LSUN Bedroom,
where |B| = 25 due to memory constraints. Ablation studies on these two parameters are presented
in Section F.

Several design choices need to be made for each ODE solver. PNDM requires 12 NFE for the first
3 steps, making it challenging to compare with other methods using a fixed NFE. Therefore, we
adopt iPNDM (Zhang & Chen, 2022), which does not require initial warm-up steps and outperforms
PNDM. DEIS offers various versions of ODE solvers, among which we select tAB-DEIS, exhibit-
ing the best FID score in their experiments. DPM-Solver combines different-order solvers using
adaptive step sizes. For simplicity, we opt for the single-step DPM-Solver, which sequentially uses
DPM-Solver1, DPM-Solver2, and DPM-Solver3 to compose the total timesteps. While EDM al-
lows stochastic sampling by its design, we employ deterministic sampling to obtain a definite target
sample generated by teacher sampling.

F ABLATION STUDIES

Table 3: Ablation studies on CIFAR-10 with noise prediction models. Different scale C ∈
{5, 10, 20, 30} and batch size |B| ∈ {5, 10, 50, 100} are examined. We report mean and standard
deviation after 3 runs (mean ± std) and the best FID is bolded.

(a) Different Scale S

NFE 10 25 50

5 9.68±0.10 8.20±0.06 6.52±0.02

10 8.83±0.10 8.09±0.03 6.55±0.09

20 8.52±0.04 8.01±0.03 6.50±0.01

30 8.41±0.05 7.87±0.05 6.50±0.01

(b) Different Batch Size |B|

NFE 10 25 50

5 9.33±0.66 7.75±0.13 6.64±0.09

10 8.83±0.58 7.79±0.09 6.55±0.07

50 8.03±0.08 7.69±0.08 6.58±0.05

100 8.22±0.10 7.68±0.03 6.50±0.09

We conducted ablation studies on two key parameters for the distillation of D-ODE solvers: the
scale S and the batch size |B|. The scale S determines the number of sampling steps for the teacher,
with the teacher going through S times more denoising steps compared to the student. A larger scale
S results in a better target generated by the teacher and can be viewed as increasing the guidance
strength of the teacher during distillation. It is also crucial to choose an appropriate batch size |B|
since the optimal λ is estimated on a single batch B and then reused for other batches. Thus, the
batch size should be large enough to encompass different modes of samples within the dataset, while
excessively large batch size may not fit into GPU memory.

We tested various scales in Table 3a using noise prediction models trained on CIFAR-10. As the
scale increases, the FID score consistently improves across different NFE values. With a larger
scale S, the student is strongly guided by the teacher’s accurate target, resulting in a lower FID.
However, the effect of the guidance scale weakens with increasing NFE. This is reasonable since
the performance of student sampling depends heavily on that of teacher sampling, and the teacher’s
FID score eventually converges to a certain value. As the maximum number of timesteps is 1000
for discrete timesteps, scales 20 and 30 at 50 NFE generate samples guided by the same teacher
sampling.

Regarding Table 3b, D-ODE solvers with various batch sizes also exhibit clear differences. As the
batch size increases, both the FID score and variance tend to decrease. With relatively large NFE
values, FID scores and variance converge to a certain point. As the effect of distillation diminishes
with higher NFE, even a small batch size results in low variance. We choose a batch size of 100 for
most datasets, which is sufficient to capture the inherent variety of the dataset and reduce variance
compared to a smaller batch size.
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G MORE COMPARISON

(a) Distillation methods (b) LA-DDIM (c) Fixed-D-DDIM

Figure 7: (a) FID scores over NFE for distillation methods (CD, PD, and D-EDM). (b) FID scores
over λ with LA-DDIM. (c) FID scores over λ with Fixed-D-DDIM

Table 4: Comparison with learning-free samplers on CIFAR-10 with noise prediction models. The
best FID is bolded.

NFE 10 25 50

DDIM 18.85 9.79 7.17
D-DDIM 8.67 8.18 6.55
Fixed-D-DDIM (λ = 0.5) 11.45 7.00 5.27
LA-DDIM (λ = 0.1) 15.24 8.57 6.29

In this section, we present further comparisons between D-ODE solvers, previous learning-based
methods (knowledge distillation), and learning-free methods. Figure 7a displays FID scores with
varying NFE on CIFAR-10. It includes consistency distillation (CD) (Song et al., 2023), which can
perform one-step or few-step sampling, and progressive distillation (PD) (Salimans & Ho, 2021),
allowing sampling with steps in a geometric sequence (e.g., 1, 2, 4, ..., 1024). On the other hand,
D-EDM requires at least two steps to utilize previous denoising outputs.

Overall, CD outperforms other methods in terms of FID on one-step generation. However, it is
important to note that this comparison does not account for training time. For instance, Song et al.
(2023) reported that consistency models on CIFAR-10 utilized 8 Nvidia A100 GPUs for training.
On the other hand, simply generating 50K samples for 30 steps takes less than 30 minutes on a single
A100 GPU, achieving similar sample quality to consistency models. while CD and PD are attractive
options for practitioners with ample computational resources, given their ability to enable one-step
generation, the major advantage of D-ODE solvers lies in their capacity to enhance existing ODE
solver-based samplers with minimal modifications and fast optimization.

Recently, Zhang et al. (2023) introduced lookahead diffusion models which enhance the FID scores
of existing ODE solvers by refining mean estimation using previous data predictions. They achieve
this by extrapolating previous predictions of initial data to approximate the target data. Unlike
D-ODE solvers, lookahead models require parameter λ to be chosen through grid search, with a
default setting of λ = 0.1 during experiments. Following their configuration, we compare lookahead
diffusion models of DDIM, so-called LA-DDIM, with our D-DDIM in Table 4. The table shows that,
except at 50 NFE, D-DDIM outperforms LA-DDIM.

Inspired by LA-DDIM, we also experiment with fixing λt in D-DDIM as a constant λ and optimizing
it through grid search. We refer to this modified approach as Fixed-D-DDIM. In Figure 7b and 7c, we
conduct grid searches on λ using a 10-step sampler on CIFAR-10. Additionally, we provide the FID
scores of DDIM and D-DDIM as reference points (dotted lines). Despite the grid search performed
on LA-DDIM, it is unable to match the FID of D-DDIM. Notably, Fixed-D-DDIM achieves the
same FID as D-DDIM with sufficient grid search. This suggests that leveraging denoising outputs is
a more efficient strategy than relying on initial data predictions. Moreover, Fixed-D-DDIM further
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improves upon D-DDIM’s performance at 25 and 50 NFE, indicating the potential for finding an
even better λ value that results in a lower FID. Future research directions could explore various
methods to efficiently determine λ. It is important to highlight that the FID of LA-DDIM and Fixed-
D-DDIM varies depending on the chosen λ. However, D-DDIM’s advantage over other methods is
its independence from grid search, with sampling times comparable to DDIM.

H MORE EXPERIMENT AND ANALYSIS FIGURES

We present extra experiment results in Figure 8 with noise prediction models on CIFAR-10,
CelebA64, and ImageNet128. In Figure 9, more analysis figures like Figure 5 are shown with
different pixels. We also show more qualitative results in Figure 10, 11, 12, 13, and 14.

(a) CIFAR-10 (32× 32)

(b) CelebA (64× 64)

(c) ImageNet (128× 128)

Figure 8: Image quality measured by FID ↓ with varying NFE {2, 5, 10, 25, 50, 100, 250}. For
DPM-Solver3 and DEIS3, we use 3 NFE instead of 2 NFE as the third-order method requires at
least three denoising outputs. Dotted lines denote ODE solvers (DDIM, iPNDM, DPM-Solver,
and DEIS) while straight lines represent the applications of D-ODE solver to them (D-DDIM, D-
iPNDM, D-DPM-Solver, and D-DEIS).
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Figure 9: Update path of randomly selected two pixels in the images. The result of 1000-step DDIM
is used as our target. These figures are drawn with 1000 samples using a noise prediction model
trained on CIFAR-10.
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(a) CIFAR-10 (32× 32)

(b) FFHQ (64× 64)

(c) ImageNet (64× 64)

Figure 10: Qualitative results of CIFAR-10 (32 × 32), FFHQ (64 × 64), and ImageNet (64 × 64)
with data prediction models. We compare EDM (top) and D-EDM (bottom) in each subfigure with
NFE ∈ {3, 5, 9, 25}.
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(a) DPM-Solver3 (top) vs D-DPM-Solver3 (bottom)

(b) DEIS3 (top) vs D-DEIS3 (bottom)

Figure 11: Qualitative results of CIFAR-10 (32 × 32) with noise prediction models. We compare
ODE-solvers (DPM-Solver3, DEIS3) and D-ODE solvers (D-DPM-Solver3, D-DEIS3) in each sub-
figure with NFE ∈ {3, 5, 10, 25}.
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(a) DPM-Solver3 (top) vs D-DPM-Solver3 (bottom)

(b) DEIS3 (top) vs D-DEIS3 (bottom)

Figure 12: Qualitative results of CelebA (64×64) with noise prediction models. We compare ODE-
solvers (DPM-Solver3, DEIS3) and D-ODE solvers (D-DPM-Solver3, D-DEIS3) in each subfigure
with NFE ∈ {3, 5, 10, 25}.
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(a) DPM-Solver3 (top) vs D-DPM-Solver3 (bottom)

(b) DEIS3 (top) vs D-DEIS3 (bottom)

Figure 13: Qualitative results of ImageNet (128× 128) with noise prediction models. We compare
ODE-solvers (DPM-Solver3, DEIS3) and D-ODE solvers (D-DPM-Solver3, D-DEIS3) in each sub-
figure with NFE ∈ {3, 5, 10, 25}.
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(a) DPM-Solver3 (top) vs D-DPM-Solver3 (bottom)

(b) DEIS3 (top) vs D-DEIS3 (bottom)

Figure 14: Qualitative results of LSUN Bedroom (256 × 256) with noise prediction models. We
compare ODE-solvers (DPM-Solver3, DEIS3) and D-ODE solvers (D-DPM-Solver3, D-DEIS3) in
each subfigure with NFE ∈ {3, 5, 10, 25}.
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