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Abstract

Discovering causal relationships between different variables from time series data
has been a long-standing challenge for many domains. For example, in stock
markets, the announcement of acquisitions from leading companies may have
immediate effects on stock prices and increased uncertainty of the future market
due to this past action. This requires the model to take non-linear relationships,
instantaneous effects and the past-action dependent uncertainty into account. We
name the latter as history-dependent noise. However, previous works do not offer
a solution addressing all these problems together. In this paper, we propose a
structural equation model, called Rhino, which combines vector auto-regression,
deep learning and variational inference to model non-linear relationships with
instantaneous effects and flexible history-dependent noise. Theoretically, we prove
the structural identifiability for a generalization of Rhino. Our empirical results
from extensive synthetic experiments and a real-world benchmark demonstrate
better discovery performance compared to relevant baselines, with ablation studies
revealing its robustness when the Rhino is misspecified.

1 Introduction

Time series data is a collection of data points recorded at different timestamps describing a pattern
of chronological change. With the rapid growth of observational time series data generated by
different domains (e.g. climate science, health care, etc.), there has been an increasing interest
in identifying the causal relations between different variables and their interactions through time
[19, 4, 22, 39, 30, 37, 14, 24]. We name this task temporal causal discovery.

Temporal causal discovery can be challenging for several reasons: (1) relations between variables can
be non-linear in the real world; (2) with a slow sampling interval, everything happens in between will
be aggregated into the same timestamp, i.e. instantaneous effect; (3) the noise may be non-stationary
in the sense that its distribution depends on the past observations, i.e. history-dependent noise. For
example, in stock markets, the announcements of some decisions from a leading company after the
market closes may have complex effects (i.e. non-linearity) on its stock price immediately after the
market opening (i.e. slow sampling interval and instantaneous effect) and its price volatility may also
be changed (i.e. history-dependent noise).

To the best of our knowledge, no previous work addresses all these aspects in a satisfactory way.
Especially, history-dependent noise has been rarely considered in past. A large category of the
preceding works, called Granger causality [9], is based on the fact that cause-effect relationships
can never go against time. Despite many recent advances [39, 34, 35, 1, 19, 37, 4, 5, 40], they
all rely on the absence of instantaneous effects with a fixed noise distribution. Constraint-based
methods can potentially address the aforementioned requirements [30, 31], but can only identify the
causal graph up to a Markov equivalence class (MECs) without detailed functional relationships
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between variables. Structure equation models (SEMs) approach can incorporate both instantaneous
and lagged effects as long as they are structural identifiable. Unfortunately, it is challenging to model
history-dependent noise, since this additional flexibility may break the model structural identifiability.
Thus, the key research question is whether the identifiability can be preserved even with complex
historical dependencies in the temporal setting.

Motivated by these requirements, we propose a novel SEM-based temporal discovery called Rhino
(deep causal temporal relationship learning with history dependent noise), which can model non-
linear lagged and instantaneous effects with flexible history-dependent noise. Our contributions
are:

• A novel formulation of SEMs, called Rhino, which combines vector auto-regression and
deep learning to model non-linear lagged and instantaneous effects with history-dependent
noise. We also propose a principled variational training framework.

• We prove that Rhino is structurally identifiable under similar assumptions as additive noise
models (ANM). To achieve this, we provide general conditions for structural identifiability
with history-dependent noise, of which Rhino is a special case.

• We conduct extensive synthetic experiments with ablation studies to demonstrate the advan-
tages of Rhino and its robustness under model misspecification. Additionally, we compare
its performance to a wide range of baselines in a real-world discovery benchmark.

2 Rhino: Relationship learning with history dependent noise

2.1 Model formulation

Before jumping into the formulations, we briefly introduce SEMs. Appendix B includes preliminaries
about Granger causality and vector auto-regression, which is optional for understanding Rhino.

Structural Equation Models (SEMs) Consider a multivariate time-series Xt =
(
Xi

t

)
i∈V

where
V is a set of nodes with size D. An SEM describes the functional relationships between variables
Xi

t across and within the time frame given a temporal causal graph G. A general form is

Xi
t = fi,t(PaiG(< t),Pai

G(t), ϵ
i
t), (1)

where Pai
G(< t) contains the parent values specified by G in previous time (lagged parents); PaiG(t)

are the parents at the current time t (instantaneous parents); ϵit is the mutually independent exogenous
noise and fi,t describes the functional relationships. The above SEM induces a joint distribution
over the stationary time series {Xt}Tt=0 (see Assumption 1 in Appendix D for definition). However,
Eq. (1) with this flexible form cannot be directly used for causal discovery due to the structural
unidentifiability (Lemma 1, Zhang et al. [42]). One way to solve this is sacrificing the flexibility by
restricting the functional class. For example, ANM, [12]

Xi = fi(PaG(X
i)) + ϵi, (2)

which have recently been used for causal reasoning with non-temporal data [8].

Next, we propose the formulation of Rhino. We assume that the multivariate temporal process is
defined by the adjacency matrix G0:K with maximum lag K, where Gτ∈[1,K] specifies the lagged
effects and G0 specifies the instantaneous parents. In the following, we interchange the usage of the
notation G and G0:K for brevity. We propose a novel SEM that incorporates non-linear functions,
instantaneous effects, and flexible history-dependent noise, called Rhino:

Xi
t = fi(Pai

G(< t),Pai
G(t)) + gi(Pai

G(< t), ϵit) (3)

where fi is a general differentiable non-linear function, and gi is a differentiable transform s.t. the
transformed noise has a proper density. Rhino has an additive structure similar to a standard ANM.
However, our formulation is much more flexible. By placing few restrictions on fi, gi, Rhino can
capture functional non-linearity through fi and noise history dependency through gi.
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We also propose flexible functional designs for fi, gi, which must respect the relations encapsulated
in G. Namely, if Xj

t−τ /∈ Pai
G(< t) ∪ Pai

G(t), then ∂fi/∂X
j
t−τ = 0 and similarly for gi. We design

fi(Pai
G(< t),PaiG(t)) = ζi

 K∑
τ=0

D∑
j=1

Gτ,jiℓτj

(
Xj

t−τ

) (4)

where ζi and ℓτi (i ∈ [1, D] and τ ∈ [0,K]) are neural networks. For efficient computation, we use
weight sharing across nodes and lags: ζi(·) = ζ(·,u0,i) and ℓτj(·) = ℓ(·,uτ,j), where uτ,i is the
trainable embedding for node i at time t− τ .

For the design of gi, we use the conditional spline flow [38, 7, 25] with Gaussian noise to balance the
flexibility and likelihood tractability. Their bin parameters are predicted using a hyper-network with
a similar form to Eq. (4) to incorporate history dependency, where we sum over τ ∈ [1,K] to remove
the instantaneous parents. Due to the invertibility of gi, the noise likelihood conditioned on lagged
parents is

pgi(gi(ϵ
i
t)|Pai

G(< t)) = pϵ(ϵ
i
t)

∣∣∣∣∂g−1
i

∂ϵit

∣∣∣∣ . (5)

2.2 Variational Inference for Rhino

Rhino adopts a Bayesian view of causal discovery [10], which aims to learn a graph posterior distri-
bution instead of inferring a single graph. For N observed multivariate time series X(1)

0:T , . . . ,X
(N)
0:T ,

the joint likelihood of Rhino is

p(X
(1)
0:T , . . . ,X

(N)
0:T ,G) = p(G)

N∏
n=1

pθ(X
(n)
0:T |G) (6)

where θ are the model parameters.

Graph Prior Inspired by Geffner et al. [8], Zheng et al. [43], we propose the following unnor-
malised prior

p(G) ∝ exp
(
−λs∥G0:K∥2F − ρh2(G0)− αh(G0)− λp∥G0:K −Gp

0:K∥2F
)

(7)

where h(G) = tr(eG⊙G)−D is the DAG penalty proposed in [43]; ⊙ is the Hadamard product; Gp

is an optional domain-specific prior graph; λs, λp specify the strength of the graph sparseness and
domain-specific prior terms respectively; α, ρ characterize the strength of the DAG penalty. Since
the lagged connections can only follow the direction of time, only the instantaneous part, G0, can
contain cycles, to which we apply DAG constraint.

Variational Objective To overcome the posterior intractability, we use independent Bernoulli
distribution qϕ(G) (refer to Appendix G for details) to approximate it with varitional inference. The
corresponding evidence lower bound (ELBO) is

log pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T

)
≥ Eqϕ(G)

[
N∑

n=1

log pθ(X
(n)
0:T |G) + log p(G)

]
+H(qϕ(G))︸ ︷︷ ︸

ELBO(θ,ϕ)

(8)

where H(qϕ(G)) is the entropy of qϕ(G). The parameters θ, ϕ are learned by maximizing the ELBO,
where the Gumbel-softmax gradient estimator is used for ϕ [15, 20]. We also leverage the same
augmented Lagrangian training procedure [11, 2], as Geffner et al. [8], to anneal α, ρ to make sure
Rhino only produces DAGs.

Treatment effect estimation Apart from inferring temporal causal graphs, our model can be
extended for causal inference tasks such as treatment effect estimation. See Appendix F for details.
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3 Theoretical Considerations: Structural Identifiability

One of the key challenges for causal discovery with a flexible SEM is to show the structural identifia-
bility. We present a theorem for Rhino that summarizes our main theoretical contribution.

Theorem 1 (Identifiability of Rhino). Assuming Rhino satisfies the causal stationarity, causal
Markov property, causal minimality, causal sufficiency and the induced likelihood has a proper
density (see Appendix D), and we further assume (1) all functions and induced distributions are
third-order differentiable; (2) function fi is non-linear and not invertible w.r.t. any nodes in Pai

G(t);
(3) the double derivative (log pgi(gi(ϵ

i
t)|Pai

G(< t)))′′ w.r.t ϵit is zero at most at some discrete points,
then Rhino defined in Eq. (3) is structural identifiable for both bivariate and multivariate time series.

Sketch of proof. This theorem is a summary of a collection of theorems proved in Appendix D. The
strategy is instead of directly proving the identifiability of Rhino, we provide identifiability conditions
for a general temporal SEM, followed by showing a generalization of Rhino satisfies these conditions.
The identifiability of Rhino directly follows from it.

Prove bivariate identifiability conditions for general temporal SEMs The first step is to prove
the bivariate identifiability conditions that a general temporal SEM (Eq. (1)) should satisfy (refer to
Theorem 2 in Appendix D.1). In a nutshell, we proved the SEM is bivariate identifiable if (1) the
model for initial conditions is identifiable; (2) the SEM is identifiable w.r.t. instantaneous parents.
Remarkably, (2) implies we only need to pay attention to instantaneous parents for identifiability,
and opens the door for flexible lagged parent dependency. This theorem assumes causal stationarity,
causal Markov, minimality, sufficiency and proper density assumptions.

Identifiability of history-dependent post non-linear model Next, we propose a novel generaliza-
tion of Rhino, called history-dependent PNL. Theorem 3 and Corollary 3.1 in Appendix D.2 prove it
is bivariate identifiable w.r.t. instantaneous parents (i.e. satisfy the conditions in Theorem 2) with
additional assumptions (1), (2) and (3) in Theorem 1. The history-dependent PNL is defined as

Xi
t = νit

(
fit

(
Pai

G(< t),Pai
G(t)

)
+ git

(
Pai

G(< t), ϵit
)
,PaiG(< t)

)
,

where ν is invertible w.r.t. the first argument. The bivariate identifiability of Rhino directly follows
from this, since Rhino is a special case with ν being the identity mapping.

Generalization to multivariate case In the end, inspired by Peters et al. [28], we prove the
above bivariate identifiability can be generalized to the multivariate case. Refer to Theorem 4 in
Appendix D.3 for details.

Other theoretical aspects To fully validate Rhino as a causal discovery method, we need to consider
the soundness of the proposed variational training objective (Eq. (8)). In summary, Theorem 5 in
Appendix E.1 shows that under the assumptions of Theorem 1, optimizing Eq. (8) can lead to the
ground truth graph and data generating mechanism. Additionally, in Appendix E.2, we clarify the
connections of Rhino to many existing works, and it is the most flexible member of this family.

4 Experiments

We evaluate Rhino on a synthetic experiment, followed by a real-world benchmark using fMRI data.
Additionally, Appendix I.4 reports the performance of our model in another benchmark gene dataset,
called DREAM3, where Rhino is also consistently better than baselines.

4.1 Synthetic data

We evaluate our method on a large set of synthetically generated datasets with known causal graphs.
We use the main body of this paper to present the overall performance compared to relevant baselines
and one ablation study on the robustness to lag mismatch. In Appendix H.3, we conduct extensive
analysis, including (1) on different graph type; (2) ablation on history-dependency; (3) ablation
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study on instantaneous effect. This set of datasets are generated by various settings (e.g. type of
graphs, instantaneous/no instantaneous effect, etc.). 5 datasets are generated for each combination of
settings with different seeds, yielding 160 datasets in total. In order to comprehensively test Rhino’s
robustness, we deliberately generated 75% of the datasets that mismatch the Rhino configurations.
Details of the data generation can be found in Appendix H.1.

We compare Rhino to a wide range of baselines, including VARLiNGaM [14], PCMCI+[31] and
DYNOTEARS [24]. For the MECs from PCMCI+, we enumerate all DAGs. For details on the
methods, see Appendix H.2. Additionally, we include two variants of Rhino: (1) Rhino+g, where an
independent Gaussian noise is used; (2) Rhino+s, where Gaussian ϵi is transformed by an independent
spline.

Figure 1 presents the F1 score of all methods aggregated over all datasets. Rhino achieves overall
competitive or the best performance in terms of the full temporal adjacency matrix across all possible
datasets, especially for lower dimensions. Comparing Rhino’s lagged discovery to its two variants, the
better score indicates the history-dependent noise is useful to the lagged graph discovery, contributing
to the better overall F1 performance (Appendix H.3 for ablation: with/without history dependency).

Despite of the strong performance from PCMCI+, PCMCI+ exceeds the maximum training time
of 1 week on 40 nodes, suggesting its computation bottleneck in high dimensions. DYNOTEARS
achieves competitive results in low dimensions but suffers in high dimensions due to the limited
modelling power from its linear nature.

0.0

0.5

1.0

F1

Dim = 5 Dim = 10

Inst. Lag Temporal
0.0

0.5

1.0

F1

Dim = 20

Inst. Lag Temporal

Dim = 40

Model Name
Rhino (L=2)
Rhino+g (L=2)
Rhino+s (L=2)
DYNOTEARS
VAR-LiNGaM
PCMCI+

Figure 1: F1-scores of Rhino (light yellow) compared to all baselines. The subplots corresponds to
the different number of nodes. ‘Inst.’, ‘Lag’, and ‘Temporal’ refer to the metrics calculated for the
instantaneous, the lagged, and the full temporal adjacency matrix, respectively. ‘L=2’ refers to lag 2.

We explore the behaviour of Rhino with different lag parameters other than the ground truth lag 2.
From Table 1, worse training log-likelihoods suggest that Rhino with insufficient history (lag = 1) is
unable to correctly model the data and this leads to a decrease in F1 scores. Interestingly, Rhino is also
robust with longer lags. Despite of the slightly better likelihood (lag = 3), it achieves comparable
performance to the model with the correct lag. Also, from their similar F1 Lag score, it suggests the
extra adjacency matrix is nearly empty.

4.2 Netsim Brain Connectivity

In this section, we evaluate Rhino using blood oxygenation level dependent (BOLD) imaging data,
which has been used as a benchmark for temporal causal discovery [19, 16, 3]. Each time series
represents the BOLD signal simulated for T = 200 for a human subject, which describes d = 15
different brain regions. The goal of this task is to infer the connectivity between different brain
regions. We assume that different human subjects share the same connectivity. We only use the
data from human subject 2 − 6 in Sim-3.mat from https://www.fmrib.ox.ac.uk/datasets/
netsim/index.html and also include self-connections during evaluation. We consider the same
baselines as in the synthetic experiments. Additionally, we also consider relevant Granger causality
methods, including cMLP, cLSTM [37]; TCDF[23]; SRU and eSRU [16]. Appendix I.2 describes
hyperparameter settings. Since the ground truth graph is a summary graph (see Definition I.1),
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Dim Rhino (L=1) Rhino (L=2) Rhino (L=3)

5 F1 Lag 0.28± 0.13 0.59± 0.22 0.57± 0.24
F1 Temporal 0.34± 0.12 0.59± 0.20 0.56± 0.22
LL −4.14± 1.63 −3.83± 1.62 −3.75± 1.64

10 F1 Lag 0.26± 0.08 0.51± 0.17 0.48± 0.19
F1 Temporal 0.28± 0.11 0.49± 0.18 0.45± 0.20
LL −7.97± 2.09 −7.21± 2.22 −7.01± 1.91

20 F1 Lag 0.24± 0.12 0.42± 0.22 0.40± 0.21
F1 Temporal 0.25± 0.13 0.39± 0.22 0.37± 0.21
LL −15.62± 3.16 −14.70± 2.87 −14.72± 2.82

40 F1 Lag 0.20± 0.18 0.40± 0.31 0.34± 0.30
F1 Temporal 0.20± 0.18 0.37± 0.30 0.32± 0.29
LL −31.44± 5.16 −30.10± 4.71 −30.20± 4.74

Table 1: Comparison of the causal discovery performance of Rhino with different lag-parameters
(L ∈ [1, 3]). LL shows the log-likelihood of the training data.

Appendix I.1 details about the post-processing step on aggregating temporal graph to summary graph
for Rhino, DYNOTEARS and PCMCI+. We use the area under the ROC curve (AUROC) as the
performance metric.

Method AUROC

cMLP 0.93
cLSTM 0.83
TCDF 0.91
SRU 0.80
eSRU 0.88
DYNO. 0.90
PCMCI+ 0.83± 0
VARLiNGaM 0.84± 0

Rhino+g 0.974± 0.002
Rhino+NoInst. 0.93± 0.006
Rhino 0.99± 0.001

Table 2: The AUROCs of the summary graph for Netsim
dataset, where we take self-connections into consider-
ation. Rhino+NoInst is the Rhino without the instanta-
neous effects. For Rhino, VARLiNGaM, PCMCI+, the
results are obtained by averaging over 5 different runs.

Table 2 shows the AUROCs for different
methods. Remarkably, the proposed Rhino
and its variants achieve significantly better
AUROC compared to the baselines. Espe-
cially, Rhino obtains nearly optimal AU-
ROC, demonstrating its robustness to the
small dataset and good balances between
true and false positive rates (see discus-
sion in Appendix J). By comparing Rhino
and Rhino+NoInst., we conclude that mod-
elling instantaneous effects is important in
real application, indicating the sampling in-
terval is not frequent enough to explain ev-
erything as lagged effects. This can be dou-
ble confirmed by comparing Rhino+NoInst
with Granger causality, where it performs
on par with the state-of-the-art baseline
when disabling the instantaneous effect.
Last but not least, by comparing Rhino+g
with Rhino, we find that history-dependent
noise is also helpful in this dataset.

5 Conclusion

Inferring temporal causal graphs from observational time series is an important task in many scientific
fields. Especially, some applications (e.g. education, climate science, etc.) require the modelling of
non-linear relationships; instantaneous effects and history-dependent noise distributions at the same
time. Previous works fail to offer an appropriate solution for all three requirements. Motivated by
this, we propose Rhino, which combines vector auto-regression with deep learning and variational
inference to perform causal temporal relationship learning with all three requirements. Theoretically,
we prove the structural identifiability of Rhino with flexible history-dependent noise, and clarify
its relations to existing works. Empirical evaluations demonstrate its superior performance and
robustness when Rhino is misspecified, and the advantages of history-dependent noise mechanisms.
This opens an exciting route of extending Rhino to handle non-stationary time-series and unobserved
confounders in future work.
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A Related Work

Discovering causal relationships from time series has been a popular research question for several
decades now. Assaad et al. [3] provides a comprehensive overview of causal discovery method for
time series. In a nutshell, there are three main categories. The first category is Granger causality,
where this field can be further split into (1) vector auto-regressive methods [39, 34, 35, 1] and (2)
deep learning based approaches [19, 37, 4, 5, 40]. Despite recent advances, all Granger causality
methods cannot handle instantaneous effects, which can be observed due to the aggregation effect in
a slow-sampling system. Additionally, they also assume a fixed noise distribution without history
dependency.

Using SEMs for time series discovery can mitigate the aforementioned two problems. VARLiNGaM
[14] extends the identifiability theory of linear non-Gaussian ANM [33] to vector auto-regression
for modelling time series data. DYNOTEARS [24] leverages the recently proposed NOTEARS
framework [43] to continuously relax the DAG constraints for fully differentiable DAG structure
learning. However, the above approach is still limited to linear functional forms. TiMINo [26]
provides a general theoretical framework for temporal causal discovery with SEMs. Our theory
leverages some of their proof techniques. Unfortunately, all the aforementioned methods assume
no history dependency for the noise. On the other hand, Rhino can model (1) non-linear function
relations; (2) instantaneous effect; (3) and history-dependent noise at the same time.

The third category is constraint-based approaches based on conditional independence tests. Due
to its non-parametric nature, it can handle history-dependent noise. PCMCI [32] combines PC
[36] and the momentary conditional independence test to discover the lagged parents from time
series. PCMCI+ [30, 31] further extends PCMCI to infer both lagged and instantaneous effects.
CD-NOD [13] has recently been proposed to handle non-stationary heterogeneous data, where the
data distribution can shift across time. Despite their generality, they can only infer MECs; cannot learn
the explicit functional forms between variables; and require a stronger assumption than minimality
(i.e. faithfulness).

B Preliminaries

In this section, we briefly introduce some preliminaries. In particular, we focus on Granger causality
[9] and vector auto-regression.

Granger Causality Granger causality [9] has been extensively used for temporal causal discovery.
It is based on the idea that the series Xj does not Granger cause Xi if the history, Xj

<t, does not
help the prediction of Xi

t for some t given the past of all other time series Xk for k ̸= j, i.
Definition B.1 (Granger Causality [37, 19]). Given a multivariate stationary time series {Xt}Tt=0
and a SEM fi,t defined as

Xi
t = fi,t(Pai

G(< t)) + ϵit, (9)

Xj Granger causes Xi if ∃l ∈ [1, t] such that Xj
t−l ∈ Pai

G(< t) and fi,t depends on Xj
t−l.

Granger causality is equivalent to causal relations for directed acyclic graph (DAG) if there are no
latent confounders and instantaneous effects [26, 27]. Apart from the lack of instantaneous effects,
they also ignore the history-dependent noise with independent ϵit.

Vector Auto-regressive Model Another line of research focuses on directly fitting the identifiable
SEM to the observational data with instantaneous effects. One commonly-used approach is called
vector auto-regression [14, 24]:

Xi
t = βi +

K∑
τ=0

D∑
j=1

Bτ,jiX
j
t−τ + ϵit (10)

where βi is the offset, K is the model lag, Bτ ∈ RD×D is the weighted adjacency matrix specifying
the connections at time t − τ (i.e. if Bτ,ji = 0 means no connection from Xj

t−τ to Xi
t ) and ϵit is

the independent noise. Under these assumptions, the above linear SEM is structurally identifiable,
which is a necessary condition for recovering the ground truth graph [14, 26, 24]. However, the above
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linear SEM with independent noise variables is too restrictive to fulfil the requirements described in
Section 1.

C ELBO and likelihood derivation

The goal is to derive a lower bound for the joint likelihood pθ(X
(1)
0:T , . . . ,X

(N)
0:T ).

pθ(X
(1)
0:T , . . . ,X

(N)
0:T )

= log

∫
pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T |G

)
p(G)dG

= log

∫
qϕ(G)

qϕ(G)
pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T |G

)
p(G)dG

≥
∫

qϕ(G) log pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T |G

)
p(G)dG+H(qϕ(G)) (11)

=Eqϕ(G)

[
N∑

n=1

log pθ(X
(n)
0:T |G) + log p(G)

]
+H(qϕ(G))

where Eq. (11) is obtained by using Jensen’s inequality.

We can further simplify the likelihood pθ(X
(n)
0:T |G):

log pθ(X
(n)
0:T |G) = log

T∏
t=0

pθ(X
(n)
t |X(n)

<t ,G)

=

T∑
t=0

log pθ

(
X

(n)
t |X(n)

<t ,G
)

=

T∑
t=0

D∑
i=1

log pθ

(
X

i,(n)
t |Pai

G(< t),Pai
G(t)

)
(12)

where Eq. (12) is obtained through Markov factorization [18].

D Structural Identifiability

In this section, we will focus on proving the structural identifiability of Rhino. Before diving into the
details, let us clarify the required assumptions.
Assumption 1 (Causal Stationarity [30]). The time series process Xt with a graph G is called
causally stationary over a time index set T if and only if for all links Xi

t−τ → Xj
t in the graph

Xi
t−τ ̸⊥⊥ Xj

t |X<t\{Xi
t−τ} holds for all t ∈ T

This characterizes the nature of the time-series data generating mechanism, which validates the choice
of the auto-regressive model.
Assumption 2 (Causal Markov Property [27]). Given a DAG G and a joint distribution p, this
distribution is said to satisfy causal Markov property w.r.t. the DAG G if each variable is independent
of its non-descendants given its parents.

This is a common assumptions for the distribution induced by an SEM. With this assumption, one
can deduce conditional independence between variables from the graph.
Assumption 3 (Causal Minimality). Consider a distribution p and a DAG G, we say this distribution
satisfies causal minimality w.r.t. G if it is Markovian w.r.t. G but not to any proper subgraph of G.

Minimality is also a common assumption for SEMs [12, 41, 28], which can be regarded as a weaker
version of faithfulness [27].
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Assumption 4 (Causal Sufficiency). A set of observed variables V is causally sufficient for a process
Xt if and only if in the process every common cause of any two or more variables in V is in V or
has the same value for all units in the population.

This assumption implies there are no latent confounders present in the time-series data.

Assumption 5 (Well-defined Density). We assume the joint likelihood induced by the Rhino SEM
(Eq. (3)) is absolutely continuous w.r.t. a Lebesgue or counting measure and | log p(X0:T ;G)| < ∞
for all possible G.

This assumption is to make sure the induced distribution has a well-defined probability density
function. It is also required for the equivalence of the global, local Markov property and Markov
factorization property (Theorem 6.22 from [27]).

In the following, we will structure the entire proof into three steps:

1. Prove a general conditions that the bivariate time series model needs to satisfy for structural
identifiability. This adapts from the theorem 1 in Peters et al. [26].

2. Prove that a generalized form of SEM, modified from the post non-linear (PNL) model [41],
satisfies the conditions mentioned in step 1. The proposed Rhino (Eq. (3)) is a special case
of the above SEM.

3. In the end, we generalize the above indentifiability to the multivariate case.

D.1 General Identifiability Conditions

First, we derive the conditions required for identifiability for a general bivariate time series SEM,
defined as

Xi
t = fi,t

(
PaiG(< t),PaiG(t), ϵ

i
t

)
. (13)

We call the above SEM transition model, since it only defines the transition behavior rather than
the initial conditions. We also need to incorporate a source model, which characterizes the initial
conditions:

Xi
s = fi,s(Pai

G, ϵ
i
s) (14)

for s ∈ [0,S], where S is the length for the initial conditions and Pai
G contains the parents for node i.

We define ps(X0:S) as the induced joint distribution for the initial conditions.

Now, we prove the following theorem.

Theorem 2 (Identifiability conditions for bivariate time series). Assuming Assumption 1-5 are
satisfied, given a bivariate temporal process X0:T and Y0:T that are governed by the above SEM
(Eq. (13)) with source model (Eq. (14)), then the above SEM for the bivariate temporal process is
structural identifiable if the following conditions are true:

1. Source model fi,s is structural identifiable for all i = 1, . . . , D and s ∈ [0,S].

2. The transition model (Eq. (13)) is bivariate identifiable w.r.t the instantaneous parents.
Namely, if graph G induced conditional distributions p(Xt, Yt|PaX,Y

G (< t)), then ∄G′ such

that G ̸= G′ and the induced conditional p̄(Xt, Yt|PaX,Y

G′ (< t)) = p for all t ∈ [S + 1, T ].

where PaX,Y
G (< t) is the union of the lagged parents of Xt and Yt under G, and PaX,Y

G′ (< t) is the
union of parents under G′.

Proof. We prove this by contradiction. Assume we have an induced joint distribution p(X0:T ,Y0:T )
under G, and corresponding p̄ under G′. We further assume the above two conditions in the theorem
are met and p = p̄ but G ̸= G′.
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Thus, we have DKL[p∥p̄] = 0. Due to the temporal nature of the model, we can further decompose it
as the following:

DKL[p∥p̄]

=

∫
p(X0:T ,Y0:T ) log

p(X0:T ,Y0:T )

p̄(X0:T ,Y0:T )
dX0:T dY0:T

=DKL[p(X0:S ,Y0:S)︸ ︷︷ ︸
ps

∥ p̄(X0:S ,Y0:S)︸ ︷︷ ︸
p̄s

] +

∫
p(X0:S ,Y0:S)DKL[p(XS+1:T ,YS+1:T |X0:S ,Y0:S)∥

p̄(XS+1:T ,YS+1:T |X0:S ,Y0:S)]dX0:SdY0:S

=DKL[ps∥p̄s] +
T∑

t=S+1

Ep(X0:t−1,Y0:t−1) [DKL [p(Xt, Yt|X0:t−1,Y0:t−1)∥p̄(Xt, Yt|X0:t−1,Y0:t−1)]]

=0.

This means we have DKL[ps∥p̄s] = 0 and DKL [p(Xt, Yt|X0:t−1,Y0:t−1)∥p̄(Xt, Yt|X0:t−1,Y0:t−1)] =
0 almost everywhere. Inspired by the strategy used in [26], We consider the following three scenarios:

Disagree on initial conditions We assume G and G′ disagree on the initial conditions. From the
condition 1, we know the source model fi,s is identifiable. Namely, we cannot find G ̸= G′ with
disagreement on initial conditions such that DKL[ps∥p̄s] = 0. This is a contradiction, meaning that
G and G′ must agree on the connections between initial set of nodes.

Disagree on lagged parents only This means for all t ∈ [S + 1, T ], the instantaneous connections
at t for G and G′ are the same, and ∃t ∈ [S + 1, T ] such that PaX,Y

G (< t) ̸= PaX,Y

G′ (< t). We can
use a similar argument as the theorem 1 in Peters et al. [26]. W.l.o.g., we assume under G, we have
Xt−τ → Yt and there is no connections between them under G′. Thus, from Markov conditions, we
have

Yt ⊥⊥ Xt−τ |X0:t−1 ∪ Y0:t−1 ∪ NDY
t \{Yt, Xt−τ}

under G′, where NDY
t is the non-descendants of node Yt w.r.t instantaneous effect. However, from

the causal minimality and proposition 6.16 in Peters et al. [27], we have

Yt ̸⊥⊥ Xt−τ |X0:t−1 ∪ Y0:t−1 ∪ NDY
t \{Yt, Xt−τ}

under G. This means under this case, DKL [p(Xt, Yt|X0:t−1,Y0:t−1)∥p̄(Xt, Yt|X0:t−1,Y0:t−1)] ̸=
0, which is a contradiction.

Disagree also on instantaneous parents This scenarior means ∃t ∈ [S + 1, T ] such that they
disagree on instantaneous parents. W.l.o.g. we assume Xt → Yt under G and Yt → Xt under G′.

Let’s define X0:t−1 ∪ Y0:t−1 = h, hY
G ⊆ h contains the values of PaY

G(< t) under G, h̄Y
G′ ⊆ h

contains the parent values under G′, and hX
G , h̄X

G′ accordingly. Thus, the induced conditional
distributions from SEM (Eq. (13)) with G, G′ are

p(Xt, Yt|hX
G ∪ hY

G) and p̄(Xt, Yt|h̄X
G′ ∪ h̄Y

G′)

From the Markov conditions, we have

p(Xt, Yt|X0:t−1,Y0:t−1) = p(Xt, Yt|PaX,Y
G (< t))

Therefore, we have

DKL [p(Xt, Yt|h)∥p̄(Xt, Yt|h)]
=0

=DKL[p(Xt, Yt|hX
G ∪ hY

G)∥p̄(Xt, Yt|h̄X
G′ ∪ h̄Y

G′)]

for arbitrary h, which contradicts the strucutral identifiability w.r.t. the instantaneous parents.

In summary, with the two conditions, we cannot find G ̸= G′ such that the induced joint
p(X0:T ,Y0:T ) = p̄(X0:T ,Y0:T ), meaning that the SEMs defined as Eq. (13) and Eq. (14) are
identifiable w.r.t. bivariate time series.
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Since one can use any identifiable static models to characterize the initial behavior of the time
series, we will focus on condition 2 for the transition model. In the following, we will show that a
generalization of PNL, called history-dependent PNL, satisfies condition 2 under assumptions.

D.2 Identifiability of history-dependent PNL

First, we propose a generalization of PNL [41] so that it can be history-dependent. For a multivariate
temporal process X0:T , we propose history-dependent PNL as

Xi
t = νit

(
fit

(
Pai

G(< t),Pai
G(t)

)
+ git

(
Pai

G(< t), ϵit
)
,Pai

G(< t)
)

(15)

where νit is an invertible transformation w.r.t. the first argument. The main differences of the above
SEM compared to typical PNL are (1) the invertible transformation νit can be history dependent; (2)
the inner noise distribution can also be history-dependent.

Next, we show the main theorem about its bivariate identifiability w.r.t. it instantaneous parents.
Theorem 3 (History-dependent PNL Bivariate Identifiability). Assume Assumption 1-5 are satisfied,
all transformations in Eq. (15) and corresponding induced distributions are 3rd-order differentiable.
Given a bivariate temporal process X0:T , Y0:T , then the history-dependent PNL defined as Eq. (15)
is bivariate identifiable w.r.t its instantaneous parents (i.e. satisfy condition 2 in Theorem 2), except
for some special cases.

Proof. W.l.o.g. at time t ∈ [S + 1, T ], we assume Xt → Yt for instantaneous connection under G
and Yt → Xt under G′. We fix a value h for their entire history X0:t−1 ∪ Y0:t−1 = h. With h, we
further define their lagged parents as PaX

G (< t) = hX
G ⊆ h, PaY

G(< t) = hY
G ⊆ h under G and

PaX

G′(< t) = h̄X
G′ ⊆ h, PaYG′(< t) = h̄Y

G′ under G′.

Therefore, the SEM at time t can be written as

Yt = ν
(
f(hY

G, Xt) + g(hY
G, ϵY ),h

Y
G

)
(16)

and
Xt = ν̄

(
f̄(h̄X

G′ , Yt) + ḡ(h̄X
G′ , ϵX), h̄X

G′

)
(17)

under G and G′, respectively. Let’s assume that their induced distributions at time t are equal
(i.e. violating the identifiable conditions):

log p(Xt, Yt|hX
G ∪ hY

G)︸ ︷︷ ︸
under G

= log p̄(Xt, Yt|h̄X
G′ ∪ h̄Y

G′)︸ ︷︷ ︸
under G′

From the Markov properties, the above equation is equivalent to

log p(Xt, Yt|h) = log p̄(Xt, Yt|h)

with a fixed value h of the entire history.

Now, let’s define
αt = ν̄−1(Xt) and βt = ν−1(Yt)

where we omits the dependence of ν̄−1 to h̄X
G′ and ν−1 to hY

G. It is easy to observe that we have an
invertible mapping between (Xt, Yt) and (αt, βt). Thus, from the change of variable formula, we
have

log p(Xt, Yt|h) = log pα,β(αt, βt|h) + log |J |
and

log p̄(Xt, Yt|h) = log p̄α,β(αt, βt|h) + log |J |
where J is the Jacobian matrix of the transformation. Thus, the equivalence of log p and log p̄ in the
(Xt, Yt) space can be translated to (αt, βt) space.

Thus, from Eq. (16), we have
βt = Φ(αt) + g(hY

G, ϵY ) (18)
under G. And from Eq. (17), we have

αt = Ψ(βt) + ḡ(h̄X
G′ , ϵX) (19)
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under G′. This forms an additive noise model between αt, βt with history-dependent noise. Next,
we can use a similar proof techniques as in Hoyer et al. [12]. Here, Φ(·) = f(hY

G, ·) ◦ ν̄(h̄X
G′ , ·) and

Ψ(·) = f̄(h̄X
G′ , ·) ◦ ν(hY

G, ·). We further define

η1(αt) = log p(αt|h) η̄1(βt) = log p̄(βt|h)
η2(g(h

Y
G, ϵY )) = log pg(g(h

Y
G, ϵY )|h) η̄2(ḡ(h̄

X
G′ , ϵX)) = log p̄g(ḡ(h̄

X
G′ , ϵX)|h)

Thus, under G (i.e. Eq. (18)), we have

log p(αt, βt|h) = log p(βt|αt,h) + log p(αt|h)
=η2(βt − Φ(αt)) + η1(αt) (20)

Similarly, under G′ (i.e. Eq. (19)), we have

log p̄(αt, βt) = η̄2(αt −Ψ(βt)) + η̄1(βt) (21)

Based on Eq. (21), we have

∂2 log p̄

∂αt∂βt
= −η̄′′2Ψ

′ and
∂2 log p̄

∂αt
2

= η̄′′2

Thus, we have
∂

∂αt

(
∂2 log p̄/∂αt∂βt

∂2 log p̄/∂αt
2

)
= 0

Due to the equivalence of log p̄ and log p, we apply the above operations to Eq. (20). After some
algebraic manipulation, we obtained the following differential equations for η′′2Φ

′ ̸= 0:

η′′′1 − η′′1Φ
′′

Φ′ =

(
η′2η

′′′
2

η′′2
− 2η′′2

)
Φ′′Φ′ − η′′′2

η′′2
Φ′η′′1 + η′2

(
Φ′′′ − (Φ′′)2

Φ′

)
. (22)

Interestingly, this is exactly equivalent to Eq.(4) in Zhang and Hyvarinen [41]. The main difference is
the definition of variables and transformations in here are all history-dependent.

Further, we can also observe that

βt ⊥⊥ ḡ(hY
G, ϵY )|X0:t−1 ∪ Y0:t−1 = h.

Since βt = Φ(αt) + g(hY
G, ϵY ) and ḡ(h̄X

G′ , ϵX) = αt −Ψ(βt), it is trivial to show the determinant
of the Jacobian of the transformation (αt, g) to (βt, ḡ) is 1. Thus, by a similar argument in theorem 1
from Zhang and Hyvarinen [41], we can derive

1

Ψ′ =
η′′1 + η′′2 (Φ

′)2 − η′2Φ
′′

η′′2Φ
′

for η′′2Φ
′ ̸= 0.

Thus, the above two differential equations has the same form as theorem 1 in Zhang and Hyvarinen
[41] where the main difference is that all distributions and transformations involved in our case
depends on history h.

Therefore, we can directly cite the theorem 8 from Zhang and Hyvarinen [41], which proves that the
above differential equations hold true only for 5 types of special cases. One can refer to Table 1 in
Zhang and Hyvarinen [41] for details.

Corollary 10 from Zhang and Hyvarinen [41] validates the choice of using nueral network for the
transformation f . For completeness, we include it here with slight modification:
Corollary 3.1 (Identifiability with neural netowrk f ). Assuming the assumptions in Theorem 3 are
true, and the double derivative (log pg(g(PaYG(< t), ϵY )|X0:t−1 ∪ Y0:t−1))

′′ w.r.t ϵY is zero at most
at some discrete points. If function f is not invertible w.r.t. the instantaneous parents, then, the
history-dependent PNL defined as Eq. (15) is bivariate identifiable w.r.t. the instantaneous parents
(i.e. satisfy condition 2 in Theorem 2).

It is clear to see that Rhino (Eq. (3)) is a special case of the history-dependent PNL (Eq. (15)), where
the outer history-dependent invertible transformation ν is the identity mapping. Thus, we can directly
leverage Theorem 2 together with Theorem 3 to show Rhino is identifiable w.r.t bivariate time series,
and Corollary 3.1 to validate our design choice (Eq. (4)).
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D.3 Generalizing to multivariate time series

Previously, we prove the identifiability conditions for bivariate time series. In this section, we will
generalize it to the multivariate case.

Theorem 4 (Generalization to multivariate time series). Assuming the assumptions in Theorem 3 are
satisfied, we further assume that the multivariate SEM defined in Eq. (15) satisfies: for each pair of
node i, j ∈ V , the SEM

Xi
t = νit

fit

Pai
G(< t),Pai

G(t)\{X
j
t }, ·︸︷︷︸

Xj
t

+ git
(
Pai

G(< t), ϵit
)
,PaiG(< t)


is bivariate identifiable w.r.t. the input, and an identifiable source model is adopted. Then, the
history-dependent PNL is identifiable except for some special cases.

Proof. For this proof, we can follow the strategy used in Theorem 2 and Peters et al. [26]. We
categorize the difference of the graph G and G′ into three types. Following the same analysis of
the KL divergence of the two induced joint distributions, we can see that (1) DKL[ps∥p̄s] = 0 and
DKL[p(Xt|X0:t−1)∥p̄(Xt|X0:t−1)] = 0.

Disagree on initial conditions Since we assume that the source model is identifiable, this contra-
dicts DKL[ps∥p̄s] = 0.

Disagree on lagged parents only We notice that the analysis used in Theorem 2 for this disagree-
ment can be directly translated to multivariate case. The only difference is that the notation Yt, Xt is
changed accordingly.

Disagree also on instantaneous parents For this case, with a fixed history value h = X0:t−1,
the aim is to compare the conditionals DKL[p(Xt|X0:t−1 = h)∥p̄(Xt|X0:t−1 = h)]. Thus, the
problem becomes to how to generalize the bivariate identifiability for instantaneous parents to the
multivariate case. We leverage the theorem 2 from Peters et al. [28], which proves the multivariate
identifiability for any models that belongs to IFMOC. It is easy to see that if the assumptions in
Theorem 4 are met, the history-dependent PNL belongs to IFMOC w.r.t. the instantaneous parents. It
should be noted that the entire history-dependent PNL DOES NOT belong to IFMOC, but this does
not affect our results since we only care about the instantaneous parents under this case.

E Other theoretical considerations

E.1 Soundness of variational objective

Here, we show the validity of the variational objective (Eq. (8)) in the sense that optimizing it can
lead to the ground truth graph. Remarkably, Theorem 1 in Geffner et al. [8] justifies the validity of
the variational objective under the same set of assumptions as Rhino. Although Geffner et al. [8]
focused on static data, the generality of the theorem is not limited to the static case.

Theorem 5 (Validity of variational objective [8]). Assuming the conditions in Theorem 1 are satisfied,
and we further assume that there is no model misspecification, then the solution (θ′, q′ϕ(G)) from
optimizing Eq. (8) with infinite data satisfies q′ϕ(G) = δ(G = G′), where G′ is a unique graph. In
particular, G′ = G∗ and pθ′(X0:T ;G

′) = p(X0:T ;G
∗), where G∗ is the ground truth graph and

p(X0:T ;G
∗) is the true data generating distribution.

E.2 Relation to other methods

VARLiNGaM [14] VARLiNGaM [14] is a causal discovery method for time series data based
on the linear vector auto-regression, which can model both lagged and instantaneous effects. Its
SEM is defined as Eq. (10), where the noise ϵit is an independent non-Gaussian noise. It is easy to
observe that this is a special case of Rhino (Eq. (3)) by setting fi as the matrix multiplication of the
weighted adjacency G0:K with the nodes, and gi as the identity mapping. For the training objective,
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VARLiNGaM adopted a two stage training to sidestep the difficulty of directly optimizing the log
likelihood. From the Theorem 5 for Rhino, we note that the solution from optimizing the variational
objective is equivalent to maximizing the log likelihood under infinite data limit. Therefore, by setting
large enough DAGness penalty coefficient α, ρ, the inferred graph from both methods should be
equivalent.

DYNOTEARS [24] The formulation of DYNOTEARS is the same as VARLiNGaM, which is
based on linear vector auto-regression. The main novelty is the usage of the DAGness penalty h(G),
which continuously relaxes the DAG constraint. The training objective is the mean square error
with augmented Lagrange scheme for DAGness penalty. Thus, it is obvious that DYNOTEARS is a
special case of Rhino with linear transformations and identity gi. Similarly, Theorem 5 shows the
connections between the variational objective and maximum likelihood, which is equivalent to mean
square error if the noise distribution is Gaussian with equal variances.

cMLP cMLP [37] combines Granger causality with deep neural networks. The model formulation
is

Xi
t = fi(X

1
0:t−1, . . . ,X

D
0:t−1) + ϵit

where fi is a function based on MLP. Although the input is the entire history, the one that matters
is the node that has the connection to Xi

t (i.e. lagged parents). Therefore, it is easy to see they are
closely related to Rhino without instantaneous parents Pai

G(t) and history-dependent noise. Since
the training objective of cMLP is based on the mean square error with sparseness constraint, by the
same argument as before, the variational objective is equivalent to mean square error with equal
variance Gaussian noise and large training data.

TiMINo [26] TiMINo is most similar to our work among all the aforementioned methods in terms
of model formulation. TiMINo proposed a very general formulation based on IFMOC [28] and
showed the conditions for structural identifiability. Rhino generalizes the TiMINO in a way such
that noise history dependency can be incorporated. Thus, Rhino only belongs to IFMOC w.r.t. the
instantaneous parents. Therefore, Rhino without the history-dependent noise is a TiMINo model. The
training objective of TiMINo is based on the dependence minimization between the noise residuals
and causes, and can only infer summary graph instead of temporal causal graph. Zhang et al. [42]
proved the equivalence of the mutual information minimization to maximum likelihood, which is
equivalent to our variational objective under infinite data.

F Treatment Effect Estimation

We now show how to leverage the fitted Rhino for estimating the conditional average treatment effect
(CATE). For simplicity, we only consider a special case of CATE defined as

CATE(a, b) = Eqϕ(G)

[
Ep(XY

t+τ |X<t,do(XI
t =a),G)[X

Y
t+τ ]− Ep(XY

t+τ |X<t,do(XI
t =b),G)[X

Y
t+τ ]

]
(23)

We assume the conditioning variable can only be X<t (i.e. the entire history before t), and the
intervention and target variable can only be either at current time t or sometime in the future t+ τ .
We emphasize that this formulation is for simplicity, and Rhino can be easily generalized to more
cases as Geffner et al. [8]. Once fitted, the idea is to draw target samples XY

t+τ from the interventional
distribution p(XY

t+τ |X<t,do(X
I
t ),G) for each graph sample G ∼ qϕ(G). Then, unbiased Monte

Carlo estimation can be used to compute CATE. For sampling from the interventional distribution, we
can use the "multilated" graph Gdo(XI

t )
to replace G, where all incoming edges to XI

t are removed.
The intervention samples can be obtained by simulating the Rhino with history X<t, XI

t = a or b
and Gdo(XI

t )
.

F.1 Causal Inference Results

Here, we provide the preliminary results for CATE performance of Rhino by calculating the RMSEs
of the estimated CATEs comparing to the true CATE from the interventional samples (lower is better).
The ground truth intervention samples are generated according to Appendix H.1. We present boxplots
of the performance in Fig. 2. All Rhino-based method perform similarly. Surprisingly, the CATE
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Figure 2: Comparison of the RMSE of the average treatment effects (CATEs) of the different
instantiations of Rhino depending on the dimensionality. E[CATE] refers to RMSE of the expected
CATE over the posterior graph distribution (i.e. G ∼ qϕ(G)). ML ATE uses the most likely graph
to calculate the ATE. These results are obtained by averaging 160 datasets, similar to the discovery
setup.

performance seems to have little correlation to the causal discovery performance and warrants further
study in the future.

G Variational distribution formulation

Here we provide the detailed formulation of the independent Bernoulli distribution qϕ(G). Since this
distribution is responsible for modelling the temporal adjacency matrix G0:K , we use Σk to represents
the edge probability in Gk. We further split the edge probability matrices into the instantaneous part
Σ0 and lagged parts Σ1:K .

To avoid the constrained optimization of Σ1:K (i.e. the value needs to be within [0, 1]), we adopt the
following formulation:

σk,ij =
exp(uk,ij)

exp(uk,ij) + exp(vk,ij)
(24)

where uk,ij ∈ Uk, vk,ij ∈ Vk and Uk,Vk ∈ RD×D for all k = 1, . . . ,K. Since we do not require
lagged adjacency matrix to be a DAG, Uk,Vk has no constraints during optimization.

On the other hand, G0 needs to be a DAG for instantaneous effect. By smart formulation, we can get
rid of the length-1 cycles. The intuition is that for a pair of node i, j, only three mutually exclusive
possibilities can exist: (1) i → j; (2) j → i; (3) no edge between them. Thus, instead of using a
full probability matrix Σ0, we use three lower triangular matrices U0, V0 and E0 to characterise the
above three scenarios. For node i > j,

p(i → j) =
exp(uij)

exp(uij) + exp(vij) + exp(eij)

p(j → i) =
exp(vij)

exp(uij) + exp(vij) + exp(eij)

p(no edge) =
exp(eij)

exp(uij) + exp(vij) + exp(eij)
.

Thus, by this formulation, the corresponding instantaneous adjacency matrix will not contain length-1
cycles.
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H Synthetic Experiments

H.1 Data generation

We create the synthetic datasets in a four step process: 1) generate random Erdös–Rényi (ER) or
scale-free (SF) graphs that specify the lagged and instantaneous causal relationships; 2) drawing
random MLPs for the functional relationships as well as a random conditional spline transformation
to modulate the scale of the Gaussian noise variables ϵ; 3) sample initial starting conditions and follow
Eq. (1) with the additive noise to simulate the temporal progression; 4) removing the burn-in period
and return stable timeseries. We consider four different axes of variation for the data generation:
number of nodes Nnodes ∈ [5, 10, 20, 40]; ER or SF graphs; instantaneous or no instantaneous
effects; and history-dependent or history-independent noise (i.e. Gaussian noise). All combinations
are generated with 5 different seeds, yielding 160 different datasets. Datasets with instantaneous
effects have 4×Nnodes edges in the instantaneous adjacency matrix. All datasets have 2×Nnodes

connections in the lagged adjacency matrices. The MLPs for the functional relationships are fully-
connected with two hidden layers,64 units and ReLU activation. In case of history-independent noise,
we are using Gaussian as the base distribution. The history dependency is modelled as a product
of a scale variable obtained by the transformation of the averaged lagged parental values through a
random-sampled quadratic spline, and Gaussian noise variable.

The datasets with 40 nodes are generated with a series length of 400 steps, a burn-in period of 100
steps, and 100 training series. All other datasets are generated with a time-series length of 200,
burn-in period of 50 steps and 50 training series. We generate random interventions for all the datasets
by setting the treatment variable to 10 for intervention and -10 for reference. 5000 ground-truth
intervention samples are used to estimate the true treatment effect.

H.2 Methods

All benchmarks for the synthetic experiments are run by using publicly available libraries: VAR-
LiNGaM [14] is implemenented in the lingam1 python package. PCMCI+[31] is implemented in
Tigramite2. We use the implementation in causalnex3 to run DYNOTEARS[24]. We use the
default parameters for all these baselines. For PCMCI+, we enumerate all graphs in the Markov
equivalence class to evaluate the causal discovery performance (see Appendix I.1 for details).

For Rhino and its variants, we use the same set of hyper-parameters for all 160 datasets to demonstrates
our robustness. By default, we allow Rhino and its variants to model instantaneous effect; set the
model lag to be the ground truth 2 except for ablation study; the qϕ(G) is initialized to favour sparse
graphs (edge probability< 0.5); quadratic spline flow is used to for history-dependent noise. For the
model formulation, we use 2 layer fully connected MLPs with 64 (5 and 10 nodes), 80 (10 nodes) and
160 (40 nodes) for all neural networks in Rhino-based methods. We also apply layer normalization
and residual connections to each layer of the MLPs. For the gradient estimator, we use the Gumbel
softmax method with a hard forward pass and a soft backward pass with temperature of 0.25. All
spline flows uses 8 bins. The embedding sizes for transformation (i.e. Eq. (4) and conditional spline
flow) is equal to the node number.

For the sparseness penalty λs in Eq. (7), we use 9 for Rhino and Rhino+s, and 5 for Rhino+g. We set
ρ = 1 and α = 0 for all Rhino-based methods. For optimization, we use Adam [17] with learning
rate 0.01. The training procedure follows from Appendix B.1 in Geffner et al. [8].

H.3 Additional Causal Discovery Results

Ablation: different type of graphs The first study is to test our model robustness to different
types of graphs. Fig. 3 shows the discovery performance over ER or SF graph averaged over all other
possible data setting combinations. Most methods perform better on ER graphs than on SF graphs,
with only DYNOTEARS [24] as an exception. We note that the PCMCI+ runs on SF graphs with
40 nodes exceed our maximum run time of 1 week, showing its computational limitation in high
dimensions. Nevertheless, Rhino achieves consistent performance throughout all graph settings.

1see https://lingam.readthedocs.io
2see https://jakobrunge.github.io/tigramite/
3see https://causalnex.readthedocs.io/en/latest/
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Figure 3: Comparison of the F1 score of the different baseline methods as well as Rhino (light
yellow) depending on the dimensionality and the graph type. Inst. refers to the performance on the
instantaneous adjacency matrix, Lag refers to the lagged adjancency matrices and temporal considers
the full temporal matrix.

Ablation: history dependency Figure 4 explores the performance difference of all methods on
data generated with/without history-dependent noise. Interestingly, most methods perform better
on the history-dependent datasets than the history-independent ones. The possible reasons are (1)
the difficulty of the discovery also depends on the randomly sampled functions; (2) the default
hyperparameters of all methods are initially chosen to favor the datasets with history-dependent noise
and instantaneous effects. We find that PCMCI+ is the most robust across both settings, followed by
Rhino and DYNOTEARS. On the other hand, the two variants of Rhino seems to be less robust. When
the Rhino is correctly specified, it achieves the best performance. In summary, Rhino demonstrates
reasonable robustness to history-dependency mismatch and achieves the best when correctly specified.

Ablation: instantaneous effect We investigate the impact of instantaneous effects in the data.
Figure 5 shows the F1 score averaged over all possible setting combinations other than instantaneous
effect. All methods seem to be robust across both settings with PCMCI+ and Rhino performing the
best. The score of the instantaneous adjacency matrix when instantaneous effects are disabled is not
defined and therefore not plotted.

I Real-world Experiment Details

I.1 Post-processing temporal adjacency matrix

The ground truth graphs for Netsim and DREAM3 datasets are summary graph, which is essentially
the temporal graph aggregated over time. We provide a formal definition of summary graph:
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Figure 4: Comparison of the F1 score of the different baseline methods as well as Rhino (light yellow)
depending on the dimensionality and whether the data is generated with history-depence or not. Inst.
refers to the performance on the instantaneous adjacency matrix, Lag refers to the lagged adjancency
matrices and temporal considers the full temporal matrix.

Definition I.1 (Causal summary graph [3]). Let Xt be a multivariate temporal process, and G =
(V ,E) be a summary graph. The edge p → q exists if and only if there exists some time t and some
lag τ such that Xp

t−τ causes Xq
t at time t with a lag 0 ≤ i for p ̸= q and with a time lag of 0 < i for

p = q.

Unlike the some of the Granger causality baselines, Rhino (and its variants), DYNOTEARS, VAR-
LiNGaM produces the temporal adjacency matrix after training. For DREAM3 and Netsim datasets,
this creates the incompatibility during evaluation. Thus, we need to aggregate the temporal graph
into a summary graph before comparing to the ground truth. For binary adjacency matrix, we sum
over the time steps followed by a step function, i.e. step(

∑
k Gk). Thus, there will be an edge i → j

in summary graph as long as there is a connection from i to j at any timestamp. For the Bernoulli
probability matrix from Rhino and its variants, we take a max(·) over the timestamp to generate the
probability matrix for the summary graph.

An exception is PCMCI+, which can only produce MECs for the instantaneous adjacency matrix. In
such case, we will enumerate up to 10000 possible instantaneous DAGs from the MECs. Together
with the lagged adjacency matrix, we will perform the above post-processing step to generate the
corresponding aggregated adjacency matrix. We also estimate the corresponding edge probabilities
by taking the average over all possible DAGs.

For DREAM3 experiments, we ignore the self-connections by setting the diagonal of the aggregated
adjacency matrix to be 0.

For Netsim, self-connections are not ignored, following the same settings as Khanna and Tan [16].
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Figure 5: Comparison of the F1 score of the different baseline methods as well as Rhino (light yellow)
depending on the dimensionality and whether the data is generated with instantaneous effects or
not. Inst. refers to the performance on the instantaneous adjacency matrix, Lag refers to the lagged
adjancency matrices and temporal considers the full temporal matrix.

I.2 Netsim Hyperparameter setting

For the Netsim experiment, we extract subject 2-6 in Sim-3.mat to form the training data and use
subject 7-8 as validation dataset. We tune the hyperparameters of Rhino and its variants based on the
validation log likelihood; DYNOTEARS with MSE on validation dataset; and use default settings of
PCMCI+ from Tigramite package.

It is worth noting that our setup of Netsim experiment is different from Khanna and Tan [16], where
they train the baselines using a single subject and compute the corresponding AUROC, followed by
averaging over subjects 2-6. Our setup is to train all methods using the entire data from subject 2-6
before computing AUROC. Thus, the hyperparameters for Granger causality are slightly different,
and the AUROC increases for the baselines compared to those reported in Khanna and Tan [16].

Rhino we use 2-layer MLPs with 64 hidden units for both ℓτ,j , ζi in Eq. (4) and the hyper-network
for conditional spline flow (8 bins). The node embedding dimension is 15. All the MLPs use residual
connections and layer-norm at every hidden layer. We use linear conditional spline flow [6] for better
training stability. We also initialise the Bernoulli probability qϕ(G) to have no preference (i.e. edge
probability = 0.5). For prior p(G), we set the initial value ρ = 1, α = 0 and λs = 25. For the
gradient estimator, we use the Gumbel softmax method with a hard forward pass and a soft backward
pass with temperature of 0.25. We use batch size 64, learning rate 0.001 with Adam optimizer [17].
The training procedure follows from Appendix B.1 in Geffner et al. [8]. The above is also used for
Rhino variants.
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Figure 6: The ROC curve plots of Rhino and other baselines for Netsim dataset. Similar to Fig. 7, we
only select 1 run out of 5 for Rhino, Rhino+g, DYNOTEARS, PCMCI+ for illustration purpose.

DYNOTEARS, PCMCI+ and VARLiNGaM For DYNOTEARS, we set lag to be 2, λa = 0.5
and λw = 0.5. For PCMCI+, we use parcorr independence test with lag 3. For VARLiNGaM, we
use lag 2 with default settings as https://lingam.readthedocs.io/en/latest/.

Granger Causality For computing AUROC, we follow the same method as Khanna and Tan
[16], Tank et al. [37] by sweeping through a range of hyperparameters. Specifically, we use the same
hyperparameters for SRU and eSRU as [16]. For cMLP, we choose the ridge penalty as 0.43 and
sweep through the group sparse penalty in range [0.1, 1]. For cLSTM, we set the ridge penalty to
be 0.045, and sweep the group sparse penalty in range [0.1, 1].For TCDF, we sweep through the
threshold in range [−1, 2] for the attention scores to extract corresponding summary graphs. Other
than the above hyperparameters, everything else follows the setup as in Khanna and Tan [16].

I.3 Additional Netsim Results

Figure 6 shows the ROC curve plot for Rhino and other baselines. It is clear that Rhino achieves
significantly better TPR-FPR trade-offs compared to others.

I.4 Additional real-world benchmark: DREAM3

We evaluate Rhino performance with an additional real-world biology benchmark called DREAM3
[29, 21]. These datasets are also used to evaluate Granger causality [16, 37, 23, 4] but recently
adopted for SEM-based method [24]. The dataset consists in silico measurements of gene expression
levels for 5 different networks. Each network contains d = 100 genes. Each time series represents a
perturbation trajectory with time length T = 21. For each network, 46 perturbation trajectories are
recorded. The goal is to infer the causal structure of each network. AUROC metric is also used here.
We consider the same baselines as in the synthetic experiments (i.e. DYNOTEARS and PCMCI+)
without VARLiNGaM since its default implementation fails when the number of variables (d = 100)
is greater than the series length (T = 21). Additionally, we also consider relevant Granger causality
methods as Netsim experiments. Their corresponding results are directly cited from Khanna and Tan
[16] due to the identical setup. Appendix I.4.1 specifies Rhino hyperparameters.

Table 3 demonstrates the AUROC of the summary graph inferred after training. It is clear that Rhino
and its variant outperform all other methods. Although Rhino is not formulated to solve the summary
graph discovery, this result together with Netsim experiment confirm a clear advantage compared to
the state-of-the-art Granger causality. Thus, Rhino can be used to infer either temporal or summary
graph depending on users’ needs.
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Method E.Coli 1 E.Coli 2 Yeast 1 Yeast 2 Yeast 3

cMLP 0.644 0.568 0.585 0.506 0.528
cLSTM 0.629 0.609 0.579 0.519 0.555
TCDF 0.614 0.647 0.581 0.556 0.557
SRU 0.657 0.666 0.617 0.575 0.55
eSRU 0.66 0.629 0.627 0.557 0.55
DYNO. 0.590 0.547 0.527 0.526 0.510
PCMCI+ 0.530± 0.002 0.519± 0.002 0.530± 0.003 0.510± 0.001 0.512± 0
Rhino+g 0.673±0.013 0.665±0.009 0.659±0.005 0.598±0.004 0.588±0.005
Rhino 0.685±0.003 0.680±0.007 0.664±0.006 0.585±0.004 0.567±0.003

Table 3: The AUROC of the summary graph adjacency matrix for 5 datasets in DREAM3, where
self-connections are ignored. DYNO. means DYNOTEARS. For Rhino and PCMCI+, the mean
results with standard error are reported by averaging over 5 runs. Khanna and Tan [16] only reported
the single-run results for baselines.

By inspecting the hyperparameters of Rhino in Appendix I.4.1, instantaneous effects seem to provide
no help for discovery in these datasets. It suggests the recording intervals are fast enough to avoid
any aggregation effect. This explains why the Granger causality can also perform reasonably well.

Unlike the strong performances of DYNOTEARS and PCMCI+ in synthetic experiments, they
perform poorly in DREAM3. The linear nature of DYNOTEARS seems to harm its performance
drastically. On the other hand, PCMCI+ suffers from the low independence test power under small
training data.

Another interesting ablation is to compare with Rhino+g, which performs on par with Rhino and
achieves better scores on 2 out of 5 datasets. Although we have no access to the true noise mechanism,
we suspect that the added noise is not history-dependent and highly likely to be Gaussian. Despite
the model mismatch, Rhino is still one of the best methods for this problem. This further strengthens
our belief in the robustness of our model under misspecification.

I.4.1 DREAM3 Hyperparameter setting

For tuning the hyper-parameters of Rhino, its variants and DYNOTEARS, we split each of the
5 datasets into 80%/20% training/validation. We tune baselines in the same way as in Netsim
experiment (Appendix I.2). For other Granger causality baselines, refer to Table 7-11 in Khanna and
Tan [16].

Hyperparams Node Embedding Instantaneous eff. Node Embed. (flow) lag λs Auglag

Rhino (Ecoli1) 16 False 16 2 19 30
Rhino (Ecoli2) 16 False 100 2 25 80
Rhino (Yeast1) 32 False 100 2 25 10
Rhino (Yeast2) 32 False 100 2 25 80
Rhino (Yeast3) 32 False 16 2 25 5
Rhino+g (Ecoli1) 100 False N/A 2 15 60
Rhino+g (Ecoli2) 100 False N/A 2 25 25
Rhino+g (Yeast1) 100 False N/A 2 15 5
Rhino+g (Yeast2) 100 False N/A 2 19 125
Rhino+g (Yeast3) 100 False N/A 2 9 10

Table 4: The hyperparameter setup for Rhino. Node embedding is the dimensionality of uτ,i below
Eq. (4); Instantaneous eff. specifies whether it models the instantaneous effect or not; Node
Embed. (flow) represents the dimensionality of the node embedding for the hyper-network used
for conditional spline flow gi since the hyper-network shares the similar structure as Eq. (4); lag
defines the model lag order; and λs is the sparseness penalty in the prior (Eq. (7)); Auglag is the
number of augmented Lagrangian steps, each step consists of 2000 training iterations.
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Other than the hyper-parameters reported in Table 4, we use 1-layer MLPs with 10 hidden units
for neural networks in function fi and hyper-network. Other settings are the same as Netsim
(Appendix I.2).

Hyperparams lag λa λw

Ecoli1 2 0.01 0.5
Ecoli2 2 0.1 0.01
Yeast1 2 0.005 0.1
Yeast2 3 0.01 0.01
Yeast3 2 0.01 0.005

Table 5: The hyperparameter setup for DYNOTEARS.

Table 5 contains the hyper-parameters setup for DYNOTEARS. We set the maximum training
iterations to be 1000 with DAGness tolerance 10−8. The threshold value for the weighted adjacency
matrix is 0.05. For PCMCI+, the maximum lag is set to 2. The conditional independence test is set
to parcorr, which is based on linear ordinary least square (OLS). A more powerful choice can be a
nonlinear independence test based on GP, called GPDC. However, PCMCI+ with GPDC is too slow
to finish the training.

I.4.2 Additional DREAM3 Results

Here, Fig. 7 shows the additional ROC curve plots for all 5 datasets in DREAM3. For the visualization
purpose, we only select a single run for Rhino and this will not affect the curve much due to small
standard error in Table 3.

J AUROC Metric

AUROC metric is a one of the standard metrics for evaluating the causal discovery, which measures
the trade-off between the true positive rate (TPR) and false positive rate (FPR). However, during
the experiments, we found out that AUROC does not necessarily correlate well with other discovery
metrics. From Fig. 8, it is clear that the F1 score continues to increase whereas AUROC and validation
likelihood starts to decrease after few steps. Since the dataset of Netsim is relatively small, this
indicates the possible overfitting. This disagreement originates from the different aspects these
metrics care about. For AUROC, it cares about the trade-off between TPR and FPR with various
decision thresholds, and it penalizes the wrong decisions with certainty harshly. On the other hand,
F1 score cares about the final inferred binary adjacency matrix with a fixed decision threshold. For
example, if we multiply the Bernoulli probability matrix by a small factor (e.g. 10−5), the AUROC
score will remain the same but the F1 score will tends to 0 with the default decision threshold 0.5.

Thus, model overfitting tends to drive the edge probabilities towards 1 or 0, which may help the F1

score but these extreme decisions can result in a large decrease in the AUROC score. Thus, for small
dataset, we believe AUROC is a better metric than F1, which also agrees with validation likelihood.

In addition, the Bayesian setup of Rhino may also help with better AUROC for small dataset. From
the same figure, even the large decrease of validation likelihood suggests potential model overfitting,
the AUROC still maintains a reasonable value. This may be due to the Bayesian view of the causal
graph, where the posterior edge probability does not converge to extreme values.
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Figure 7: The ROC curve plots of Rhino and other baselines for DREAM3 datasets. For illustration
purpose, we only select a single run of Rhino, Rhino+g, DYNOTEARS and PCMCI+ to plot ROC
curve. Since the standard error reported in Table 3 is relatively small, the plot should not vary much
for other runs. The ROC curve of other baselines are directly taken from figure 7 in Khanna and Tan
[16].
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Figure 8: The curves of orientation F1, AUROC and validation likelihood during training. Each curve
is obtained by averaging over 5 random seeds. The validation curve agrees well with the AUROC
curve, but shows an opposite trends as F1 curve. This potentially indicates model overfitting in the
later stage of training.
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