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Abstract

Visual question answering (VQA) is designed to examine the visual-textual rea-
soning ability of an intelligent agent. However, recent observations show that
many VQA models may only capture the biases between questions and answers
in a dataset rather than showing real reasoning abilities. For example, given a
question, some VQA models tend to output the answer that occurs frequently in the
dataset and ignore the images. To reduce this tendency, existing methods focus on
weakening the language bias. Meanwhile, only a few works also consider vision
bias implicitly. However, these methods introduce additional annotations or show
unsatisfactory performance. Moreover, not all biases are harmful to the models.
Some “biases” learnt from datasets represent natural rules of the world and can
help limit the range of answers. Thus, how to filter and remove the true negative
biases in language and vision modalities remain a major challenge. In this paper,
we propose a method named D-VQA to alleviate the above challenges from the
feature and sample perspectives. Specifically, from the feature perspective, we
build a question-to-answer and vision-to-answer branch to capture the language and
vision biases, respectively. Next, we apply two unimodal bias detection modules to
explicitly recognise and remove the negative biases. From the sample perspective,
we construct two types of negative samples to assist the training of the models,
without introducing additional annotations. Extensive experiments on the VQA-CP
v2 and VQA v2 datasets demonstrate the effectiveness of our D-VQA method.

1 Introduction

Vision-and-language tasks [5, 43, 45] require an agent to perform visual-textual reasoning, and
play an important role in helping humans or intelligent robots to understand the physical world.
As a typical case of the vision-and-language task, visual question answering (VQA) [8, 35, 42]
aims to answer a textual question based on a given image. In this sense, VQA models should
master and apply the strong reasoning ability to address the sophistical questions. However, recent
studies [3, 23, 36] demonstrate that many VQA models answer the questions without reasoning.
Instead, they excessively rely on superficial correlations (i.e., bias) between the question and answers
without considering the image. For example, some VQA models tend to answer “2” for the questions
“How many . . . ”, since most corresponding answers in the dataset are “2”. In this case, the VQA
models memorise the bias but ignore the image, resulting in a poor generalisation ability.
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Ans: ketchup Ans: oranges Ans: yellowAns: candy

Q: What is the food in the cup?

Q: What are the sweets in the glass called?

…

Q: What is she pouring?

Q: Which item is in the middle?
…

Q: What kind of balls are shown?

Q: What kinds of fruits can be seen?
…

Q: What color is this bird?

Q: What color is on the bird’s chest?
…

Figure 1: Examples of vision biases. From these examples, most of the answers to the questions
usually correspond to the most salient objects/attributes in the image.

As is widely known, most machine learning datasets inevitably have biases. Thus, how to train a
robust model from the biased dataset remains a major challenge. To alleviate the challenge in VQA,
most existing methods mainly focus on weakening the language bias [9, 33]. Recently, Niu et al.
[29] applied a cause-effect to alleviate language bias. However, the performance is not sufficiently
encouraging, and it introduces additional parameters in the inference phase. Note that the biases also
exist in the vision modality. As shown in Figure 1, many answers to the questions are usually the
most salient objects/attributes in the images. In this sense, the VQA models may capture this vision
bias to output an answer regarding the salient object in the image, without considering the questions.
Thus, alleviating the negative effect of vision bias is also crucial. Recently, a few works [10, 17]
generated counterfactual training samples by masking or transforming critical objects and words to
train the models to alleviate language and vision biases. However, they require expensive annotations.

More critically, some “biases” captured from the dataset may represent the natural rule in real world,
i.e., commonsense knowledge. They are not harmful to the models. Instead, models benefit from them.
For example, “dog” is a kind of “animal”, and the colour of “oranges” is normally “orange”. Thus,
how to filter and remove the true negative biases in language and vision modalities is challenging.

To alleviate the above issues, we propose a method named D-VQA to overcome the negative biases
in language and vision modalities from feature and sample perspectives. Specifically, (1) from the
feature perspective, we first build a question-to-answer and a vision-to-answer branch to capture
language and vision biases, respectively. Since not all biases are detrimental to the model, two
unimodal bias detection modules are devised to filter and remove negative biases only. To maintain
the inference efficiency, following existing methods [9, 14, 33], we do not expect to introduce
additional parameters in the inference phase. To realise this expectation, we adopt a contrastive loss
to approach the multimodal features to the debiased feature as close as possible. In this way, in the
inference phase, we simply remove all of the additional branches, and adopt the multimodal features
that have a similar representation as the debiased features to obtain accurate predictions. (2) From the
sample perspective, the VQA model should answer the questions making full use of the information
of questions and images, which can be achieved by improving the sensitivity of the model in both the
images and questions. To this end, for each sample in the dataset, we construct two types of negative
samples to assist the training and improve the sensitivity of the model.

Our contributions can be summarised as follows: (1) In VQA, we alleviate the biases in both language
and vision modalities, from feature and sample perspectives. (2) Since not all biases are harmful, we
explicitly devise the bias detection modules to filter and remove the negative biases. (3) Extensive
experiments on the VQA-CP v2 and VQA v2 datasets demonstrate the effectiveness of our D-VQA.

2 Related Work

Biases in Visual Question Answering (VQA). In the vision-and-language field, biases are ubiqui-
tous. For example, in referring expression comprehension (REF) task [15, 45, 48], Cirik et al. [13]
argue that the benchmark datasets such as RefCOCO [24, 28] contain biases in which the referent
objects are usually the most salient in the image. Thus, the models can capture the biases and obtain
high accuracy without the queries. Inevitably, the issues of bias also exist in VQA. As demonstrated
by [2, 3, 21, 36], existing VQA benchmark datasets such as the VQA v2 [18] have biases, namely, a
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shortcut exists between the questions and answers. For example, one simply answering “tennis” for
the question “What sports . . . ” will obtain high accuracy, because the model is trained and tested on
the COCO image dataset that has many “tennis” related images. Moreover, most methods consider
language bias only, while ignoring the vision bias. As discussed in [29], the questions usually involve
the objects seen in the image. In addition, as shown in Figure 1, the most salient objects/attributes are
usually chosen to be the answers. In this sense, the VQA models may also capture this vision bias.
Thus, in this paper, we consider alleviating the biases in language and vision modalities.

Overcoming biases in VQA. Recently, many methods [9, 10, 16, 17, 22, 26, 27, 29, 33, 36, 39,
40, 44, 49] have been proposed to overcome the biases in VQA. Formally, these methods can
be categorised into two classes, namely, with and without data augmentations. Specifically, non-
augmentation-based methods [9, 16, 22, 26, 29, 33, 36, 44] seek to reduce the language biases
explicitly or improve attention on the image, while augmentation-based methods [1, 10, 17, 27, 38,
40, 49] seek to balance the biased dataset for unbiased training.

For the non-augmentation-based methods, Ramakrishnan et al. [33] adopt adversarial learning
between the base VQA model and the question-only model to prevent the VQA model from capturing
language bias as much as possible. Inspired by [33], Cadene et al. [9] dynamically adjust the weight
of the samples based on how biased the samples are. Moreover, some methods introduce human
based visual [36] and text [44] explanations to strengthen the visual grounding. However, these
methods require human annotations that are hard to obtain. Apart from the above, Niu et al. [29]
introduce the cause-effect to look at language bias and propose a counterfactual inference framework
to reduce the biases, which unfortunately introduces additional parameters in inference.

For the augmentation-based methods, to promote the VQA model to focus on the critical objects
and words, Chen et al. [10] propose a CSS method to produce massive counterfactual samples
by masking the critical objects and words, and assign corresponding ground-truth answers. To
make full use of the samples, Liang et al. [27] model the relationships among original, factual and
counterfactual samples to promote learning high-level features. Moreover, the Mutant [17] generates
the samples by semantic transformations of the original images or questions. Without introducing
additional annotations, some methods [38, 49] build negative samples from the samples available
to balance the dataset. In this paper, we overcome the bias from sample and feature perspectives.
Specifically, from the sample perspective, inspired by [38, 49], we construct two types of negative
samples to assist the training of the model. From the feature perspective, we build question-to-answer
and vision-to-answer branches to capture the language and vision biases, respectively. Next, we
devise two unimodal bias detection modules to recognise and remove the negative biases.

Contrastive Learning [41] aims to learn the high-level representation by maximising the mutual
information between the input samples and positive samples, which has been applied in many
fields [27, 32, 47]. Specifically, some contrastive learning methods [11, 19] adopt contrastive learning
to train the models by decreasing the distance between the feature representations of different
augmented views of the same images, while increasing the distance between different images.
Liang et al. [27] adopt contrastive learning to approach the feature representations of the original
samples to the factual samples, while keeping away from that between the original and counterfactual
samples. In this paper, we adopt contrastive learning to push the multimodal feature to approach the
debiased features, and meanwhile to far away from the negative biased features.

3 Proposed Method

As demonstrated by [3, 23, 36], many VQA models address the questions by exploiting the superficial
correlation (i.e., bias) between the questions and answers without considering the images, resulting
in poor generalisation ability. (i.e., performing worse on an out-of-distribution (OOD) dataset, e.g.,
VQA-CP [3]). Moreover, bias also exists between the images and answers (as shown in Figure 1),
which is ignored by most previous methods [9, 14, 33, 38, 49]. However, some “biases” learnt from
the dataset indicate the natural rule of the world, such as commonsense knowledge. Thus, how to
filter and remove the negative biases in language and vision modalities is challenging.

In this paper, we alleviate the negative effect of both language and vision biases from feature and
sample perspectives. An overview of our D-VQA method is shown in Figure 2. Specifically, from the
feature perspective (see Section 3.2), we seek to obtain multimodal features that reduce the negative
biases as much as possible. To this end, we construct a question-to-answer and vision-to-answer
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Figure 2: Overview of our D-VQA method. Our method alleviates the biases from feature and sample
perspectives. From the feature perspective, we introduce question-to-answer, vision-to-answer, and
debiased branches to help reduce the negative biases. BDM is the bias detection module. Note that Ld

does not optimise the VQA model. From the sample perspective, we construct two types of negative
samples to assist the model’s training. (vi, qi) denotes a positive sample, while (ṽi, qi) and (vi, q̃i)
are negative samples. GT is the ground-truth answer of (vi, qi). h and g are the feature extractors.

branch to capture the unimodal biases. Moreover, we devise two unimodal bias detection modules
to explicitly recognise and remove the true negative biases. That is, we obtain debiased features by
simply removing negative biased features from multimodal features. However, using the debiased
feature in inference will introduce additional parameters. To address this issue, inspired by contrastive
learning [11, 19], we adopt contrastive loss to approach the multimodal features to the debiased
features while keeping away from the negative biased features. In this way, in the inference phase, we
discard all of the additional branches and adopt the multimodal features to obtain accurate predictions.

From the sample perspective (see Section 3.3), the VQA models are supposed to simultaneously
focus on language and vision modalities when answering the questions. Specifically, given a question-
image pair (positive sample), we construct two types of negative samples by randomly sampling an
image or question in mini-batch data. The predicted possibility for the ground-truth answer should
be minimised if negative samples are used. In this way, VQA models are able to capture the two
modalities information to generate the answer instead of focusing on one modality only. Based on the
above discussion, our D-VQA method is able to alleviate the negative effect of the biases in language
and vision modalities and improve the model performance on the OOD dataset (e.g., VQA-CP v2 [3]).

3.1 Preliminaries

Visual question answering (VQA) seeks to answer the textual questions based on the given images.
Following traditional VQA methods [4, 7, 8, 25, 46], we regard the VQA task as a multiclass
classification problem. Specifically, given a dataset D = {(vi, qi, ai)}Ni=1 with N triplets, where
the i-th image vi ∈ V (image set), question qi ∈ Q (question set) and answers ai ∈ A (answer set),
one seeks to train a model to learn a mapping function F : vi × qi → R|A| to generate an accurate
answer distribution over the answer set A. To be specific, F usually contains three parts: (1) Feature
extraction. It requires building two feature extractors h and g to extract the features of the images
and questions, respectively. For one triplet in D, the image extractor h : vi → Rnv×dv outputs
nv vectors with a dimension dv, and the question extractor g : qi → Rnq×dq outputs nq vectors
with a dimension dq. (2) Multimodal feature fusion. Since the image and question features come
from different modalities, it requires designing a feature fusion function f to fuse both of the image
and question features, where f : Rnv×dv × Rnq×dq → Rdh . (3) Answer prediction. It devises a
classifier c : Rdh → R|A| for producing the answer prediction. Note that most of the classic VQA
models [4, 7, 8, 25, 46] follow this paradigm, which can be formulated as:

F(A|vi, qi) = c(f), where f = f(h(vi), g(qi)). (1)

Formally, the parameters of the VQA model can be optimised by a binary cross-entropy loss:

Lvqa = − 1

N

N∑
i=1

yilog(σ(F(A|vi, qi))) + (1− yi)log(1− σ(F(A|vi, qi))), (2)

4



where σ(·) is the sigmoid activation function, and yi is the target score of each answer for the i-th
sample, denoted as yi = min(#votes

3 , 1), where #votes is the number of each answer that humans
annotated for the question qi. However, Agrawal et al. [3] show that many VQA models tend to
capture unimodal biases (e.g., the shortcut between the questions and answers) from the dataset. To
alleviate this issue, we consider reducing the negative biases from feature and sample perspectives.

3.2 Reducing biases from the feature perspective

In this part, we seek to reduce the negative effect of the biases from the feature perspective, namely,
decrease the negative biases from the multimodal features f . Before that, we first need to capture the
biases in both language and vision modalities.

Unimodal model to capture the biases. To capture the biases in a VQA dataset, one intuitive way
is to train a unimodal model as a branch that takes only one modal feature as input. Specifically,
we construct a question-to-answer and vision-to-answer branch to capture language and vision
biases, respectively (we conduct the ablation studies on each branch in Table 2). Since the structures
of the two branches are similar, we describe the question-to-answer branch only and obtain the
vision-to-answer branch by simply replacing the subscript of q with v.

Specifically, our question-to-answer model Fq : qi → R|A| contains a multi-layer perceptron (MLP)
mq : Rnq×dq → Rdh and a classifier cq : Rdh → R|A|. Based on the above, the question-to-answer
branch can be formulated as:

Fq(A|qi) = cq(fq), where fq = mq(g(qi)). (3)

By training the question-to-answer model using binary cross-entropy loss Lq on a VQA dataset, the
model is able to capture the biases between the questions and answers in the dataset. Thus, the feature
fq contains language biases. We can obtain the vision biased feature fv in a similar way.

Recognise and obtain the negative biases. We argue that not all biases in the dataset are harmful to
the VQA models. Some “biases” captured from the dataset contain commonsense knowledge that
may be helpful for the VQA models. Thus, we devise a simple but effective bias detection module (we
evaluate the bias detection modules in Table 3) to detect the negative biases that need to be removed
in the feature fq . Formally, our bias detection module is constructed by an MLP mb : Rdh → R and
a sigmoid activation function σ(·), which can be formulated as:

bq = σ(mb(fq)). (4)

Based on the weight bq, the negative language biased features can be represented as fqbias = bq · fq.
The negative vision biased feature fvbias is obtained similarly. To obtain the global negative biased
feature fbias, we adopt an attention mechanism to fuse two negative unimodal biased features:

a = softmax(ma([f
q
bias; f

v
bias])), fbias = a>[fqbias; f

v
bias], (5)

where ma : R2×dh → R2 is an MLP, and [·; ·] denotes for stacking.

Obtain debiased features. Intuitively, the debiased features can be obtained by removing negative
biased features fbias from the multimodal features f , which can be represented as fd = f − fbias.
With the feature fd as input, we also introduce another debiased branch that contains an MLP
md : Rdh → Rdh and an independent classifier cd : Rdh → R|A|, which can be formulated as:

Fdebias(A|vi, qi) = cd(fc), where fc = md(fd). (6)

The parameters of the debiased branch are optimised by the binary cross-entropy loss Ld. However,
if we adopt the debiased branch as the target model, it will introduce additional parameters in the
inference phase. To address this issue, an intuitive idea is to make the multimodal features f and
debiased features fc generated from the debiased branch as similar as possible. To accomplish this
task, inspired by the contrastive learning [11, 19], we consider forcing the multimodal features f to
near the debiased features fc and away from the negative biased features fbias.

To achieve the abovementioned aim, our contrastive loss can be formulated as follows:

Lc = −
1

N

N∑
i=1

log(
es(f ,fc)

es(f ,fc) + es(f ,fbias)
), where s(f1, f2) =

f>1 f2
‖f1‖ · ‖f2‖

. (7)
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s(·, ·) denotes a scoring function, of which the higher the value is, the higher the similarity between
two features. In practice, we adopt the cosine similarity as the scoring function. By minimising the
loss Lc, the multimodal features f are able to approach the debiased features fc while avoiding the
negative biased features fbias. In this way, the multimodal features f have a similar representation
with the debiased features fc, to some extent. Note that all of the additional branches participate in
the training phase only. In the inference phase, we remove all of the additional branches and adopt
the base VQA model to obtain accurate predictions.

3.3 Reducing biases from the sample perspective

Since the biases usually embody in capturing the shortcut between one modal information and
the answer, it is necessary to improve the attention of the VQA models on language and vision
modalities when answering the questions. That is, increasing the sensitivity of the VQA models on
the information of both modalities. To achieve this, we consider constructing two types of negative
samples for each sample in the dataset to assist the training of the model. Specifically, inspired
by [38, 49], for each positive sample (vi, qi, ai), we construct the negative samples by randomly
sampling question q̃i and image ṽi in mini-batch data as (ṽi, qi, ai) and (vi, q̃i, ai). Note that ṽi and
q̃i are sampled separately. The ablation studies regarding the negative samples are in Table 2.

Intuitively, in VQA, one can answer the question only if the question and image are corresponding.
In contrast, when taking the negative samples as input, the VQA model cannot answer the question
correctly, which is able to be achieved by minimising the possibility of predicting the ground truth
answer of the positive sample. Since the training procedure of these two types of negative samples is
the same, we only describe the training details of (ṽi, qi, ai). Formally, the loss can be defined as:

Lq
sam = softmax(F(A|ṽi, qi))[k], (8)

where k is the index of the answer ai in the answer setA. Minimising Lq
sam encourages the prediction

of the VQA model to keep away from the ground truth answer of the positive sample, because of the
lack of supporting visual information. In this way, this type of negative samples is able to promote
the VQA model to focus on the images when answering the question, which improves the sensitivity
of the model on the images. Similarly, another type of negative samples (vi, q̃i, ai) is able to improve
the sensitivity of the model on the questions. The loss of the sample perspective can be defined as
Lsam = λqLq

sam + λvLv
sam (the ablation studies on λq and λv are in Table 5). Note that we do not

introduce additional annotations, instead, we make full use of the training samples available.

3.4 Learning D-VQA with overall loss

In total, our method contains three types of losses, namely, traditional VQA loss (i.e., binary cross-
entropy loss), contrastive loss and sample perspective loss, which can be formulated as:

L = Lvqa + Lq + Lv + Ld + Lc + Lsam, (9)

where L{vqa,q,v,d} are the binary cross-entropy loss based on the same ground-truth answer, corre-
sponding to the {base, question-to-answer, vision-to-answer, debiased} branches, respectively.

4 Experiments

4.1 Datasets and compared methods

Datasets. To demonstrate the effectiveness of our D-VQA method, we evaluate it on the out-of-
distribution benchmark dataset VQA-CP (Visual Question Answering under Changing Priors) v2 [3]
and IID dataset VQA v2 [18] validation set based on the standard evaluation metric [6]. Since the
VQA v2 [18] dataset has strong biases, to evaluate the generalisation ability of the VQA model,
Agrawal et al. [3] created the out-of-distribution (OOD) dataset named VQA-CP v2. Specifically,
they constructed VQA-CP v2 by re-organising the training and validation sets of the VQA v2 dataset,
where the answer distributions in training and test sets of VQA-CP v2 are different. The training set
of VQA-CP v2 contains approximately 121k images and 245k questions, while the test set contains
approximately 98k images and 220k questions.

Compared methods. We regard both augmentation-based and non-augmentation-based methods
as compared methods. Specifically, (1) for the non-augmentation-based methods, we compare our
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D-VQA method with AdvReg [33], RUBI [9], LMH [14], DLR [22], VGQE [26], HINT [36],
SCR [44], RMFE [16] and CF-VQA [29]. Moreover, (2) augmentation-based methods such as
CVL [1], Unshuffling [40], CSS [10], RandImg [38], SSL-VQA [49], CSS+CL [27], and Mutant [17]
are considered compared methods. Note that some augmentation-based methods such as CSS and
Mutant construct the counterfactual samples using additional annotations, while our D-VQA does
not introduce additional annotations.

4.2 Implementation details

Our method is model-agnostic and can be applied to different backbones of VQA models. To better
demonstrate the effectiveness of our D-VQA, we conduct experiments based on different backbones,
including UpDn [4], SAN [46] and LXMERT [37]. Following previous works [9, 33, 49], we adopt
Faster-RCNN [34] that are pretrained by [4] to extract the object features. Specifically, we extract the
top-36 object features for each image and the dimension of each object feature is 2048. Moreover,
all the questions are processed into the same length (i.e., 14), and then each word in the question is
encoded by GloVe [31] embedding with a dimension of 300. A single layer GRU [12] is used to
obtain the feature of the question with a dimension of 1280.

Inspired by SSL-VQA [49], we add one Batch Normalisation [20] layer before the classifier of
UpDn [4], and then train our D-VQA for 25 epochs. Specifically, we train all the branches with the
binary cross-entropy loss and contrastive loss over the training process, and the sample perspective
loss is introduced at the 13-th epoch. We adopt Adam optimiser with the initial learning rate of 1e-3,
and the learning rate decreases by half every 5 epochs after 10 epochs. The batch size is set to 256.

For the backbone of LXMERT [37], we load the pre-trained LXMERT model from the official GitHub
repository2, and then perform the downstream VQA-CP task with our D-VQA method. Specifically,
we train LXMERT + D-VQA for 10 epochs, and the sample perspective loss is introduced at the 7-th
epoch. The batch size is 32, and the learning rate is 1e-5. We implement our entire method based on
PyTorch [30], and the model is trained with one Titan Xp GPU. The source code and the pre-trained
models are available at https://github.com/Zhiquan-Wen/D-VQA.

4.3 Evaluation on the VQA-CP v2 and VQA v2 datasets

Quantitative results. We compare our D-VQA method with the state-of-the-art methods on the
VQA-CP v2 test set and VQA v2 validation set, and report the experimental results in Table 1. From
these results, we have the following observations. On the VQA-CP v2 dataset, (1) augmentation-
based methods surpass non-augmentation-based methods by a large margin (57.59% vs. 54.55%
and 61.72% vs. 54.55%). These results demonstrate that reducing bias by focusing on data is more
effective than other non-augmentation-based methods. (2) Our D-VQA outperforms all the compared
methods, either augmentation-based or non-augmentation-based. Specifically, our D-VQA surpasses
CF-VQA [29], SSL-VQA [49] and Mutant [17] by approximately 8%, 4%, and 0.2%, respectively.
Note that some augmentation-based methods such as Mutant [17], CSS [10] and CSS+CL [27]
generate counterfactual training samples by masking or transforming critical words and objects from
the samples in the dataset, which introduces additional annotations. In our method, without using
additional annotations, we construct the negative samples based on the available samples, which fully
makes use of the samples in the dataset. Nevertheless, our D-VQA still performs better than Mutant,
which greatly demonstrates the effectiveness of our D-VQA. (3) For the question type of “Num”, our
D-VQA outperforms the compared methods by a large margin, and achieves comparable performance
on the remaining question types. These results further verify the effectiveness of our D-VQA.

On the validation set of the VQA v2 dataset, most methods perform worse than UpDn [4], while our
D-VQA surpasses all compared methods. These results show that our D-VQA performs better in
both IID (VQA v2) and OOD (VQA-CP v2) datasets, indicating the superiority of our D-VQA.

Qualitative results. To further demonstrate the effectiveness of our method on the OOD dataset, we
provide qualitative results on the test set of the VQA-CP v2 dataset in Figure 3. From these results,
UpDn and SSL-VQA cannot find the target objects accurately, and thus output the wrong answers or
have low scores in the ground-truth answer. Our D-VQA method locates the target objects with high
attention weight, and then makes an accurate prediction.

2https://github.com/airsplay/lxmert
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Table 1: Comparison with the state-of-the-art methods on the VQA-CP v2 test set and VQA v2
validation set in terms of Accuracy (%). The backbone of all models is UpDn [4]. Overall best scores
are bold, and the second best of overall scores of ours are underlined. I – IV denote non-augmentation-
based methods using human annotations, non-augmentation-based methods without using human
annotations, augmentation-based methods adopting additional annotations, and augmentation-based
methods without introducing additional annotations, respectively.

Case Model
VQA-CP v2 test (%) VQA v2 val (%)

All Yes/No Num Other All Yes/No Num Other

–
SAN [46] 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84
GVQA [3] 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
UpDn [4] 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66

I
AttAlign [36] 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22

HINT [36] 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56
SCR [44] 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50

II

AdvReg [33] 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
RUBi [9] 44.23 67.05 17.48 39.61 - - - -
DLR [22] 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54

VGQE [26] 48.75 - - - 64.04 - - -
LMH [14] 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69

RMFE [16] 54.55 74.03 49.16 45.82 - - - -
CF-VQA [29] 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30

III
CSS [10] 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11

CSS+CL [27] 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71
Mutant [17] 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28

IV

CVL [1] 42.12 45.72 12.45 48.34 - - - -
Unshuffling [40] 42.39 47.72 14.43 47.24 61.08 78.32 42.16 52.71

RandImg [38] 55.37 83.89 41.60 44.20 57.24 76.53 33.87 48.57
SSL-VQA [49] 57.59 86.53 29.87 50.03 63.73 - - -

D-VQA 61.91 88.93 52.32 50.39 64.96 82.18 44.05 57.54

Q: What color is the person on the elephant in the back wearing?

UpDn SSL-VQA Ours

0.45

0.34 pink
gray
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red

black
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0.18
0.16

0.05
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blue
brown

black 0.47

0.29

0.05
0.04
0.02

white

0.34

0.29 blue

purple

gray

black

0.22
0.13

0.11
0.1
0.1white

Q: Which foot is behind the other? 
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0.005
0.003
0.001

left
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hand

0.98

0.001

0.53
0.30
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right
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0.01

0.01
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0.61
0.15

0.1
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neither

Figure 3: Qualitative comparison among UpDn [4], SSL-VQA [49], and our D-VQA on the VQA-CP
v2 test set. For each example, we put the bounding box with the top-2 attention weights in the image
and show the answers with the top-5 predictions. The bold, red answer is the ground-truth answer.

4.4 Ablation studies of D-VQA

Effect of each component on the model performance. To demonstrate the effectiveness of each
component in our D-VQA, we conduct ablation studies on VQA-CP v2 regarding the components of
D-VQA, and show the experimental results in Table 2. From these results, we have the following
observations: (1) The question-to-answer and vision-to-answer branches promote the model per-
formance (refer to Lines 4-6 of the Table 2), which demonstrates that these two branches are able
to capture the corresponding negative biases to be removed. (2) Both types of negative samples
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Table 2: Effect of each component of our D-VQA on the model performance. We show the results on
the VQA-CP v2 dataset in terms of Accuracy (%). We use UpDn† [4] as the backbone model, where
† denotes our re-implementation of the baseline.

(ṽi, qi) (vi, q̃i) question-to-answer vision-to-answer VQA-CP v2 test (%)

1 41.53
2

√
57.59

3
√

41.60
4

√ √
60.24

5
√ √ √

61.18
6

√ √ √ √
61.91

Table 3: Effect of the bias detection mod-
ules on the VQA-CP v2 dataset. “base” de-
notes D-VQA without the bias detection
modules, while “det{v,q}” denotes the vi-
sion/language bias detection module.

Model VQA-CP v2
test (%)

1 base 59.93
2 base + detv 59.98
3 base + detq 60.28
4 D-VQA 61.91

Table 4: Effect of different backbones on the model
performance. We report the experimental results on
the VQA-CP v2 dataset in terms of Accuracy (%). †
denotes the re-implementation of the baseline.

Model Yes/No Number Other Overall Gap∆ ↑

SAN† [46] 38.44 12.91 46.65 39.11 +15.28SAN + D-VQA 84.12 26.12 46.56 54.39

UpDn† [4] 43.45 13.64 48.18 41.53 +20.38UpDn + D-VQA 88.93 52.32 50.39 61.91

LXMERT [37] 42.84 18.91 55.51 46.23 +23.52LXMERT + D-VQA 80.43 58.57 67.23 69.75

are able to improve the model performance, and only (ṽi, qi, ai) improves substantially, while only
(vi, q̃i, ai) is marginally improved. Additionally, combining these two types of negative samples
further promotes the model performance (refer to Lines 1-4 of the Table 2). From these results,
we surmise that language bias is dominant compared with vision bias, while vision bias cannot be
ignored. In total, these results demonstrate the effectiveness of each component in our D-VQA
method on the model performance.

Evaluation of the bias detection modules. The bias detection modules are devised to determine
how many negative biases should be removed. To evaluate the effect of the bias detection mod-
ules (language and vision bias detection modules), we conduct experiments on the VQA-CP v2
dataset about removing the bias detection modules, and the experimental results are reported in
Table 3. We have the following observations from these results: (1) both of the language and vision
bias detection modules promote the model performance, while the language bias detection module
has a more positive effect than the vision bias detection module (refer to Lines 1-3 of Table 3). These
results demonstrate the necessity to recognise the negative bias, and then remove it. (2) Combining
language and vision bias detection modules is able to further promote the model performance by a
large margin (refer to Lines 2-4 of Table 3), which demonstrates the necessity and effectiveness of
recognising and removing the negative biases in both language and vision modalities.

Effect of different backbones. To demonstrate the effectiveness of our D-VQA on different back-
bones, we conduct experiments on the VQA-CP v2 dataset using different backbones (i.e., SAN [46],
UpDn [4], and LXMERT [37]), and report the experimental results in Table 4. From these results, we
find that D-VQA is able to improve the model performance substantially regardless of the backbone,
which demonstrates that our method is model-agnostic, embodying the superiority of our D-VQA.

Evaluation of different combinations between λq and λv . From the experimental results in Lines
2-3 of Table 2, (ṽi, qi) has a more positive effect than (vi, q̃i). In this sense, λq should have a higher
weight than λv. To further make a trade-off between Lq

sam and Lv
sam, we conduct experiments on

VQA-CP v2 regarding different combinations of λq and λv , and the experimental results are reported
in Table 5. From these results, the highest performance is obtained in our D-VQA when λq vs. λv is
1.0 : 0.7, and the performance declines for any λv higher or lower than 0.7, which demonstrates a
suitable ratio between λq and λv will obtain better performance in our method.
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Table 5: Effect of different combinations
between λq and λv. We report the experi-
mental results in terms of Accuracy (%).

Model λq vs. λv VQA-CP v2 test (%)

D-VQA

1 : 0.1 60.74
1 : 0.3 61.74
1 : 0.5 61.40
1 : 0.7 61.91
1 : 1.0 61.63

Table 6: Effect of different scales of the training data of
VQA-CP v2 on the model performance. We report the
results in terms of Accuracy (%).

Model
Proportion of Training Set

20% 40% 60% 80% 100%

UpDn† [4] 36.22 38.90 39.40 40.61 41.53
SSL-VQA [49] 52.71 54.42 56.83 57.31 57.59

D-VQA 52.94 56.74 58.31 59.05 61.91

Performance on different scales of the dataset. To further demonstrate the superiority of our
method, we conduct experiments regarding different scales of the training data on VQA-CP v2.
Specifically, the model is trained based on the randomly sampled data (i.e., from 20% to 80% of the
original training data) coming from the original training data, and then is evaluated on the standard
test set. The experimental results are reported in Table 6. From these results, we find that (1) our
D-VQA achieves the best results compared with the state-of-the-art method SSL-VQA [49] and the
baseline method UpDn [4] regardless of the scales of the training data. (2) The performance gap
between our D-VQA and compared methods gradually increases with the number of training samples.
These results demonstrate the effectiveness of our method on different scales of the training data.

5 Conclusion

In this paper, we have proposed a novel method named D-VQA to overcome the negative biases in
both language and vision modalities. In our D-VQA, we alleviate the negative effect of the biases
from the feature and sample perspectives. Specifically, from the feature perspective, we introduce
a question-to-answer and a vision-to-answer branch to capture the corresponding unimodal biases.
Moreover, not all biases are harmful to the VQA models. Some “biases” in the dataset indicate the
natural rule of the world, e.g., commonsense knowledge. Thus, we explicitly devise the bias detection
modules to detect and remove the negative biases. From the sample perspective, we construct two
types of negative samples to assist the training and improve the sensitivity of the model on both
language and vision modalities. Extensive experiments on the VQA-CP v2 dataset show that our
D-VQA achieves a new state-of-the-art result, which demonstrates its effectiveness. Note that our
method is model-agnostic (refer to Table 4), and can be embedded into other backbones to overcome
the negative biases. The current work focuses on the VQA task only, we will extend our approach to
other multimodal tasks in future works, e.g., referring expression comprehension. Moreover, although
our D-VQA achieves state-of-the-art performance on most types of questions (see Table 1 of this
paper), there is much room for improvement on questions such as “Num” and “Other”.
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7 Broader Impact

This paper introduces a novel D-VQA method to alleviate the biases in Visual Question Answer-
ing (VQA). Overcoming the bias can promote the VQA model to use real reasoning ability to address
sophisticated questions. Therefore, this research can promote the development of the robot e.g.,
dialogue robot, and facilitate people’s daily lives. The failure of the debiased technique may result in
the collapse of the VQA system in environments that have never been seen. Moreover, we evaluate
our method on benchmark out-of-distribution dataset (OOD) and demonstrate better debiased ability.
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