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ABSTRACT

We provide the first proof of convergence for normalized error feedback algo-
rithms across a wide range of machine learning problems. Despite their popu-
larity and efficiency in training deep neural networks, traditional analyses of er-
ror feedback algorithms rely on the smoothness assumption that does not capture
the properties of objective functions in these problems. Rather, these problems
have recently been shown to satisfy generalized smoothness assumptions, and the
theoretical understanding of error feedback algorithms under these assumptions
remains largely unexplored. Moreover, to the best of our knowledge, all existing
analyses under generalized smoothness either i) focus on single-node settings or
ii) make unrealistically strong assumptions for distributed settings, such as requir-
ing data heterogeneity, and almost surely bounded stochastic gradient noise vari-
ance. In this paper, we propose distributed error feedback algorithms that utilize
normalization to achieve the O(1/+/K) convergence rate for nonconvex problems
under generalized smoothness. Our analyses apply for distributed settings with-
out data heterogeneity conditions, and enable stepsize tuning that is independent
of problem parameters. Additionally, we provide strong convergence guarantees
of normalized error feedback algorithms for stochastic settings. Finally, we show
that normalized EF21, due to its larger allowable stepsizes, outperforms EF21 on
various tasks, including the minimization of polynomial functions, logistic regres-
sion, and ResNet-20 training.

1 INTRODUCTION

Machine learning models achieve impressive prediction and classification power by employing so-
phisticated architectures, comprising vast numbers of model parameters, and requiring training on
massive datasets. Distributed training has emerged as an important approach, where multiple ma-
chines with their own local training data collaborate to train a model efficiently within a reasonable
time. Many optimization algorithms can be easily adapted for distributed training frameworks. For
example, stochastic gradient descent (SGD) can be modified into distributed stochastic gradient de-
scent within a data parallelism framework, and into federated averaging algorithms (McMahan et al.,
2017) in a federated learning framework. However, the communication overhead of running these
distributed algorithms poses a significant barrier to scaling up to large models. For example, train-
ing the VGG-16 model (Simonyan & Zisserman) 2015) using distributed stochastic gradient descent
involves communicating 138.34 million parameters, thus consuming over 500MB of storage and
posing an unmanageable burden on the communication network between machines.

One approach to mitigate the communication burden is to apply compression. In this approach, the
information, such as gradients or model parameters, is compressed using sparsifiers or quantizers to
be transmitted with much lower communicated bits between machines. However, while this reduces
communication overhead, too coarse compression often brings substantial challenges in maintaining
high training performance due to information loss, and in extreme cases, it may potentially lead to
divergence. Therefore, error feedback mechanisms have been developed to improve the convergence
performance of compression algorithms, while ensuring high communication efficiency. Examples
of error feedback mechanisms include EF14 (Seide et al., 2014 Stich et al., 2018}, |Alistarh et al.,
2018; 'Wu et al., [2018; |Gorbunov et al.l [2020), EF21 (Richtarik et al.,|2021; |Fatkhullin et al.| [2021)),
EF21-SGDM (Fatkhullin et al., 2024), EF21-P (Gruntkowska et al., 2023)), and EControl (Gao et al.,
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2023). Several studies developing error feedback algorithms often assume the smoothness of an
objective function, i.e., its gradient is Lipschitz continuous.

However, many modern learning problems, such as distributionally robust optimization (Jin et al.,
2021)) and deep neural network training, are often non-smooth. For instance, the gradient of the
loss computed for deep neural networks, such as LSTM (Zhang et al., 2020b), ResNet20 (Zhang
et al., |2020b)), and transformer models (Crawshaw et al.| [2022)), is not Lipschitz continuous. These
empirical findings highlight the need for a new smoothness assumption. One such assumption is
(Lo, L1)-smoothness, originally introduced by Zhang et al.[(2020b), for twice differentiable func-
tions, and later extended to differentiable functions by Chen et al.| (2023]).

To solve generalized smooth problems, clipping and normalization have been widely utilized in
first-order algorithms. Gradient descent with gradient clipping was initially shown by |[Zhang et al.
(2020Db) to achieve lower iteration complexity, i.e., fewer iterations needed to attain a target so-
lution accuracy, than classical gradient descent. Subsequent works have further refined the con-
vergence theory of clipped gradient descent (Koloskova et al.l [2023), and improved its conver-
gence performance by employing momentum updates (Zhang et al.l [2020a), variance reduction
techniques (Reisizadeh et al., |2023)), and adaptive step sizes (Wang et al., 2024; [Li et al., [2024b;
Takezawa et al.,[2024). Similar convergence results have been obtained for gradient descent using
normalization (Zhao et al.,|2021), and its momentum variants (Hiibler et al., [2024), including gen-
eralized SignSGD (Crawshaw et al., [2022)). However, these first-order algorithms have mostly been
explored in training on a single machine. To the best of our knowledge, distributed algorithms under
generalized smoothness have been investigated in only a few works, e.g., by Crawshaw et al.|(2024);
Liu et al.[(2022). Nonetheless, these works rely on assumptions limiting families of optimization
problems, including data heterogeneity, almost sure variance bounds, and symmetric noise distri-
butions around the mean assumptions. Furthermore, these first-order algorithms under generalized
smoothness do not incorporate compression techniques to improve communication efficiency. These
aspects motivate us to develop distributed communication-efficient algorithms for solving nonconvex
generalized smooth problems.

1.1 CONTRIBUTIONS

In this paper, we develop distributed error feedback algorithms for communication-efficient opti-
mization under nonconvex, generalized smooth regimes. Our contributions are summarized below.

o Importance of normalization. Just as gradient clipping is crucial for gradient descent, we em-
pirically demonstrate that normalization stabilizes the convergence of error feedback algorithms for
minimizing nonconvex generalized smooth functions. In this paper, we introduce a variant of EF21,
a widely used error feedback algorithm by Richtarik et al.|(2021), which incorporates normalization
to guarantee convergence for nonconvex, generalized smooth problems. In a single-node setting,
normalized EF21 provides larger stepsize, and faster convergence rate than original EF21 for min-
imizing simple nonconvex polynomial functions that satisfy generalized smoothness, as shown by
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Figure 1: The minimization of polynomial functions using EF21 with v = , and normalized

L+L\/58
EF21 (EF21-norm) with v = \/;LH, Yo = 1 (blue line) and v = i (green line). Here, we ran
both algorithms for (1) Ly = 4, Ly = 1, and K = 2000 (left), (2) Ly = 4, L1 = 4, and K = 5000
(middle), and (3) Ly = 4, L1 = 8, and K = 16000 (right).
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e Convergence of normalized error feedback algorithms. We establish an O(1/v/K) conver-
gence rate in the gradient norm for normalized EF21 on nonconvex generalized smooth problems.
Normalized EF21 achieves the same rate as the original EF21 under L-smoothness by Richtarik:
et al|(2021). Our results are derived under standard assumptions, i.e., generalized smoothness and
the existence of lower bounds on the objective function, and are applicable in distributed settings
regardless of any data heterogeneity degree, unlike the results by (Crawshaw et al.|(2024); [Liu et al.
(2022). Additionally, our stepsize rules for normalized EF21 ensure convergence without requiring
knowledge of the generalized smoothness constants Lg or L1, in contrast to |Richtarik et al.| (2021)),
where the stepsize depends on the smoothness constant L (which is often inaccessible).

o Extension to stochastic settings. Furthermore, we propose a variant of EF21-SGDM, an error
feedback algorithm with momentum updates by [Fatkhullin et al.| (2024), that employs normaliza-
tion for solving nonconvex, stochastic optimization under generalized smoothness. Specifically,
we prove that normalized EF21-SGDM with suitable stepsize choices attains the same O(1/K1/4)
convergence rate in the gradient norm as the original EF21-SGDM.

e Numerical evaluation. We implemented normalized EF21 using the stepsize rules derived from
our theory, and compared its performance against the original EF21. Both algorithms were evaluated
on three learning tasks: minimizing nonconvex polynomial functions, solving logistic regression
with a nonconvex regularizer, and training ResNet-20 on the CIFAR-10 dataset. Thanks to its larger
stepsizes, normalized EF21 outperforms the original EF21, in terms of both convergence speed and
solution accuracy across these tasks.

Methods Complexity Smoothness Variance bound Normalization
EF21 9
Richtarik et al.|(2021) o@1/€) & No No
EF21-SGDM 4 .
Fatkhullin et al.|(2024) o@1/€) L expectation No
Normalized EF21 o@1/e) (Lo, L) No Yes

Ours (Alg.
Normalized EF21-SGDM

Ours (Alg. O(1/€*) (Lo, L1) Expectation Yes

Table 1: Comparisons of complexities and assumptions between known and our results for EF21
variants. The complexity is defined by the iteration count K required by the algorithms to attain

. min B [|IV£(z*)||] < e (Lo, L1)-smoothness refers to generalized smoothness in Assump-

tion[3] The variance bound in expectation is defined in Assumption [5]

2 RELATED WORKS

Error feedback. Error feedback mechanisms have been utilized in various algorithms with com-
munication compression, leading to significant improvements in solution accuracy, while reducing
communication. As the first version of these mechanisms, EF14 was introduced by |Seide et al.
(2014), and later analyzed for first-order algorithms in both single-node (Stich et al.,|2018}; [Karim-
ireddy et al.,|2019) and distributed settings (Alistarh et al.,[2018];|[Wu et al.l 2018} Tang et al., 2019
Basu et al.,[2019; |Gorbunov et al., [2020; |Li et al.,|2020; (Qian et al., 2021} |Tang et al.,2021). Next,
EF21 is another error feedback variant proposed by |Richtarik et al.|(2021), which offers strong con-
vergence guarantees for distributed gradient algorithms with any contractive compressors, without
requiring bounded gradient norm or bounded data heterogeneity assumptions. EF21 can also be
adapted for stochastic optimization through sufficiently large mini-batches (Fatkhullin et al.l 2021)
or momentum updates (Fatkhullin et al., [2024). More recently, EControl was developed by |Gao
et al.|(2023) to guarantee provably superior complexity results for distributed stochastic optimization
compared to prior error feedback mechanisms. To the best of our knowledge, these existing works
on error feedback have focused solely on optimization under traditional L-smoothness. In this paper,
we introduce a normalized variant of the EF21 methods (Richtarik et al., [2021])) for solving noncon-
vex generalized smooth problems. In particular, we prove that normalized EF21 under generalized



Under review as a conference paper at ICLR 2025

smoothness achieves the same O(1/v/ K) rate as original EF21 under traditional smoothness, and
demonstrate in experiments that normalized EF21 permits larger step sizes, and thus attains faster
convergence than the original EF21.

Non-smoothness assumptions. Empirical findings suggest that the traditional smoothness used
for analyzing optimization algorithms does not capture the properties of objective functions in many
machine learning problems, especially deep neural network training problems. This motivates re-
searchers to consider different assumptions to replace this traditional smoothness condition. First
introduced by [Zhang et al.| (2020b), the (Lg, L1 )-smoothness condition on a twice differentiable
function f(z) is defined by | V2 f(x)|| < Lo+ L1 ||V f(z)|| for = € R This (Lo, L1 )-smoothness
has been extended to differentiable functions without assuming the existence of the Hessian. For
instance, the smoothness with a differentiable function £(z) (Li et al.,20244a), and symmetric gener-
alized smoothness (Chen et al., 2023)) cover the (Lg, L;)-smoothness when the Hessian exists, and
includes many important machine learning problems, such as phase retrieval problems (Chen et al.,
2023)), and distributionally robust optimization (Levy et al., 2020). Other classes of non-smoothness
assumptions, which are not related to the generalized smoothness but capture other optimization
problems, include Holder’s continuity of the gradient (Devolder et al., 2014), the relative smooth-
ness (Bauschke et al., |2017), and the polynomial growth of the gradient norm (Mai & Johansson,
2021). In this paper, we impose the generalized smoothness condition to establish the convergence
of normalized EF21 for solving deterministic and stochastic optimization.

Gradient clipping and normalization. Clipping and normalization are commonly employed in
gradient-based methods for solving generalized smooth problems. Clipped (stochastic) gradient
descent has been studied for both nonconvex and convex problems under (L, L1 )-smoothness con-
ditions by [Zhang et al.| (2020b)); Koloskova et al.| (2023). Extensions to clipped gradient algorithms
have been proposed, including momentum updates (Zhang et al.| [2020al), variance reduction meth-
ods (Reisizadeh et al.,[2023)), and adaptive step sizes (Wang et al., 2024} |L1 et al., 2024b; [Takezawa
et al.,|2024). Comparable complexities have been achieved for normalized gradient descent (Zhao
et al.,[2021), and its momentum-based variants (Hiibler et al.,|2024), including generalized SignSGD
(Crawshaw et al., 2022). Convergence properties of gradient-based algorithms have also been ex-
plored under more generalized forms of non-uniform smoothness, extending beyond the (Lo, L1)-
smoothness by Zhang et al.|(2020b) to cover a wider range of optimization problems. For example,
variants of (stochastic) gradient descent have been analyzed under c.-symmetric generalized smooth-
ness by [Chen et al.[(2023), and under ¢-smoothness involving certain differentiable functions #(-)
by [Li et al.[ (2024ajb). However, the majority of these analyses focus on the single-node setting.
To the best of our knowledge, only a limited number of works, such as those by (Crawshaw et al.
(2024);Liu et al.|(2022), have examined federated averaging algorithms for nonconvex problems un-
der generalized smoothness. These works, however, often rely on restrictive assumptions, including
data heterogeneity, almost sure variance bounds, and symmetric noise distributions centered around
their means. In this paper, we develop distributed error feedback algorithms, which eliminate the
need for the restrictive assumptions mentioned above, and rely on standard assumptions on objective
functions and compressors.

3 PRELIMINARIES

Notations. We use [n] to denote the set {1,2,...,n}, and E [u] to represent the expectation of a
random variable u. Additionally, ||-|| indicates the Euclidean norm for vectors or the spectral norm
for matrices, and ||-||; is the £;-norm for vectors, while (x,y) denotes the inner product between x
and y in R?. Lastly, for a square matrix A € R4*9, X\ ;. (A) refers to its minimum eigenvalue, and
I € R%*4 ig the identity matrix.

Problem formulation. In this paper, we focus on the following distributed optimization problem:

> fulw), )

3=

min f(z) ==

—

i
where n refers to the number of clients, and f;(x) is the loss of a model parameterized by vector
x € R? over its local data D; owned by client i € [n].
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Assumptions. To facilitate our convergence analysis, we make standard assumptions on objective
functions and compression operators.

Assumption 1. (Lower Bound of f) A function f(x) = (1/n) > 1, fi(z) is bounded from below,
ie, fi*f =inf,cpa f(z) > —o0.

Assumption 2. (Lower Bound of f;) A function fi(x) is bounded from below, i.e., fi*! =
inf,cpa fi(z) > —o0.

AssumptionsT|and 2] are standard for analyzing optimization algorithms for unconstrained optimiza-
tion.

Assumption 3. (Generalized Smoothness of f;) A function f;(x) is symmetrically generalized
smooth if there exists Lo, Ly > 0 such that for ug = 0x + (1 — 0)y, and for all z,y € R?

IV fi(x) = V@I < (Lo + L1 P IV fi(ug)[) 1z = yll- 2

Assumption [3|refers to symmetric generalized smoothness defined by|Chen et al.|(2023), which cov-
ers asymmetric generalized smoothness (Koloskova et al., 2023} |Chen et al.,[2023)), and the original
(Lo, L1)-smoothness by [Zhang et al.[(2020b). Moreover, Assumption covers the functions with
unbounded classical smoothness constant, e.g., exponential function. Additionally, Assumption [3|
with L; = 0 reduces to the traditional Ly-smoothness (Nesterov et al., [2018; Beck, [2017), under
which the convergence of optimization algorithms has been extensively studied.

Assumption 4. (Contractive Compressor) An operator C* : RY — R? is an a-contractive com-
pressor if there exists o € (0, 1] such that for k > 0 and v € R,

E[llc* @) —o[*] < = ) o). )

Furthermore, compressors defined by Assumption [ cover top-k sparsifiers (Alistarh et al., 2018}
Stich et al.| 2018]), low-rank approximation (Vogels et al., [2019; [Safaryan et al., 2021)), and various
other compressors described by [Beznosikov et al.|(2023)); Safaryan et al.|(2022).

Assumption 5. (Bounded Variance) A stochastic gradient V f;(x; &;) with its sample & ~ D; is an
unbiased estimator of V f;(x) with bounded variance, i.e.,

E[VA(@:&)] = Vi), and E|[|Vfi(x:6) - V@] <o )

Assumption [5is standard assumption for stochastic optimization (Nemirovski et al.l 2009; [Ghadimi
& Lanl [2012;2013) that is only imposed on each local stochastic gradient, and it does not imply data
heterogeneity, i.e., the bounded difference between each component function f;(z) and the global
function f(z).

Algorithm 1 Normalized EF21

1: Input: Stepsize vy, > 0 for k = 0,1, ...; starting points xOm;l € Rifori € {1,2,...,n};
and a-contractive compressors C* : R? — R¢ for k = 0,1, .. ..

2: for each iteration k = 0,1,..., K do

3 for each client: = 1,2, ..., n in parallel do

4 Compute local gradient V f; (z*)

5: Transmit A¥ = C*(V fi(2¥) — vF 1)

6 Update vf = vF~! + Ak

7:  end for

8:  Central server computes v* = % S vk viaol = vf_l + AF

ok
9:  Central server updates z°+1 = zF — ~, HZTH

10: end for
11: Output: z5+1
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4 NORMALIZED EF21

For nonconvex deterministic optimization under generalized smoothness, we develop a distributed
error feedback algorlthm One challenge is that the generalized smoothness parameter scales with
H To resolve this issue, we apply gradlent normalization to the algo-
rithms. In particular, we con51der normalized EF21, the normalized version of EF21 (Richtarik et al.}
2021) that updates the next iterates 2**! using the normalized EF21 update. The full description of
normalized EF21 can be found in Algorithm T}

Normalized EF21, like EF21 (Richtarik et al. |2021) under traditional smoothness, enjoys the
O(1/VK) convergence in the gradient norm under generalized smoothness, as shown below.

Theorem 1. Consider Problem (1)), where Assumption[I| (lower bound of f), Assumption 2] (lower
bound of f;), Assumption[3|( generallzed smoothness of f;), and Assumptiond|(contractive compres-
sor) hold. Then, the iterates {x*} generated by normalized EF21 (Algorithm|I)) with

e = 7o
FTVR+I
for K > 0 and ~y > 0 satify
VO exp(8ciLi exp(L170)75) | 70 exp(L170)
_min B[|VF(zh)]]] < +B :
k=0,1,....K YovVEK +1 K+1

where VF .= f(x k)—fi“f-i- 27’“ AL 21 N HVfZ

and ¢; = ( +21V\1/i) Liforz:(),l.

= 2co+ SLﬁﬁ Z:'L:1 (finf _fiinf)’

Theoremestablishes the O(1/v/K) convergence in the expectation of gradient norms for normal-
ized EF1 on nonconvex deterministic problems under generalized smoothness. This rate is the same
as Theorem 1 of Richtarik et al.|(2021)) for EF21 under traditional smoothness, and does not depend
on data heterogeneity conditions in contrast to (Crawshaw et al.| (2024); [Liu et al.| (2022). Also,
our stepsize depends on any positive constant 7y, and total iteration count K, without needing to
know smoothness constants Ly, L in contrast to Richtarik et al.|(2021). Additionally, if we choose
Yo = 1/(8cLy), then our convergence bound from Theorem|[I|becomes

32CL1V0 + L()/L1 + 2L15inf
K+1

min E [HVf(xk)H]

k=0,1,....K ’

where ¢ = 1 42 V\l/IL and §nf = Ly~ (pinf _ pinf)

Comparisons between normalized EF21 and EF21 under traditional smoothness. For non-
convex, traditional smooth problems, normalized EF21 from Theorem |I{with L; = 0 achieves the
same O(1/v/K) rate in the expectation of gradient norms as EF21 analyzed by Richtarik et al.
(2021), but with a larger convergence factor. We prove this by assuming V f;(z%) = v} for all 4.

That is, Theoremwith Lo =L, Ly = 0,7 = +/(f(z%) — fof)/(2b), and b = £ + 2 1ol

1-/I—a
implies that normalized EF21 achieves
L[ )
min \Y < +2b
k=0,1,..., [H flz |H - K+1 [ Y0 o

IN

2\/L(1+3m)(1+m) F(20) — fint

K+1
a>0 L f(xO) _ finf
< AV | ————.
- V2 Q \/ K+1

On the other hand, EF21 attains from Theorem 1 of [Richtarik et al.| (2021) with L; = L =1
(i.e., fi(x) has the same smoothness constant as f(z)), and 2% being chosen from the iterates
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20,21, ..., 2% uniformly at random
(i E[[[ViEh]] < E[[|Vf@")]]
< E [nw(ozK)nﬂ
fmf
< 2L(14++/p K+1

\/B/0 <2/a 1 L f flnf
\/ KJrl

In conclusion, the convergence bound of normalized EF21 is slower by a factor of 2+/2 than the
original EF21 for nonconvex, L-smooth problems.

While normalized EF21 can handle nonconvex problems under generalized smoothness, the algo-
rithm is limited to deterministic settings, where each node computes its full local gradient. In the
following section, we demonstrate how to integrate normalization into EF21-SGDM |Fatkhullin et al.
(2024), an error feedback algorithm that allows each node to compute its local stochastic gradient,
for solving nonconvex stochastic problems.

Algorithm 2 Normalized EF21-SGDM
1: Input: Stepsizes 7, > 0 and 7, € [0, 1] for k=0, 1, ...; starting points xo,gi_l € R for
i€ {1,2,...,n}, and v) = E; 1 Vfl( ;&) with iid. random samples &; ; for

i € {1,2,...,n} and an initial mini-batch size B'*; a-contractive compressors C¥ : R?¢ — R
fork=0,1,...

2: for each iteration k = 0,1,..., K do

3:  foreachclienti = 1,2,...,nin parallel do

4: Compute a local stochastic gradient V f; (z%; £F)

5: Update a momentum estimator v¥ = (1 — 1 )vF~1 + 1, V fi (2% €F)

6: Transmit A¥ = C"( — g

7: Update gF = ¢" ! + Af

8: end for

9:  Central server computes g~ = (1 / n) > 1 gF viagh = gF 1 + Al

10:  Central server updates x*+! =

11: end for
12: Output: x5+!

— ;p _
e

5 NORMALIZED EF21-SGDM

Having established the convergence of normalized EF21 for deterministic optimization, we will next
develop a distributed error feedback algorithm that incorporate stochastic gradients and normaliza-
tion to accommodate generalized smoothness conditions. In particular, we focus on normalized
EF21-SGDM (Algorithm @) the normalized version of EF21-SGDM (Fatkhullin et al.| [2024). We
also note that normalized EF21-SGDM recovers many optimization algorithms of interest in the spe-
cial cases. For instance, normalized EF21-SGDM reduces to normalized EF21 when we let n, = 1
and V f;(z¥;¢F) = Vf;(2%), the normalized version of EF21-SGD (Fatkhullin et al., 2021) when
we let ), = 1, and normalized SGD with momentum (Cutkosky & Mehta, 2020) (NSGD-M) when
weletn, =1 — fand C*(-) = 1.

In the next theorem, we demonstrate that normalized EF21-SGDM attains the same O(1/K1/4)
convergence rate as both EF21-SGDM and NSGD-M.
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Theorem 2. Consider Problem (1)), where Assumption[I| (lower bound of f), Assumption 2] (lower
bound of f;), Assumption 3] (generalized smoothness of f;), Assumption[d|(contructive compressor),
and Assumption |5| (bounded variance) hold. If the mini-batch size at the starting point B™t =
v K + 1, and the stepsizes

70 ; B 1
=y = — % \ithvyo > 0sat L/2) < . and
PYk‘ v (K+1)3/4 wi ’}/0 sa lsf_‘yll’lg Yo eXp(’YO 1/ )_ 8le an
1
T]k}:’r} - (K+1)1/2?

then the iterates {x*} generated by normalized EF21-SGDM (Algorithm satisfy for K > 0
E[V®}/r0 + o/va + (yoLo + 10 L36™) exp (’YOL1)>

win B(Iv7@]] < of

k=0,1, (K +1)"s
co (Yiza o+ (Lo +0Li0™) exp(roLy)
a (K + 1) 7

where VO = f(20) — fif + O_Qﬁ Yy |[v? —g?

|, and 5inf — %Z?:l(finf _ fsz)

From Theorem normalized EF21-SGDM under generalized smoothness achieves the O(1/K'/*)
convergence rate in the expectation of gradient norms. This rate is the same as that of EF21-SGDM,
previously analyzed under traditional smoothness by [Fatkhullin et al. (2024, Theorem 3). The result
holds regardless of the data heterogeneity degree and the mini-batch size, with the exception that
the mini-batch size at the initial point (when k& = 0) must satisfy Bjny = K + 1 for a fixed
K > 0. Additionally, one possible for the stepsize vy > 0 satisfying the condition from Theorem 2]
is 70 < 1/(9L11/1+B(a)) with B(a) = vI—-a/a. Notice that the stepsize o for normalized EF21-
SGDM, unlike in the case of normalized EF21, depends on the generalized smoothness constant L,
and the compression parameter a.

Furthermore, Theorem 2| with o« = 1 (i.e., Ck(~) = I) implies the convergence bound of the dis-
tributed version of normalized SGD with momentum (NSGD-M) (Cutkosky & Mehtal [2020) using

B=1—n:

@)=/ 50 + /v +v0Lo + ’yoLchi“f> .

min Bl < of s

k=0,1,...,

For the single-node NSGD-M, where n = 1 and 6™ = 0, our convergence bound in with

v = O(1/L;) achieves the O Lif (mo)&(f:.;f;f+L°/ L convergence, which matches the rate

obtained by Hiibler et al.| (2024, Corollary 3). Unlike the earlier results for single-node NSGD-M,
our results extend to multi-node NSGD-M. The bound in (3)) for multi-node NSGD-M includes the
o//n-term indicating a \/n-fold reduction in the influence of stochastic variance noise o, and the
70 L26™ term accounting for the effect of data heterogeneity.

6 EXPERIMENTS

We evaluate the performance of normalized EF21, and compare it against EF21 (Richtarik et al.|
2021). We test these algorithms for three nonconvex problems that satisfy generalized smoothness:
the problem of minimizing polynomial functions, the logistic regression problem with a nonconvex
regularization term over synthetic and benchmark datasets from LIBSVM (Chang & Lin| 2011},
and the training of the ResNet-20 (He et al., 2016) model over the CIFAR10 (Krizhevsky} 2009)
dataseﬂ For all experiments, we use a top-k sparsifier, which is a %-contractive COmpressor.

"We implemented EF21 and normalized EF21 on training the ResNet-20 model by using PyTorch. Our
source codes can be found in the link to error-feedback-generalized-smoothness-paper.
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6.1 LOGISTIC REGRESSION WITH A NONCONVEX REGULARIZER

First, we consider a logistic regression problem with a nonconvex regularizer, i.e., Problem (1) with

d 2
x4
i(2) = log(1 —bal Ay
fle) = log(1 + expl—biaf ) + 33
where a; € R is the i*" feature vector of data matrix A € R™"*< with its class label b; € {—1,1},
and A > 0 is a regularization parameter. Here, f(x) is nonconvex, and L-smooth with L =
| Al /(4n) + 2. Also, each f;(x) is L;-smooth with L; = ||a;||* /4 + 2, and generalized smooth

with Ly = 2\ + A\V/dmax; ||a;| and L; = max; ||a;||. The derivations of smoothness parameters
can be found in Appendix [F|

In these experiments, we initialized 2 € RY, where each coordinate was drawn from a standard
normal distribution A/(0,1), and set A = 0.1. Here, A > Apin (AT A) /(2n) to ensure that f(z)
is nonconvex. We ran normalized EF21 and EF21 on the following datasets: (1) two from LIB-
SVM (Chang & Lin, 2011): Breast Cancer (n = 683, d = 10, and scaled to [—1, 1]), and
ala (n = 1605, d = 123); and (2) a synthetically generated dataset (n = 20, d = 10), where
the data matrix A € R™*? had entries drawn from N (0, 1), and the class label b; was set to either

—1 or 1 with equal probability. For EF21, we selected the stepsize vy, = 1/ <L + L+\/B /9) with

L=/, L/n6=1-+1—a,and 8 =(1—a)/(1 —+/1— ), as given by Richtdrik et al.
(2021}, Theorem 1). For normalized EF21, we chose v, = 79/vV K + 1 with 79 > 0 from Theo-
rem|[l] by setting 7o = 1, K = 100 for the generated data and Breast Cancer,and K = 400 for
ala. We choose vy = 1, because normalized EF21 with o € [1, 10] converges faster than that with
small values of vy (e.g. 0.1), when we run the algorithm on a single node (n = 1) for minimizing
polynomial function and solving logistic regression. We determine K as the smallest number of
iterations required to achieve the desired accuracy by performing a grid search with a stepsize of 50.

Figure [2] shows that normalized EF21 outperforms the traditional EF21 on all evaluated datasets,
achieving faster convergence and higher solution accuracy. This improvement results from the fact
that the theoretical stepsize for normalized EF21, as derived in Theorem[T] is larger than the stepsize
for the traditional EF21 outlined by Richtarik et al.| (2021, Theorem 1).

L

19

L

0000 20000 30600 70600 50000
iter

Figure 2: Logistic regression with a nonconvex regularizer using normalized EF21 (EF21-norm)
2 . . . .
and EF21. We reported ‘V f(x) H with respect to iteration count k. We used the constant stepsize

v = L+£\/§ for EF21, and v = \/;LH, Yo = 1 for normalized EF21. Here, K = 100 for our

generated data (left), and Breast Cancer (middle), while K = 400 for ala (right).

6.2 RESNET20 TRAINING OVER CIFAR-10

Next, we trained the ResNet20 (He et al.,[2016) model on the CIFAR-10 (Krizhevskyl 2009) dataset,
which was demonstrated empirically by [Zhang et al.| (2020b) to satisfy the (Lg, L )-smoothness
condition. In these experiments, we used a top-k compressor over 50, 000 training images, with
evaluation on 10, 000 test images. The dataset was evenly distributed among 5 clients, each using
a mini-batch size of 128. Both algorithms were run for 100 epochs with a constant stepsize v = 5.
Here, one epoch refers to a full pass through the entire dataset processed by all clients.

From Figure[3] under the same constant stepsize and the top-k sparsifier with k = 0.01d, normalized
EF21 outperforms EF21, in terms of convergence speed (in gradient norms and losses) and accuracy,
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relative to the number of bits communicated from each client to the server. Specifically, normalized
EF21 achieved accuracy gains of up to 10% over EF21.

3 E]
#Gbits/n

Figure 3: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize v = 5 and k = 0.1d for a top-k sparsifier.

7 CONCLUSION AND FUTURE WORKS

In this paper, we have demonstrated that normalization can be effectively combined with EF21 to
develop distributed error feedback algorithms for solving nonconvex optimization problems under
generalized smoothness conditions. Specifically, normalized EF21 and normalized EF21-SGDM
achieve convergence rates of O(1/K'/?) in deterministic settings and O(1/K'/*) in stochastic
settings, respectively. These convergence rates match those of the vanilla EF21 and EF21-SGDM
algorithms. Unlike previous works on distributed algorithms under generalized smoothness, our
analysis does not assume data heterogeneity or impose smoothness-dependent restrictions on the
stepsize. Finally, our experiments confirm that normalized EF21 exhibits stronger convergence per-
formance compared to the original EF21, due to its larger allowable stepsizes.

Our work implies many promising research directions. One interesting direction is to extend our
convergence results for normalized EF21 and normalized EF21-SGDM to accommodate decreasing
or adaptive stepsize schedules, as the constant stepsizes required by our current analysis can become
impractically small when the total number of iterations is large. In particular, applying appropriate
decreasing stepsizes to EF21-SGDM could overcome its current theoretical requirement of a suffi-
ciently large mini-batch size for the stochastic gradient at initialization. Another important direction
is the development of distributed and federated algorithms that leverage clipping or normalization
for minimizing nonconvex generalized smooth functions.
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A LEMMAS

In this section, we introduce useful lemmas for our analysis. Lemmas|[I]and 2]introduce inequalities
by generalized smoothness, while Lemmas [3]and [4] present the descent inequality and convergence
rate, respectively, when the normalized gradient descent update is applied.

Lemma 1. Let each f;(x) be generalized smooth with parameters L, L1 > 0, and lower bounded
by fint, and let f(z) = % E?:l fi(x). Then, for any x,y € R?

IV () = VA < (Lo + LIV esp (s lo = ol e =il ©
i) < (@) + (Vi) — ) + DO o (1, o~y fy = al®,
IV ()P o
o + L VA = 7O 70 o ®
Lo+ &30 IV
F) < £(@) + (VF@).y - a) + 2 o WO o 1oy y 21 0

Proof. The first and second statements derive from|Chen et al.| (2023] Proposition 3.2).

Next, by using the first and second statements, we can derive the third statement. Let us assume that
: inf : _ v .
there exists a lower bound of f;(z), fI™, and apply || withy = & — —terrsr V fi(z) for a

given z € R and v > 0:
mf v 2
V||V i) eXp( Ly [V ()| )
2(Lo+ L1 [V fi(2)]) Lo + L1 [|[V fi(=)]]

oo , e vIVAE@P
e A ey oS T Ty o s oo )

+

vexp(v).

If v = 1/2, then vexp(v) < 1, and thus

FM < fulw) = 1

4(Lo + L1 |V fi(2)))

IV fil)II*.

Finally, we prove the last statement. By the fact that each f;(x) is symmetric smooth, and f(x) =

%Z?:l fi(),

V16 = VI < L3IV - V)
B 1
< L LA e ul ol

= <LO+Z||sz )eXp(Lllﬂfy)llxy|~

Hence, for any y, 2 € RY, we have:

) - F@) — (Vi) — )
- / (Vf (o) — V(@) (y — )6

< / IV £(yo) — V£()| Iy — ]| dO
0

1 L&
< / (Lo + ;1 S IV @) | exp(La lyo — 2I]) lyo — || |y — ]| d6,
0 i=1
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where yp = 6y + (1 — 0)x. From the definition of yy, and by the fact that exp(fy) < exp(y) for
6 € [0,1],

fly) = f@) = (Vf(2),y —z) < /O (Lo +— Z IV fi(x > exp(Ly ||y — ) |y — «|* o

_ (LO + % Zi:l ||sz($)“) o
2

2
xp(La [ly = () ly — [

O

Lemma 2. Let f;(x) be generalized smooth with parameters Lo, L1 > 0, and lower bounded by
fint and let f(x) be lower bounded by f™. Then, for any x € R?

S IV @) < 8La(f(a) — 1) + 2 ST — 96 + Lo/ L.
i=1

g=il

Proof. By the (L, L1)-smoothness of f;(x),

2 S22 .
@ V@I JIEEEL i Vi) < o
T Lo+ Li|Vfi(x)]| — W otherwise.

This condition can be equivalently expressed as
IVFi@)l < max(8Ly(fi(z) = £i"), Lo/L1)
< 8Li(filx) = fi*) + Lo/ L
< 8Li(fi(x) — f) + 8L (f™ — fi*) + Lo/ Ls.
Finally, by the fact that f(z) = 2 > | fi(z),

A(fi(z) = fi*) 2

fZHVfl < SLa(f@) — )+ B S0 — i) 1 1/

i=1

O

Lemma 3. Consider the problem of minimizing f(x) = %Z? ) fl( ), where each f;(x) is gener-
alized smooth with parameters Ly, L1 > 0. Let ahtl = gk — "HU for Y, > 0. Then,

flv

FEY) < F@F) = | VFGEE) || + 2w |V AR = oF|| +

+%’“ exp (e L1) (LO + %Z ||Vfi(~”fk)|\> ~

=1

Proof. Let each f;(x) be generalized smooth with LO, Ly >0,and f(z) = 23" | fi(z). By @)
of Lemmam and by the fact that zF+1 = 2% — HU;CHU for v, > 0,

JE) < J@h) = RV, o) + 5 expnla) <L0+Lan|IVfi<xk>l|>

= TN = (V) = o o) = o]

$ 2 epoeLn) (Lo + 2 [VAGH)
9 P\ VL1 0 n 1

=1

F@®) v [V (@F) = oF|| — e [|oF

7;3 Ly - k
+7€XP(%L1) L0+*n E [VAE)
=1

IN
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where we reach the last inequality by Cauchy-Schwartz inequality. Next, since

lrlangle ineq.

= [l*l = [VFEH+ [V FE) =),
we get

FEY < f@R) - [+ o [V ER) - o

713 Ly ¢ k
+g exp(ln) ( Lo+ == S|V ).
i=1

O
Lemma 4. Let V* W* be non-negative sequences satisfying
VI < (14 by exp(Liy)y? )V = by W* + by exp(L1y)7?
for v,b1,ba,b3 > 0. Then,
VOexp(by exp(L1y)Y2(K +1)) b3
. k < 03 I
e W< by (K + 1) + g, SRy
Proof. Define B, = mw@;ﬁ for kK = 0,1,... and 6_; = 1. Then, we can show that
Be = o exp(iw),YQ)Hl fork = 0,1, ..., and that
BrVETL < (14 byexp(L1)y?) BiVE — bayBW" + bz exp(L17)v B
= BeaVF = bayBW* + bs exp(L17)7* B
Therefore,
min  W* < BW*
k=0,1,..., K Zk; 0 Bk Z
_ _ V’C — BV k1 b
< ZinaVEo AV 5 exp(Lin)y
by Zk:o B 2
VO — BrVEHL
RS LT
b2’7 Zk:() ﬁk 2
By the fact that 3_; = 1, Bx > 0, and V*+1 > 0,
Vo b3
min WrF < —————— + Zexp(Li7)y.
k=0,1,...,K boy ZkK:O Be b2
Next, since
K
K+1
>(K+1 1 =
202 (K D), i B = G e ey
we have
VO(1 + by exp(L1y)y?) KL b3
in Wk < 3 L
kzgﬁl,?.,K = boy(K + 1) + by exp(L17)y
tresow@)  VOexp(byexp(Liy)y*(K +1)) by
< + —exp(L
= by (K + 1) b, P
O
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B CONVERGENCE PROOF OF NORMALIZED EF21 (THEOREM/I))

In this section, we derive the convergence rate results of normalized EF21. To prove this, we present
the following descent lemma for normalized EF21.

Lemma 5. Consider Problem (1)), where Assumption [I] (lower bound of f), Assumption [2] (lower
bound of f;), Assumption[3|(generalized smooth of f;), and Assumption[|(c-contractive property of
C*) hold. Then, the iterates {x"*} generated by normalized EF21 (Algorlthm satisfy

[V’““]<E[V’“]+cm ZE [V £:@™)[] = WE [|| V)] + cord,

=1

where V¥ = f(zF) — finf T 5 2% O ||sz vf
i=0,1.

,and ¢; = LL+2vl “‘L L for

Proof. We prove the result in two steps.

Step 1) Bound E [||V f;(z*+1) — vf““]. From the definition of the Euclidean norm, and by
taking the expectation conditioned on 2*+1, v¥, and by the update of v} from Algorlthml

9 Yo

[va k+1 1:€+1H|xk+17,ul_f]

K2

=E[|Vfi( ’ﬂ“) — o — CF(Vf;(a ) — of)|[] 2L, 0k

. V B[ Vi) = vf = C(TAi (k1) = ob)[|* k1, of].

where we use the concave property of the square root function, and Jensen’s inequality for the
concave function, i.e., E[f(z)] < f(E [z]) if f(«) is concave.

By the a-contractive property of compressors in . by the fact that HV fi(xFt)y — ok H is a constant
conditioned on z**1, v¥ and then by the triangle inequality,

71’

[va k+1 k+1H|xk+1,Uf] < \/(1_a)E[vai(karl)_vﬂ|2‘$k+1’vﬂ
= VT=a|[ VG <ol
< VI—al|Vfi(* —vk|}+\/1—a||Vf M) — V fi(a)|

k

IIU ”

By the generalized smoothness of f;(x) in (2), and by the fact that z¥+1 = 2% — ;%

E[||VA@ES) — o[ o] < vI=a|VAeS) - of
VT —a(Lo + L1 ||V £ (")) exp(Liv) e

Let % > 0 be constants conditioned on 2*+1, v¥. Then, by the tower property, i.e.,
B[V —of ] = EE[[VAE) = of |24, 07]]
we have
E[IVAGE o) < VIZaB[[VE - o]
+V1— aexp(Lin)w(Lo + LiE [|[VA@ED|]). (10)

Step 2) Bound V¥ := f(z*)— ot A, LS ||V f;(2%) — vF|| for some A, > 0. Next, define
VF = f(a®) — o+ A 230 ||V fi(a®) — of|| for some positive constants Aj,. Then, from
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Lemmal[3]
I il
oL
+exp(Livk) %2 ZE IV £:(@*)||] + exp(Livi)vi 20
+2uB [[|V /(") — o] + Ak“ﬁ Y B[V — o]
i=1
By the fact that V f(z¥) = L 31" | Vfi(z*), and v* = L 37" | v¥, and by the triangle inequality,
E[VM] < E[f( k)—fi“f] —%E[va )]

+ exp(L1vk) %2 ZE [V £: ()] + exp(Livi )i

1=1

o Lo
2
2 L SR VAGE) — o) + A SRR — o).
Next, by (T0),
BV < Emm—fmf]—%E[kuk)nu(7’3+Ak+lmW) sttt
. ( 2 +Ak+1m%) explLan) L - SB[V

i=1

+ (29 + Aps1V1 — @) Z [V i) —f|l] -

If Ay = 173}1"'77&, and -y, satisfies y,4+1 < %, then

29, + Ag1vV1l —a <29 + AVl —a = Ap.

Therefore,
E[VF1] < E[V*] + ¢ exp(Livk) qkf ZE [V £:(z*)][]
i=1
—E V()] + co exp(Lavi) i,
where ¢; = %4—2{}\;% fori =0, 1. O

B.1 CONVERGENCE PROOF FOR THEOREMIII

Now, we are ready to prove Theorem From Lemma and 2| and by the fact that ¢; Lo/ L1 = ¢o
E [VEH] < B [VF] + 81 Ly exp(Livi)RE [£(2*) — F2] = wE [[|V£(2")|[]] + Bexp(Limi)i,
where B = 2¢g + 8Lt 570 (finf _ ginfy By the fact that f(2*) — ff < VK,

E [V’”l] < (148c1Ly eXp(Llfyk)'y,%)E [Vk} — vE [HVf(:Ek)H] + Bexp(Ll'yk)'yﬁ

By applying Lemma [4| with V¥ = E [Vk], Wk = E [HVf(x
3 =

k) ], b1 = 801L1, bg = 1, and

VOexp(by exp(L1y)v2(K + 1)) = b3
min | W < T + =~ exp(L
k':O,ll,?,K = by (K + 1) s exp(L17y)y-

Finally, if v = \/7 with vy > 0, then exp(L;17;) < exp(L170), and thus

min k< VO exp(br exp(L170)78) | b3 70 eXp(Ll’Yo)_
k=0,1,...,.K - boyovVK +1 bo K+1
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C CONVERGENCE OF NORMALIZED EF21 FOR A SINGLE-NODE CASE

In this section, we provide the convergence of normalized EF21 for a single-node case. In particular,

. . L oy
the algorithm enjoys the O(1/K) convergence up to the additive constant T—erexp (L) In contrast

to Theorem E] for multi-node normalized EF21, the next result for single-node normalized EF21

applies for any v, = v € (0,1/(8c1)) with 8 > 2,¢; = &L + 25 1\/ﬂ and o € (0, 1].

of f), and Assumption [3| (generalized smoothness of f). Further, let Assumption H| (contractive
compressor) hold. Then, the iterates {x*} generated by normalized EF21 (Algorithm|I) withn = 1,

Y = =1/(Bc1) and B > 2 satisfy

Theorem 3. Consider the problem of minimizing f(x), which satisfies Assumption|l lower bound
a
i

BV -EV] e
—crexp(L1y)7) (K +1) 1 —cpexp(Liy)y’

w+2v1 oL fori =0, 1.

LEUVIEII] <

kOl ,,,,,

where V¥ = f(zF) — finf 4 71—%1—(1 HVf(mk’ =

Proof. We prove the result in the following steps:

Step 1) Bound E [||V f(zF 1) — vF+? H] From the definition of the Euclidean norm, and by tak-
ing the expectation condltloned on ¥

E [va(karl) _ ,Uk+1|||mk+1,vk]

i

E [||Vf(xk+1) _ ,Ulc _ C(vf(karl) _ Uk)m karl,Uk]

< JE [197(41) = ok — (T (@ht) = )] k2, o8]

7
k

@

< \/(1—a)E[Vf(;v’““)—v’“”z‘x’”l,vk}
= \/1—04||Vf(xk+1)—vk||,

where we reach the second inequality by the fact that the square root function is concave, and the

last inequality by the fact that ||V flah+l)y — ok H is a constant conditioned on z**1 v*. Next, by
the triangle inequality,

E [HVf(J;kH) - vk+1mxk+1,vk] <Vl-a HVf(ack) - ka +V1-—« HVf(xk'H) - Vf(a?k)H
@ V11—« HVf(:vk) - ka +V1—a(Llo+ Ly HVf(xk)H)exp (L1 Hx’”l - l'kH) ||xk+1 - ka

L1

< VI—al[Vi@a®) = oM+ VI=a(Lo + L[|V f(=*)]) exp(Laye) v

Next, by the tower property, and by the fact that {~; } are constants,

B[V = o] = E[E V(") —v

<V1I—aE[||Vf(a") —v"||] + VI = (Lo + LiE [||V £(z")]||]) exp(L1ve) s (11)
Step 2) Bound V¥ := f(z*) — fi*f + A, ||V f(a*) — v*|| for some A > 0. Denote V* :=
f(a®) = fif 4 Ay ||V f(2*) — v*|| for some constants Ay, > 0. Then, from the definition of V**1,
from Lemmawith n = 1, and by the fact f(z) is generalized smooth,

. 271,

E[VM] < E[f(e") - ™) - <% — GXP(ka)) E[[|[Vf")|] + 5= exp(Lin)
27 E [||[Vf(2%) = oF||] + A B [||VF (@) — "]
E[f(@") = 1 + 29 + A1Vl — o) E[||[Vf(2¥) — o]

27,
- (% - 7k2 = exp(Liyk) — App1vVI — aLiv eXP(LWk)) E[||V£(")]]

k+1, Uk}]

INE]

2
L
+7k2 % exp(Liyk) + Ags1V1 — aLoye exp(L1vk)
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If Aj, = 172\}1’“77& and 7y, satisfies 741 < 7, then

29 + ApavV1l —a < 29 + AVl —a = Ay
Therefore,
E [V <E [VF] = (m — crexp(Lavi)vi) E [||[V£(@*)||] + co exp(Liyi )i,
where ¢; = % + 2% fori =0,1.
Step 3) Complete the convergence bound. If vy, = v = 1/(8c,) for § > 2, then ¢; exp(L17y)y =
exp(L1/(Ber))/p < exp(2/8)/P < 0.7 < 1, and
E [Vk+1] < E [Vk] —v(1 —crexp(L1y)7) E [HVf(ack)H] + con?.

By re-arranging the terms,

i E[[[VEh]]

b KE v f(z*
e 2Ll

E [VO} _E [VKJrl} N coy
(1 —crexp(Liy)y)(K +1) 1 —crexp(Liv)y’
By the fact V¥ > 0, we complete the proof. O
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D CONVERGENCE OF NORMALIZED EF21-SGDM (THEOREM [2))

In this section, we derive the convergence rate results of normalized EF21-SGDM. We first intro-
duce auxiliary lemmas in Section [D.1] and later prove the convergence theorem (Theorem [2)) in

Section

D.1 AUXILIARY LEMMAS

Now, we provide useful lemmas for analyzing EF21-SGDM. First, Lemma [¢] shows the descent
inequality of the normalized gradient descent update under Assumption [3] (generalized smoothness
of f;). Second, Lemma |7|and E provide the upper-bound of the Euclidean distance between v¥ and
g%, and of the Euclidean distance between v} and V f;(z*), respectively. Third, Lemma@]presents
the convergence rate from the recursion of the non-negative sequences 7, s*.

Lemma 6. Consider the iterates {x*} generated by Algorithm|2| If Assumption E| holds, then for
any v > 0,n; € [0,1],

FE*Y) < @) = |V ER)|| + 2 | V() — oF|| + 2 ||v* - ¥

'7/3 Ly - 7
=1

Proof. By applying the triangle inequality into Lemma 3] we complete the proof. O

Lemma 7. Consider the iterates {x*} generated by Algorithm |2} If Assumptions and @ hold,
then for v, > 0,m; € [0,1], and k > 0,

n

LS B[ ] <Y S B ok - ]+ YO S B ok - v
=1 =1

n i=1 i
1 n
+ V1 — ang+17k exp ('YkLl) <L0 + Llﬁ ZE [val(xk)m>
1=1
+ V1 —ango.

Proof. Taking conditional expectation by Fj 1 = {vF*? 251, ¥}, using the concave property of
the squared root of the function, and applying the definition of g¥ in Algorithm we have

B~ g Fesr] < (B[ - | ]
= \/E{vaﬂ—gf—ck (Uf+l_gf)”2‘fk+l}
H \/E {(1—@)”1}5“ —ngQ‘}"kH}.

Next, let v, = v > 0, and n, = 1 € [0, 1]. By the fact that vf“, gk are constants being conditioned
on Fj1, and by the triangle inequality,

EH|U§+1_95+1|||]:]€+1] S m“vf_gzkn +m”vf+1_vf“
VI=aljel =g + VI= o [V — o

N
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k+1 -

Here, the equality comes from the definition of v; ™" in Algorithm Next, by the triangle inequality,

B[ = g | Fara] € VI ok — bl + VTGl - Ve

V1 = angr ||V fi(a®) = Vfi(F ]|

VI = anps |V (@) = V@)

Vi—a Hv’? — 95” + \/ﬁnkﬂllv" — Vi@

+VT = o (Lo + Ly [V fi(a®)|[) exp (Lo |27 — 2b]) [|l2*F1 — 2|
VI —ane va k+1’€ll§:+1) — V(M H _

k . .
Next, using ¢+ — 2% = —~; HSTH’ and taking an expectation, we obtain

Eflloi*! =gl < VI—aB[lfvr - gf[l] + VI amep B [[lof - sz gl
+vV1 — anprykexp (L) (Lo + L E [vaz )|])
=+ /1 — CW]k:+1E [|‘sz($k+1,£f+1) _ vfl k+1 ‘H .

INGI

Finally, since

E [vai(mk+1;§f+l) - Vfi(ka)H] < \/E [vai(xk—o—l;gl{f-&-l) _ Vfi(a:k“)HQ}

IS

< o,

we can obtain the upper bound for 2 " | E [[joft! — gF™||]. O

Lemma 8. Consider the iterates {x*} generated by Algorithm@ IfAssumptions and @ hold, then
forany vy =~v >0, =, and k > 0,

Bl -] < @B - Vi) + LE + Lisew(oL)
vL1 =

+exp (vL1) — (1—n)*" ZE [||V fi(!

S

Il
o

In addition, for any k > 0,

n

_ k2
LYt -vaehl] < S Y B - VA + v+ e (L)

i=1

L k n
+exp (L) T2 (1)t Y B[|VAia!
i=1

t=0

Proof. We prove the result using proof arguments similar to those of Theorem 1 in |Cutkosky &
Mehta (2020). From the definition of vf“, we have the following recursion for any k£ > 0:

oFtt = (1= eV + e Vil k“'fk“)
V) + (=) (0f = V(@) + (1 =) (Vfi(2") = Vi(a*T)
Fe 1 (Vi (@ €8 — W fi(a* ).

Next, from the recursion of vf“, we obtain the following recursion for k& > 0:
HEY = (L= me)HE + (1= 0p0) G+ i U
where

UFH = V@) = VAERY),  GF = V") - V@), HE =of — Vi),
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1 BN N
Uk+1:*ZUik+1v szfZGi% and HkZ*ZHf
n n "

i=1 i=1 =1

By applying the recursion of HF recursively, and by the fact that (1 — 7;41) H?:t (I =mjp1) =
k
[T=: (X = njza),

k k k k k
A =T =m0 = + > [T Q=)@ =nee)GE+ Y [T (0= mje)menn U
t=0 t=0 j=t+1 t=0 j=t+1
k k k k k
=10 =m0 H? + D> T = nis)GE+ > [T = m)mea U7
=0 t=0 j—t t=0 j=t+1

By the fact that H* = 1 3" HF

k k k k k
HY = T =m0 H + Y J[O = nis0)E + >0 TT O =njr)nea U
t=0

t=0 j=t t=0 j=t+1

Next, taking the Euclidean norm, using the triangle inequality, and then taking the expectation, we
obtain

k

B[ EH] = [T =me)B(1H) + > T10 = m)E [[l6]1]

t=0 t=0 j=t

|

=A

] . (12)

ko k
> H — Nj+1) e U
=0

=As

To bound E [ }, we need to bound the expectation of the last two terms. First, we bound
term A;. By the fact that |G| < 1 3°" | |G|, and by the definition of G,
1 n k k
A < *ZZH (1=n;+)E[||[Vfi(a") = V(@]
n =1 t=0 j=t
1 n k k
L S S T B (Lo e (L o — o)) [+ — ]
n i=1 t=0 j=t
1 n k k
PSS T B (L [ VA exp (L — o] — ]|
i =0 =t
k k Ik k
= D ] = nje)vexp(reLa) Lo + ;1 > D TIA = mye)veexp (nLa) E ||V fi(a!
t=0 j=t i=1 t=0 j=t

Second, we bound term Aj;. By the independence of each sample variable &/,

2
k k
Ay < E|IDD T @ =njs)meqavttt
t=0 j=t+1
k k
2
= |2 IT @ = E o]
t=0 j=t+1
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Next, by the variance decomposition, i.e., E {HUt‘HHQ} =15, {HU”lH } < o?/n,

2

k k
Ay < JZ H (L =mj41) 77t2+1%

t=0

ko k
= jﬁdz H (1_77j+1)277t2+1-

t=0 j=t+1

Therefore, by plugging the upper-bounds for A;, and for A; into (I2), we obtain

k k k
BIH) < TI0-menB (1) + 3 T10 - msboesp (k)
t=0

t=0 j=t

I n k k
+?1 ZH (1 =nj1)veexp (vel1) E [HVfZ H]

i=1 t=0 j=t

k

NG IT =m0,
t=0 j=t+1

Mw

Similarly, by following the proof arguments for bounding E [||H**!||], we can show the following
inequality:

1 n k 1 n k k
ﬁZE[HH’ka = H(l_mH)EZE[HHOH ZH (1 —njy1)veLoexp (veLn)
i=1 0 ; =
I n k k
+23S TT0 =m0 eexp (e L) B[V ]

(3

“+o
t

We further simplify our bounds. Let v, = v > 0, and 7, = 1 € (0, 1). Then, by the fact that

1 t=0 j=t

M=

k
IT 0 =njs0)2n?,
j=t+1

I
=)

k

H(l—mﬂ) = (1-p)!

=0

k k
H1—77]+1 Ve = VZ(l—U)k_tHa and

Ma

t= ]:t =0
ko k X
) | (R RE E
=0 =t t=0
we have
k
E[HHkHH] < (1- kHE[HHOH] + Lo exp (vLy) Z v
t=0
- k
) S A+ Sy 3
i=1 par
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By the fact that

k o 1 1

A—pf*t < > (1-n)'= ==

; ; 1=(1-=mn) n

k 0o

1 1 1
1_772(k—t) S 1_n2t: — ng
t:O( ) t;( ) 1=(1=n)? n@2-n "1

we obtain
BIE) < @-n () + oo (L) + 2L
+exp (yL1) %Ll Z(l — ) THE [V AED]] -
i=1

Similarly, by following the proof arguments for simplifying the bounds for E [[|H**+!||], we can
show the following inequality:

n _ )kl o
sl < S S e () + Lige (o) + 2F

i n i=1 vn
L 1l 1— )" E[|V fi(a!
+exp (YL1) == D (1 =) [[v s
i=1
O
Lemma 9. Let non-negative sequences {r*} and {s*} satisfy the following recursion: for k =
0,1,...,K,and K > 0,
k
rEt <k — sk 4 (1= p)Pyar + a2 +4%a3 Y (1 — )i, (13)
t=0

where ay,az,a3 > 0, v > 0, € (0,1]. If ¥’/naz(K + 1) < /2, then for k = 0,1,..., K, and
K >0,

r* < pFr0 + ke,
where p and e are defined by

2

p= 1+la3, and e= V(a1 + ap)
Ui

1-— VZ/nag(K —+ 1) '

In addition, for K > 0,

min s < 2r° + 4 + §a + 1a
o<k<rx T T y(K+1)  pK+1) 22" 2™h

Proof. We prove two statements in this lemma.

Deriving the recursion of 7 satisfying . First, we prove that ¥ < pFr0 + ke satisfies the
recursion in by an induction. For & = 0, r9 < 0. Next, if r¥ < pkro + ke holds for k, then
we prove this recursion for k + 1:

k
rET < R s (1= )P yar + yas +7Pas Y (1 - )R
=0
K
< pfro+ke+ (1—n)Fyar +yaz +4%a3 Y (1 —n) " (p'ro + te).
=0
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Since
k 00 k
Z k t t < kaOZ(l—T))tzp 7’0’ and
t=0 t=0 n
k 0o ke
D= te < ked (1-n)f<—
t=0 t—0 n’
we obtain
o Phro /fe

< kaOJrkeJr(lfn) yai + yas + vy az—— , +~2%a

By re-arranging the terms, by the fact that (1 — 77)"c < 1, and by the fact that k£ < K,

2 2asK
< (1 + 37(13) prro + ke + (a1 + az) + et 773 )
2 a1+a .
Ifp=1+ 770@3, e= %, and v*/naz(K +1) < 1/2, then we can show that y(a; + az) +

e’YQQTﬂ( = e, and that
< g + (k4 e

Thus, we complete the proof for the first statement.

Deriving the convergence bound in ming<j<sx s*. Next, based the derived inequality ¥ <

pFro + ke, we prove the second statement: the convergence in ming<x<x s*. By summing ( .
overk=0,1,..., K,

K K K Kk
’YZSk = i) +Z ) ya1 +vaz(K +1) ++% 322 )kt
k=0 k:O k=0 k=0 t=0
K &
< ro+%a1 +’ya2(K+1)+’yzagzZ )Ett, (14)
k=0 t=0

where we reach the last inequality by the fact that /<1 > 0, and that 35 (1 —n)F < 3232 (1 —

n)* = 1/n. To complete the convergence bound, we need to bound the last term from the previous
inequality:

K k K K
2SI SO IR
k=0 t=0 t=0 k=t
Ko K
= > g2
= =0 =
K _
N R VE Bl ) S
- Z(l—n)t 1-(1-n)
t=0
1 K
S0
77k’=0
By the inequality r* < pFrq + ke,
K k K
_ 1 1 K+l _q K(K+1
SISt < LS ey ke = (p LS >e).
k=0 t=0 =0 N P

Plugging the upper-bound for S P tho(l —n)k~trt into ( b yields

2 K+1 _ 1 2 K(K +1
’VZ Sk é To + %al + ’)/QZ(K + 1) + %agppTTo =+ ’:7(13(2)6.
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— 2, — _ y(aatas)
Next, by the fact thatp = 1 + a3 and e = T s (K11)’

K 2 K+1 2
gl g v KME+D  ylan +ao)
< ro+ |14+ —a: o+ —a1 +vax(K+1)+ —a
0 < - 3) 0 0 1+ yas( ) n 3 5 1= /nas(K +1)

KK +1) v(a1 + as)

2
]
Vo)
&
A

2

IN

gl gl
+ —ag(K +1 + —ay +vyaz(K + 1) + :
oTe ( U as( )> TR raal A n T as(K + 1)

2(K+1) 1
By the fact that 7= "a3 < 3,

K
K
yz sf< 2+ %al +yax(K +1) + 57(01 + az)
k=0

K
Finally, using that F>~(K+1) min _s*, we obtai
inally, using tha ka::Os > y(K + )og}clgnf(s we obtain

K
y(K +1) min s* < 2r¢+ ’;al +vas(K +1) + 37((11 + ag),

0<k<K

which completes the proof. O

D.2 PROOF OF THEOREM[2|

Now, we are ready to prove Theorem 2] First of all, define the Lyaponov function V;, for any k > 0
S CARTARES Dl skl
n —~ (2 3

with A =

\/7 By Lemma|§|andl
EVita] < E[f(e ‘“%fi“f]*vE[HVf I + 2B [[[VFE") = o [] +20B [[[o* - "]
AV = ZE i —gz|u+W—a”zE ok - V5]
2
+2- exp (7L1) <L0+ZE |V fi(z* ||]>

=1

+AV1 — anyexp (vL1) <L0 + — ZE HVfZ H]) + AV1 — ano.

we obtain Av/T — an = 2y1C,, where Cy = =2 and

Since A = ey et

2y
1—y/1—a’
EVip] < BV —1E V)] + 2B [|V(=") —vk!!]+27ngZE [llof = V£:")]]
=1

42 (; + 20a7)> exp (vL1) (Lo + — ZE ‘sz H]) +2ynCoo.
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By Lemma(g]

BlVin] < EWI - B [[VS]] + 20— B [Jo* - V)] + L7

27? 292L; )t
+ - Loexp (YLa) + = Z ZE |V fi(z")]|] exp (vL1)
t=0

n

(1—n)* S 0)
+2ynCy ZE [|vf = V£:@)||]] + v/no + Loexp (vL1)

L k n
+2ynCqexp (vLq) - ’Yn1 Z kftZE[HVfi(xt) ]
t=0 i=1

A2 (; + QCan> exp (vL1) (Lo + — ZE HVf, m) +29nCyo.

Denoting Vo = [|[v° — Vf(2°)|| and Vo = £ 57, |09 — V £ (=),

E[Vin] < BV —1B[[ViE"]]+

— )" (29E o] + 2mCaE Vo] )

(=" (2
3 2
+2'y<\/7+77/20 +nCq )a—l—w(J—i—?vC —1—2—1—27170 )Loexp(le)
I 1

n k—

= D = B[V i)

+272 (1 +nCy) exp (vL1)
=1 t=0
5 (1 L &
+7* (5 +21Ca exp (YL1) — Y E[|[Vfi(=")]]] .

n -
=1

Applying Lemma[2] we obtain
EVis1] < EVi] —1E[|VFEh)]] +0 - 77’“(2’YE[V01+2777C B[%])

+2y (\[Jrn%c +n0a> o+v< +29Ca + 2 5 T 27Ca )Lo exp (vL1)

k—1
L?
+2’Y exp 'YLl 1+nC Z 17 <8L2E [f( ) fmf 8 o Z fmf flnf)+LO>
t=0
+72 exp (’YLI + 2,'70 ) <8L2 flnf 1 Z flnt flni _|_ LO) .
By re-arranging the terms,
EVi] < E[W]—AE[[|VF@E")]] + (27E Vol +2ynCaE [VOD

k
+167°(1+nCa) exp (vL1) LT > (1 =) 'E [f(a') — ]

t=0

2
+2v (W—i— n3/20a + 770@> o+ (7 +29C, + g + 2’ynC’a> exp (vL1) Lo

k—1
+<2 +29"0Co + 277 (1 +1Ca) Y (1 —n)* )exp(le)Lo
0

-1

-
E|

(1—m* )exp(le)L Z(f‘“f £7).

t=0 i=1

+8< + 29%0Cy + 29*(1 +nC.y)
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Next, by the fact that 3y~ (1 — )k~ < 377 (1 - ) = £,
k

292(1+nCy) Y (1—p)kt <

I
-

272 + 29?nC,
n

~
I
o

272

+272C,,.
Therefore, by using the upper bound of 2v2(1+nC,,) i:ol (1—n)*~*, and by the fact that f(z*) —
<V,
EViyt] < B[Vl =B [[VAEH)]] + (1= m* (29 D] + 2vnCaE Vo] )
k
F677(1 4 000 exp (1) 3 31— B+ 21 (/L 0+ v G ) 0
=0

4
+yexp (vL1) Lo (7 + % +4y(1+ 17)%)

4 L2 <N, . .
+4vyexp (vL1) (7 + % +4y(1+ n)Ca> ?1 SO — ).

=1

By assuming that 167°/5(K + 1)(1 + nCs)Liexp(vLi) < 4, and applying
k
.

Lemma [ with ¢ = E[|V/@H[], * = BVl e = 28] + 20CaE Vo],
as = 2(VIZ+n(l+yn)Ca)o + exp(yLi)Lo (7+%+4’Y(1+7])Ca) +
dexp (YL1) (7 + 5y (1 n)Ca) B (= f),  and a5 = 1601 +

nCq)exp (yL1) L3, we get

E[Vy]  2ED] +nC.E [170

o2 BV < S5y WK+ 1) B Vo] +1CaE [V
+3 <\/z+ n(l+ \/ﬁ)C’a> o
+geXp (vL1) Lo <v+ — +4y(1+n)Ca

4 L% n )
+6 exp (vL1) ( + ? +4y(1 47 Oa) ; flnf _ filnf) .

=1

Ifn = \/774— and v = (K;’W with v9 > 0 satisfying

C YoL1
2712 o
200y (1 * m) oxp ((K+1)/> <1

then we have exp (yL1) = exp ((7“714) < exp (y0L1), and

K+1)%4
OE%IEK [Ivr@h]] < oK +1)7 + K+ 17 [VOH—W
+3 ! + 2Ca
VK1) (K 7)°

3 Yo 40 870Ca

- L)L - -
+Qexp(’70 1) O((K+1)3/4+(K+1)1/4 (K+1)3/4

Yo 47 870Cq 2 cinf

6 L Lyo™

+6exp (Yo 1)((K+1)3/4+(K+1)1/4+(K+1)3/4> )
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where 6™ = L S~ (finf — finf) By the fact that C,, = Y1=204tvVIZa) < 2vVI—a
i=1

min E [HVf(xk)H]

o E[Vol/~o + /v + (yoLo + VOL%(Si“f) exp (y0L1)
0<k<K

(K+ 1)1/4 +E[V0])

JT—a E [170} + 0+ (Lovo + Y0 L36™) exp (y0L1)
a (K +1)"2

+0

If v{ is initialized to be the mini-batch stochastic gradient at the starting point with batch size B™ €
[n]:

Binil
0 _ 1

0. £0
v; anzlvfi(xiv i3);
=

where 52 jareiid., j € Bt then we have the following bounds for E [V, and E []70} :

n Bini!

1
EDy] = mzzvﬂ(x?;fgj) —Vf(z%
i =1
Ny 2
| B
< — 2D Vilali§d) = V@)
i =1
g
< ———; and
T \/pRBinit
_ 1 n 1 Binil
E {VO} = o ZE i vaz‘(l“?;f?,j) — Vfi(z?)
i=1 j=1
Ny 2
1 n 1 RBinit
(0.0 Y _ T f
< - ; E ||| g ;vmi, 0,) = Vfi(a)
< o
- /piit’
By taking B = /K + 1,
g = g
E <——~-, E < -—
Mol < V(K +1)2’ [VO} = (K +1)Y2

Therefore,

min E [HVf(xk)H]

< 0 (E[VD]/'VO + U/\/E + (’YQLO + ’YoL%(Sinf) exp (70L1)>

0<k<K (K + 1)/
Lo Vi—a o+ (Lovo + v0L36™) exp (voL1)
a (K +1)7 '
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E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional results for minimizing nonconvex polynomial functions, and
for training the ResNet-20 model over the CIFAR-10 dataset.

E.1 MINIMIZATION OF NONCONVEX POLYNOMIAL FUNCTIONS

We ran normalized EF21 (EF21-norm), and traditional EF21 in a single-node setting (n = 1) for
solving the following problem:

d d 9
: 4 i
= 3 L A s 15
min{ ) = Yot 23 1 (15)
—_——— —-— ——
=:g(x) =:h(z)

wherea; > 0,i=1,...,d, A > 0.

Let us show that f(z) is non-convex (for the specific choice of a;) and (Lg, L1)-smooth. First, we
prove that f(z) is non-convex. Indeed,

V2f(z) = VZg(z) + Vh(x)

1—3x2 1— 322
12diag{a1x%,...,adx?l}+2/\diag{ 213,,.., ‘Zd3},
(1+2z7) (1+23)
is not positive definite matrix if we choose a; = ﬁ, r; ==x1fori=1,...,d.

Second, we find Lo, L1 > 0 such that ||V2f(z)|| < Lo+ L1 |V f(2)||, Va € R% This condition
is equivalent to Assumption E] (generalized smoothness) with Ly, L; (Chen et al.| 2023 Theorem

1). Let us fix some L; > 0 and choose Ly = 9;;:‘122 + 2. Since V2h(x) < 2)1,
1

IV2f@)]| = [[V2g(@) + V2h(@)|| < [V2g()[| + [ V*h()|

< 12\/a%x‘11+...+a3x3+2)\
<12 (ale + ...+ adxgi) + 2.

Also, notice that

22 \? 22 \?
IV£@)l = IVg(a) + Th(x)] = \/ (4019 + gz ) ot e (0 + gz ) o
> 4\/a%x? + ...+ a2af
(*) 4 3
> —d(a1|x1| + ...+ aq|z4 ),

where (¥) results from the fact that ||z||, < v/d||z|| for z € RY. Our goal is to show that

~ 4L - ) -
12 (a1$% + ...+ ad;v?l) S L(] + 71 ((11 |1’1|3 +...4+aq |1’d|3) s L(] = L() — 2.
Vd
To show this, we consider two cases: if |z;| < 3L—\/1E, and otherwise.

1. If 2] < BL—‘/F foralli = 1,...,d, then 12a;2% < 10272“1. Thus, 12 (@123 + ... 4 aqgz?) <
1

108Md* _ §
24172 = Lo.
2. If |zj| > % for some j = 1,...,d, then 12a;27 < %aj |z;|°, and the sum of the

remaining terms (such that |z;| < %E) in 12 (a12% + ... + aqz?) can be upper bounded
by [N/().
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. . . .. 2
In conclusion, f(z) is (Lo, L1)-smooth, where L; is any positive constant and Lo = 92)‘L‘12 + 2\
1

Additionally, we can show that under certain additional constraints, f(x) is L-smooth with L =
AVAD® 4 9\ 1f |2;| < Dforalli = 1,...,d, then

\WdD?
2
In the experiments, we estimate D based on the initial point 20 € R,

[V2f(@)|| < 12y/adat + ...+ a2xd +2X1 < +22=1,

In the following experiments, we used a top-k sparsifier with & = 1 and o = k/d, setting d = 4,
Ly = {1,4,8}, and Ly = 4 (adjusting \ to maintain a constant Lg). The initial values 2° were

drawn from a normal distribution, x? ~ N(20,1) fori = 1,...,d, with D estimated as 20. For
_ 1 3 — _ — — 11—« .
EF21, we set v, = FANIVEE usingd =1—+/1—aand A according to Theorem 1 of

|Richtérik et a1.| (I2021I). For normalized EF21, we chose v, = i with ¢; = % + 217% from

N
Theorem and v = \/;LH with o > 0, as specified in Theoremwith n=1.

The impact of 7y and K on the convergence of normalized EF21. First, we investigate the im-
pact of vp and K on the convergence of normalized EF21. We evaluated v, from the set {0.1, 1,10},
and plotted the histogram representing the number of iterations required to achieve the target accu-

racy of |V f(z)||> < e with e = 107%, using the stepsize rule v = \/;Oiﬂ For each vy, we

determined K as the minimum number of iterations required to achieve the desired accuracy, found
through a grid search with step sizes of 500 for 7o = 1,10 and 5000 for vy = 0.1. From Figure 4]

= =
o o
S )

Number of iterations for convergence
=
o
>

Lo=4,L1=1 Lo=4,L,=4 Lo=4,L,=8

Figure 4: Number of iterations required to achieve the desired accuracy, |V f(z)]|* < e, e = 1074,

using normalized EF21 (EF21-norm) with v = \/;(LH for different values of Ly and L;.

for small values of v, such as 0.1, significantly more iterations are required to reach convergence
compared to g values of 1 and 10, which show similar performance (with the exception of the
Ly = 4, L1 = 1 case, where 79 = 10 converges faster). Based on this observation, we use vy = 1
in all subsequent experiments and adjust only K to achieve convergence, identifying the minimum
number of iterations needed to reach the target accuracy through a grid search with a step size of
500.

Comparisons between EF21 and normalized EF21. Next, we evaluate the performance of EF21
and normalized EF21 for a fixed Ly = 4 and varying Ly values of {1, 4, 8}. From Figure [I]
normalized EF21, regardless of the chosen stepsize 7, achieves the desired accuracy |V f(z)||* < ¢
with € = 10~ faster than the original EF21. Initially, however, EF21 converges more quickly, likely
because normalized EF21 employs normalized gradients, which can be slower at the start due to the
large gradients when the initial point is far from the stationary point. Moreover, as L; increases,
both methods show slower convergence.

E.2 RESNET20 TRAINING OVER CIFAR-10

We included additional experimental results from running EF21 and normalized EF21 for training
the ResNet20 model over the CIFAR-10 dataset. The parameter details were set to be the same as
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those in Section [6.2] with the exception that we vary k = 0.01d, 0.5d for a top-k sparsifier. From
Figures[5|and[f] normalized EF21 attains a higher accuracy improvement than EF21, across different
sparsification levels k.

Training resne20@CIFAR 10 with k = 001D, T = 128

-
-¥- e

19A)112

vl
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 0
#Gbits/n #Gbits/n #Gbits/n #Gbits/n

Figure 5: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize v = 5 and £ = 0.01d for a top-k sparsifier.
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#Gbits/n #Gbits/n #Gbits/n #Gbits/n

Figure 6: ResNet20 training on CIFAR-10 by using EF21 and normalized EF21 (EF21-norm)
under the same stepsize v = 5 and k = 0.05d for a top-k sparsifier.

F OMITTED PROOF FOR SMOOTHNESS PARAMETERS OF LOGISTIC
REGRESSION

In this section, we prove the generalized smoothness parameters Lo, L; for logistic regression prob-
lems with a nonconvex regularizer, which are the following problems

n n d 2
, 1 1 T T
;Telgb{f(w) T lz:; filz) = n ;log(l + exp(—bja; ) + /\; 1—1—96?}’
=:fi(x) ;,_/
=:h(x)

where a; € R? is the i*® feature vector of matrix A with its class label b; € {—1,1}, A > 0.
First, we can prove that f(z) is L-smooth with L = 1| A||> 4 2, and that each f;(z) is L;-smooth
with L; = L{|a;||2 + 2.

Next, we show that each f;(z) is generalized smooth with Ly = 2\ + A\v/dmax; ||a;| and L; =
max; ||a;||, when the Hessian exists. By the fact that
exp(—b;al ) exp(—bia] z)

Vfi(z) = — bia;, and V2f;(z)= bia;al
fi() 1+ exp(—bial z) a;, an fi(z) (1+ exp(—bal z))2 i iy

we have
bie{-1,1} exp(—b;al'z)

)\max 7 r
(14 exp(—bialz))? (aia;)

fo2sco

B exp(—b;al'z) ||a»H2
B (14 exp(—bialz))? !

[las |

- 1 + exp(—bal'z) val(m)H

laill | Vi) (16)

IN
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After adding the nonconvex regularizer h(x), we can show the following inequalities:

V2@ < [V @)+ V2@
< Hvzﬂ(az)H+2)\, (17)
and
V@I = Vi@ - 1vh@) = |Vie] - ﬂ(fji)) bt ()
> Vi@ - v e
= |vhi@)]| - v (18)

By combining inequalities (T6), (T7), and (I8)), we obtain

V2 ()| HVin(x)H 420

IN

IA

il |V Fite) | + 22
< 20+ AW+ [|ai [V £i(2)] -
In conclusion, ||V2fi(z)|| < Lo + Ly [Vfi(x)|| with Lo > 2X + \Wd, and Ly > ||a,||. This

condition is equivalent to Assumption E| (generalized smoothness) with Lo, L1 (Chen et al.| [2023]
Theorem 1).
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