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ABSTRACT

We provide the first proof of convergence for normalized error feedback algo-
rithms across a wide range of machine learning problems. Despite their popu-
larity and efficiency in training deep neural networks, traditional analyses of er-
ror feedback algorithms rely on the smoothness assumption that does not capture
the properties of objective functions in these problems. Rather, these problems
have recently been shown to satisfy generalized smoothness assumptions, and the
theoretical understanding of error feedback algorithms under these assumptions
remains largely unexplored. Moreover, to the best of our knowledge, all existing
analyses under generalized smoothness either i) focus on single-node settings or
ii) make unrealistically strong assumptions for distributed settings, such as requir-
ing data heterogeneity, and almost surely bounded stochastic gradient noise vari-
ance. In this paper, we propose distributed error feedback algorithms that utilize
normalization to achieve the O(1/

√
K) convergence rate for nonconvex problems

under generalized smoothness. Our analyses apply for distributed settings with-
out data heterogeneity conditions, and enable stepsize tuning that is independent
of problem parameters. Additionally, we provide strong convergence guarantees
of normalized error feedback algorithms for stochastic settings. Finally, we show
that normalized EF21, due to its larger allowable stepsizes, outperforms EF21 on
various tasks, including the minimization of polynomial functions, logistic regres-
sion, and ResNet-20 training.

1 INTRODUCTION

Machine learning models achieve impressive prediction and classification power by employing so-
phisticated architectures, comprising vast numbers of model parameters, and requiring training on
massive datasets. Distributed training has emerged as an important approach, where multiple ma-
chines with their own local training data collaborate to train a model efficiently within a reasonable
time. Many optimization algorithms can be easily adapted for distributed training frameworks. For
example, stochastic gradient descent (SGD) can be modified into distributed stochastic gradient de-
scent within a data parallelism framework, and into federated averaging algorithms (McMahan et al.,
2017) in a federated learning framework. However, the communication overhead of running these
distributed algorithms poses a significant barrier to scaling up to large models. For example, train-
ing the VGG-16 model (Simonyan & Zisserman, 2015) using distributed stochastic gradient descent
involves communicating 138.34 million parameters, thus consuming over 500MB of storage and
posing an unmanageable burden on the communication network between machines.

One approach to mitigate the communication burden is to apply compression. In this approach, the
information, such as gradients or model parameters, is compressed using sparsifiers or quantizers to
be transmitted with much lower communicated bits between machines. However, while this reduces
communication overhead, too coarse compression often brings substantial challenges in maintaining
high training performance due to information loss, and in extreme cases, it may potentially lead to
divergence. Therefore, error feedback mechanisms have been developed to improve the convergence
performance of compression algorithms, while ensuring high communication efficiency. Examples
of error feedback mechanisms include EF14 (Seide et al., 2014; Stich et al., 2018; Alistarh et al.,
2018; Wu et al., 2018; Gorbunov et al., 2020), EF21 (Richtárik et al., 2021; Fatkhullin et al., 2021),
EF21-SGDM (Fatkhullin et al., 2024), EF21-P (Gruntkowska et al., 2023), and EControl (Gao et al.,
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2023). Several studies developing error feedback algorithms often assume the smoothness of an
objective function, i.e., its gradient is Lipschitz continuous.

However, many modern learning problems, such as distributionally robust optimization (Jin et al.,
2021) and deep neural network training, are often non-smooth. For instance, the gradient of the
loss computed for deep neural networks, such as LSTM (Zhang et al., 2020b), ResNet20 (Zhang
et al., 2020b), and transformer models (Crawshaw et al., 2022), is not Lipschitz continuous. These
empirical findings highlight the need for a new smoothness assumption. One such assumption is
(L0, L1)-smoothness, originally introduced by Zhang et al. (2020b), for twice differentiable func-
tions, and later extended to differentiable functions by Chen et al. (2023).

To solve generalized smooth problems, clipping and normalization have been widely utilized in
first-order algorithms. Gradient descent with gradient clipping was initially shown by Zhang et al.
(2020b) to achieve lower iteration complexity, i.e., fewer iterations needed to attain a target so-
lution accuracy, than classical gradient descent. Subsequent works have further refined the con-
vergence theory of clipped gradient descent (Koloskova et al., 2023), and improved its conver-
gence performance by employing momentum updates (Zhang et al., 2020a), variance reduction
techniques (Reisizadeh et al., 2023), and adaptive step sizes (Wang et al., 2024; Li et al., 2024b;
Takezawa et al., 2024). Similar convergence results have been obtained for gradient descent using
normalization (Zhao et al., 2021), and its momentum variants (Hübler et al., 2024), including gen-
eralized SignSGD (Crawshaw et al., 2022). However, these first-order algorithms have mostly been
explored in training on a single machine. To the best of our knowledge, distributed algorithms under
generalized smoothness have been investigated in only a few works, e.g., by Crawshaw et al. (2024);
Liu et al. (2022). Nonetheless, these works rely on assumptions limiting families of optimization
problems, including data heterogeneity, almost sure variance bounds, and symmetric noise distri-
butions around the mean assumptions. Furthermore, these first-order algorithms under generalized
smoothness do not incorporate compression techniques to improve communication efficiency. These
aspects motivate us to develop distributed communication-efficient algorithms for solving nonconvex
generalized smooth problems.

1.1 CONTRIBUTIONS

In this paper, we develop distributed error feedback algorithms for communication-efficient opti-
mization under nonconvex, generalized smooth regimes. Our contributions are summarized below.

• Importance of normalization. Just as gradient clipping is crucial for gradient descent, we em-
pirically demonstrate that normalization stabilizes the convergence of error feedback algorithms for
minimizing nonconvex generalized smooth functions. In this paper, we introduce a variant of EF21,
a widely used error feedback algorithm by Richtárik et al. (2021), which incorporates normalization
to guarantee convergence for nonconvex, generalized smooth problems. In a single-node setting,
normalized EF21 provides larger stepsize, and faster convergence rate than original EF21 for min-
imizing simple nonconvex polynomial functions that satisfy generalized smoothness, as shown by
Figure 1.
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Figure 1: The minimization of polynomial functions using EF21 with γ = 1

L+L
√

β
θ

, and normalized

EF21 (EF21-norm) with γ = γ0√
K+1

, γ0 = 1 (blue line) and γ = 1
2c1

(green line). Here, we ran
both algorithms for (1) L0 = 4, L1 = 1, and K = 2000 (left), (2) L0 = 4, L1 = 4, and K = 5000
(middle), and (3) L0 = 4, L1 = 8, and K = 16000 (right).
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• Convergence of normalized error feedback algorithms. We establish an O(1/
√
K) conver-

gence rate in the gradient norm for normalized EF21 on nonconvex generalized smooth problems.
Normalized EF21 achieves the same rate as the original EF21 under L-smoothness by Richtárik
et al. (2021). Our results are derived under standard assumptions, i.e., generalized smoothness and
the existence of lower bounds on the objective function, and are applicable in distributed settings
regardless of any data heterogeneity degree, unlike the results by Crawshaw et al. (2024); Liu et al.
(2022). Additionally, our stepsize rules for normalized EF21 ensure convergence without requiring
knowledge of the generalized smoothness constants L0 or L1, in contrast to Richtárik et al. (2021),
where the stepsize depends on the smoothness constant L (which is often inaccessible).

• Extension to stochastic settings. Furthermore, we propose a variant of EF21-SGDM, an error
feedback algorithm with momentum updates by Fatkhullin et al. (2024), that employs normaliza-
tion for solving nonconvex, stochastic optimization under generalized smoothness. Specifically,
we prove that normalized EF21-SGDM with suitable stepsize choices attains the same O(1/K1/4)
convergence rate in the gradient norm as the original EF21-SGDM.

• Numerical evaluation. We implemented normalized EF21 using the stepsize rules derived from
our theory, and compared its performance against the original EF21. Both algorithms were evaluated
on three learning tasks: minimizing nonconvex polynomial functions, solving logistic regression
with a nonconvex regularizer, and training ResNet-20 on the CIFAR-10 dataset. Thanks to its larger
stepsizes, normalized EF21 outperforms the original EF21, in terms of both convergence speed and
solution accuracy across these tasks.

Methods Complexity Smoothness Variance bound Normalization
EF21

Richtárik et al. (2021) O(1/ϵ2) L No No

EF21-SGDM
Fatkhullin et al. (2024) O(1/ϵ4) L expectation No

Normalized EF21
Ours (Alg. 1) O(1/ϵ2) (L0, L1) No Yes

Normalized EF21-SGDM
Ours (Alg. 2) O(1/ϵ4) (L0, L1) Expectation Yes

Table 1: Comparisons of complexities and assumptions between known and our results for EF21
variants. The complexity is defined by the iteration count K required by the algorithms to attain

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ ϵ. (L0, L1)-smoothness refers to generalized smoothness in Assump-

tion 3. The variance bound in expectation is defined in Assumption 5.

2 RELATED WORKS

Error feedback. Error feedback mechanisms have been utilized in various algorithms with com-
munication compression, leading to significant improvements in solution accuracy, while reducing
communication. As the first version of these mechanisms, EF14 was introduced by Seide et al.
(2014), and later analyzed for first-order algorithms in both single-node (Stich et al., 2018; Karim-
ireddy et al., 2019) and distributed settings (Alistarh et al., 2018; Wu et al., 2018; Tang et al., 2019;
Basu et al., 2019; Gorbunov et al., 2020; Li et al., 2020; Qian et al., 2021; Tang et al., 2021). Next,
EF21 is another error feedback variant proposed by Richtárik et al. (2021), which offers strong con-
vergence guarantees for distributed gradient algorithms with any contractive compressors, without
requiring bounded gradient norm or bounded data heterogeneity assumptions. EF21 can also be
adapted for stochastic optimization through sufficiently large mini-batches (Fatkhullin et al., 2021)
or momentum updates (Fatkhullin et al., 2024). More recently, EControl was developed by Gao
et al. (2023) to guarantee provably superior complexity results for distributed stochastic optimization
compared to prior error feedback mechanisms. To the best of our knowledge, these existing works
on error feedback have focused solely on optimization under traditional L-smoothness. In this paper,
we introduce a normalized variant of the EF21 methods (Richtárik et al., 2021) for solving noncon-
vex generalized smooth problems. In particular, we prove that normalized EF21 under generalized
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smoothness achieves the same O(1/
√
K) rate as original EF21 under traditional smoothness, and

demonstrate in experiments that normalized EF21 permits larger step sizes, and thus attains faster
convergence than the original EF21.

Non-smoothness assumptions. Empirical findings suggest that the traditional smoothness used
for analyzing optimization algorithms does not capture the properties of objective functions in many
machine learning problems, especially deep neural network training problems. This motivates re-
searchers to consider different assumptions to replace this traditional smoothness condition. First
introduced by Zhang et al. (2020b), the (L0, L1)-smoothness condition on a twice differentiable
function f(x) is defined by

∥∥∇2f(x)
∥∥ ≤ L0 +L1 ∥∇f(x)∥ for x ∈ Rd. This (L0, L1)-smoothness

has been extended to differentiable functions without assuming the existence of the Hessian. For
instance, the smoothness with a differentiable function ℓ(x) (Li et al., 2024a), and symmetric gener-
alized smoothness (Chen et al., 2023) cover the (L0, L1)-smoothness when the Hessian exists, and
includes many important machine learning problems, such as phase retrieval problems (Chen et al.,
2023), and distributionally robust optimization (Levy et al., 2020). Other classes of non-smoothness
assumptions, which are not related to the generalized smoothness but capture other optimization
problems, include Hölder’s continuity of the gradient (Devolder et al., 2014), the relative smooth-
ness (Bauschke et al., 2017), and the polynomial growth of the gradient norm (Mai & Johansson,
2021). In this paper, we impose the generalized smoothness condition to establish the convergence
of normalized EF21 for solving deterministic and stochastic optimization.

Gradient clipping and normalization. Clipping and normalization are commonly employed in
gradient-based methods for solving generalized smooth problems. Clipped (stochastic) gradient
descent has been studied for both nonconvex and convex problems under (L0, L1)-smoothness con-
ditions by Zhang et al. (2020b); Koloskova et al. (2023). Extensions to clipped gradient algorithms
have been proposed, including momentum updates (Zhang et al., 2020a), variance reduction meth-
ods (Reisizadeh et al., 2023), and adaptive step sizes (Wang et al., 2024; Li et al., 2024b; Takezawa
et al., 2024). Comparable complexities have been achieved for normalized gradient descent (Zhao
et al., 2021), and its momentum-based variants (Hübler et al., 2024), including generalized SignSGD
(Crawshaw et al., 2022). Convergence properties of gradient-based algorithms have also been ex-
plored under more generalized forms of non-uniform smoothness, extending beyond the (L0, L1)-
smoothness by Zhang et al. (2020b) to cover a wider range of optimization problems. For example,
variants of (stochastic) gradient descent have been analyzed under α-symmetric generalized smooth-
ness by Chen et al. (2023), and under ℓ-smoothness involving certain differentiable functions ℓ(·)
by Li et al. (2024a;b). However, the majority of these analyses focus on the single-node setting.
To the best of our knowledge, only a limited number of works, such as those by Crawshaw et al.
(2024); Liu et al. (2022), have examined federated averaging algorithms for nonconvex problems un-
der generalized smoothness. These works, however, often rely on restrictive assumptions, including
data heterogeneity, almost sure variance bounds, and symmetric noise distributions centered around
their means. In this paper, we develop distributed error feedback algorithms, which eliminate the
need for the restrictive assumptions mentioned above, and rely on standard assumptions on objective
functions and compressors.

3 PRELIMINARIES

Notations. We use [n] to denote the set {1, 2, . . . , n}, and E [u] to represent the expectation of a
random variable u. Additionally, ∥·∥ indicates the Euclidean norm for vectors or the spectral norm
for matrices, and ∥·∥1 is the ℓ1-norm for vectors, while ⟨x, y⟩ denotes the inner product between x
and y in Rd. Lastly, for a square matrix A ∈ Rd×d, λmin(A) refers to its minimum eigenvalue, and
I ∈ Rd×d is the identity matrix.

Problem formulation. In this paper, we focus on the following distributed optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where n refers to the number of clients, and fi(x) is the loss of a model parameterized by vector
x ∈ Rd over its local data Di owned by client i ∈ [n].
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Assumptions. To facilitate our convergence analysis, we make standard assumptions on objective
functions and compression operators.

Assumption 1. (Lower Bound of f ) A function f(x) = (1/n)
∑n

i=1 fi(x) is bounded from below,
i.e., f inf = infx∈Rd f(x) > −∞.

Assumption 2. (Lower Bound of fi) A function fi(x) is bounded from below, i.e., f inf
i =

infx∈Rd fi(x) > −∞.

Assumptions 1 and 2 are standard for analyzing optimization algorithms for unconstrained optimiza-
tion.

Assumption 3. (Generalized Smoothness of fi) A function fi(x) is symmetrically generalized
smooth if there exists L0, L1 > 0 such that for uθ = θx+ (1− θ)y, and for all x, y ∈ Rd

∥∇fi(x)−∇fi(y)∥ ≤ (L0 + L1 sup
θ∈[0,1]

∥∇fi(uθ)∥) ∥x− y∥ . (2)

Assumption 3 refers to symmetric generalized smoothness defined by Chen et al. (2023), which cov-
ers asymmetric generalized smoothness (Koloskova et al., 2023; Chen et al., 2023), and the original
(L0, L1)-smoothness by Zhang et al. (2020b). Moreover, Assumption 3 covers the functions with
unbounded classical smoothness constant, e.g., exponential function. Additionally, Assumption 3
with L1 = 0 reduces to the traditional L0-smoothness (Nesterov et al., 2018; Beck, 2017), under
which the convergence of optimization algorithms has been extensively studied.

Assumption 4. (Contractive Compressor) An operator Ck : Rd → Rd is an α-contractive com-
pressor if there exists α ∈ (0, 1] such that for k ≥ 0 and v ∈ Rd,

E
[∥∥Ck(v)− v

∥∥2] ≤ (1− α) ∥v∥2 . (3)

Furthermore, compressors defined by Assumption 4 cover top-k sparsifiers (Alistarh et al., 2018;
Stich et al., 2018), low-rank approximation (Vogels et al., 2019; Safaryan et al., 2021), and various
other compressors described by Beznosikov et al. (2023); Safaryan et al. (2022).

Assumption 5. (Bounded Variance) A stochastic gradient ∇fi(x; ξi) with its sample ξi ∼ Di is an
unbiased estimator of ∇fi(x) with bounded variance, i.e.,

E [∇fi(x; ξi)] = ∇fi(x), and E
[
∥∇fi(x; ξi)−∇fi(x)∥2

]
≤ σ2. (4)

Assumption 5 is standard assumption for stochastic optimization (Nemirovski et al., 2009; Ghadimi
& Lan, 2012; 2013) that is only imposed on each local stochastic gradient, and it does not imply data
heterogeneity, i.e., the bounded difference between each component function fi(x) and the global
function f(x).

Algorithm 1 Normalized EF21

1: Input: Stepsize γk > 0 for k = 0, 1, . . .; starting points x0, v−1
i ∈ Rd for i ∈ {1, 2, . . . , n};

and α-contractive compressors Ck : Rd → Rd for k = 0, 1, . . ..
2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute local gradient ∇fi(x

k)

5: Transmit ∆k
i = Ck(∇fi(x

k)− vk−1
i )

6: Update vki = vk−1
i +∆k

i
7: end for
8: Central server computes vk = 1

n

∑n
i=1 v

k
i via vki = vk−1

i +∆k
i

9: Central server updates xk+1 = xk − γk
vk

∥vk∥
10: end for
11: Output: xK+1

5
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4 NORMALIZED EF21

For nonconvex deterministic optimization under generalized smoothness, we develop a distributed
error feedback algorithm. One challenge is that the generalized smoothness parameter scales with
the gradient norm

∥∥∇f(xk)
∥∥. To resolve this issue, we apply gradient normalization to the algo-

rithms. In particular, we consider normalized EF21, the normalized version of EF21 (Richtárik et al.,
2021) that updates the next iterates xk+1 using the normalized EF21 update. The full description of
normalized EF21 can be found in Algorithm 1.

Normalized EF21, like EF21 (Richtárik et al., 2021) under traditional smoothness, enjoys the
O(1/

√
K) convergence in the gradient norm under generalized smoothness, as shown below.

Theorem 1. Consider Problem (1), where Assumption 1 (lower bound of f ), Assumption 2 (lower
bound of fi), Assumption 3 (generalized smoothness of fi), and Assumption 4 (contractive compres-
sor) hold. Then, the iterates {xk} generated by normalized EF21 (Algorithm 1) with

γk =
γ0√
K + 1

for K ≥ 0 and γ0 > 0 satify

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ V 0 exp(8c1L1 exp(L1γ0)γ
2
0)

γ0
√
K + 1

+B
γ0 exp(L1γ0)√

K + 1
,

where V k := f(xk)−f inf+ 2γk

1−
√
1−α

1
n

∑n
i=1

∥∥∇fi(x
k)− vki

∥∥, B = 2c0+
8L1c1

n

∑n
i=1(f

inf−f inf
i ),

and ci =
(

1
2 + 2

√
1−α

1−
√
1−α

)
Li for i = 0, 1.

Theorem 1 establishes the O(1/
√
K) convergence in the expectation of gradient norms for normal-

ized EF1 on nonconvex deterministic problems under generalized smoothness. This rate is the same
as Theorem 1 of Richtárik et al. (2021) for EF21 under traditional smoothness, and does not depend
on data heterogeneity conditions in contrast to Crawshaw et al. (2024); Liu et al. (2022). Also,
our stepsize depends on any positive constant γ0, and total iteration count K, without needing to
know smoothness constants L0, L1 in contrast to Richtárik et al. (2021). Additionally, if we choose
γ0 = 1/(8cL1), then our convergence bound from Theorem 1 becomes

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 32cL1V
0 + L0/L1 + 2L1δ

inf

√
K + 1

,

where c = 1
2 + 2

√
1−α

1−
√
1−α

, and δinf = 1
n

∑n
i=1(f

inf − f inf
i ).

Comparisons between normalized EF21 and EF21 under traditional smoothness. For non-
convex, traditional smooth problems, normalized EF21 from Theorem 1 with L1 = 0 achieves the
same O(1/

√
K) rate in the expectation of gradient norms as EF21 analyzed by Richtárik et al.

(2021), but with a larger convergence factor. We prove this by assuming ∇fi(x
0) = v0i for all i.

That is, Theorem 1 with L0 = L, L1 = 0, γ0 =
√

(f(x0)− f inf)/(2b), and b = L
2 + 2

√
1−αL

1−
√
1−α

implies that normalized EF21 achieves

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 1√
K + 1

[
f(x0)− f inf

γ0
+ 2bγ0

]

≤ 2

√
L
(1 + 3

√
1− α)(1 +

√
1− α)

α

√
f(x0)− f inf

K + 1

α≥0

≤ 4
√
2

√
L

α

√
f(x0)− f inf

K + 1
.

On the other hand, EF21 attains from Theorem 1 of Richtárik et al. (2021) with Li = L̃ = L
(i.e., fi(x) has the same smoothness constant as f(x)), and x̂K being chosen from the iterates

6
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x0, x1, . . . , xK uniformly at random

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ E
[∥∥∇f(x̂K)

∥∥]
≤

√
E
[
∥∇f(x̂K)∥2

]
≤

√
2L(1 +

√
β/θ)

f(x0)− f inf

K + 1
√

β/θ≤2/α−1

≤ 2

√
L

α

√
f(x0)− f inf

K + 1
.

In conclusion, the convergence bound of normalized EF21 is slower by a factor of 2
√
2 than the

original EF21 for nonconvex, L-smooth problems.

While normalized EF21 can handle nonconvex problems under generalized smoothness, the algo-
rithm is limited to deterministic settings, where each node computes its full local gradient. In the
following section, we demonstrate how to integrate normalization into EF21-SGDM Fatkhullin et al.
(2024), an error feedback algorithm that allows each node to compute its local stochastic gradient,
for solving nonconvex stochastic problems.

Algorithm 2 Normalized EF21-SGDM

1: Input: Stepsizes γk > 0 and ηk ∈ [0, 1] for k = 0, 1, . . .; starting points x0, g−1
i ∈ Rd for

i ∈ {1, 2, . . . , n}, and v0i = 1
Binit

∑Binit

j=1 ∇fi(x
0
i ; ξ

0
i,j) with i.i.d. random samples ξi,j for

i ∈ {1, 2, . . . , n} and an initial mini-batch size Binit; α-contractive compressors Ck : Rd → Rd

for k = 0, 1, . . .
2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute a local stochastic gradient ∇fi(x

k; ξki )

5: Update a momentum estimator vki = (1− ηk)v
k−1
i + ηk∇fi(x

k; ξki )

6: Transmit ∆k
i = Ck(vki − gk−1

i )

7: Update gki = gk−1
i +∆k

i
8: end for
9: Central server computes gk = (1/n)

∑n
i=1 g

k
i via gki = gk−1

i +∆k
i

10: Central server updates xk+1 = xk − γk
gk

∥gk∥
11: end for
12: Output: xK+1

5 NORMALIZED EF21-SGDM

Having established the convergence of normalized EF21 for deterministic optimization, we will next
develop a distributed error feedback algorithm that incorporate stochastic gradients and normaliza-
tion to accommodate generalized smoothness conditions. In particular, we focus on normalized
EF21-SGDM (Algorithm 2), the normalized version of EF21-SGDM (Fatkhullin et al., 2024). We
also note that normalized EF21-SGDM recovers many optimization algorithms of interest in the spe-
cial cases. For instance, normalized EF21-SGDM reduces to normalized EF21 when we let ηk = 1
and ∇fi(x

k; ξki ) = ∇fi(x
k), the normalized version of EF21-SGD (Fatkhullin et al., 2021) when

we let ηk = 1, and normalized SGD with momentum (Cutkosky & Mehta, 2020) (NSGD-M) when
we let ηk = 1− βk and Ck(·) ≡ I .

In the next theorem, we demonstrate that normalized EF21-SGDM attains the same O(1/K1/4)
convergence rate as both EF21-SGDM and NSGD-M.
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Theorem 2. Consider Problem (1), where Assumption 1 (lower bound of f ), Assumption 2 (lower
bound of fi), Assumption 3 (generalized smoothness of fi), Assumption 4 (contructive compressor),
and Assumption 5 (bounded variance) hold. If the mini-batch size at the starting point Binit ≡√
K + 1, and the stepsizes

γk ≡ γ =
γ0

(K + 1)3/4
, with γ0 > 0 satisfying γ0 exp(γ0L1/2) ≤

1

8L1

√
1 +

√
1−α/α

, and

ηk ≡ η =
1

(K + 1)1/2
,

then the iterates {xk} generated by normalized EF21-SGDM (Algorithm 2) satisfy for K ≥ 0

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ O
(

E[V 0]/γ0 + σ/
√
n + (γ0L0 + γ0L

2
1δ

inf) exp (γ0L1)

(K + 1)1/4

)
+O

(√
1− α

α
· σ + (L0γ0 + γ0L

2
1δ

inf) exp(γ0L1)

(K + 1)1/2

)
,

where V 0 = f(x0)− f inf + 2γ
(1−

√
1−α)n

∑n
i=1

∥∥v0i − g0i
∥∥, and δinf = 1

n

∑n
i=1(f

inf − f inf
i ).

From Theorem 2, normalized EF21-SGDM under generalized smoothness achieves the O(1/K1/4)
convergence rate in the expectation of gradient norms. This rate is the same as that of EF21-SGDM,
previously analyzed under traditional smoothness by Fatkhullin et al. (2024, Theorem 3). The result
holds regardless of the data heterogeneity degree and the mini-batch size, with the exception that
the mini-batch size at the initial point (when k = 0) must satisfy Binit =

√
K + 1 for a fixed

K ≥ 0. Additionally, one possible for the stepsize γ0 > 0 satisfying the condition from Theorem 2
is γ0 ≤ 1/(9L1

√
1+B(α)) with B(α) =

√
1−α/α. Notice that the stepsize γ0 for normalized EF21-

SGDM, unlike in the case of normalized EF21, depends on the generalized smoothness constant L1,
and the compression parameter α.

Furthermore, Theorem 2 with α = 1 (i.e., Ck(·) ≡ I) implies the convergence bound of the dis-
tributed version of normalized SGD with momentum (NSGD-M) (Cutkosky & Mehta, 2020) using
β = 1− η:

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ O
(

(f(x0)−f inf )/γ0 + σ/
√
n + γ0L0 + γ0L

2
1δ

inf

(K + 1)1/4

)
. (5)

For the single-node NSGD-M, where n = 1 and δinf = 0, our convergence bound in (5) with
γ0 = O(1/L1) achieves the O

(
L1(f(x

0)−f inf )+σ+L0/L1

(K+1)1/4

)
convergence, which matches the rate

obtained by Hübler et al. (2024, Corollary 3). Unlike the earlier results for single-node NSGD-M,
our results extend to multi-node NSGD-M. The bound in (5) for multi-node NSGD-M includes the
σ/

√
n-term indicating a

√
n-fold reduction in the influence of stochastic variance noise σ, and the

γ0L
2
1δ

inf -term accounting for the effect of data heterogeneity.

6 EXPERIMENTS

We evaluate the performance of normalized EF21, and compare it against EF21 (Richtárik et al.,
2021). We test these algorithms for three nonconvex problems that satisfy generalized smoothness:
the problem of minimizing polynomial functions, the logistic regression problem with a nonconvex
regularization term over synthetic and benchmark datasets from LIBSVM (Chang & Lin, 2011),
and the training of the ResNet-20 (He et al., 2016) model over the CIFAR10 (Krizhevsky, 2009)
dataset1. For all experiments, we use a top-k sparsifier, which is a k

d -contractive compressor.

1We implemented EF21 and normalized EF21 on training the ResNet-20 model by using PyTorch. Our
source codes can be found in the link to error-feedback-generalized-smoothness-paper.
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6.1 LOGISTIC REGRESSION WITH A NONCONVEX REGULARIZER

First, we consider a logistic regression problem with a nonconvex regularizer, i.e., Problem (1) with

fi(x) = log(1 + exp(−bia
T
i x)) + λ

d∑
j=1

x2
j

1 + x2
j

,

where ai ∈ Rd is the ith feature vector of data matrix A ∈ Rn×d with its class label bi ∈ {−1, 1},
and λ > 0 is a regularization parameter. Here, f(x) is nonconvex, and L-smooth with L =

∥A∥2 /(4n)+ 2λ. Also, each fi(x) is Li-smooth with Li = ∥ai∥2 /4+2λ, and generalized smooth
with L0 = 2λ + λ

√
dmaxi ∥ai∥ and L1 = maxi ∥ai∥. The derivations of smoothness parameters

can be found in Appendix F.

In these experiments, we initialized x0 ∈ Rd, where each coordinate was drawn from a standard
normal distribution N (0, 1), and set λ = 0.1. Here, λ > λmin

(
A⊤A

)
/(2n) to ensure that f(x)

is nonconvex. We ran normalized EF21 and EF21 on the following datasets: (1) two from LIB-
SVM (Chang & Lin, 2011): Breast Cancer (n = 683, d = 10, and scaled to [−1, 1]), and
a1a (n = 1605, d = 123); and (2) a synthetically generated dataset (n = 20, d = 10), where
the data matrix A ∈ Rn×d had entries drawn from N (0, 1), and the class label bi was set to either
−1 or 1 with equal probability. For EF21, we selected the stepsize γk = 1/

(
L+ L̃

√
β/θ

)
with

L̃ =
√∑n

i=1 L
2
i /n, θ = 1−

√
1− α, and β = (1− α)/(1−

√
1− α), as given by Richtárik et al.

(2021, Theorem 1). For normalized EF21, we chose γk = γ0/
√
K + 1 with γ0 > 0 from Theo-

rem 1, by setting γ0 = 1, K = 100 for the generated data and Breast Cancer, and K = 400 for
a1a. We choose γ0 = 1, because normalized EF21 with γ0 ∈ [1, 10] converges faster than that with
small values of γ0 (e.g. 0.1), when we run the algorithm on a single node (n = 1) for minimizing
polynomial function and solving logistic regression. We determine K as the smallest number of
iterations required to achieve the desired accuracy by performing a grid search with a stepsize of 50.

Figure 2 shows that normalized EF21 outperforms the traditional EF21 on all evaluated datasets,
achieving faster convergence and higher solution accuracy. This improvement results from the fact
that the theoretical stepsize for normalized EF21, as derived in Theorem 1, is larger than the stepsize
for the traditional EF21 outlined by Richtárik et al. (2021, Theorem 1).

0 100 200 300 400 500 600 700
iter

10 3

10 2

10 1

100

||
f(x

)||
2

EF21
EF21-norm

0 100 200 300 400 500
iter

10 3

10 2

10 1

100

||
f(x

)||
2

EF21
EF21-norm

0 10000 20000 30000 40000 50000
iter

10 3

10 2

10 1

100

||
f(x

)||
2

EF21
EF21-norm

Figure 2: Logistic regression with a nonconvex regularizer using normalized EF21 (EF21-norm)
and EF21. We reported

∥∥∇f(xk)
∥∥2 with respect to iteration count k. We used the constant stepsize

γ = 1

L+L̃
√

β
θ

for EF21, and γ = γ0√
K+1

, γ0 = 1 for normalized EF21. Here, K = 100 for our

generated data (left), and Breast Cancer (middle), while K = 400 for a1a (right).

6.2 RESNET20 TRAINING OVER CIFAR-10

Next, we trained the ResNet20 (He et al., 2016) model on the CIFAR-10 (Krizhevsky, 2009) dataset,
which was demonstrated empirically by Zhang et al. (2020b) to satisfy the (L0, L1)-smoothness
condition. In these experiments, we used a top-k compressor over 50, 000 training images, with
evaluation on 10, 000 test images. The dataset was evenly distributed among 5 clients, each using
a mini-batch size of 128. Both algorithms were run for 100 epochs with a constant stepsize γ = 5.
Here, one epoch refers to a full pass through the entire dataset processed by all clients.

From Figure 3, under the same constant stepsize and the top-k sparsifier with k = 0.01d, normalized
EF21 outperforms EF21, in terms of convergence speed (in gradient norms and losses) and accuracy,
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relative to the number of bits communicated from each client to the server. Specifically, normalized
EF21 achieved accuracy gains of up to 10% over EF21.
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Figure 3: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize γ = 5 and k = 0.1d for a top-k sparsifier.

7 CONCLUSION AND FUTURE WORKS

In this paper, we have demonstrated that normalization can be effectively combined with EF21 to
develop distributed error feedback algorithms for solving nonconvex optimization problems under
generalized smoothness conditions. Specifically, normalized EF21 and normalized EF21-SGDM
achieve convergence rates of O(1/K1/2) in deterministic settings and O(1/K1/4) in stochastic
settings, respectively. These convergence rates match those of the vanilla EF21 and EF21-SGDM
algorithms. Unlike previous works on distributed algorithms under generalized smoothness, our
analysis does not assume data heterogeneity or impose smoothness-dependent restrictions on the
stepsize. Finally, our experiments confirm that normalized EF21 exhibits stronger convergence per-
formance compared to the original EF21, due to its larger allowable stepsizes.

Our work implies many promising research directions. One interesting direction is to extend our
convergence results for normalized EF21 and normalized EF21-SGDM to accommodate decreasing
or adaptive stepsize schedules, as the constant stepsizes required by our current analysis can become
impractically small when the total number of iterations is large. In particular, applying appropriate
decreasing stepsizes to EF21-SGDM could overcome its current theoretical requirement of a suffi-
ciently large mini-batch size for the stochastic gradient at initialization. Another important direction
is the development of distributed and federated algorithms that leverage clipping or normalization
for minimizing nonconvex generalized smooth functions.
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A LEMMAS

In this section, we introduce useful lemmas for our analysis. Lemmas 1 and 2 introduce inequalities
by generalized smoothness, while Lemmas 3 and 4 present the descent inequality and convergence
rate, respectively, when the normalized gradient descent update is applied.

Lemma 1. Let each fi(x) be generalized smooth with parameters L0, L1 > 0, and lower bounded
by f inf

i , and let f(x) = 1
n

∑n
i=1 fi(x). Then, for any x, y ∈ Rd

∥∇fi(x)−∇fi(y)∥ ≤ (L0 + L1 ∥∇fi(y)∥) exp (L1 ∥x− y∥) ∥x− y∥ , (6)

fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩+ L0 + L1 ∥∇fi(x)∥
2

exp (L1 ∥x− y∥) ∥y − x∥2 , (7)

∥∇fi(x)∥2

4(L0 + L1 ∥∇fi(x)∥)
≤ fi(x)− f inf

i , and (8)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
L0 +

L1

n

∑n
i=1 ∥∇fi(x)∥
2

exp (L1 ∥x− y∥) ∥y − x∥2 .(9)

Proof. The first and second statements derive from Chen et al. (2023, Proposition 3.2).

Next, by using the first and second statements, we can derive the third statement. Let us assume that
there exists a lower bound of fi(x), f inf

i , and apply (7) with y = x − ν
L0+L1∥∇fi(x)∥∇fi(x) for a

given x ∈ Rd and ν > 0:

f inf
i ≤ fi(y) ≤ fi(x)−

ν

L0 + L1 ∥∇fi(x)∥
∥∇fi(x)∥2

+
ν2 ∥∇fi(x)∥2

2(L0 + L1 ∥∇fi(x)∥)
exp

(
L1ν ∥∇fi(x)∥

L0 + L1 ∥∇fi(x)∥

)
L0≥0

≤ fi(x)−
ν

L0 + L1 ∥∇fi(x)∥
∥∇fi(x)∥2 +

ν ∥∇fi(x)∥2

2(L0 + L1 ∥∇fi(x)∥)
ν exp(ν).

If ν = 1/2, then ν exp(ν) ≤ 1, and thus

f inf
i ≤ fi(x)−

1

4(L0 + L1 ∥∇fi(x)∥)
∥∇fi(x)∥2 .

Finally, we prove the last statement. By the fact that each fi(x) is symmetric smooth, and f(x) =
1
n

∑n
i=1 fi(x),

∥∇f(x)−∇f(y)∥ ≤ 1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥

(6)

≤ 1

n

n∑
i=1

(L0 + L1 ∥∇fi(y)∥) exp (L1 ∥x− y∥) ∥x− y∥

=

(
L0 +

L1

n

n∑
i=1

∥∇fi(y)∥

)
exp(L1 ∥x− y∥) ∥x− y∥ .

Hence, for any y, x ∈ Rd, we have:

f(y)− f(x)− ⟨∇f(x), y − x⟩

=

∫ 1

0

(∇f(yθ)−∇f(x))T (y − x)dθ

≤
∫ 1

0

∥∇f(yθ)−∇f(x)∥ ∥y − x∥ dθ

≤
∫ 1

0

(
L0 +

L1

n

n∑
i=1

∥∇fi(x)∥

)
exp(L1 ∥yθ − x∥) ∥yθ − x∥ ∥y − x∥ dθ,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where yθ = θy + (1 − θ)x. From the definition of yθ, and by the fact that exp(θy) ≤ exp(y) for
θ ∈ [0, 1],

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤
∫ 1

0

θ

(
L0 +

L1

n

n∑
i=1

∥∇fi(x)∥

)
exp(L1 ∥y − x∥) ∥y − x∥2 dθ

=

(
L0 +

L1

n

∑n
i=1 ∥∇fi(x)∥

)
2

exp(L1 ∥y − x∥) ∥y − x∥2 .

Lemma 2. Let fi(x) be generalized smooth with parameters L0, L1 > 0, and lower bounded by
f inf
i , and let f(x) be lower bounded by f inf . Then, for any x ∈ Rd

1

n

n∑
i=1

∥∇fi(x)∥ ≤ 8L1(f(x)− f inf) +
8L1

n

n∑
i=1

(f inf − f inf
i ) + L0/L1.

Proof. By the (L0, L1)-smoothness of fi(x),

4(fi(x)− f inf
i )

(8)

≥ ∥∇fi(x)∥2

L0 + L1 ∥∇fi(x)∥
≥

{
∥∇fi(x)∥2

2L0
if ∥∇fi(x)∥ ≤ L0

L1
∥∇fi(x)∥

2L1
otherwise.

This condition can be equivalently expressed as

∥∇fi(x)∥ ≤ max(8L1(fi(x)− f inf
i ), L0/L1)

≤ 8L1(fi(x)− f inf
i ) + L0/L1

≤ 8L1(fi(x)− f inf) + 8L1(f
inf − f inf

i ) + L0/L1.

Finally, by the fact that f(x) = 1
n

∑n
i=1 fi(x),

1

n

n∑
i=1

∥∇fi(x)∥ ≤ 8L1(f(x)− f inf) +
8L1

n

n∑
i=1

(f inf − f inf
i ) + L0/L1.

Lemma 3. Consider the problem of minimizing f(x) = 1
n

∑n
i=1 fi(x), where each fi(x) is gener-

alized smooth with parameters L0, L1 > 0. Let xk+1 = xk − γk

∥vk∥v
k for γk > 0. Then,

f(xk+1) ≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥+
+
γ2
k

2
exp (γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥) .

Proof. Let each fi(x) be generalized smooth with L0, L1 > 0, and f(x) = 1
n

∑n
i=1 fi(x). By (9)

of Lemma 1, and by the fact that xk+1 = xk − γk

∥vk∥v
k for γk > 0,

f(xk+1) ≤ f(xk)− γk
∥vk∥

⟨∇f(xk), vk⟩+ γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥)

= f(xk)− γk
∥vk∥

⟨∇f(xk)− vk, vk⟩ − γk
∥∥vk∥∥

+
γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥)

≤ f(xk) + γk
∥∥∇f(xk)− vk

∥∥− γk
∥∥vk∥∥

+
γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥) ,
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where we reach the last inequality by Cauchy-Schwartz inequality. Next, since

−
∥∥vk∥∥ triangle ineq.

≤ −
∥∥∇f(xk)

∥∥+ ∥∥∇f(xk)− vk
∥∥ ,

we get

f(xk+1) ≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥
+
γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥) .

Lemma 4. Let V k,W k be non-negative sequences satisfying

V k+1 ≤ (1 + b1 exp(L1γ)γ
2)V k − b2γW

k + b3 exp(L1γ)γ
2,

for γ, b1, b2, b3 > 0. Then,

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.

Proof. Define βk = βk−1

1+b1 exp(L1γ)γ2 for k = 0, 1, . . . and β−1 = 1. Then, we can show that
βk = 1

(1+b1 exp(L1γ)γ2)k+1 for k = 0, 1, . . ., and that

βkV
k+1 ≤ (1 + b1 exp(L1γ)γ

2)βkV
k − b2γβkW

k + b3 exp(L1γ)γ
2βk

= βk−1V
k − b2γβkW

k + b3 exp(L1γ)γ
2βk.

Therefore,

min
k=0,1,...,K

W k ≤ 1∑K
k=0 βk

K∑
k=0

βkW
k

≤
∑K

k=0(βk−1V
k − βkV

k+1)

b2γ
∑K

k=0 βk

+
b3
b2

exp(L1γ)γ

=
β−1V

0 − βKV k+1

b2γ
∑K

k=0 βk

+
b3
b2

exp(L1γ)γ.

By the fact that β−1 = 1, βK > 0, and V k+1 ≥ 0,

min
k=0,1,...,K

W k ≤ V 0

b2γ
∑K

k=0 βk

+
b3
b2

exp(L1γ)γ.

Next, since

K∑
k=0

βk ≥ (K + 1) min
k=0,1,...,K

βk =
K + 1

(1 + b1 exp(L1γ)γ2)K+1
,

we have

min
k=0,1,...,K

W k ≤ V 0(1 + b1 exp(L1γ)γ
2)K+1

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ

1+x≤exp(x)

≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.
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B CONVERGENCE PROOF OF NORMALIZED EF21 (THEOREM 1)

In this section, we derive the convergence rate results of normalized EF21. To prove this, we present
the following descent lemma for normalized EF21.

Lemma 5. Consider Problem (1), where Assumption 1 (lower bound of f ), Assumption 2 (lower
bound of fi), Assumption 3 (generalized smooth of fi), and Assumption 4 (α-contractive property of
Ck) hold. Then, the iterates {xk} generated by normalized EF21 (Algorithm 1) satisfy

E
[
V k+1

]
≤ E

[
V k
]
+ c1γ

2
k

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]− γkE

[∥∥∇f(xk)
∥∥]+ c0γ

2
k,

where V k := f(xk) − f inf + 2γk

1−
√
1−α

1
n

∑n
i=1

∥∥∇fi(x
k)− vki

∥∥, and ci = Li

2 + 2
√
1−αLi

1−
√
1−α

for
i = 0, 1.

Proof. We prove the result in two steps.

Step 1) Bound E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥]. From the definition of the Euclidean norm, and by
taking the expectation conditioned on xk+1, vki , and by the update of vki from Algorithm 1

E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥∣∣xk+1, vki
]

= E
[∥∥∇fi(x

k+1)− vki − Ck(∇fi(x
k+1)− vki )

∥∥∣∣xk+1, vki
]

≤
√
E
[∥∥∇fi(xk+1)− vki − C(∇fi(xk+1)− vki )

∥∥2∣∣∣xk+1, vki

]
,

where we use the concave property of the square root function, and Jensen’s inequality for the
concave function, i.e., E [f(x)] ≤ f(E [x]) if f(x) is concave.

By the α-contractive property of compressors in (3), by the fact that
∥∥∇fi(x

k+1)− vki
∥∥ is a constant

conditioned on xk+1, vki , and then by the triangle inequality,

E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥∣∣xk+1, vki
]

≤
√
(1− α)E

[∥∥∇fi(xk+1)− vki
∥∥2∣∣∣xk+1, vki

]
=

√
1− α

∥∥∇fi(x
k+1)− vki

∥∥
≤

√
1− α

∥∥∇fi(x
k)− vki

∥∥+√
1− α

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥ .

By the generalized smoothness of fi(x) in (2), and by the fact that xk+1 = xk − γk
vk

∥vk∥ ,

E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥∣∣xk+1, vki
]

≤
√
1− α

∥∥∇fi(x
k)− vki

∥∥
+
√
1− α(L0 + L1

∥∥∇fi(x
k)
∥∥) exp(L1γk)γk.

Let γk > 0 be constants conditioned on xk+1, vki . Then, by the tower property, i.e.,

E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥] = E
[
E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥∣∣xk+1, vki
]]

,

we have

E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥] ≤
√
1− αE

[∥∥∇fi(x
k)− vki

∥∥]
+
√
1− α exp(L1γk)γk(L0 + L1E

[∥∥∇fi(x
k)
∥∥]). (10)

Step 2) Bound V k := f(xk)−f inf+Ak
1
n

∑n
i=1

∥∥∇fi(x
k)− vki

∥∥ for some Ak > 0. Next, define
V k := f(xk) − f inf + Ak

1
n

∑n
i=1

∥∥∇fi(x
k)− vki

∥∥ for some positive constants Ak. Then, from
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Lemma 3,
E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∇f(xk)
∥∥]

+exp(L1γk)γ
2
k

L1

2n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]+ exp(L1γk)γ

2
k

L0

2

+2γkE
[∥∥∇f(xk)− vk

∥∥]+Ak+1
1

n

n∑
i=1

E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥] .
By the fact that ∇f(xk) = 1

n

∑n
i=1 ∇fi(x

k), and vk = 1
n

∑n
i=1 v

k
i , and by the triangle inequality,

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∇f(xk)
∥∥]

+exp(L1γk)γ
2
k

L1

2n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]+ exp(L1γk)γ

2
k

L0

2

+2γk
1

n

n∑
i=1

E
[∥∥∇fi(x

k)− vki
∥∥]+Ak+1

1

n

n∑
i=1

E
[∥∥∇fi(x

k+1)− vk+1
i

∥∥] .
Next, by (10),

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∇f(xk)
∥∥]+ (γ2

k

2
+Ak+1

√
1− αγk

)
exp(L1γk)L0

+

(
γ2
k

2
+Ak+1

√
1− αγk

)
exp(L1γk)L1

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]

+
(
2γk +Ak+1

√
1− α

) 1
n

n∑
i=1

E
[∥∥∇fi(x

k)− vki
∥∥] .

If Ak = 2γk

1−
√
1−α

, and γk satisfies γk+1 ≤ γk, then

2γk +Ak+1

√
1− α ≤ 2γk +Ak

√
1− α = Ak.

Therefore,

E
[
V k+1

]
≤ E

[
V k
]
+ c1 exp(L1γk)γ

2
k

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]

−γkE
[∥∥∇f(xk)

∥∥]+ c0 exp(L1γk)γ
2
k,

where ci =
Li

2 + 2
√
1−αLi

1−
√
1−α

for i = 0, 1.

B.1 CONVERGENCE PROOF FOR THEOREM 1

Now, we are ready to prove Theorem 1. From Lemma 5 and 2, and by the fact that c1L0/L1 = c0

E
[
V k+1

]
≤ E

[
V k
]
+ 8c1L1 exp(L1γk)γ

2
kE
[
f(xk)− f inf

]
− γkE

[∥∥∇f(xk)
∥∥]+B exp(L1γk)γ

2
k,

where B = 2c0 +
8c1L1

n

∑n
i=1(f

inf − f inf
i ). By the fact that f(xk)− f inf ≤ V k,

E
[
V k+1

]
≤ (1 + 8c1L1 exp(L1γk)γ

2
k)E

[
V k
]
− γkE

[∥∥∇f(xk)
∥∥]+B exp(L1γk)γ

2
k.

By applying Lemma 4 with V k = E
[
V k
]
, W k = E

[∥∥∇f(xk)
∥∥], b1 = 8c1L1, b2 = 1, and

b3 = B,

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.

Finally, if γ = γ0√
K+1

with γ0 > 0, then exp(L1γk) ≤ exp(L1γ0), and thus

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ0)γ
2
0)

b2γ0
√
K + 1

+
b3
b2

γ0 exp(L1γ0)√
K + 1

.
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C CONVERGENCE OF NORMALIZED EF21 FOR A SINGLE-NODE CASE

In this section, we provide the convergence of normalized EF21 for a single-node case. In particular,
the algorithm enjoys the O(1/K) convergence up to the additive constant c0γ

1−c1 exp(L1γ)γ
. In contrast

to Theorem 1 for multi-node normalized EF21, the next result for single-node normalized EF21
applies for any γk = γ ∈ (0, 1/(βc1)) with β ≥ 2, c1 = L1

2 + 2
√
1−αL1

1−
√
1−α

, and α ∈ (0, 1].

Theorem 3. Consider the problem of minimizing f(x), which satisfies Assumption 1 (lower bound
of f ), and Assumption 3 (generalized smoothness of f ). Further, let Assumption 4 (contractive
compressor) hold. Then, the iterates {xk} generated by normalized EF21 (Algorithm 1) with n = 1,
γk = γ = 1/(βc1) and β ≥ 2 satisfy

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ E
[
V 0
]
− E

[
V K+1

]
γ(1− c1 exp(L1γ)γ)(K + 1)

+
c0γ

1− c1 exp(L1γ)γ
,

where V k = f(xk)− f inf + 2γ
1−

√
1−α

∥∥∇f(xk)− vk
∥∥, and ci =

Li

2 + 2
√
1−αLi

1−
√
1−α

for i = 0, 1.

Proof. We prove the result in the following steps:

Step 1) Bound E
[∥∥∇f(xk+1)− vk+1

∥∥]. From the definition of the Euclidean norm, and by tak-
ing the expectation conditioned on xk+1, vk,

E
[∥∥∇f(xk+1)− vk+1

∥∥∣∣xk+1, vk
] vk

= E
[∥∥∇f(xk+1)− vk − C(∇f(xk+1)− vk)

∥∥∣∣xk+1, vk
]

≤
√
E
[
∥∇f(xk+1)− vk − C(∇f(xk+1)− vk)∥2

∣∣∣xk+1, vk
]

(3)

≤
√

(1− α)E
[
∥∇f(xk+1)− vk∥2

∣∣∣xk+1, vk
]

=
√
1− α

∥∥∇f(xk+1)− vk
∥∥ ,

where we reach the second inequality by the fact that the square root function is concave, and the
last inequality by the fact that

∥∥∇f(xk+1)− vk
∥∥ is a constant conditioned on xk+1, vk. Next, by

the triangle inequality,

E
[∥∥∇f(xk+1)− vk+1

∥∥∣∣xk+1, vk
]
≤

√
1− α

∥∥∇f(xk)− vk
∥∥+√

1− α
∥∥∇f(xk+1)−∇f(xk)

∥∥
(6)

≤
√
1− α

∥∥∇f(xk)− vk
∥∥+√

1− α(L0 + L1

∥∥∇f(xk)
∥∥) exp (L1

∥∥xk+1 − xk
∥∥) ∥∥xk+1 − xk

∥∥
xk+1

≤
√
1− α

∥∥∇f(xk)− vk
∥∥+√

1− α(L0 + L1

∥∥∇f(xk)
∥∥) exp(L1γk)γk.

Next, by the tower property, and by the fact that {γk} are constants,

E
[∥∥∇f(xk+1)− vk+1

∥∥] = E
[
E
[∥∥∇f(xk+1)− vk+1

∥∥∣∣xk+1, vk
]]

≤
√
1− αE

[∥∥∇f(xk)− vk
∥∥]+√

1− α(L0 + L1E
[∥∥∇f(xk)

∥∥]) exp(L1γk)γk. (11)

Step 2) Bound V k := f(xk) − f inf + Ak

∥∥∇f(xk)− vk
∥∥ for some Ak > 0. Denote V k :=

f(xk)− f inf +Ak

∥∥∇f(xk)− vk
∥∥ for some constants Ak > 0. Then, from the definition of V k+1,

from Lemma 3 with n = 1, and by the fact f(x) is generalized smooth,

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
−
(
γk − γ2

kL1

2
exp(L1γk)

)
E
[∥∥∇f(xk)

∥∥]+ γ2
kL0

2
exp(L1γk)

+2γkE
[∥∥∇f(xk)− vk

∥∥]+Ak+1E
[∥∥∇f(xk+1)− vk+1

∥∥]
(11)

≤ E
[
f(xk)− f inf

]
+
(
2γk +Ak+1

√
1− α

)
E
[∥∥∇f(xk)− vk

∥∥]
−
(
γk − γ2

kL1

2
exp(L1γk)−Ak+1

√
1− αL1γk exp(L1γk)

)
E
[∥∥∇f(xk)

∥∥]
+
γ2
kL0

2
exp(L1γk) +Ak+1

√
1− αL0γk exp(L1γk)
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If Ak = 2γk

1−
√
1−α

and γk satisfies γk+1 ≤ γk, then

2γk +Ak+1

√
1− α ≤ 2γk +Ak

√
1− α = Ak.

Therefore,

E
[
V k+1

]
≤ E

[
V k
]
−
(
γk − c1 exp(L1γk)γ

2
k

)
E
[∥∥∇f(xk)

∥∥]+ c0 exp(L1γk)γ
2
k,

where ci =
Li

2 + 2
√
1−αLi

1−
√
1−α

for i = 0, 1.

Step 3) Complete the convergence bound. If γk = γ = 1/(βc1) for β ≥ 2, then c1 exp(L1γ)γ =
exp(L1/(βc1))/β ≤ exp(2/β)/β ≤ 0.7 < 1, and

E
[
V k+1

]
≤ E

[
V k
]
− γ (1− c1 exp(L1γ)γ) E

[∥∥∇f(xk)
∥∥]+ c0γ

2.

By re-arranging the terms,

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 1

K + 1

K∑
k=0

E
[∥∥∇f(xk)

∥∥]
≤

E
[
V 0
]
− E

[
V K+1

]
γ(1− c1 exp(L1γ)γ)(K + 1)

+
c0γ

1− c1 exp(L1γ)γ
.

By the fact V k ≥ 0, we complete the proof.
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D CONVERGENCE OF NORMALIZED EF21-SGDM (THEOREM 2)

In this section, we derive the convergence rate results of normalized EF21-SGDM. We first intro-
duce auxiliary lemmas in Section D.1, and later prove the convergence theorem (Theorem 2) in
Section D.2.

D.1 AUXILIARY LEMMAS

Now, we provide useful lemmas for analyzing EF21-SGDM. First, Lemma 6 shows the descent
inequality of the normalized gradient descent update under Assumption 3 (generalized smoothness
of fi). Second, Lemma 7 and 8 provide the upper-bound of the Euclidean distance between vki and
gki , and of the Euclidean distance between vki and ∇fi(x

k), respectively. Third, Lemma 9 presents
the convergence rate from the recursion of the non-negative sequences rk, sk.

Lemma 6. Consider the iterates {xk} generated by Algorithm 2. If Assumption 3 holds, then for
any γk > 0, ηk ∈ [0, 1],

f(xk+1) ≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥+ 2γk
∥∥vk − gk

∥∥
+
γ2
k

2
exp (γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥) .

Proof. By applying the triangle inequality into Lemma 3, we complete the proof.

Lemma 7. Consider the iterates {xk} generated by Algorithm 2. If Assumptions 3, 4, and 5 hold,
then for γk > 0, ηk ∈ [0, 1], and k ≥ 0,

1

n

n∑
i=1

E
[∥∥vk+1

i − gk+1
i

∥∥] ≤√
1− α

n

n∑
i=1

E
[∥∥vki − gki

∥∥]+ √
1− αηk+1

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥]

+
√
1− αηk+1γk exp (γkL1)

(
L0 + L1

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥])

+
√
1− αηkσ.

Proof. Taking conditional expectation by Fk+1 = {vk+1
i , xk+1, gki }, using the concave property of

the squared root of the function, and applying the definition of gki in Algorithm 2, we have

E
[∥∥vk+1

i − gk+1
i

∥∥∣∣Fk+1

]
≤

√
E
[∥∥vk+1

i − gk+1
i

∥∥2∣∣∣Fk+1

]
=

√
E
[∥∥vk+1

i − gki − Ck
(
vk+1
i − gki

)∥∥2∣∣∣Fk+1

]
(3)

≤
√
E
[
(1− α)

∥∥vk+1
i − gki

∥∥2∣∣∣Fk+1

]
.

Next, let γk = γ > 0, and ηk = η ∈ [0, 1]. By the fact that vk+1
i , gki are constants being conditioned

on Fk+1, and by the triangle inequality,

E
[∥∥vk+1

i − gk+1
i

∥∥∣∣Fk+1

]
≤

√
1− α

∥∥vki − gki
∥∥+√

1− α
∥∥vk+1

i − vki
∥∥

=
√
1− α

∥∥vki − gki
∥∥+√

1− αηk+1

∥∥∇f(xk+1; ξk+1
i )− vki

∥∥ .
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Here, the equality comes from the definition of vk+1
i in Algorithm 2. Next, by the triangle inequality,

E
[∥∥vk+1

i − gk+1
i

∥∥∣∣Fk+1

]
≤

√
1− α

∥∥vki − gki
∥∥+√

1− αηk+1∥vki −∇fi(x
k)∥

+
√
1− αηk+1

∥∥∇fi(x
k)−∇fi(x

k+1)
∥∥

+
√
1− αηk+1

∥∥∇fi(x
k+1; ξk+1

i )−∇fi(x
k+1)

∥∥
(6)

≤
√
1− α

∥∥vki − gki
∥∥+√

1− αηk+1∥vki −∇fi(x
k)∥

+
√
1− αηk+1

(
L0 + L1

∥∥∇fi(x
k)
∥∥) exp (L1

∥∥xk+1 − xk
∥∥) ∥∥xk+1 − xk

∥∥
+
√
1− αηk+1

∥∥∇f(xk+1; ξk+1
i )−∇f(xk+1)

∥∥ .
Next, using xk+1 − xk = −γk

gk

∥gk∥ , and taking an expectation, we obtain

E
[∥∥vk+1

i − gk+1
i

∥∥] ≤
√
1− αE

[∥∥vki − gki
∥∥]+√

1− αηk+1E
[∥∥vki −∇fi(x

k)
∥∥]

+
√
1− αηk+1γk exp (γkL1)

(
L0 + L1E

[∥∥∇fi(x
k)
∥∥])

+
√
1− αηk+1E

[∥∥∇fi(x
k+1; ξk+1

i )−∇fi(x
k+1)

∥∥] .
Finally, since

E
[∥∥∇fi(x

k+1; ξk+1
i )−∇fi(x

k+1)
∥∥] ≤

√
E
[∥∥∇fi(xk+1; ξk+1

i )−∇fi(xk+1)
∥∥2]

(4)

≤ σ,

we can obtain the upper bound for 1
n

∑n
i=1 E

[∥∥vk+1
i − gk+1

i

∥∥].
Lemma 8. Consider the iterates {xk} generated by Algorithm 2. If Assumptions 3, and 5 hold, then
for any γk ≡ γ > 0, ηk ≡ η, and k ≥ 0,

E
[∥∥vk −∇f(xk)

∥∥] ≤ (1− η)kE
[∥∥v0 −∇f(x0)

∥∥]+ √
ησ

√
n

+
γ

η
L0 exp (γL1)

+ exp (γL1)
γL1

n

k−1∑
t=0

(1− η)k−t
n∑

i=1

E
[∥∥∇fi(x

t)
∥∥] .

In addition, for any k ≥ 0,

1

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥] ≤ (1− η)k

n

n∑
i=1

E
[∥∥v0i −∇fi(x

0)
∥∥]+√

ησ +
γ

η
L0 exp (γL1)

+ exp (γL1)
γL1

n

k∑
t=0

(1− η)k−t
n∑

i=1

E
[∥∥∇fi(x

t)
∥∥] ,

Proof. We prove the result using proof arguments similar to those of Theorem 1 in Cutkosky &
Mehta (2020). From the definition of vk+1

i , we have the following recursion for any k ≥ 0:

vk+1
i = (1− ηk+1)v

k
i + ηk+1∇fi(x

k+1; ξk+1
i )

= ∇fi(x
k+1) + (1− ηk+1)(v

k
i −∇fi(x

k)) + (1− ηk+1)(∇fi(x
k)−∇fi(x

k+1))

+ηk+1(∇fi(x
k+1; ξk+1

i )−∇fi(x
k+1)).

Next, from the recursion of vk+1
i , we obtain the following recursion for k ≥ 0:

Hk+1
i = (1− ηk+1)H

k
i + (1− ηk+1)G

k
i + ηk+1U

k+1
i ,

where

Uk+1
i = ∇fi(x

k+1; ξk+1
i )−∇fi(x

k+1), Gk
i = ∇fi(x

k)−∇fi(x
k+1), Hk

i = vki −∇fi(x
k),
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Uk+1 =
1

n

n∑
i=1

Uk+1
i , Gk =

1

n

n∑
i=1

Gk
i , and Hk =

1

n

n∑
i=1

Hk
i .

By applying the recursion of Hk
i recursively, and by the fact that (1 − ηt+1)

∏k
j=t+1(1 − ηj+1) =∏k

j=t(1− ηj+1),

Hk+1
i =

k∏
t=0

(1− ηt+1)H
0
i +

k∑
t=0

k∏
j=t+1

(1− ηj+1)(1− ηt+1)G
t
i +

k∑
t=0

k∏
j=t+1

(1− ηj+1)ηt+1U
t+1
i

=

k∏
t=0

(1− ηt+1)H
0
i +

k∑
t=0

k∏
j=t

(1− ηj+1)G
t
i +

k∑
t=0

k∏
j=t+1

(1− ηj+1)ηt+1U
t+1
i .

By the fact that Hk = 1
n

∑n
i=1 H

k
i ,

Hk+1 =

k∏
t=0

(1− ηt+1)H
0 +

k∑
t=0

k∏
j=t

(1− ηj+1)G
t +

k∑
t=0

k∏
j=t+1

(1− ηj+1)ηt+1U
t+1.

Next, taking the Euclidean norm, using the triangle inequality, and then taking the expectation, we
obtain

E
[∥∥Hk+1

∥∥] ≤
k∏

t=0

(1− ηt+1)E
[∥∥H0

∥∥]+ k∑
t=0

k∏
j=t

(1− ηj+1)E
[∥∥Gt

∥∥]
︸ ︷︷ ︸

:=A1

+E

∥∥∥∥∥∥
k∑

t=0

k∏
j=t+1

(1− ηj+1)ηt+1U
t+1

∥∥∥∥∥∥


︸ ︷︷ ︸
:=A2

. (12)

To bound E
[∥∥Hk+1

∥∥], we need to bound the expectation of the last two terms. First, we bound
term A1. By the fact that ∥Gt∥ ≤ 1

n

∑n
i=1 ∥Gt

i∥, and by the definition of Gt
i,

A1 ≤ 1

n

n∑
i=1

k∑
t=0

k∏
j=t

(1− ηj+1)E
[∥∥∇fi(x

t)−∇fi(x
t+1)

∥∥]
(6)

≤ 1

n

n∑
i=1

k∑
t=0

k∏
j=t

(1− ηj+1)E
[
L0 exp

(
L1

∥∥xt+1 − xt
∥∥) ∥∥xt+1 − xt

∥∥]
+
1

n

n∑
i=1

k∑
t=0

k∏
j=t

(1− ηj+1)E
[
L1

∥∥∇fi(x
t)
∥∥ exp (L1

∥∥xt+1 − xt
∥∥) ∥∥xt+1 − xt

∥∥]
=

k∑
t=0

k∏
j=t

(1− ηj+1)γtexp(γtL1)L0 +
L1

n

n∑
i=1

k∑
t=0

k∏
j=t

(1− ηj+1)γt exp (γtL1) E
[∥∥∇fi(x

t)
∥∥] .

Second, we bound term A2. By the independence of each sample variable ξti ,

A2 ≤

√√√√√√E


∥∥∥∥∥∥

k∑
t=0

k∏
j=t+1

(1− ηj+1)ηt+1U t+1

∥∥∥∥∥∥
2


=

√√√√ k∑
t=0

k∏
j=t+1

(1− ηj+1)2η2t+1E
[
∥U t+1∥2

]
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Next, by the variance decomposition, i.e., E
[∥∥U t+1

∥∥2] = 1
n

∑n
i=1 E

[∥∥U t+1
i

∥∥2] (4)

≤ σ2/n,

A2 ≤

√√√√ k∑
t=0

k∏
j=t+1

(1− ηj+1)2η2t+1

σ2

n

=
σ√
n

√√√√ k∑
t=0

k∏
j=t+1

(1− ηj+1)2η2t+1.

Therefore, by plugging the upper-bounds for A1, and for A2 into (12), we obtain

E
[∥∥Hk+1

∥∥] ≤
k∏

t=0

(1− ηt+1)E
[∥∥H0

∥∥]+ k∑
t=0

k∏
j=t

(1− ηj+1)γtL0 exp (γtL1)

+
L1

n

n∑
i=1

k∑
t=0

k∏
j=t

(1− ηj+1)γt exp (γtL1) E
[∥∥∇fi(x

t)
∥∥]

+
σ√
n

√√√√ k∑
t=0

k∏
j=t+1

(1− ηj+1)2η2t+1.

Similarly, by following the proof arguments for bounding E
[∥∥Hk+1

∥∥], we can show the following
inequality:

1

n

n∑
i=1

E
[∥∥Hk+1

i

∥∥] ≤
k∏

t=0

(1− ηt+1)
1

n

n∑
i=1

E
[∥∥H0

i

∥∥]+ k∑
t=0

k∏
j=t

(1− ηj+1)γtL0 exp (γtL1)

+
L1

n

n∑
i=1

k∑
t=0

k∏
j=t

(1− ηj+1)γt exp (γtL1) E
[∥∥∇fi(x

t)
∥∥]

+σ

√√√√ k∑
t=0

k∏
j=t+1

(1− ηj+1)2η2t+1.

We further simplify our bounds. Let γk ≡ γ > 0, and ηk ≡ η ∈ (0, 1). Then, by the fact that

k∏
t=0

(1− ηt+1) = (1− η)k+1

k∑
t=0

k∏
j=t

(1− ηj+1)γt = γ

k∑
t=0

(1− η)k−t+1, and

k∑
t=0

k∏
j=t+1

(1− ηj+1)
2η2t+1 = η2

k∑
t=0

(1− η)2(k−t),

we have

E
[∥∥Hk+1

∥∥] ≤ (1− η)k+1E
[∥∥H0

∥∥]+ γL0 exp (γL1)

k∑
t=0

(1− η)k−t+1

+exp (γL1)
γL1

n

n∑
i=1

(1− η)k−t+1E
[∥∥∇fi(x

t)
∥∥]+ ση√

n

√√√√ k∑
t=0

(1− η)2(k−t).
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By the fact that

k∑
t=0

(1− η)k−t+1 ≤
∞∑
t=0

(1− η)t =
1

1− (1− η)
=

1

η
;

k∑
t=0

(1− η)2(k−t) ≤
∞∑
t=0

(1− η)2t =
1

1− (1− η)2
=

1

η(2− η)
≤ 1

η
,

we obtain

E
[∥∥Hk+1

∥∥] ≤ (1− η)k+1E
[∥∥H0

∥∥]+ γ

η
L0 exp (γL1) +

σ
√
η

√
n

+exp (γL1)
γL1

n

n∑
i=1

(1− η)k−t+1E
[∥∥∇fi(x

t)
∥∥] .

Similarly, by following the proof arguments for simplifying the bounds for E
[∥∥Hk+1

∥∥], we can
show the following inequality:

1

n

n∑
i=1

E
[∥∥Hk+1

∥∥] ≤ (1− η)k+1

n

n∑
i=1

E
[∥∥H0

i

∥∥]+ γ

η
L0 exp (γL1) +

σ
√
η

√
n

+exp (γL1)
γL1

n

n∑
i=1

(1− η)k−t+1E
[∥∥∇fi(x

t)
∥∥] .

Lemma 9. Let non-negative sequences {rk} and {sk} satisfy the following recursion: for k =
0, 1, . . . ,K, and K ≥ 0,

rk+1 ≤ rk − γsk + (1− η)kγa1 + γa2 + γ2a3

k∑
t=0

(1− η)k−trt, (13)

where a1, a2, a3 > 0, γ > 0, η ∈ (0, 1]. If γ2
/ηa3(K + 1) ≤ 1/2, then for k = 0, 1, . . . ,K, and

K ≥ 0,
rk ≤ pkr0 + ke,

where p and e are defined by

p = 1 +
γ2

η
a3, and e =

γ(a1 + a2)

1− γ2
/ηa3(K + 1)

.

In addition, for K ≥ 0,

min
0≤k≤K

sk ≤ 2r0

γ(K + 1)
+

a1
η(K + 1)

+
3

2
a2 +

1

2
a1.

Proof. We prove two statements in this lemma.

Deriving the recursion of rk satisfying (13). First, we prove that rk ≤ pkr0 + ke satisfies the
recursion in (13) by an induction. For k = 0, r0 ≤ r0. Next, if rk ≤ pkr0 + ke holds for k, then
we prove this recursion for k + 1:

rk+1 ≤ rk − γsk + (1− η)kγa1 + γa2 + γ2a3

k∑
t=0

(1− η)k−trt

≤ pkr0 + ke+ (1− η)kγa1 + γa2 + γ2a3

k∑
t=0

(1− η)k−t(ptr0 + te).
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Since
k∑

t=0

(1− η)k−tptr0 ≤ pkr0

∞∑
t=0

(1− η)t =
pkr0
η

, and

k∑
t=0

(1− η)k−tte ≤ ke

∞∑
t=0

(1− η)t ≤ ke

η
,

we obtain

rk+1 ≤ pkr0 + ke+ (1− η)kγa1 + γa2 + γ2a3
pkr0
η

+ γ2a3
ke

η
.

By re-arranging the terms, by the fact that (1− η)k ≤ 1, and by the fact that k ≤ K,

rk+1 ≤
(
1 +

γ2

η
a3

)
pkr0 + ke+ γ(a1 + a2) + e

γ2a3K

η
.

If p = 1+ γ2

η a3, e = γ(a1+a2)

1−γ2/ηa3(K+1)
, and γ2

/ηa3(K+1) ≤ 1/2, then we can show that γ(a1+a2)+

eγ2a3K
η = e, and that

rk+1 ≤ pk+1r0 + (k + 1)e.

Thus, we complete the proof for the first statement.

Deriving the convergence bound in min0≤k≤K sk. Next, based the derived inequality rk ≤
pkr0 + ke, we prove the second statement: the convergence in min0≤k≤K sk. By summing (13)
over k = 0, 1, . . . ,K,

γ

K∑
k=0

sk ≤
K∑

k=0

(rk − rk+1) +

K∑
k=0

(1− η)kγa1 + γa2(K + 1) + γ2a3

K∑
k=0

k∑
t=0

(1− η)k−trt

≤ r0 +
γ

η
a1 + γa2(K + 1) + γ2a3

K∑
k=0

k∑
t=0

(1− η)k−trt, (14)

where we reach the last inequality by the fact that rK+1 ≥ 0, and that
∑K

k=0(1− η)k ≤
∑∞

k=0(1−
η)k = 1/η. To complete the convergence bound, we need to bound the last term from the previous
inequality:

K∑
k=0

k∑
t=0

(1− η)k−trt =

K∑
t=0

K∑
k=t

(1− η)k−trt

=

K∑
t=0

rt

(1− η)t

K∑
k=t

(1− η)k

=

K∑
t=0

rt

(1− η)t
· (1− η)t

1− (1− η)K−t

1− (1− η)

≤ 1

η

K∑
k=0

rk.

By the inequality rk ≤ pkr0 + ke,
K∑

k=0

k∑
t=0

(1− η)k−trt ≤ 1

η

K∑
k=0

(pkr0 + ke) =
1

η

(
pK+1 − 1

p− 1
r0 +

K(K + 1)

2
e

)
.

Plugging the upper-bound for
∑K

k=0

∑k
t=0(1− η)k−trt into (14) yields

γ

K∑
k=0

sk ≤ r0 +
γ

η
a1 + γa2(K + 1) +

γ2

η
a3

pK+1 − 1

p− 1
r0 +

γ2

η
a3

K(K + 1)

2
e.
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Next, by the fact that p = 1 + γ2

η a3 and e = γ(a1+a2)

1−γ2/ηa3(K+1)
,

γ

K∑
k=0

sk ≤ r0 +

(
1 +

γ2

η
a3

)K+1

r0 +
γ

η
a1 + γa2(K + 1) +

γ2

η
a3

K(K + 1)

2

γ(a1 + a2)

1− γ2
/ηa3(K + 1)

≤ r0 + exp

(
γ2

η
a3(K + 1)

)
r0 +

γ

η
a1 + γa2(K + 1) +

K

2

γ2(K + 1)

η
a3

γ(a1 + a2)

1− γ2
/ηa3(K + 1)

.

By the fact that γ2(K+1)
η a3 ≤ 1

2 ,

γ

K∑
k=0

sk ≤ 2r0 +
γ

η
a1 + γa2(K + 1) +

K

2
γ(a1 + a2)

Finally, using that γ
K∑

k=0

sk ≥ γ(K + 1) min
0≤k≤K

sk, we obtain

γ(K + 1) min
0≤k≤K

sk ≤ 2r0 +
γ

η
a1 + γa2(K + 1) +

K

2
γ(a1 + a2),

which completes the proof.

D.2 PROOF OF THEOREM 2

Now, we are ready to prove Theorem 2. First of all, define the Lyaponov function Vk for any k ≥ 0

Vk = f(xk)− f inf +
A

n

n∑
i=1

∥∥vk+1
i − gk+1

i

∥∥ ,
with A = 2γ

1−
√
1−α

. By Lemma 6 and 7,

E [Vk+1] ≤ E
[
f(xk)− f inf

]
− γE

[∥∥∇f(xk)
∥∥]+ 2γE

[∥∥∇f(xk)− vk
∥∥]+ 2γE

[∥∥vk − gk
∥∥]

+A
√
1− α

1

n

n∑
i=1

E
[∥∥vki − gki

∥∥]+A
√
1− α

η

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥]

+
γ2

2
exp (γL1)

(
L0 +

L1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥])

+A
√
1− αηγ exp (γL1)

(
L0 +

L1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥])+A

√
1− αησ.

Since A = 2γ
1−

√
1−α

, we obtain A
√
1− αη = 2γηCα, where Cα =

√
1−α

1−
√
1−α

, and

E [Vk+1] ≤ E [Vk]− γE
[∥∥∇f(xk)

∥∥]+ 2γE
[∥∥∇f(xk)− vk

∥∥]+ 2γη
Cα

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥]

+γ2

(
1

2
+ 2Cαη

)
exp (γL1)

(
L0 +

L1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥])+ 2γηCασ.
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By Lemma 8,

E [Vk+1] ≤ E [Vk]− γE
[∥∥∇f(xk)

∥∥]+ 2γ(1− η)kE
[∥∥v0 −∇f(x0)

∥∥]+ 2γ
√
ησ

n

+
2γ2

η
L0 exp (γL1) +

2γ2L1

n

k−1∑
t=0

(1− η)k−t
n∑

i=1

E
[∥∥∇fi(x

t)
∥∥] exp (γL1)

+2γηCα

(
(1− η)k

n

n∑
i=1

E
[∥∥v0i −∇fi(x

0)
∥∥]+√

ησ +
γ

η
L0 exp (γL1)

)

+2γηCα exp (γL1) ·
γL1

n

k∑
t=0

(1− η)k−t
n∑

i=1

E
[∥∥∇fi(x

t)
∥∥]

+γ2

(
1

2
+ 2Cαη

)
exp (γL1)

(
L0 +

L1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥])+ 2γηCασ.

Denoting V0 =
∥∥v0 −∇f(x0)

∥∥ and Ṽ0 = 1
n

∑n
i=1

∥∥v0i −∇fi(x
0)
∥∥, we have

E [Vk+1] ≤ E [Vk]− γE
[∥∥∇f(xk)

∥∥]+ (1− η)k
(
2γE [V0] + 2γηCαE

[
Ṽ0

])
+2γ

(√
η

n
+ η

3/2Cα + ηCα

)
σ + γ

(
2γ

η
+ 2γCα +

γ

2
+ 2γηCα

)
L0 exp (γL1)

+2γ2 (1 + ηCα) exp (γL1)
L1

n

n∑
i=1

k−1∑
t=0

(1− η)k−tE
[∥∥∇fi(x

t)
∥∥]

+γ2

(
1

2
+ 2ηCα

)
exp (γL1)

L1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥] .

Applying Lemma 2, we obtain

E [Vk+1] ≤ E [Vk]− γE
[∥∥∇f(xk)

∥∥]+ (1− η)k
(
2γE [V0] + 2γηCαE

[
Ṽ0

])
+2γ

(√
η

n
+ η

3/2Cα + ηCα

)
σ + γ

(
2γ

η
+ 2γCα +

γ

2
+ 2γηCα

)
L0 exp (γL1)

+2γ2 exp (γL1) (1 + ηCα)

k−1∑
t=0

(1− η)k−t

(
8L2

1E
[
f(xt)− f inf

]
+

8L2
1

n

n∑
i=1

(f inf − f inf
i ) + L0

)

+γ2 exp (γL1)

(
1

2
+ 2ηCα

)(
8L2

1E
[
f(xk)− f inf

]
+

8L2
1

n

n∑
i=1

(f inf − f inf
i ) + L0

)
.

By re-arranging the terms,

E [Vk+1] ≤ E [Vk]− γE
[∥∥∇f(xk)

∥∥]+ (1− η)k
(
2γE [V0] + 2γηCαE

[
Ṽ0

])
+16γ2(1 + ηCα) exp (γL1)L

2
1

k∑
t=0

(1− η)k−tE
[
f(xt)− f inf

]
+2γ

(√
η

n
+ η

3/2Cα + ηCα

)
σ + γ

(
2γ

η
+ 2γCα +

γ

2
+ 2γηCα

)
exp (γL1)L0

+

(
γ2

2
+ 2γ2ηCα + 2γ2(1 + ηCα)

k−1∑
t=0

(1− η)k−t

)
exp (γL1)L0

+8

(
γ2

2
+ 2γ2ηCα + 2γ2(1 + ηCα)

k−1∑
t=0

(1− η)k−t

)
exp (γL1)

L2
1

n

n∑
i=1

(f inf − f inf
i ).
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Next, by the fact that
∑k−1

t=0 (1− η)k−t ≤
∑∞

t=0(1− η) = 1
η ,

2γ2(1 + ηCα)

k−1∑
t=0

(1− η)k−t ≤ 2γ2 + 2γ2ηCα

η

=
2γ2

η
+ 2γ2Cα.

Therefore, by using the upper bound of 2γ2(1+ηCα)
∑k−1

t=0 (1−η)k−t, and by the fact that f(xt)−
f inf ≤ Vt,

E [Vk+1] ≤ E [Vk]− γE
[∥∥∇f(xk)

∥∥]+ (1− η)k
(
2γE [V0] + 2γηCαE

[
Ṽ0

])
+16γ2(1 + ηCα) exp (γL1)L

2
1

k∑
t=0

(1− η)k−tE [Vt] + 2γ

(√
η

n
+ η(1 +

√
η)Cα

)
σ

+γ exp (γL1)L0

(
γ +

4γ

η
+ 4γ(1 + η)Cα

)
+4γ exp (γL1)

(
γ +

4γ

η
+ 4γ(1 + η)Cα

)
L2
1

n

n∑
i=1

(
f inf − f inf

i

)
.

By assuming that 16γ
2
/η(K + 1)(1 + ηCα)L

2
1 exp (γL1) ≤ 1

2 , and applying

Lemma 9 with sk = E
[∥∥∇f(xk)

∥∥], rk = E [Vk], a1 = 2E [V0] + 2ηCαE
[
Ṽ0

]
,

a2 = 2
(√

η
n + η(1 +

√
η)Cα

)
σ + exp (γL1)L0

(
γ + 4γ

η + 4γ(1 + η)Cα

)
+

4 exp (γL1)
(
γ + 4γ

η + 4γ(1 + η)Cα

)
L2

1

n

∑n
i=1

(
f inf − f inf

i

)
, and a3 = 16(1 +

ηCα) exp (γL1)L
2
1, we get

min
0≤k≤K

E
[∥∥∇f(xk)

∥∥] ≤ 2E [V0]

γ(K + 1)
+

2E [V0] + ηCαE
[
Ṽ0

]
η(K + 1)

+ E [V0] + ηCαE
[
Ṽ0

]
+3

(√
η

n
+ η(1 +

√
η)Cα

)
σ

+
3

2
exp (γL1)L0

(
γ +

4γ

η
+ 4γ(1 + η)Cα

)
+6 exp (γL1)

(
γ +

4γ

η
+ 4γ(1 + η)Cα

)
L2
1

n

n∑
i=1

(
f inf − f inf

i

)
.

If η = 1√
K+1

, and γ = γ0

(K+1)3/4
with γ0 > 0 satisfying

32γ2
0L

2
1

(
1 +

Cα√
K + 1

)
exp

(
γ0L1

(K + 1)3/4

)
≤ 1,

then we have exp (γL1) = exp
(

γ0L1

(K+1)3/4

)
≤ exp (γ0L1), and

min
0≤k≤K

E
[∥∥∇f(xk)

∥∥] ≤ 2E [V0]

γ0(K + 1)1/4
+

2E [V0] + ηCαE
[
Ṽ0

]
(K + 1)1/2

+ E [V0] +
CαE

[
Ṽ0

]
(K + 1)1/2

+3

(
1√

n(K + 1)1/4
+

2Cα

(K + 1)1/2

)
σ

+
3

2
exp (γ0L1)L0

(
γ0

(K + 1)3/4
+

4γ0
(K + 1)1/4

+
8γ0Cα

(K + 1)3/4

)
+6 exp (γ0L1)

(
γ0

(K + 1)3/4
+

4γ0
(K + 1)1/4

+
8γ0Cα

(K + 1)3/4

)
L2
1δ

inf ,
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where δinf = 1
n

n∑
i=1

(
f inf − f inf

i

)
. By the fact that Cα =

√
1−α(1+

√
1−α)

α ≤ 2
√
1−α
α ,

min
0≤k≤K

E
[∥∥∇f(xk)

∥∥] ≤ O
(

E[V0]/γ0 + σ/
√
n + (γ0L0 + γ0L

2
1δ

inf) exp (γ0L1)

(K + 1)1/4
+ E [V0]

)

+O

√
1− α

α
·
E
[
Ṽ0

]
+ σ + (L0γ0 + γ0L

2
1δ

inf) exp (γ0L1)

(K + 1)1/2

 .

If v0i is initialized to be the mini-batch stochastic gradient at the starting point with batch size Binit ∈
[n]:

v0i =
1

Binit

Binit∑
j=1

∇fi(x
0
i ; ξ

0
i,j),

where ξ0i,j are i.i.d., j ∈ Binit, then we have the following bounds for E [V0], and E
[
Ṽ0

]
:

E [V0] = E

∥∥∥∥∥∥ 1

nBinit

n∑
i

Binit∑
j=1

∇fi(x
0
i ; ξ

0
i,j)−∇f(x0)

∥∥∥∥∥∥


≤

√√√√√√E


∥∥∥∥∥∥ 1

nBinit

n∑
i

Binit∑
j=1

∇fi(x0
i ; ξ

0
i,j)−∇f(x0)

∥∥∥∥∥∥
2


≤ σ√
nBinit

; and

E
[
Ṽ0

]
=

1

n

n∑
i=1

E

∥∥∥∥∥∥ 1

Binit

Binit∑
j=1

∇fi(x
0
i ; ξ

0
i,j)−∇fi(x

0)

∥∥∥∥∥∥


≤ 1

n

n∑
i=1

√√√√√√E


∥∥∥∥∥∥ 1

Binit

Binit∑
j=1

∇fi(x0
i ; ξ

0
i,j)−∇fi(x0)

∥∥∥∥∥∥
2


≤ σ√
Binit

.

By taking Binit =
√
K + 1,

E [V0] ≤
σ√

n(K + 1)1/2
, E

[
Ṽ0

]
≤ σ

(K + 1)1/2
.

Therefore,

min
0≤k≤K

E
[∥∥∇f(xk)

∥∥] ≤ O

(
E[V0]/γ0 + σ/

√
n +

(
γ0L0 + γ0L

2
1δ

inf
)
exp (γ0L1)

(K + 1)1/4

)

+O

(√
1− α

α
·
σ +

(
L0γ0 + γ0L

2
1δ

inf
)
exp (γ0L1)

(K + 1)1/2

)
.
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E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional results for minimizing nonconvex polynomial functions, and
for training the ResNet-20 model over the CIFAR-10 dataset.

E.1 MINIMIZATION OF NONCONVEX POLYNOMIAL FUNCTIONS

We ran normalized EF21 (EF21-norm), and traditional EF21 in a single-node setting (n = 1) for
solving the following problem:

min
x∈Rd

{
f(x) :=

d∑
i=1

aix
4
i︸ ︷︷ ︸

=:g(x)

+λ

d∑
i=1

x2
i

1 + x2
i︸ ︷︷ ︸

=:h(x)

}
, (15)

where ai > 0, i = 1, . . . , d, λ > 0.

Let us show that f(x) is non-convex (for the specific choice of ai) and (L0, L1)-smooth. First, we
prove that f(x) is non-convex. Indeed,

∇2f(x) = ∇2g(x) +∇2h(x)

= 12 diag
{
a1x

2
1, . . . , adx

2
d

}
+ 2λ diag

{
1− 3x2

1

(1 + x2
1)

3 , . . . ,
1− 3x2

d

(1 + x2
d)

3

}
,

is not positive definite matrix if we choose ai =
λ
24 , xi = ±1 for i = 1, . . . , d.

Second, we find L0, L1 > 0 such that
∥∥∇2f(x)

∥∥ ≤ L0 +L1 ∥∇f(x)∥ , ∀x ∈ Rd. This condition
is equivalent to Assumption 3 (generalized smoothness) with L0, L1 (Chen et al., 2023, Theorem
1). Let us fix some L1 > 0 and choose L0 = 9λd2

2L2
1
+ 2λ. Since ∇2h(x) ≼ 2λI ,∥∥∇2f(x)

∥∥ =
∥∥∇2g(x) +∇2h(x)

∥∥ ≤
∥∥∇2g(x)

∥∥+ ∥∥∇2h(x)
∥∥

≤ 12
√

a21x
4
1 + . . .+ a2dx

4
d + 2λ

≤ 12
(
a1x

2
1 + . . .+ adx

2
d

)
+ 2λ.

Also, notice that

∥∇f(x)∥ = ∥∇g(x) +∇h(x)∥ =

√(
4a1x2

1 +
2λ

(1 + x2
1)

2

)2

x2
1 + . . .+

(
4adx2

d +
2λ

(1 + x2
d)

2

)2

x2
d

≥ 4
√
a21x

6
1 + . . .+ a2dx

6
d

(∗)
≥ 4√

d

(
a1 |x1|3 + . . .+ ad |xd|3

)
,

where (*) results from the fact that ∥x∥1 ≤
√
d ∥x∥ for x ∈ Rd. Our goal is to show that

12
(
a1x

2
1 + . . .+ adx

2
d

)
≤ L̃0 +

4L1√
d

(
a1 |x1|3 + . . .+ ad |xd|3

)
, L̃0 = L0 − 2λ.

To show this, we consider two cases: if |xi| ≤ 3
√
d

L1
, and otherwise.

1. If |xi| ≤ 3
√
d

L1
for all i = 1, . . . , d, then 12aix

2
i ≤ 108aid

L2
1

. Thus, 12
(
a1x

2
1 + . . .+ adx

2
d

)
≤

108λd2

24L2
1

= L̃0.

2. If |xj | > 3
√
d

L1
for some j = 1, . . . , d, then 12ajx

2
j < 4L1√

d
aj |xj |3, and the sum of the

remaining terms (such that |xi| ≤ 3
√
d

L1
) in 12

(
a1x

2
1 + . . .+ adx

2
d

)
can be upper bounded

by L̃0.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

In conclusion, f(x) is (L0, L1)-smooth, where L1 is any positive constant and L0 = 9λd2

2L2
1
+ 2λ.

Additionally, we can show that under certain additional constraints, f(x) is L-smooth with L =
λ
√
dD2

2 + 2λ. If |xi| ≤ D for all i = 1, . . . , d, then∥∥∇2f(x)
∥∥ ≤ 12

√
a21x

4
1 + . . .+ a2dx

4
d + 2λ ≤ λ

√
dD2

2
+ 2λ = L,

In the experiments, we estimate D based on the initial point x0 ∈ Rd.

In the following experiments, we used a top-k sparsifier with k = 1 and α = k/d, setting d = 4,
L1 = {1, 4, 8}, and L0 = 4 (adjusting λ to maintain a constant L0). The initial values x0 were
drawn from a normal distribution, x0

i ∼ N (20, 1) for i = 1, . . . , d, with D estimated as 20. For
EF21, we set γk = 1

L+L
√

β
θ

, using θ = 1−
√
1− α and β = 1−α

1−
√
1−α

, according to Theorem 1 of

Richtárik et al. (2021). For normalized EF21, we chose γk = 1
2c1

with c1 = L1

2 + 2
√
1−αL1

1−
√
1−α

from
Theorem 3, and γk = γ0√

K+1
with γ0 > 0, as specified in Theorem 1 with n = 1.

The impact of γ0 and K on the convergence of normalized EF21. First, we investigate the im-
pact of γ0 and K on the convergence of normalized EF21. We evaluated γ0 from the set {0.1, 1, 10},
and plotted the histogram representing the number of iterations required to achieve the target accu-
racy of ∥∇f(x)∥2 < ϵ with ϵ = 10−4, using the stepsize rule γ = γ0√

K+1
. For each γ0, we

determined K as the minimum number of iterations required to achieve the desired accuracy, found
through a grid search with step sizes of 500 for γ0 = 1, 10 and 5000 for γ0 = 0.1. From Figure 4,

L0 = 4, L1 = 1 L0 = 4, L1 = 4 L0 = 4, L1 = 8

103

104

105

Nu
m

be
r o

f i
te

ra
tio

ns
 fo

r c
on

ve
rg

en
ce 0 = 0.1

0 = 1
0 = 10

Figure 4: Number of iterations required to achieve the desired accuracy, ∥∇f(x)∥2 < ϵ, ϵ = 10−4,
using normalized EF21 (EF21-norm) with γ = γ0√

K+1
for different values of L0 and L1.

for small values of γ0, such as 0.1, significantly more iterations are required to reach convergence
compared to γ0 values of 1 and 10, which show similar performance (with the exception of the
L0 = 4, L1 = 1 case, where γ0 = 10 converges faster). Based on this observation, we use γ0 = 1
in all subsequent experiments and adjust only K to achieve convergence, identifying the minimum
number of iterations needed to reach the target accuracy through a grid search with a step size of
500.

Comparisons between EF21 and normalized EF21. Next, we evaluate the performance of EF21
and normalized EF21 for a fixed L0 = 4 and varying L1 values of {1, 4, 8}. From Figure 1,
normalized EF21, regardless of the chosen stepsize γ, achieves the desired accuracy ∥∇f(x)∥2 < ϵ
with ϵ = 10−4 faster than the original EF21. Initially, however, EF21 converges more quickly, likely
because normalized EF21 employs normalized gradients, which can be slower at the start due to the
large gradients when the initial point is far from the stationary point. Moreover, as L1 increases,
both methods show slower convergence.

E.2 RESNET20 TRAINING OVER CIFAR-10

We included additional experimental results from running EF21 and normalized EF21 for training
the ResNet20 model over the CIFAR-10 dataset. The parameter details were set to be the same as
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those in Section 6.2, with the exception that we vary k = 0.01d, 0.5d for a top-k sparsifier. From
Figures 5 and 6, normalized EF21 attains a higher accuracy improvement than EF21, across different
sparsification levels k.
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Figure 5: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize γ = 5 and k = 0.01d for a top-k sparsifier.
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Figure 6: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize γ = 5 and k = 0.05d for a top-k sparsifier.

F OMITTED PROOF FOR SMOOTHNESS PARAMETERS OF LOGISTIC
REGRESSION

In this section, we prove the generalized smoothness parameters L0, L1 for logistic regression prob-
lems with a nonconvex regularizer, which are the following problems

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x) :=
1

n

n∑
i=1

log(1 + exp(−bia
T
i x))︸ ︷︷ ︸

=:f̃i(x)

+λ

d∑
j=1

x2
j

1 + x2
j︸ ︷︷ ︸

=:h(x)

}
,

where ai ∈ Rd is the ith feature vector of matrix A with its class label bi ∈ {−1, 1}, λ > 0.

First, we can prove that f(x) is L-smooth with L = 1
4n∥A∥2+2λ, and that each fi(x) is L̃i-smooth

with L̃i =
1
4∥ai∥

2 + 2λ.

Next, we show that each fi(x) is generalized smooth with L0 = 2λ + λ
√
dmaxi ∥ai∥ and L1 =

maxi ∥ai∥, when the Hessian exists. By the fact that

∇f̃i(x) = − exp(−bia
T
i x)

1 + exp(−biaTi x)
biai, and ∇2f̃i(x) =

exp(−bia
T
i x)

(1 + exp(−biaTi x))
2
b2i aia

T
i ,

we have ∥∥∥∇2f̃i(x)
∥∥∥ bi∈{−1,1}

=
exp(−bia

T
i x)

(1 + exp(−biaTi x))
2
λmax(aia

T
i )

=
exp(−bia

T
i x)

(1 + exp(−biaTi x))
2
∥ai∥2

=
∥ai∥

1 + exp(−biaTi x)

∥∥∥∇f̃i(x)
∥∥∥

≤ ∥ai∥
∥∥∥∇f̃i(x)

∥∥∥ . (16)
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After adding the nonconvex regularizer h(x), we can show the following inequalities:∥∥∇2fi(x)
∥∥ ≤

∥∥∥∇2f̃i(x)
∥∥∥+ ∥∥∇2h(x)

∥∥
≤

∥∥∥∇2f̃i(x)
∥∥∥+ 2λ, (17)

and

∥∇fi(x)∥ ≥
∥∥∥∇f̃i(x)

∥∥∥− ∥∇h(x)∥ =
∥∥∥∇f̃i(x)

∥∥∥−
√(

2λx1

(1 + x2
1)

2

)2

+ . . .+

(
2λxd

(1 + x2
d)

2

)2

≥
∥∥∥∇f̃i(x)

∥∥∥−√λ2 + . . .+ λ2

=
∥∥∥∇f̃i(x)

∥∥∥− λ
√
d. (18)

By combining inequalities (16), (17), and (18), we obtain∥∥∇2fi(x)
∥∥ ≤

∥∥∥∇2f̃i(x)
∥∥∥+ 2λ

≤ ∥ai∥
∥∥∥∇f̃i(x)

∥∥∥+ 2λ

≤ 2λ+ λ
√
d+ ∥ai∥ ∥∇fi(x)∥ .

In conclusion,
∥∥∇2fi(x)

∥∥ ≤ L0 + L1 ∥∇fi(x)∥ with L0 ≥ 2λ + λ
√
d, and L1 ≥ ∥ai∥. This

condition is equivalent to Assumption 3 (generalized smoothness) with L0, L1 (Chen et al., 2023,
Theorem 1).
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