
Learning Contact-rich Abstractions
using Tensor Factorization

Teng Xue1,2, Amirreza Razmjoo1,2, Suhan Shetty1,2, Sylvain Calinon1, 2

1Idiap Research Institute 2École Polytechnique Fédérale de Lausanne (EPFL)

Abstract—Contact-rich manipulation is non-trivial due to its
under-actuated dynamics and hybrid contact modes, which
lead to non-convex programs and require joint reasoning over
both discrete and continuous variables. This presents significant
challenges for current gradient-based and sampling-based meth-
ods, especially in long-horizon manipulation tasks with sparse
rewards. Planning with effective abstractions is a promising
approach to address these issues. However, identifying an effective
abstraction of the geometric world that can facilitate motion-
level planning and control remains an open question. In this
work, we propose learning such abstractions through tensor
factorization, which enables efficient planning and control in
contact-rich scenarios. We validate the proposed method across
three manipulation domains, encompassing both prehensile and
non-prehensile primitives. The results demonstrate its ability
to find the optimal solution over the full logic and geometric
path. Real-robot experiments further showcase the effectiveness
of our approach in handling contact uncertainty and external
disturbances in the real world.

I. INTRODUCTION

Consider the following task: ”A large box is positioned on
the table, next to a wall. The objective is to reorient the box to
a new 6D pose using a single robot manipulator with minimal
control efforts (or maximal rewards). The robot is allowed
to have any interactions with the surroundings.” A potential
solution involves pushing the box until it reaches the wall,
pivoting, and then pulling it toward the target.

Such tasks are common in sequential manipulation scenar-
ios, typically involving the sequencing of multiple contact-rich
manipulation skills, such as pushing, pivoting, and pulling.
Solving these tasks requires reasoning about the appropriate
order of skills and the corresponding motion trajectories. This
hybrid structure leads to Mixed-Integer Nonlinear Program-
ming (MINLP), which combines the challenge of handling
nonlinearities with the combinatorial complexity introduced by
discrete contact modes. Introducing abstractions is promising
to mitigate the computational burden of MINLP. One approach
is to use convex relaxation as a geometric abstraction of
the non-convex problem, resulting in Mixed-Integer Convex
Programming (MICP) [12], which can be efficiently solved
using modern solvers. Such methods have been applied to
planar pushing ([11, 10]), pivoting [1], and locomotion [2]
tasks. Recently, a method called Graph of Convex Sets (GCS)
[12] was proposed, which formulates the planning problem as
a shortest-path problem over graph, using a tight relaxation to
approximate the original problem. [8] further demonstrates its
effectiveness for planar pushing task. Although MICP methods
have shown great performance in both manipulation and loco-

Fig. 1: Overview of the proposed approach: Given the evaluation
function Ψ of the final configuration, along with the initial symbolic
state s0 and geometric state x0, the objective of LSP is to find a
solution that can accomplish the task with minimal control costs.
A task-agnostic skill library is pretrained, consisting of N skill
operators A = {a1:N}, along with corresponding value functions
V = {V π1:N } and policies P = {π1:N} in Tensor Train format.
LSP finds the logic-geometric path by alternating between symbolic
search and skill value optimization. Symbols s1:K are used as
constraints for skill optimization, while skill optimization is used to
check skeleton feasibility and final configuration performance, with
a feedback reward r informing the symbolic search. This results in
the appropriate skill skeleton a1:K and subgoal sequence x1T :KT ,
which are then combined with the skill policies π1:K to actuate the
real robot. Notably, the gray channel with symbolic final state sK is
interrupted because our framework eliminates the need for a symbolic
target goal sT , while such information is typically required in existing
sampling-based sequential skill planning methods.

motion tasks, finding the convex relaxation of optimal control
problems involving contact is not easy. Another approach is
to use the Planning Domain Definition Language (PDDL) [3]
as a symbolic abstraction of skill operators and geometric
constraints [21, 7], where first-order logic facilitates high-
level task planning and constrains low-level motion planning.
However, the resulting constrained mathematical program is
generally non-convex, and feasible solutions typically lie on
low-dimensional contact manifolds, making both gradient-
based and sampling-based methods struggle.

Therefore, having an effective abstraction that is more

informative than symbols (or languages) and can also facilitate
motion-level planning and control is essential. This aligns with
the objective of value functions in dynamic programming [5].
Consequently, our paper aims to find an effective abstraction
of the value function for each contact-rich skill. Reinforcement
Learning (RL) is the most popular approach for this, but RL
is typically time-consuming, and the learned value functions
are not informative enough for sequencing in long-horizon
manipulation planning. Recently, [6, 19] proposed a novel
way to approximate arbitrary functions in low-rank arrays,
which helps in efficiently finding global optimal solutions. The
basic idea is to find the low-rank embedding of the original
function, specifically in Tensor Train (TT) format, through
cross-approximation [13, 17]. In this format, the marginal
distribution of each dimension can be efficiently computed, en-
abling fast iterative sampling to find the solution. [20] further
proposed using TT for approximate dynamic programming
and demonstrated impressive results in the hybrid control of
planar pushing tasks. In this work, we aim to demonstrate the
effectiveness of this approach in learning value functions for
contact-rich manipulation skills.

Using tensor approximation, we can construct a library with
symbolic skill operators and their corresponding value func-
tions in TT format, as shown in the Task-agnostic Skill library
in Fig. 1. These value functions implicitly represent control
policies, where control commands can be obtained through
an argmax operation. This differs from other learning-based
sequential planning works [22, 4], which rely on explicit
RL policies to output control commands directly. Logic-Skill
Programming (LSP) [23] is further used to sequence task-
agnostic skills from the library. Fig. 1 provides an overview
of our proposed approach. Given the initial state s0 and x0,
along with the evaluation function Ψ for the final geometric
configuration, it generates the full logic-geometric path.

II. METHODOLOGY

A. Problem Formulation

Our objective is to address long-horizon manipulation tasks
by sequentially executing a series of skills included in the
library. To ensure that the skills can be sequenced in an
arbitrary manner and generalized to any long-horizon tasks,
the learning process should be task-agnostic. Each skill domain
can be modeled by a Markov Decision Process (MDP)

Mn = (Xn,Un, Tn,Rn), (1)

where Xn is the state space, Un is the action space,
Tn(x′

n|xn, un) is the transition model, Rn(xn, un) is the
reward function given current state and action.

The full K-length long-horizon domain is the union of
{M1,M2, . . . ,MK}, where each time segment corresponds
to a single skill execution. It is specified as

M = (M1:K ,X ,Φ1:K ,Γ1:K), (2)

where X is the full state space of the long-horizon domain,
Φ1:K : Xk → X is a function that maps the skill-specific

state space to the full state space, and Γ1:K : X → Xk is
a function that extracts the skill-specific state from the full
state. Note that the state spaces of different skills usually have
different dimensions and structures. Taking push and pivot
as examples, they are planar manipulation primitives defined
in the horizontal and vertical planes, respectively, affecting
different degrees of freedom of the object. The long-horizon
state space acts as a bridge, transmitting the local state changes
from one skill to the next.

After acquiring these task-agnostic value functions, our
goal is to determine the optimal skill skeleton and subgoal
sequence that maximize the overall cumulative reward for the
complete skill sequence a1:K and the evaluation of the final
configuration Ψ(xKT

):

max
x,a1:K

K∑
k=1

Eπk

[∞∑
t=0

γtRkt

]
+Ψ(xKT

). (3)

Here, Rkt
denotes the reward of skill ak at time t, which is

approximated by the value function V πk . Therefore, sequential
skill planning problem can be formulated as maximizing the
sum of value functions, along with the evaluation function
Ψ of the final configuration, incorporating first-order logic as
constraints:

max
x,a1:K ,s1:K

K∑
k=1

V πk(xk0) + Ψ(xKT
)

s.t. sk ∈ succ(sk−1, ak),x10 = x0,

hpath(xkt
, πk(xkt

)|sk) = 0,

gpath(xkt
, πk(xkt

)|sk) ≤ 0,

hswitch(xkT
|ak+1, sk) = 0,

gswitch(xkT
|ak+1, sk) ≤ 0,

xkt
= Φk(xkt

|ak),
xk0

= Γk(xk0
,xkT

|ak),

(4)

where xk0 and xkT
are the initial and final configuration of

skill operator ak in the long-horizon domain X . xk0 is the
initial state of ak within the skill domain Xk. Φk and Γk are
the mapping functions between long-horizon domain X and
skill domain Xk. s0 and x0 denote the initial symbolic state
and geometric configuration, respectively. hswitch and gswitch
express the transition consistency of configuration xk with the
skill operator ak. hpath and gpath indicate the constraints on the
path xkt

given current symbolic state sk. These constraints
specify the degrees of freedom in the system configurations
that can be actuated under the symbolic state sk. For instance,
an object marked as non-graspable and onTable can
only be manipulated through push or pull, with actuation
in the dimensions of x, y and yall. Conversely, if the object
is marked as atWall, it can be actuated by pivot, with
changes in roll or pitch.

We assume the initial geometric configuration x0 is given,
along with an initial symbolic state s0 ∈ L. The symbolic
states can be transited through the skill operator ak as sk =
succ(ak, sk−1). The existing skill sequencing frameworks

typically require an explicit symbolic goal target sT |= G,
while our method eliminates this requirement by considering
only the final geometric configuration xKT

.
To solve Eq. (4), we propose an approach that alternates

between searching for symbolic skill skeleton and optimizing
the value functions. The role of symbolic search is to define the
optimization constraints, while skill value optimization checks
whether the given skill skeleton can reach the final target.

1) Symbolic Search: We use PDDL to describe the task
domain and then utilize Monte Carlo Tree Search (MCTS)
to search for the appropriate skill sequence a1:K from the
skill library. The preconditions and effects of each skill form
a rule-based representation of symbolic transitions sk =
succ(ak, sk−1), serving as the forward model for symbolic
search. In each iteration, MCTS relies on the Upper Confi-
dence Bound (UCB) to select the node, balancing exploitation
and exploration. If no child node is found in this branch,
the branch will expand and simulate until reaching the target
or exceeding the maximum length. A reward or penalty will
be backpropagated through the branch, depending on the
simulation result. This iterative process refines the search tree,
focusing on promising branches and ultimately converging
towards an optimal decision. The sequence length (K in
Eq. (4)) is purely unknown before symbolic search, allowing
diverse sequence lengths for the same target configuration. By
applying a higher exploration parameter in the UCB formula,
MCTS can return multiple solutions.

2) Skill Value Optimization: The symbolic skill skeleton
can only express the symbolic feasibility. It has to be verified
by optimizing over Eq. (4) to determine whether it can reach
the final configuration while satisfying the constraints. The
value functions in Eq. (4) are obtained through Generalized
Policy Iteration using Tensor Train (TTPI) [20].

After obtaining the library of optimal value functions, we
can solve Eq. (4) conditioning on the skill skeleton returned
from symbolic search. Note that both discrete and continuous
variables may be involved in this problem. For instance, in the
task mentioned at the beginning, we have to rely on pivoting
against the wall to change the roll or pitch angle of the
box, requiring one face of the box to be parallel to the wall.
Moreover, the objective functions are arbitrary, depending on
the value functions of selected skills. All of these factors
pose significant challenges for optimization techniques. In
this work, we employ the Cross-Entropy Method (CEM) [16]
with mixed distribution, namely CEM-MD, as the optimization
technique. It can handle mixed-integer programming by using
Gaussian distribution and Categorical distribution for contin-
uous and discrete variables, respectively. The distributions are
iteratively updated towards the fraction of the population with
higher objective scores until converging to the best solution.

III. EXPERIMENTS

In this section, we compare our method with RL for value
function learning and demonstrate its effectiveness in both
simulation and real-world environments. Demos can be found

at https://sites.google.com/view/lsp4plan 1.

A. Evaluation on Value Function Abstractions

Five manipulation skills, pushing, pivoting, pulling, picking,
and placing, are used to evaluate the performance of the
learned value functions through TTPI and two RL methods:
Soft Actor-Critic (SAC) [9] and Proximal Policy Optimization
(PPO) [18]. Each skill is characterized by unique state and
action spaces.

1) Push: The state is characterized by (po, θo,pr, fc),
while the action is denoted by (vr, fn). Here, (po, θo) ∈
SE(2) denotes the object’s pose in the world frame. pr

and vr represent the position and velocity of the robot
end-effector in the object frame. We assume that the ob-
ject has a rectangular shape (common in industry), where
fc ∈ 0, 1, 2, 3 represents the current contact surface and
fn denotes the next contact surface. Thus, the system
encompasses a total of 6 states and 3 control variables,
comprising both continuous and discrete variables.

2) Pivot: The pivoting domain features a goal-augmented
state (β, β̃), where β is the current rotation angle of
the object in the gravity plane, and β̃ is the desired
angle. The control input is β̇, which denotes the angular
velocity of the robot end-effector..

3) Pull: The state is defined as (po, θo) ∈ SE(2), repre-
senting the object’s position and orientation in a planar
plane. The control input is (ṗo, θ̇o), denoting the trans-
lational and angular velocities of the robot end-effector.

4) Pick: In this domain, the state is defined as
(x, y, z, α, β, θ) ∈ SE(3), representing the pose of
the robot end-effector, while the control input is the
Cartesian velocity of the end-effector, (ẋ, ẏ, ż, α̇, β̇, θ̇) ∈
SE(3). Without loss of generality, we assume that the
object to be picked is located at (0, 0, 0, 0, 0, 0).

5) Place: This domain shares the same state and action
spaces as the Pick domain.

We define the general reward for skill learning as:

r = −1× (cp + ρ× co + 0.01× ca + 0.1× cf), (5)

with

cp = ∥xp − xdes
p ∥/lp, co = ∥xo − xdes

o ∥/lo,
ca = ∥u∥, cf = 1− δ(fc − fn),

(6)

where xp and xo represent the current position and orientation
of the system in each skill domain, while xdes

p and xdes
o denote

the target position and orientation. We set the state space to
be within [−0.5m, 0.5m] for position elements, and [−π, π]
for orientation elements. lp and lo are therefore set to 0.5 and
π respectively to normalize the position error and orientation
error. ρ is a hyperparameter used to balance position and
orientation errors. Due to the underactuated nature of pushing
dynamics, we set ρ = 0.5 in practice. For other skills, ρ is
set to 1. u represents the control inputs of each skill domain.

1This website is for our original paper, from which this workshop abstract
is derived.

https://sites.google.com/view/lsp4plan

(a) Non-Prehensile Manipulation domain (b) Partly-Prehensile Manipulation domain (c) Prehensile Manipulation domain

Fig. 2: Three sequential manipulation domains, including both prehensile and non-prehensile manipulation primitives. The transparent object
represents the final target configuration in each domain.

cf is a specialized term unique to the pushing domain, used
to penalize face switching during pushing. Here, δ(fc − fn)
returns 1 when fc = fn (indicating no face switching),
otherwise, it returns 0.

Notably, considering that SAC and PPO are not able to
handle hybrid action space, we exclude fc and fn for a
fair comparison in this section. For both PPO and SAC,
our primary implementation relies on Stable-Baselines3 [15],
utilizing a Multilayer Perceptron (MLP) architecture with
dimensions of 32 × 32 as the policy network. We set the
discount factor to 0.99 and the learning rate to 0.001, while
configuring the task horizon to 104. In TTPI, we establish
the accuracy threshold for TT-cross as ϵ = 10−3 and set the
maximum rank rmax to 102.

The obtained policies are then evaluated by comparing
the success rates across 1000 initial states in skill domains.
We define a successful task as achieving a position error of
less than 0.03cm and an orientation error of less than 15◦.
Table I reveals that all the policies can nearly reach the final
targets, demonstrating the proficiency of the learned policies
in accomplishing individual manipulation tasks. Moreover, we
evaluate the accuracy of obtained value functions by checking
whether they can offer the same guidance as the cumulative
rewards given two states, shown as value prediction in Table
I. The metric is to compare whether V πk(x1)− V πk(x2) has
the same direction as Rπk

c (x1)−Rπk
c (x2), where Rπk

c (x) is
the cumulative reward, defined as

Rπk
c (x) =

∞∑
t=0

γtRkt(xkt , πk(xkt)), s.t. xk0 = x. (7)

We randomly selected 1000 state pairs in the state domain.
The value function of TTPI demonstrates superior prediction
performance compared to SAC and PPO. This indicates that
value functions in TT format offer better accuracy in ap-
proximating the cumulative reward, which can inform which
state in the state domain is more dynamically optimal given
current policy. This observation aligns with our motivation,
emphasizing that typical RL methods approximate the value

function primarily within a local space and the policy retrieval
is often sub-optimal due to gradient-based optimization. In
contrast, TTPI, aims to approximate the value function across
the entire state space. This feature is advantageous in our
sequential skill planning framework for identifying the subgoal
for each skill, which can be anywhere within the skill-specific
state space.

B. Simulation and real-world experiments

Three different long-horizon domains are used to validate
our method, involving both non-prehensile and prehensile
manipulation primitives, as shown in Fig. 2.

a) Non-Prehensile Manipulation (NPM): As depicted in
Fig. 2a, this domain involves objects that cannot be grasped.
The objective is to manipulate the box within the 3D world
by leveraging multiple non-prehensile planar manipulation
primitives and establishing contacts with the surroundings to
achieve the final 6D pose. This task can also be seen as a
special case of in-hand manipulation, where the robot and the
wall act as active and passive ”fingers”, respectively.

b) Partly-Prehensile Manipulation (PPM): As shown in
Fig. 2b, this domain involves objects that can only be grasped
in specific directions. The goal in this domain is to manipulate
the 6D pose of the cube, including the z direction. Therefore,
the robot must strategically decide how to pick up the object
in the end. This domain requires the robot to reason about
physical contact and object geometry to unify both prehensile
and non-prehensile primitives.

c) Prehensile Manipulation (PM): As illustrated in Fig.
2c, this domain involves objects that can be directly grasped.
The goal is to alter the 6D pose of a block placed on the
table, beyond the robot’s reachability. To achieve this, the robot
must pick up the block in the end. This requires the robot to
figure out using a hook to extend the kinematic chain and pull
the block back into the reachability region, and then grasp it.
However, the way in which the robot picks up the hook will
affect whether the block can be reached, and where to pull
will also affect the entire trajectory and the total energy cost.

Table I: Comparative Analysis of Skill Policy Performance and Value Function Precision

TTPI SAC PPO
success rate value prediction time (min) success rate value prediction time (min) success rate value prediction time (min)

pushing 1.0 0.85 5.6 0.83 0.63 36.3 0.95 0.61 44.8
pivoting 1.0 0.94 0.9 1.0 0.51 16.0 1.0 0.68 8.7
pulling 1.0 0.97 1.1 1.0 0.84 16.5 1.0 0.72 10.7
pick/place 1.0 0.93 1.67 0.98 0.64 33.6 1.0 0.66 24.6

In this task, we want to show that our method can find an
optimal trajectory which has the minimum energy cost, while
successfully finishing the task.

We define the evaluation function Ψ of the final configura-
tion xKT

as follows:

Ψ(xKT
) = λ∥xKT

− xT ∥, (8)

where xT is the target configuration in each domain, and λ =
102. The initial configuration x0 and target configuration xT

are randomly sampled from the long-horizon domain X , which
is the configuration space of the entire environment. In NPM
and PPM, X = SR ×SO, while in PM, X = SR ×SO ×ST .
Here, SO = SE(3) and SR = SE(3) denote the pose of the
object and robot end-effector, respectively, while ST = SE(2)
represents the pose of a tool positioned on the table.

We then run LSP for these three domains to find the
full logic-geometric path. Given the same initial state
s0 and x0 in each domain, we randomly sample 10
different target configurations xT that require multi-
step manipulation. Fig. 3 shows that LSP can actively
find multiple solutions. For the Non-Prehensile domain,
two solutions found by LSP are push-pivot-pull
and pull-pivot-pull. For the Partly-Prehensile
domain, four different skeletons are found: push-pick,
pull-pick, push-pivot-pull-pick and
pull-pivot-pull-pick. For the Prehensile domain, the
solved skill skeleton is pick-place-pull-place-pick.

We further conducted real-robot experiments in the NPM
domain, employing a 7-axis Franka Emika robot and a Re-
alSense D435 camera. A large box (21cm x 21cm x 16cm)
was positioned on a flat plywood surface. Fig. 4 displays
the keyframes of the robot experiments. Given the initial and
final configurations, the robot adeptly manipulated the box by
utilizing three planar manipulation primitives, establishing and
breaking contact with the surroundings. It is worth noting that
real-world contact-rich manipulation is quite challenging due
to friction uncertainty and external disturbances [14]. This
highlights the importance of introducing effective geometric
abstractions for online real-time control. Through skill se-
quencing, we demonstrate that the robot can actively engage
with the physical world, accomplishing a much more complex
long-horizon task.

IV. CONCLUSION AND FUTURE WORK

In this work, we introduce the use of tensor factorization
to approximate value functions, which serve as geometric
abstractions of contact-rich skills to facilitate motion-level
planning and control. A first-order extended mathematical

program is used to find the skill skeleton and subgoal sequence
that maximize the overall cumulative reward and optimize the
performance of the final configuration.

We demonstrated that the value functions in TT format
provide a better approximation of cumulative reward compared
to state-of-the-art RL methods. Furthermore, the proposed LSP
framework can generate multiple skill skeletons and their
corresponding subgoal sequences, given only an evaluation
function of the final geometric configuration. We validated this
approach across three manipulation domains, highlighting its
robust performance in sequencing both prehensile and non-
prehensile manipulation primitives.

In this work, the skill learning method, TTPI, assumes a
low-rank structure of the value functions for approximation.
This works well for skill domains with low-to-medium di-
mensionality but struggles with image-based policy learning.
To address this issue, combining neural networks with TT
decomposition could be an interesting direction.

Moreover, the Cross-Entropy Method with Mixed Distri-
bution (CEM-MD) is used for mixed-integer optimization.
While it demonstrates good performance in the current domain
settings, its efficiency may decrease when dealing with much
longer skill skeletons and additional objects. Given that TT
allows for efficient optimization, and that the mode-switching
configurations typically lie on low-dimensional manifolds, a
potential future direction would be to exploit the low-rank
structure for full path optimization.

Furthermore, while Large Language Models (LLMs) have
demonstrated impressive results in abstracting the geometric
world as language, we believe our method can play an impor-
tant role in enriching these language abstractions with more
geometric information to facilitate low-level motion planning
and control.

REFERENCES

[1] Bernardo Aceituno-Cabezas and Alberto Rodriguez. A
global quasi-dynamic model for contact-trajectory opti-
mization in manipulation. 2020.

[2] Bernardo Aceituno-Cabezas, Carlos Mastalli, Hongkai
Dai, Michele Focchi, Andreea Radulescu, Darwin G
Caldwell, José Cappelletto, Juan C Grieco, Gerardo
Fernández-López, and Claudio Semini. Simultaneous
contact, gait, and motion planning for robust multilegged
locomotion via mixed-integer convex optimization. IEEE
Robotics and Automation Letters, 3(3):2531–2538, 2017.

[3] Constructions Aeronautiques, Adele Howe, Craig
Knoblock, ISI Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, David Wilkins SRI, Anthony

(a) Non-Prehensile Manipulation (b) Partly-Prehensile Manipulation (c) Prehensile Manipulation

Fig. 3: The action skeletons obtained by LSP for three domains. The dot point denotes the start of the skill sequence. Each color represents
one solution, with black lines indicating the common shared tunnel. The red star illustrates the end of the skill skeleton.

(a) Initialization (b) Pushing (c) Disturbance (d) Push-Pivot Switch

(e) Pivoting (f) Pulling (g) Target Reaching

Fig. 4: Non-prehensile manipulation domain task. The system is initialized as (a), and the objective is to manipulate the box to achieve the
target configuration as (g). The first stage involves pushing the box towards the wall with a 90◦ rotation. Additionally, we apply an external
disturbance to test the skill policy (c). After the pushing stage, the robot switches to the pivoting skill (d, e), followed by pulling (f), until
reaching the final geometric configuration.

Barrett, Dave Christianson, et al. Pddl— the planning
domain definition language. Technical Report, Tech.
Rep., 1998.

[4] Christopher Agia, Toki Migimatsu, Jiajun Wu, and Jean-
nette Bohg. Stap: Sequencing task-agnostic policies. In
2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 7951–7958. IEEE, 2023.

[5] Richard Bellman. Dynamic programming. Science, 153
(3731):34–37, 1966.

[6] Andrei Chertkov, Gleb Ryzhakov, Georgii Novikov, and
Ivan Oseledets. Optimization of functions given in the
tensor train format. arXiv preprint arXiv:2209.14808,
2022.

[7] Caelan Reed Garrett, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Pddlstream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive
planning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30,
pages 440–448, 2020.

[8] Bernhard P Graesdal, Shao YC Chia, Tobia Marcucci,
Savva Morozov, Alexandre Amice, Pablo A Parrilo, and

Russ Tedrake. Towards Tight Convex Relaxations for
Contact-Rich Manipulation. 2024.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018.

[10] Francois R Hogan and Alberto Rodriguez. Reactive
planar non-prehensile manipulation with hybrid model
predictive control. International Journal of Robotics
Research (IJRR), 39(7):755–773, 2020.

[11] François Robert Hogan and Alberto Rodriguez. Feedback
control of the pusher-slider system: A story of hybrid
and underactuated contact dynamics. In Algorithmic
Foundations of Robotics XII: Proceedings of the Twelfth
Workshop on the Algorithmic Foundations of Robotics,
pages 800–815. Springer, 2020.

[12] Tobia Marcucci and Russ Tedrake. Mixed-integer formu-
lations for optimal control of piecewise-affine systems. In
Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pages

https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://arxiv.org/abs/2210.12250
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/2402.10312
https://arxiv.org/abs/2402.10312
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://journals.sagepub.com/doi/epub/10.1177/0278364920913938
https://journals.sagepub.com/doi/epub/10.1177/0278364920913938
https://journals.sagepub.com/doi/epub/10.1177/0278364920913938
https://link.springer.com/chapter/10.1007/978-3-030-43089-4_51
https://link.springer.com/chapter/10.1007/978-3-030-43089-4_51
https://link.springer.com/chapter/10.1007/978-3-030-43089-4_51
https://dl.acm.org/doi/10.1145/3302504.3311801
https://dl.acm.org/doi/10.1145/3302504.3311801

230–239, 2019.
[13] Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross ap-

proximation for multidimensional arrays. Linear Algebra
and its Applications, 432(1):70–88, 2010.

[14] Tao Pang, HJ Terry Suh, Lujie Yang, and Russ Tedrake.
Global planning for contact-rich manipulation via local
smoothing of quasi-dynamic contact models. IEEE
Transactions on Robotics, 2023.

[15] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi
Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-Baselines3: Reliable Reinforcement Learning Im-
plementations. Journal of Machine Learning Research,
22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

[16] Reuven Rubinstein. The cross-entropy method for com-
binatorial and continuous optimization. Methodology and
computing in applied probability, 1:127–190, 1999.

[17] Dmitry V. Savostyanov and Ivan V. Oseledets. Fast
adaptive interpolation of multi-dimensional arrays in
tensor train format. The 2011 International Workshop
on Multidimensional (nD) Systems, pages 1–8, 2011.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[19] S. Shetty, T. Lembono, T. Löw, and S. Calinon. Tensor
Train for Global Optimization Problems in Robotics.
International Journal of Robotics Research (IJRR), 43
(6):811–839, 2024. doi: 10.1177/02783649231217527.

[20] S. Shetty, T. Xue, and S. Calinon. Generalized Policy It-
eration using Tensor Approximation for Hybrid Control.
In Proc. Intl Conf. on Learning Representations (ICLR),
2024.

[21] Marc Toussaint. Logic-geometric programming: an
optimization-based approach to combined task and mo-
tion planning. In Proceedings of the 24th International
Conference on Artificial Intelligence, pages 1930–1936,
2015.

[22] Danfei Xu, Ajay Mandlekar, Roberto Martı́n-Martı́n,
Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Deep af-
fordance foresight: Planning through what can be done
in the future. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 6206–6213.
IEEE, 2021.

[23] T. Xue, A. Razmjoo, S. Shetty, and S. Calinon. Logic-
Skill Programming: An Optimization-based Approach to
Sequential Skill Planning. In Proc. Robotics: Science
and Systems (R:SS), 2024.

https://www.sciencedirect.com/science/article/pii/S0024379509003747
https://www.sciencedirect.com/science/article/pii/S0024379509003747
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10225433
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10225433
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://link.springer.com/article/10.1023/A:1010091220143
https://link.springer.com/article/10.1023/A:1010091220143
https://ieeexplore.ieee.org/abstract/document/6076873
https://ieeexplore.ieee.org/abstract/document/6076873
https://ieeexplore.ieee.org/abstract/document/6076873
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://journals.sagepub.com/doi/10.1177/02783649231217527
https://journals.sagepub.com/doi/10.1177/02783649231217527
https://openreview.net/forum?id=csukJcpYDe
https://openreview.net/forum?id=csukJcpYDe
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://www.ijcai.org/Proceedings/15/Papers/274.pdf
https://arxiv.org/abs/2011.08424
https://arxiv.org/abs/2011.08424
https://arxiv.org/abs/2011.08424
https://arxiv.org/abs/2405.04082
https://arxiv.org/abs/2405.04082
https://arxiv.org/abs/2405.04082

	Introduction
	Methodology
	Problem Formulation
	Symbolic Search
	Skill Value Optimization

	Experiments
	Evaluation on Value Function Abstractions
	Simulation and real-world experiments

	Conclusion and Future Work

