
LightGTS: A Lightweight General Time Series Forecasting Model

Yihang Wang * 1 Yuying Qiu * 1 Peng Chen 1 Yang Shu 1 Zhongwen Rao 2 Lujia Pan 2 Bin Yang 1

Chenjuan Guo 1

Abstract
Existing works on general time series forecasting
build foundation models with heavy model param-
eters through large-scale multi-source pre-training.
These models achieve superior generalization abil-
ity across various datasets at the cost of signif-
icant computational burdens and limitations in
resource-constrained scenarios. This paper intro-
duces LightGTS, a lightweight general time series
forecasting model designed from the perspective
of consistent periodical modeling. To handle di-
verse scales and intrinsic periods in multi-source
pre-training, we introduce Periodical Tokenization,
which extracts consistent periodic patterns across
different datasets with varying scales. To better
utilize the periodicity in the decoding process, we
further introduce Periodical Parallel Decoding,
which leverages historical tokens to improve fore-
casting. Based on the two techniques above which
fully leverage the inductive bias of periods inherent
in time series, LightGTS uses a lightweight model
to achieve outstanding performance on general
time series forecasting. It achieves state-of-the-art
forecasting performance on 9 real-world bench-
marks in both zero-shot and full-shot settings with
much better efficiency compared with existing
time series foundation models.

1. Introduction
Time series forecasting is widely applied across various
domains, including energy, meteorology, education, finance,
and transportation (Wu et al., 2021; 2023; 2024; 2025c).
Traditional time series forecasting approaches typically use
task-specific statistical or deep learning models in an end-to-
end manner (Wu et al., 2025a; Qiu et al., 2025b; Wu et al.,
2025b). Recently, with a collection of large-scale time series

*Equal contribution 1East China Normal University, Shanghai,
China 2Huawei Noah’s Ark Lab, Shenzhen, China. Correspon-
dence to: Chenjuan Guo <cjguo@dase.ecnu.edu.cn>.

Proceedings of the 42𝑛𝑑 International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0.27

0.32

0.37

0.42

0.47

0.52

1 10 100 1000

Av
er

ag
e

M
SE

Number of parameters (millions)

LightGTS-tiny
MSE: 0.305

Parameters: 1.3M

LightGTS-mini
MSE: 0.294

Parameters: 4M

Timer
MSE: 0.496

Parameters: 67M

MOIRAI
MSE: 0.413

Parameters: 311M

Chronos
MSE: 0.400

Parameters: 700M

Time-MoE
MSE:0.371

Parameters: 453M

Figure 1. Comparison of model sizes and average zero-shot perfor-
mance across seven benchmark datasets between LightGTS and
the state-of-the-art TSFMs.

datasets, several Time Series Foundation Models (TSFM)
have emerged (Liu et al., 2024; Woo et al., 2024a; Shi et al.,
2024), demonstrating promising potential. However, the
generalization capability of existing TSFMs largely depends
on massive pre-training data and large model parameters as
shown in Figure 1, resulting in high computational costs and
low efficiency.

Although both language and time series are sequential data,
unlike language which uses word tokens as basic elements,
time series elements can vary substantially and exhibit
distinctive characteristics. Specifically, scale refers to the
sampling rate of time series, e.g., sampling every 15 mins or
every hour, and intrinsic period reflects the time interval, e.g.
daily, that a pattern repetitively appears in the real-world.
Meanwhile, different scales affect the number of data points
that appear in an intrinsic period, referred to as a cycle length,
as shown in Figure 2(a). In multi-source time series pre-
training, this scale-dependent variation necessitates models
to learn consistent representations of real-world periodic
patterns across different cycle lengths, a core demand for
reliable forecasting as evidenced by the critical role of
periodic modeling in (Lin et al., 2024b;a).

However, the existing TSFMs adopt fixed tokenization,
where each token contains a fixed number of data points,
making it struggle to handle diverse scales and intrinsic
periods in multi-source pre-training. Specifically, fixed to-
kenization leads to varying information density of tokens

1

LightGTS: A Lightweight General Time Series Forecasting Model

Point
Embedding

Fixed Patch
Embedding

ETTh2
Scale = Hourly

Cycle length = 24

ETTm2
Scale = 15 min

Cycle length = 96

Solar
Scale = 10 min

Cycle length = 144

Periodical Patch
Embedding (ours)

(a) The illustration of three tokenization methods (b) The case study of training on ETTh1 (Hourly, Cycle length= 24)
and testing on datasets with different scales and cycle lengths

Periodical Patch
Embedding

Fixed Patch
Embedding

Point
Embedding

Intrinsic period
（ 24 Hours）

Figure 2. (a) The illustration of three tokenization methods (Point embedding, Fixed patch embedding, Periodical patch embedding). For
example, ETTh2 and ETTm2 share the same daily intrinsic period, but their cycle lengths differ due to differences in scale. (b) The case
study of training on ETTh1 and testing on datasets with different scales and cycle lengths, all three tokenization methods recognized the
intrinsic period on the same-scale datasets. However, only periodical tokenization successfully transferred to datasets with different scales.

across different scales, resulting in inconsistent feature rep-
resentations. Additionally, it also disrupts the continuity
and structural integrity of periodic patterns. To illustrate
this point intuitively, we conducted a case study shown in
Figure 2(b). After pre-training on a single-scale dataset,
the model using the fixed tokenization recognizes the intrin-
sic period within the same scale, but significantly performs
worse when transferred to datasets with different scales. This
highlights how the fixed tokenization limits the model’s abil-
ity to leverage time series inductive biases related to scale
and intrinsic period, hindering the generalization ability
and necessitating more parameters, which in turn increases
computational costs and reduces efficiency.

In this paper, we aim to leverage the inherent inductive
biases of scale-invariant intrinsic periods in time series
data to design an efficient TSFM architecture. To achieve
this, we propose LightGTS, which effectively utilizes such
an inductive bias through adaptive periodical tokenization
and periodical parallel decoding, compressing the model’s
parameter size while ensuring high performance.

To model intrinsic period consistently across different scales,
we propose periodical tokenization, where the time series is
adaptively divided into patches based on the cycle length,
ensuring that each token captures a complete intrinsic period.
Since the intrinsic period remains constant regardless of the
scale, this approach ensures that the periodic patterns are
consistently captured, and more importantly, the semantic
information within each token remains aligned across differ-
ent scales and cycle lengths. Furthermore, an embedding
module with fixed projection cannot handle varying cycle
lengths in multi-source time series pre-training, so we intro-
duce a flex projection layer to address this issue. As shown
in Figure 2(b), the periodical tokenization allows LightGTS
to effectively generalize to datasets with varying scales and
cycle lengths, improving the flexibility and adaptability of
the model.

To better leverage the periodic patterns in the decoding
process, we introduce a non-autoregressive decoding method,
called periodical parallel decoding. Specifically, we initialize
the decoder input with the last token generated by the encoder,
consolidating all historical information. The key insight
behind this design is that the last token not only maintains
temporal continuity with future predictions but also leverages
the structural consistency between historical and forecast
horizons, enabling the effective extrapolation of periodic
patterns and generating accurate predictions. In addition,
the decoder outputs the predictions in parallel, which avoids
cumulative errors and reduces computational cost.

The two techniques above enable the model to fully leverage
the inductive bias inherent in time series data, significantly
reducing the model’s parameter size and lowering the com-
putational resource requirements. As shown in Figure 1,
LightGTS achieves state-of-the-art prediction performance
with fewer than 5 million trainable parameters, making it 10
to 100 times smaller than its counterparts.

In summary, our contributions in this paper are as follows:

• We propose a novel periodical tokenization that adap-
tively splits patches based on the intrinsic period of the
dataset, naturally extracting consistent periodic patterns
across different scales.

• We further propose a simple and effective periodical
parallel decoding which not only better leverages the pe-
riodicity of time series data but also avoids cumulative
errors and reduces the computational cost.

• Based on the techniques above, we present Light-
GTS, which fully leverages the inductive bias of
time series data, making it achieve state-of-the-art
predictive accuracy with less trainable parameters.
Moreover, our code and pre-trained model check-
points are available at https://github.com/
decisionintelligence/LightGTS.

2

https://github.com/decisionintelligence/LightGTS
https://github.com/decisionintelligence/LightGTS

LightGTS: A Lightweight General Time Series Forecasting Model

2. Related Work
2.1. Time Series Forecasting
Early time series forecasting (TSF) methods relied on sta-
tistical techniques like ARIMA (Box & Pierce, 1970) and
VAR (Godahewa et al., 2021a). With machine learning
advancements, methods such as GBoost (Chen & Guestrin,
2016) and LightGBM (Ke et al., 2017) emerged but re-
quired manual feature engineering. Leveraging the rep-
resentation learning capabilities of deep neural networks
(DNNs), models like Pathformer (Chen et al., 2024), and
PatchTST (Nie et al., 2023) have surpassed traditional meth-
ods in forecasting accuracy. Recently, LLM-based methods
like Time-LLM (Jin et al., 2023) and GPT4TS (Zhou et al.,
2023) promise by leveraging LLMs’ capabilities to capture
complex time series patterns. Additionally, pre-training
on multi-domain time series data has gained significant
attention, with notable approaches such as MOIRAI (Woo
et al., 2024b) and UniTS (Gao et al., 2024), demonstrating
promising results.

2.2. Tokenization in Time Series Foundation Models
Tokenization strategies are essential for TSFMs to transform
raw data into structured input. The two primary methods,
Point Embedding and Fixed Patch Embedding, offer distinct
advantages. Point Embedding based models (Ansari et al.,
2024) encodes individual time steps as a distinct token,
preserving fine-grained details for short-term dependencies
but struggling with long-term patterns and noise. Fixed
Patch Embedding segments the time series into fixed-length
patches and embeds each patch as a single token. This
tokenization technique improves computational efficiency,
and captures aggregated patterns, making it well-suited for
long-term dependencies and Transformer-based models such
as Timer (Liu et al., 2024) and TimesFM (Das et al., 2023).
However, neither the fixed tokenization above can deal with
the varying scales and intrinsic periods in multi-source time
series pre-training, limiting the generalization of the TSFMs.

2.3. Decoding in Time Series Foundation Models
Decoding strategies influence how TSFMs generate future
values. Key approaches include: i) Autoregressive decod-
ing (Shi et al., 2024; Ansari et al., 2024), where models
predict sequentially, but suffer from slow inference and error
accumulation. ii) MLP decoding, which predicts all future
values simultaneously using flatten head, allowing parallel
computation, but lacking flexibility for arbitrary forecasting
horizons. iii) Masked autoencoders (Goswami et al., 2024;
Gao et al., 2024), which train models to reconstruct missing
values, improving temporal representation but relying on
reconstruction loss and requiring large-scale data. Unlike
these, our periodical parallel decoding combines flexibility
and efficiency, while also making better use of the periodicity
in time series data.

3. Methodology
Problem Formulation Given a multivariate time series
X𝑡 = {x𝑖

𝑡−𝐿:𝑡 }
𝐶
𝑖=1, where each x𝑖

𝑡−𝐿:𝑡 ∈ R𝐿 is a sequence
of observations. 𝐿 denotes the look-back window and 𝐶
denotes the number of channels. The forecasting task is to
predict the future values Ŷ𝑡 = {x̂𝑖

𝑡:𝑡+𝐹 }
𝐶
𝑖=1, where 𝐹 denotes

the forecast horizon. Y𝑡 = {x𝑖
𝑡:𝑡+𝐹 }

𝐶
𝑖=1 is the ground truth.

The general time series forecasting model is pre-trained
with multi-source datasets Dpre-train = {(X 𝑗

𝑡 ,Y
𝑗
𝑡)}𝑁𝑗=1, where

𝑁 is the number of datasets. For the downstream task,
the model is fine-tuned with a training dataset Dtrain =

{(Xtrain
𝑡 ,Ytrain

𝑡)}, and is tested with Dtest = {(Xtest
𝑡 ,Ytest

𝑡)} to
predict Ŷtest

𝑡 , where Dpre-train, Dtrain and Dtest are pairwise
disjoint. Alternatively, the model could be directly tested
using Dtest without fine-tuning with Dtrain to predict Ŷtest

𝑡 .

3.1. Architecture
As shown in Figure 3, LightGTS enhances time series mod-
eling through periodical tokenization, which comprises two
coordinated components: (1) adaptive Periodical Patching to
segment sequences with different scales into period patches,
and (2) the Flex Projection Layer to embed period patches
with various lengths into a shared semantic space. Integrated
with the Transformer Encoder-Decoder, this approach first
identifies intrinsic periodicities to generate period patches.
The Flex Projection Layer then dynamically adjusts patch em-
bedding weights, transforming diverse-length patches into
dimensionally consistent tokens while retaining periodic
semantics.

Once the patches are embedded into tokens, the tokens
are then passed into the Transformer encoder to model the
periodical patterns within the input time series. Notably,
instead of relying on autoregressive methods, we employ
a periodical parallel decoding approach(PPD) to construct
the input for the Transformer decoder. This not only allows
for more efficient and parallelizable processing of the se-
quence, but also better accommodates periodic modeling
by automatically aligning periodic features between input
and output sequences. Finally, the tokens generated by the
Transformer decoder are transformed into prediction results.

3.1.1. Periodical Tokenization
Periodical Patching: For the simplicity of notations, we use
a univariate time series for description, and the method can
be easily extended to multivariate cases by considering each
variable independently. Given a collection of time series
from multi-source datasets where each x ∈ R𝐿 exhibits its
own intrinsic period during pre-training, we first identify
the cycle length 𝑃 (data points per intrinsic period) for each
x via periods-finding.

𝑃 = PeriodsFinding(x) (1)

3

LightGTS: A Lightweight General Time Series Forecasting Model

Periodical Patching

Flex Projection Input Layer

…

𝑳…

Transformer Encoder
(No masking)

𝑳…𝑳𝑳𝑳𝑳

…

Flex Projection Output Layer

𝑳

Replicate
𝑲 times

Reweighting

Causal Attention

Cross Attention

Feed-Forward

Add&Norm

Add&Norm

Periods
Finding

Patch
Embedding
Weights

Flex
Resize

Flex
Resize

P1 P2

𝑲 = 𝑭/𝑷

𝑳 𝑳 𝑳 … 𝑳

𝑳

𝑳 𝑳 𝑳 𝑳 𝑳…

𝝎 𝝉 =
𝟏
𝒆𝝉

Transformer
Decoder

Periodical Parallel DecodingPeriodical Tokenization

Patching Patching
P2

Tokens Tokens

Figure 3. LightGTS architecture.

It is worth noting when prior knowledge of the input series is
available, the cycle length can be inferred using information
such as the sampling rate. In the absence of prior knowledge,
the cycle length can also be deduced using methods such as
Fast Fourier transform (FFT) (Wu et al., 2022).

After obtaining the cycle length 𝑃, the input series x is seg-
mented into non-overlapping period patches X𝑝 ∈ R𝑃×𝑁 ,
where 𝑁 is the number of the patches, 𝑁 = ⌊𝐿/𝑃⌋. Each
patch aligns precisely with the data’s intrinsic periodic in-
terval, ensuring that one patch encapsulates a full cycle. By
doing so, time series of varying scales are interpreted within
a unified period-aligned semantic space, eliminating inter-
ference from varying sampling rates and enabling coherent
cross-source pattern learning during pre-training.

Flex Projection Layer: Each period patch preserves local
periodic semantic information after segmenting the time
series using the Period Patching mechanism. Then, the patch
embedding projection transforms the period patches into
tokens. However, time series from multi-source datasets
exhibit diverse intrinsic periods and scales, leading to sig-
nificant variation in patch sizes. Therefore, the fixed patch
embedding projection struggles to process varying patch
sizes. A straightforward approach is to resize the weights
of patch embedding projection directly using methods like
linear interpolation to accommodate different patch sizes.
However, the simple linear interpolation may introduce bi-
ases into the resulting tokens, which may degrade model
performance, as discussed below.

Consider processing the same dataset with two different
scales, periodical patching on the dataset yields patches of
two different sizes: x ∈ R𝑃 and x′ ∈ R𝑃

′ . Based on the scale
difference, we assume a linear interpolation relationship
between these patches and have x′ = Interp𝑃′

𝑃 (x). Suppose
we already have the original patch embedding weights 𝜃 ∈
R𝑃×𝐷 tailored for projecting x. Then we want to get the
embedding projection weights 𝜃′ for x′ that satisfies x·𝜃 = x′ ·
𝜃′. In a straightforward way, the original 𝜃 should be resized
through interpolation to obtain 𝜃′ = Interp𝑃′

𝑃 (𝜃) ∈ R𝑃
′×𝐷 to

handle the input x′ with a different patch size 𝑃′. However,
this simple linear interpolation in embedding projection
introduces substantial distortions in token representations
and causes x · 𝜃 ≠ x′ · 𝜃′. Such changes hinder the ability
to adapt a pre-trained backbone, designed for a fixed patch
size, to process inputs with varying patch sizes effectively.

We then discuss the proposed Flex Projection to address
such inconsistency of token representations across different
scales. Note that the linear interpolation can be formalized
as a linear transformation:

Interp(x)𝑃′
𝑃 = x · A, (2)

where A ∈ R𝑃×𝑃
′ represents the linear transformation matrix

that resizes a vector x with length 𝑃 to length 𝑃′ by linear
interpolation. The ideal objective of Flex Projection is
to preserve token consistency across scales by deriving
adjusted embedding weights 𝜃′ that satisfy x · 𝜃 = x′ · 𝜃′
when processing inputs at varying scales. Thus, we hope to
find a new set 𝜃′ under the following optimization objective:

𝜃′ = arg min
𝜃 ′

E𝑥∼X [| |x · 𝜃 − xA · 𝜃′ | |2𝐹], (3)

where X is some distribution over the input patches, | | · | |𝐹
is the Frobenius norm of a vector. In Section 3.2, we ex-
tend our analysis to account for shifts in patch distributions
and theoretically demonstrate that the adjusted embedding
weights must satisfy 𝜃′ = 𝛿−1 (A)+𝜃 to preserve token consis-
tency. The term 𝛿 =

√︃
𝑃
𝑃′ is the upper bound of the variation

in the variances between x and x · A, where ()+ denotes
the Moore-Penrose pseudoinverse of the matrix. Thus, we
define flex-resize as:

Flex-resize(𝜃)𝑃′
𝑃 = 𝛿−1 (A)+𝜃 (4)

The flex-resize ensures the equivalence of patch embeddings
across different patch sizes while preserving the stability
of statistical characteristics. Leveraging the flex-resize, we
propose the Flex Projection Layer which adapts to vary-
ing cycle lengths without compromising the performance.

4

LightGTS: A Lightweight General Time Series Forecasting Model

Specifically, we define two underlying parameter matri-
ces for the input layer and output layer: 𝜃e ∈ R𝑃

∗×𝐷 and
𝜃d ∈ R𝑃

∗×𝐷 , where 𝑃∗ represents a predefined reference
patch size, and 𝐷 is the latent dimension. These learnable
parameters are dynamically resized with the resize transfor-
mation 𝛿−1 (A)+ ∈ R𝑃∗×𝑃 during the forward pass to match
the required patch size for each time series. Using the re-
sized patch embedding, we then map the patches Xp into the
Transformer latent space to obtain the tokens Xe ∈ R𝐷×𝑁 :

Xe = Xp · Flex-resize(𝜃e)𝑃𝑃∗ , (5)

3.1.2. Encoding and Decoding
Similarly to the original Transformer, our encoder and
decoder modules are composed of Feed-Forward Networks
and Multi-Head Attention modules. Notably, we leverage
Rotary Positional Encoding (RoPE) (Su et al., 2021) in
the attention modules to enhance the modeling of relative
positional information between tokens.

Encoding: After obtaining the projected tokens Xe =

{x1
e , x2

e , ...x𝑁e } ∈ R𝐷×𝑁 , where the superscript 𝑖 in x𝑖e de-
notes the i-th token, we incorporate RoPE into the attention
mechanism to represent the relative positional information
across different tokens. For brevity, we leave layers, atten-
tion head indices, and the scaling factor. Let x𝑖e and x 𝑗e
be the query and key vectors at positions 𝑖 and 𝑗 , respec-
tively. The transformed query and key vectors are WQx𝑖e
and WKx 𝑗e , where WQ ∈ R𝐷×𝐷 and WK ∈ R𝐷×𝐷 are learn-
able projections for queries and keys. The rotation matrix
R𝑖− 𝑗 ∈ R𝑁×𝑁 is then applied to adjust their relationship,
and the similarity score is computed as:

S𝑖 𝑗 = (WQx𝑖e)𝑇R𝑖− 𝑗 (WKx 𝑗e), (6)

The similarity scores S𝑖 𝑗 ∈ R are then normalized using
the Softmax function and combined with the value vectors
WVx 𝑗e to compute the attention output, where WV ∈ R𝐷×𝐷 .

Attn𝑖 =
∑︁
𝑗

exp{S𝑖 𝑗 }∑
𝑘 exp{S𝑖𝑘}

(WVx 𝑗e), (7)

Finally, each token is processed through a Feed-Forward
Network (FFN) to extract features, resulting in the latent
representation E = {e 𝑗 } ∈ R𝐷×𝑁 , 𝑗 = 1, . . . , 𝑁 .

Periodical Parallel Decoding: Periodical tokenization ef-
fectively extracts periodical information. To further leverage
the periodical information in the decoding process, we pro-
pose periodical parallel decoding, a novel non-autoregressive
decoding method. Given that the last token generated by
the encoder not only retains the relevant intrinsic periodic
characteristics but also consolidates historical information,
we use it as the decoder’s input to guide prediction process.

In contrast to autoregressive decoding, we replicate the
last token of the latent representation, denoted as e𝑁 ∈

R𝐷×1, resulting in H = {h 𝑗 } ∈ R𝐷×𝐾 , 𝑗 = 1, ..., 𝐾, where
𝐾 = ⌈𝐹/𝑃⌉ is the number of tokens corresponding to the
prediction length. Additionally, the influence of the last token
on the predicted sequence decreases as the prediction length
grows. To account for this, we apply a reweighting function
𝜔(𝜏) to the tokens in H, where 𝜏 denotes the position index
of each token. Thus, the set of tokens H is weighted as
𝜔(𝑗) h 𝑗 . Ultimately, all tokens are simultaneously input
into the Decoder:

Z = Decoder
(
{𝜔(𝑗) h 𝑗 },E

)
, 𝜔(𝜏) = 1

𝑒𝜏
, (8)

Ŷ = Flex-resize(𝜃d)𝑃
∗

𝑃 · Z, (9)

where Z ∈ R𝐷×𝐾 is the output of the Decoder. Finally,
predictions are obtained through the Flex Projection Layer.

3.1.3. Loss Functions
In alignment with current mainstream practices in the field,
we adopt the classic Mean Squared Error (MSE) as the
loss function for LightGTS. This function measures the
discrepancy between the predicted values Ŷ and the actual
ground truth Y. It is formulated as:

LMSE = | |Y − Ŷ| |2𝐹 . (10)

3.2. Theoretical Analysis
In Section 3.1.1, we have described that linear interpolation
may change the effectiveness of patching embedding:

Interp(x)𝑃′
𝑃 = x · A, (11)

where A ∈ R𝑃×𝑃
′ represents the linear mapping matrix.

This operation resizes a vector with length 𝑃 to length
𝑃′ by linear interpolation. To pursue the equivalence of
patching embedding, we hope to find a new set of 𝜃′ under
the optimization problem defined by Theorem 3.1.

Theorem 3.1. Patching embedding can be treated as a
linear projection on patch x with parameters 𝜃. To preserve
token consistency across scales, 𝜃′ is solved for keeping the
minimum Euclidean distance between projected vectors:

𝜃′ = arg min
𝜃 ′

Ex∼X [| |x · 𝜃 − xA · 𝜃′ | |2𝐹], (12)

where X is some distribution over the patches, | | · | |𝐹 is
the Frobenius norm of a vector. Furthermore, to keep
the distributional consistency, we refine the optimization
problem as Proposition 3.2.

Proposition 3.2. Time series pre-trained models utilize
normalization during pretraining, thus they learn fixed
distribution over patches which is susceptible to slight effects
from interpolation. Therefore, additional normalization is

5

LightGTS: A Lightweight General Time Series Forecasting Model

needed to align the distributions of projected patches with
the pre-trained backbones:

𝜃′ = arg min
𝜃 ′

Ex∼X [| |x · 𝜃 − 𝑛𝑜𝑟𝑚(xA) · 𝜃′ | |2𝐹], (13)

Since Revin normalization (X = N(0, 𝐼)) and linear interpo-
lation does not change the mean values, the 𝑛𝑜𝑟𝑚 operation
can be further expressed as multiplying by a constant 𝛿 to
eliminate the variation in variances:

𝜃′ = arg min
𝜃 ′

Ex∼X [| |x · 𝜃 − 𝛿xA · 𝜃′ | |2𝐹] (14)

= arg min
𝜃 ′

Ex∼X [| |x · (𝜃 − 𝛿A𝜃′) | |2𝐹] (15)

= arg min
𝜃 ′

Ex∼X [(𝜃 − 𝛿A𝜃′)𝑇x𝑇x(𝜃 − 𝛿A𝜃′)] (16)

= arg min
𝜃 ′

(𝜃 − 𝛿A𝜃′)𝑇Ex∼X [xx𝑇] (𝜃 − 𝛿A𝜃′) (17)

= arg min
𝜃 ′

| |𝜃 − 𝛿A𝜃′ | |2Σ (18)

In Proposition 3.2, 𝐸x∼X [xx𝑇] denotes the uncentered co-
variance matrix, | |𝑣 | |2

Σ
= 𝑣𝑇Σ𝑣 is the quadric form of 𝑣.

Since we only consider the case X = N(0, 𝐼), 𝐸x∼X [xx𝑇] is
also the covariance matrix. And the optimization objective
can be formulated as a least squares solution to a linear
system of equations:

𝜃′ = arg min
𝜃 ′

| |𝜃 − 𝛿A𝜃′ | |2𝐹 . (19)

Singular value decomposition (SVD) technique is widely
applied to obtain approximate or exact solutions to the
aforementioned optimization problem, with the general
solution being related to the Moore-Penrose pseudoinverse:

𝜃′ = 𝛿−1 (A)+𝜃, (20)

where the 𝛿 =

√︃
𝑃
𝑃′ is the upper bound of the variation in

the variances between x and x · A.

In summary, the process can be treated as conducting a resize
transformation 𝛿−1 (A)+ on the weights 𝜃 of projection layers.
It works in a no-learning way by solving the optimization
problem above, which saves computational overhead.

4. Experiments
4.1. Experimental Setup
Pre-training datasets. To pre-train a general time series
forecasting model effectively, we collect a substantial number
of publicly available datasets spanning diverse domains,
including energy, nature, health, transportation, web, and
economics. Detailed information about these datasets is
provided in Appendix A.1.

Evaluation datasets. To ensure comprehensive and fair com-
parisons across different models, we conduct experiments

on nine widely recognized forecasting benchmarks as target
datasets, all strictly exclusive from the pre-training datasets.
These benchmarks include Weather, Traffic, Electricity, So-
lar, Exchange, and the four subsets of ETT, spanning multiple
domains to validate model generalizability.

Baselines. We select five foundation models for compari-
son in zero-shot setting, including Timer (Liu et al., 2024),
MOIRAI (Woo et al., 2024b), Chronos (Ansari et al., 2024),
TimesFM (Das et al., 2023), Time-MoE (Goswami et al.,
2024). We also select state-of-the-art deep time series mod-
els as baselines in full-shot setting, including PDF (Dai et al.,
2024), iTransformer (Liu et al., 2023), Pathformer (Chen
et al., 2024), FITS (Xu et al., 2023), TimeMixer (Wang et al.,
2024a), and PatchTST (Nie et al., 2022).

Setup. Following prior studies, we use Mean Squared
Error (MSE) and Mean Absolute Error (MAE) as evaluation
metrics. All methods predict future values for lengths
𝐹 = {96, 192, 336, 720}. We have pre-trained two variants
of LightGTS: LightGTS-tiny with 1 million parameters
and LightGTS-mini with 4 million parameters. Additional
implementation details are provided in Appendix A.

4.2. Zero-shot Forecasting
To ensure a fair comparison, we conduct zero-shot predic-
tions for each foundational model on downstream datasets
not included in their pre-training data. As shown in Table 1,
LightGTS-mini consistently achieves the state-of-the-art per-
formance, delivering an average MSE reduction of over 30%
compared to the most competitive baselines. Remarkably,
even with fewer parameters, LightGTS-tiny still outperforms
across the majority of datasets, achieving an average MSE
reduction of 27%. Furthermore, LightGTS demonstrates
superior performance compared to baselines with hundreds
of millions of parameters. Specifically, it achieves average
MSE reductions of 27% and 28% compared to Chronos
and MOIRAI, respectively, and a relative improvement of
17% over Time-MoE. This highlights LightGTS’s ability
to effectively exploit the inherent inductive biases of time
series data, enabling exceptional performance even with
significantly fewer parameters.

4.3. Full-shot Forecasting
As shown in Table 2, we present the results of the LightGTS
in full-shot and zero-shot settings, and compare with other
baselines in full-shot setting. Key observations are sum-
marized as follows. First, as a general forecasting model,
LightGTS achieves superior performance compared to the
six state-of-the-art baselines with full-data training, achiev-
ing an average MSE reduction of 7%. Second, we observe
that LightGTS in zero-shot setting significantly outperforms
the baselines in full-shot setting across five datasets. This
observation validates the strong transferability of LightGTS
pre-trained on large multi-source data.

6

LightGTS: A Lightweight General Time Series Forecasting Model

Table 1. Full results of zero-shot forecasting experiments. The average results of all predicted lengths are listed here. Lower MSE or MAE
values indicate better predictions. A dash (’-’) denotes datasets included in the model’s pretraining and therefore excluded from testing.
Red: the best, Blue: the 2nd best.

Models LightGTS-tiny LightGTS-mini Timer
(2024)

MOIRAI
(2024)

Chronos
(2024)

TimesFM
(2024)

Time-MoE
(2025)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.345 0.378 0.327 0.37 0.768 0.568 0.39 0.389 0.551 0.453 0.435 0.418 0.376 0.406
ETTm2 0.249 0.318 0.247 0.316 0.315 0.356 0.276 0.32 0.293 0.331 0.347 0.36 0.315 0.365
ETTh1 0.401 0.424 0.388 0.419 0.562 0.483 0.51 0.469 0.533 0.452 0.479 0.442 0.394 0.420
ETTh2 0.362 0.397 0.348 0.395 0.370 0.400 0.354 0.377 0.392 0.397 0.400 0.403 0.403 0.415
Traffic 0.610 0.399 0.561 0.381 0.613 0.407 - - 0.615 0.421 - - - -

Weather 0.219 0.266 0.208 0.256 0.292 0.313 0.26 0.275 0.288 0.309 - - 0.270 0.300
Exchange 0.345 0.395 0.347 0.396 0.392 0.425 0.385 0.417 0.370 0.412 0.390 0.417 0.432 0.454

Solar 0.219 0.305 0.191 0.271 0.771 0.604 0.714 0.704 0.393 0.319 0.500 0.397 0.411 0.428
Electricity 0.233 0.319 0.213 0.308 0.297 0.375 0.188 0.273 - - - - - -

Table 2. The results of LightGTS-mini in zero-shot and full-shot setting and other baselines in full-shot setting. The average results of all
predicted lengths are listed here. Lower MSE or MAE values indicate better predictions. Red: the best, Blue: the 2nd best.

Models LightGTS-mini
(zero-shot)

LightGTS-mini
(full-shot)

PDF
(2024)

iTransformer
(2024)

Pathformer
(2024)

FITS
(2024)

TimeMxier
(2024)

PatchTST
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.327 0.370 0.321 0.361 0.342 0.376 0.347 0.378 0.357 0.375 0.357 0.377 0.356 0.380 0.349 0.381
ETTm2 0.247 0.316 0.239 0.303 0.250 0.313 0.258 0.318 0.253 0.309 0.254 0.313 0.257 0.318 0.256 0.314
ETTh1 0.388 0.419 0.388 0.413 0.407 0.426 0.440 0.445 0.417 0.426 0.408 0.427 0.427 0.441 0.419 0.436
ETTh2 0.348 0.395 0.335 0.377 0.347 0.391 0.359 0.396 0.360 0.395 0.335 0.386 0.347 0.394 0.351 0.395
Traffic 0.561 0.381 0.393 0.259 0.395 0.270 0.397 0.281 0.416 0.264 0.429 0.302 0.410 0.279 0.397 0.275

Weather 0.208 0.256 0.207 0.244 0.227 0.263 0.232 0.270 0.225 0.258 0.244 0.281 0.225 0.263 0.224 0.261
Exchange 0.347 0.396 0.322 0.383 0.350 0.397 0.321 0.384 0.384 0.414 0.349 0.396 0.385 0.418 0.322 0.385

Solar 0.191 0.271 0.179 0.220 0.200 0.263 0.202 0.260 0.204 0.228 0.232 0.268 0.203 0.261 0.200 0.284
Electricity 0.213 0.308 0.156 0.248 0.160 0.253 0.163 0.258 0.168 0.261 0.169 0.265 0.185 0.284 0.171 0.270

4.4. Efficiency Advantages of LightGTS
In addition to its excellent prediction performance, another
notable advantage of LightGTS is its lightweight nature. Pre-
viously, Figure 1 visualized the parameter-performance com-
parison of LightGTS with other TSFMs. Table 3 presents a
more comprehensive efficiency comparison between Light-
GTS and other TSFMs in terms of both static and runtime
metrics. It is evident that LightGTS significantly outper-
forms other models in terms of static metrics such as the
number of parameters and Multiply–Accumulate Operations
(MACs), being over ten times smaller than the next best
model. This characteristic allows LightGTS to be deployed
on devices with limited computational resources. Further-
more, in terms of runtime metrics such as Max Memory and
Inference Time, LightGTS significantly outperforms other
TSFMs, rivaling existing small models (i.e., PatchTST).

Table 3. Static and runtime performance metrics of LightGTS and
other baselines on the ETTm1 dataset, evaluated with a forecast
horizon of 720 and a batch size of 1.

Models Parameters MACs Max Mem.(MB) Inference Time (s)

Time-MoE 453 M 5252.9 G 14131 2.13
TimesFM 200 M 624.9 G 1395 0.16
Chronos 700 M 92327.9 G 10269 34.33
MOIRAI 300 M 97.36 G 2009 0.1

Timer 67.4 M 52.6 G 1435 0.08

PatchTST 6.3 M 225 M 672 0.01
LightGTS 4 M 213 M 713 0.01

4.5. Ablation Studies
Effectiveness of Periodical Tokenization To validate the
effectiveness of periodical tokenization, we conducted exper-
iments comparing fixed patching and periodical patching on
models with different decoding methods. The results, shown
in Table 4, demonstrate that periodical patching consistently
outperforms fixed patching across all datasets. Furthermore,
periodical patching provides significant improvements re-
gardless of the decoding method used, highlighting its strong
generalization capability.

Table 4. Ablations on key components of LightGTS in zero-shot
setting, including periodical tokenization, and periodical parallel
decoding. The average results of all predicted lengths are listed.

Dataset ETT-avg Weather Electricity Traffic

Decoding Patching MSE MAE MSE MAE MSE MAE MSE MAE

AR Fixed 0.442 0.430 0.265 0.293 0.231 0.326 0.630 0.411
AR Periodical 0.341 0.384 0.226 0.270 0.229 0.319 0.634 0.410

MAE Fixed 0.537 0.489 0.339 0.349 0.372 0.428 0.803 0.534
MAE Periodical 0.388 0.417 0.260 0.301 0.322 0.392 0.746 0.484

PPD Fixed 0.436 0.427 0.262 0.288 0.226 0.315 0.621 0.403
PPD Periodical 0.328 0.375 0.208 0.256 0.213 0.308 0.561 0.381

Effectiveness of Periodical Parallel Decoding To further
validate the effectiveness of our periodical parallel decoding
(PPD) method, we conducted an ablation study by replac-
ing it with mainstream autoregressive (AR) decoding and

7

LightGTS: A Lightweight General Time Series Forecasting Model

masked autoencoder (MAE) decoding. The results, shown
in Table 4, indicate that PPD consistently outperforms both
AR and MAE decoding under both fixed patching and peri-
odical patching strategies. Among the three methods, MAE
achieved the poorest performance, likely due to a task gap
between its upstream reconstruction objective and the down-
stream prediction task. Furthermore, we observed that PPD
only slightly outperforms AR when using fixed patching,
primarily because PPD avoids the accumulation of errors
in long-step predictions. However, with periodical patch-
ing, the performance gain of PPD over AR becomes more
pronounced, as PPD better exploits the inherent periodicity.

4.6. Model Analasis
Impact of the Reference Patch Size

LightGTG introduces a hyperparameter 𝑃∗ in the flex projec-
tion layer, namely the predefined reference patch size before
resizing. To evaluate its impact on the performance of Light-
GTS, we conducted an ablation study using four different
reference patch sizes. The experimental results presented in
Table 5 demonstrate consistently stable performance across
all evaluated patch sizes, indicating that the model exhibits
strong insensitivity to the selection of 𝑃∗. Therefore, we set
the default value to 48 in all experiments empirically.

Table 5. MSE results of LightGTS with varied hyperparameters
of reference patch size 𝑃∗. The average results of all predicted
lengths are listed here.

Models ETT-avg Weather Electricity Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE

𝑃∗ = 24 0.335 0.380 0.213 0.262 0.217 0.312 0.563 0.384
𝑃∗ = 48 0.328 0.375 0.208 0.256 0.213 0.308 0.561 0.381
𝑃∗ = 96 0.331 0.375 0.210 0.256 0.217 0.307 0.566 0.388
𝑃∗ = 192 0.334 0.377 0.212 0.258 0.212 0.304 0.566 0.385

Impact of the Replicated Token Choosing Since the initial-
ization of the decoder input is crucial for non-autoregressive
decoding (Gu et al., 2017), we select the last encoder to-
ken as the input. To validate this choice, we experiment
with replacing it using other tokens, such as the learnable
embedding, the CLS token, and the mean of the encoder
tokens. As shown in Table 6, the last encoder token yields
the best performance, likely due to its better alignment with
the periodicity and greater relevance to the prediction task.

Table 6. MSE results of LightGTS with different replicated tokens.
The average results of all predicted lengths are listed here

Dataset ETT-avg Weather Electricity Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE

LightGTS-learn 0.342 0.383 0.278 0.325 0.231 0.326 0.627 0.410

LightGTS-cls 0.343 0.385 0.341 0.371 0.234 0.329 0.634 0.415

LightGTS-mean 0.404 0.433 0.328 0.350 0.273 0.361 0.703 0.464

LightGTS-last 0.328 0.375 0.208 0.256 0.213 0.308 0.561 0.381

Robustness across Different Resolusions In our experi-
ments, we evaluated Timer, Time-MoE, and LightGTS on

the same datasets (ETT1 and ETT2) with different sampling
granularities while predicting the same time horizon (96
hours) in zero-shot setting. As shown in Figure 4, the re-
sults show that Timer and Time-MoE exhibit significant
performance variation when faced with different sampling
granularities, whereas LightGTS maintains stable perfor-
mance. This further supports the idea that existing time
series foundation models are unable to handle the variations
in scale within time series datasets. In contrast, Light-
GTS, by understanding the time series from its intrinsic
period, remains unaffected by changes in dataset scale, thus
maintaining stable performance across different sampling
granularities.

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.25h 0.5h 1h 2h 4h
M

SE
Sampling Granularity

LightGTS Time-MoE Timer

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.25h 0.5h 1h 2h 4h

M
SE

Sampling Granularity

ETT2 ETT1

Figure 4. Comparisons of robustness across different sampling
granularities between LightGTS, Timer, and Time-MoE in the
zero-shot setting.

Representation Learning of the Periodical Tokenization
As shown in Figure 5, we compare token representation sim-
ilarity between Timer (fixed patch size=96) and LightGTS
on solar with a daily intrinsic period under varying sampling
granularities. At 10-minute sampling (cycle length=144),
Timer’s fixed patch fails to align with the full cycle, resulting
in low inter-token similarity. Conversely, at 30-minute sam-
pling (cycle length=48), patch size accidentally spans two
full cycles, leading to high similarity. This inconsistency
reveals the limitation of fixed tokenization in multi-scale
temporal modeling. In contrast, LightGTS uses periodical
tokenization, which produces the same number of tokens re-
gardless of the sampling granularities, leading to consistent
token representations across sampling granularities.

(a) Timer (Fixed Tokenization) (b) LightGTS (Periodcial Tokenization)

\10min \30min \10min \30min

Figure 5. Similarity of token representation across various sam-
pling granularities in Fixed (Timer) versus Periodical (LightGTS)
Tokenization.

8

LightGTS: A Lightweight General Time Series Forecasting Model

5. Discussion
5.1. LightGTS Compared to TTMs

TTMs incorporates novel hierarchical patch merging and res-
olution prefix tuning techniques to achieve better results. The
LightGTS are indeed quite different from TTMs, including:

• Flexibility: TTMs have fixed input and output formats,
which imposes limitations in downstream applications.
In contrast, LightGTS supports flexible input and output
configurations.

• Adaptive Patching: While TTMs employ adaptive
patching through CV-inspired patch merging techniques
to capture multi-scale features, they remain constrained
by predefined patch sizes. LightGTS, however, lever-
ages periodical patching that adaptively segments time
series based on the intrinsic periods. This approach
enables LightGTS to achieve unified modeling across
datasets with varying scales.

5.2. LightGTS Compared to MOIRAI

While MOIRAI’s predefined patch sizes based on sampling
frequency offer some solutions for consistent modeling
across different frequencies, they are still fixed and lack
flexibility in certain scenarios. In contrast, Periodical Patch-
ing adaptively divides patches according to scale-invariant
periodicity, enabling more flexible and unified modeling for
datasets with varying frequencies.

6. Conclusion
In this work, we propose LightGTS, a lightweight general
time series forecasting model leveraging the inductive bias
of scale-invariant intrinsic periods in time series data. Light-
GTS integrates adaptive periodical tokenization and periodi-
cal parallel decoding technique to enhance the generalization
capability while maintain high efficiency. Our experiments
show that LightGTS, using only 4 million parameters and
achieving 10 to 100 times size reduction compared to coun-
terparts, consistently attains superior performance in both
zero-shot and full-shot settings.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
This work was partially supported by National Natural Sci-
ence Foundation of China (62372179, 62406112). Chenjuan
Guo is the corresponding author of the work.

References
Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado,

P., Shen, H., Shchur, O., Rangapuram, S. S., Arango, S. P.,
Kapoor, S., et al. Chronos: Learning the language of time
series. arXiv preprint arXiv:2403.07815, 2024.

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J.,
Bostrom, A., Southam, P., and Keogh, E. The uea mul-
tivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Box, G. E. and Pierce, D. A. Distribution of residual auto-
correlations in autoregressive-integrated moving average
time series models. Journal of the American statistical
Association, 65(332):1509–1526, 1970.

Chen, P., Zhang, Y., Cheng, Y., Shu, Y., Wang, Y., Wen, Q.,
Yang, B., and Guo, C. Pathformer: Multi-scale transform-
ers with adaptive pathways for time series forecasting. In
ICLR, 2024.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In SIGKDD, pp. 785–794, 2016.

Dai, T., Wu, B., Liu, P., Li, N., Bao, J., Jiang, Y., and Xia,
S.-T. Periodicity decoupling framework for long-term
series forecasting. In ICLR, 2024.

Das, A., Kong, W., Sen, R., and Zhou, Y. A decoder-
only foundation model for time-series forecasting. arXiv
preprint arXiv:2310.10688, 2023.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. The ucr time series archive. IEEE/CAA Journal of
Automatica Sinica, 6(6):1293–1305, 2019.

Gao, S., Koker, T., Queen, O., Hartvigsen, T., Tsiligkaridis,
T., and Zitnik, M. Units: Building a unified time series
model. arXiv preprint arXiv:2403.00131, 2024.

Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J.,
and Montero-Manso, P. Monash time series forecasting
archive. arXiv preprint arXiv:2105.06643, 2021a.

Godahewa, R., Bergmeir, C., Webb, G. I., Hyndman, R. J.,
and Montero-Manso, P. Monash time series forecasting
archive. arXiv preprint arXiv:2105.06643, 2021b.

Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., and
Dubrawski, A. Moment: A family of open time-series
foundation models. arXiv preprint arXiv:2402.03885,
2024.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R.
Non-autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281, 2017.

9

LightGTS: A Lightweight General Time Series Forecasting Model

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X.,
Chen, P.-Y., Liang, Y., Li, Y.-F., Pan, S., et al. Time-llm:
Time series forecasting by reprogramming large language
models. arXiv preprint arXiv:2310.01728, 2023.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye,
Q., and Liu, T.-Y. Lightgbm: A highly efficient gradient
boosting decision tree. NeurIPS, 30, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Confer-
ence on Machine Learning (ICML 2000), pp. 1207–1216,
Stanford, CA, 2000. Morgan Kaufmann.

Li, Z., Qiu, X., Chen, P., Wang, Y., Cheng, H., Shu, Y., Hu,
J., Guo, C., Zhou, A., et al. Tsfm-bench: Comprehensive
and unified benchmarking of foundation models for time
series forecasting. In SIGKDD, 2025.

Lin, S., Lin, W., Hu, X., Wu, W., Mo, R., and Zhong, H.
Cyclenet: Enhancing time series forecasting through mod-
eling periodic patterns. CoRR, abs/2409.18479, 2024a.

Lin, S., Lin, W., Wu, W., Chen, H., and Yang, J. Sparsetsf:
Modeling long-term time series forecasting with *1k*
parameters. In ICML, 2024b.

Liu, M., Zeng, A., Chen, M., Xu, Z., Lai, Q., Ma, L., and
Xu, Q. Scinet: Time series modeling and forecasting
with sample convolution and interaction. NeurIPS, 35:
5816–5828, 2022.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L.,
and Long, M. itransformer: Inverted transformers are
effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., and Long,
M. Timer: Transformers for time series analysis at scale.
arXiv preprint arXiv:2402.02368, 2024.

McCracken, M. W. and Ng, S. Fred-md: A monthly database
for macroeconomic research. Journal of Business &
Economic Statistics, 34(4):574–589, 2016.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. arXiv preprint arXiv:2211.14730, 2022.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J.
A time series is worth 64 words: Long-term forecasting
with transformers. In ICLR, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. NeurIPS, 32, 2019.

Qiu, X., Hu, J., Zhou, L., Wu, X., Du, J., Zhang, B., Guo,
C., Zhou, A., Jensen, C. S., Sheng, Z., and Yang, B. Tfb:
Towards comprehensive and fair benchmarking of time
series forecasting methods. In Proc. VLDB Endow., pp.
2363–2377, 2024.

Qiu, X., Li, Z., Qiu, W., Hu, S., Zhou, L., Wu, X., Li, Z., Guo,
C., Zhou, A., Sheng, Z., Hu, J., Jensen, C. S., and Yang,
B. Tab: Unified benchmarking of time series anomaly
detection methods. In Proc. VLDB Endow., 2025a.

Qiu, X., Wu, X., Lin, Y., Guo, C., Hu, J., and Yang, B.
Duet: Dual clustering enhanced multivariate time series
forecasting. In SIGKDD, pp. 1185–1196, 2025b.

Shi, X., Wang, S., Nie, Y., Li, D., Ye, Z., Wen, Q., and Jin, M.
Time-moe: Billion-scale time series foundation models
with mixture of experts. arXiv preprint arXiv:2409.16040,
2024.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer:
Enhanced transformer with rotary position embedding,
2021.

Taieb, S. B., Bontempi, G., Atiya, A. F., and Sorjamaa,
A. A review and comparison of strategies for multi-step
ahead time series forecasting based on the nn5 forecasting
competition. Expert systems with applications, 39(8):
7067–7083, 2012.

Wang, S., Wu, H., Shi, X., Hu, T., Luo, H., Ma, L., Zhang,
J. Y., and Zhou, J. Timemixer: Decomposable multiscale
mixing for time series forecasting. In ICLR, 2024a.

Wang, Y., Han, Y., Wang, H., and Zhang, X. Contrast
everything: A hierarchical contrastive framework for
medical time-series. NeurIPS, 36, 2024b.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and
Sahoo, D. Unified training of universal time series fore-
casting transformers. arXiv preprint arXiv:2402.02592,
2024a.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and
Sahoo, D. Unified training of universal time series fore-
casting transformers. arXiv preprint arXiv:2402.02592,
2024b.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M.
Timesnet: Temporal 2d-variation modeling for general
time series analysis. In ICLR, 2022.

Wu, X., Zhang, D., Guo, C., He, C., Yang, B., and Jensen,
C. S. Autocts: Automated correlated time series forecast-
ing. Proc. VLDB Endow., 15(4):971–983, 2021.

Wu, X., Zhang, D., Zhang, M., Guo, C., Yang, B., and
Jensen, C. S. Autocts+: Joint neural architecture and hy-
perparameter search for correlated time series forecasting.

10

LightGTS: A Lightweight General Time Series Forecasting Model

Proceedings of the ACM on Management of Data, 1(1):
1–26, 2023.

Wu, X., Wu, X., Yang, B., Zhou, L., Guo, C., Qiu, X., Hu,
J., Sheng, Z., and Jensen, C. S. Autocts++: zero-shot
joint neural architecture and hyperparameter search for
correlated time series forecasting. The VLDB Journal, 33
(5):1743–1770, 2024.

Wu, X., Qiu, X., Gao, H., Hu, J., Yang, B., and Guo,
C. K2vae: A koopman-kalman enhanced variational
autoencoder for probabilistic time series forecasting. In
ICML, 2025a.

Wu, X., Qiu, X., Li, Z., Wang, Y., Hu, J., Guo, C., Xiong,
H., and Yang, B. Catch: Channel-aware multivariate time
series anomaly detection via frequency patching. In ICLR,
2025b.

Wu, X., Wu, X., Zhang, D., Zhang, M., Guo, C., Yang,
B., and Jensen, C. S. Fully automated correlated time
series forecasting in minutes. In Proc. VLDB Endow.,
volume 18, pp. 144–157, 2025c.

Xu, Z., Zeng, A., and Xu, Q. Fits: Modeling time series
with 10𝑘 parameters. arXiv preprint arXiv:2307.03756,
2023.

Zhang, S., Guo, B., Dong, A., He, J., Xu, Z., and Chen,
S. X. Cautionary tales on air-quality improvement in
beijing. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473(2205):20170457,
2017.

Zhou, T., Niu, P., Sun, L., Jin, R., et al. One fits all: Power
general time series analysis by pretrained lm. NeurIPS,
2023.

11

LightGTS: A Lightweight General Time Series Forecasting Model

A. Implementation Details
A.1. Pre-training Datasets

We incorporate a diverse range of multi-source datasets for pre-training, which include portions from the Monash (Godahewa
et al., 2021b), UEA (Bagnall et al., 2018), and UCR (Dau et al., 2019) time series datasets, as well as additional classic
datasets (Zhang et al., 2017; Wang et al., 2024b; Liu et al., 2022; McCracken & Ng, 2016; Taieb et al., 2012). The complete
list of pre-training datasets is shown in Table 7. It’s important to note that there is no overlap between these pre-training
datasets and the target datasets. Additionally, while the weather dataset in the pre-training set is univariate, the weather
dataset in the target task is multivariate. The datasets used for pre-training are divided into six categories based on their
domains: Energy, Nature, Health, Transport, and Web. The datasets exhibit a wide range of sampling frequencies, from
millisecond intervals to monthly data, reflecting the complexity and variability of real-world applications. For all pre-training
datasets, we split them into univariate sequences and train them in a channel-independent manner.

Table 7. List of pretraining datasets.
Domain Dataset # Frequency # Time Pionts Source

Energy

Aus. Electricity Demand Half Hourly 1155264 Monash (Godahewa et al., 2021b)

Wind 4 Seconds 7397147 Monash (Godahewa et al., 2021b)

Wind Farms Minutely 172178060 Monash (Godahewa et al., 2021b)

Solar Power 4 Seconds 7397222 Monash (Godahewa et al., 2021b)

London Smart Meters Half Hourly 166527216 Monash (Godahewa et al., 2021b)

Nature

Phoneme - 2160640 UCR(Dau et al., 2019)

EigenWorms - 27947136 UEA (Bagnall et al., 2018)

PRSA Hourly 4628448 (Zhang et al., 2017)

Temperature Rain Daily 23252200 Monash (Godahewa et al., 2021b)

StarLightCurves - 9457664 UCR (Dau et al., 2019)

Worms 0.033 Seconds 232200 UCR (Dau et al., 2019)

Saugeen River Flow Daily 23741 Monash (Godahewa et al., 2021b)

Sunspot Daily 73924 Monash (Godahewa et al., 2021b)

Weather Daily 43032000 Monash (Godahewa et al., 2021b)

KDD Cup 2018 Daily 2942364 Monash(Godahewa et al., 2021b)

US Births Daily 7305 Monash (Godahewa et al., 2021b)

Health

MotorImagery 0.001 Seconds 72576000 UEA (Bagnall et al., 2018)

SelfRegulationSCP1 0.004 Seconds 3015936 UEA (Bagnall et al., 2018)

SelfRegulationSCP2 0.004 Seconds 3064320 UEA (Bagnall et al., 2018)

AtrialFibrillation 0.008 Seconds 38400 UEA (Bagnall et al., 2018)

PigArtPressure - 624000 UCR (Dau et al., 2019)

PIGCVP - 624000 UCR (Dau et al., 2019)

TDbrain 0.002 Seconds 79232703 (Wang et al., 2024b)

Transport

Pems03 5 Minute 9382464 (Liu et al., 2022)

Pems04 5 Minute 5216544 (Liu et al., 2022)

Pems07 5 Minute 24921792 (Liu et al., 2022)

Pems08 5 Minute 3035520 (Liu et al., 2022)

Pems-bay 5 Minute 16937700 (Liu et al., 2022)

Pedestrian Counts Hourly 3132346 Monash (Godahewa et al., 2021b)

Web Web Traffic Daily 116485589 Monash (Godahewa et al., 2021b)

Economic

FRED MD Monthly 77896 (McCracken & Ng, 2016)

Bitcoin Daily 75364 Monash (Godahewa et al., 2021b)

NN5 Daily 87801 (Taieb et al., 2012)

12

LightGTS: A Lightweight General Time Series Forecasting Model

A.2. Evaluation Datasets

We use the following 9 multivariate time-series datasets for downstream forecasting task: ETT datasets1 contain 7 variates
collected from two different electric transformers from July 2016 to July 2018. It consists of four subsets, of which
ETTh1/ETTh2 are recorded hourly and ETTm1/ETTm2 are recorded every 15 minutes. Electricity2 contains the electricity
consumption of 321 customers from July 2016 to July 2019, recorded hourly. Solar3 collects production from 137 PV plants
in Alabama, recorded every 10 minutes. Traffic4 contains road occupancy rates measured by 862 sensors on freeways in
the San Francisco Bay Area from 2015 to 2016, recorded hourly. Weather5 collects 21 meteorological indicators, such
as temperature and barometric pressure, for Germany in 2020, recorded every 10 minutes. ExchangeRate6 collects the
daily exchange rates of 8 countries. We split each evaluation dataset into train-validation-test sets and detailed statistics of
evaluation datasets are shown in Table 8.

Table 8. The statistics of evaluation datasets.
Dataset Domain # Frequency # Timestamps # Split # Dims # Intrinsic Period # Cycle Length

ETTh1 Energy 1 hour 14400 6:2:2 7 Daily 24

ETTh2 Energy 1 hour 14400 6:2:2 7 Daily 24

ETTm1 Energy 15 mins 57600 6:2:2 7 Daily 96

ETTm2 Energy 15 mins 57600 6:2:2 7 Daily 96

Electricity Energy 10 mins 26304 7:1:2 321 Daily & Weekly 24 & 168

Solar Energy 10 mins 52560 7:1:2 137 Daily 144

Traffic Traffic 1 hour 17544 7:1:2 862 Daily & Weekly 24 & 168

Weather Environment 10 mins 52696 7:1:2 21 Daily 144

Exchange Economic 1 day 7588 7:1:2 8 - -

A.3. Baselines

We select five foundation models for comparison in zero-shot setting, including Timer (Liu et al., 2024), MOIRAI (Woo
et al., 2024b), Chronos (Ansari et al., 2024), TimesFM (Das et al., 2023), and Time-MoE (Goswami et al., 2024). In
addition, we select the state-of-the-art models of deep time series models as our baselines in full-shot setting, including PDF ,
iTransformer (Liu et al., 2023), Pathformer (Chen et al., 2024), FITS (Xu et al., 2023), TimeMixer (Wang et al., 2024a), and
PatchTST (Nie et al., 2022). The specific code base for these models is listed in Table 9:

Table 9. Code repositories for baselines.
Model Types Models Code Repositories

Foundation model

Timer https://github.com/thuml/Large-Time-Series-Model

MOIRAI https://github.com/redoules/moirai

Chronos https://github.com/amazon-science/chronos-forecasting

TimesFM https://github.com/google-research/timesfm

Time-MoE https://github.com/Time-MoE/Time-MoE

Small Model

PDF https://github.com/Hank0626/PDF

iTransformer https://github.com/thuml/iTransformer

Pathformer https://github.com/decisionintelligence/pathformer

FITS https://github.com/VEWOXIC/FITS

TimeMixer https://github.com/kwuking/TimeMixer

PatchTST https://github.com/yuqinie98/PatchTST

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://dl.acm.org/doi/abs/10.1145/3209978.3210006
4https://pems.dot.ca.gov/
5https://www.bgc-jena.mpg.de/wetter/
6https://dl.acm.org/doi/abs/10.1145/3209978.3210006

13

LightGTS: A Lightweight General Time Series Forecasting Model

A.4. Setting

Pre-trainning We implemented LightGTS using PyTorch (Paszke et al., 2019), and all experiments were conducted on an
NVIDIA A8000 80GB GPU. The optimization was performed using the ADAM optimizer (Kingma & Ba, 2014) with an
initial learning rate of 5 × 10−4. A learning rate decay strategy was applied using the StepLR scheduler to facilitate gradual
reduction during pre-training. During pre-training, we use 𝑁 = 10 as the number of historical tokens, 𝐾 = 4 as the number
of prediction tokens, 𝑃∗ = 48 as the reference patch size, and the batch size is set to 8192. Detailed configurations and
parameter counts of the pre-trained models involved in this paper are provided in Table 10.

Downstream Forecasting In downstream forecasting, we configure the model to perform periodical patching based on the
cycle length, tailored to the characteristics of each dataset. The number of historical tokens is set to 𝑁 = 10, and the model
is tasked with making predictions for target lengths of 96, 192, 336, and 720, respectively.

The “Drop Last” issue is reported by several researchers (Qiu et al., 2024; 2025a; Li et al., 2025). That is, in some previous
works evaluating the model on test set with drop-last=True setting may cause additional errors related to test batch size. In
our experiment, to ensure fair comparison in the future, we set the drop last to False for all baselines to avoid this issue.

Table 10. Detailed model configurations of LightGTS and corresponding parameter counts.
Models Encoder Layers Decoder Layers Model Dim. FFN Dim. Parameters

LightGTS-tiny 1 1 256 512 1.3M

LightGTS-mini 3 3 256 512 4M

B. More Results and Analysis
B.1. Analysis of the Periods Finding

In this experiment, we investigate the effect of periodical finding methods. When prior knowledge is available or when there
is sufficient data, we can treat the cycle length as known information. However, when prior knowledge is unavailable or data
is insufficient, we can use the Fast Fourier Transform (FFT) to determine the cycle length based on the input sequence. As
shown in Figure 6, the key observations are as follows:

• When the data exhibits strong periodicity (e.g., Solar, Electricity, Traffic), the cycle length extracted by FFT aligns well
with the actual period, ensuring stable model performance.

• When the periodicity of the data is not pronounced (e.g., ETT, Weather), the cycle length extracted by FFT may not
align with the intrinsic period, which can hinder model performance. However, LightGTS-FFT still outperforms the
SOTA baselines.

• When the data exhibits little to no periodicity (e.g., Exchange), intrinsic period modeling is not crucial for the model’s
understanding of the time series. Therefore, regardless of the Periods Finding method used, its impact on model
performance is minimal.

0.208

0.223

0.26

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.345 0.344

0.37

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Traffic
(𝑭𝑺		= 0.92)

Weather
(𝑭𝑺	= 0.65)

Exchange
(𝑭𝑺	= 0.16)

LightGTS LightGTS_FFT SOTA_Basline

M
SE

M
SE

M
SE

0.191 0.191

0.393

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.561 0.561

0.613

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Solar
(𝑭𝑺		= 0.95)

0.213 0.213

0.188

0.1

0.14

0.18

0.22

0.26

0.3

0.328 0.331

0.382

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Electricity
(𝑭𝑺		= 0.94)

ETT-avg
(𝑭𝑺		= 0.67)

M
SE

M
SE

M
SE

Figure 6. Comparisons of the model performance between different Periodical Finding methods in zero-shot setting. The SOTA baselines
refer to the best-performing baseline results for each dataset. 𝐹𝑆 means the seasonality strength for each dataset.

14

LightGTS: A Lightweight General Time Series Forecasting Model

B.2. Generality of the Periodical Tokenization

Periodical tokenization can serve as a plug-in, adapting TSFMs that use patching methods (such as Timer) without the
need for retraining. We applied periodical tokenization to Timer and tested its predictive performance in the zero-shot
setting with different resizing methods, including the linear-resize and area-resize. The results, shown in Table 4, reveal
that incorporating periodical tokenization significantly enhances performance across all resizing methods. Moreover, the
flex-resize achieved a 19.23% improvement, outperforming the other two resizing methods by a significant margin.

Table 11. Ablation MSE results of the Flex-resize. All results are collected with periodical patching. The “Boost” indicates the percentage
of performance improvement after incorporating the different resize techniques.

Dataset Weather Solar

Horizon 96 192 336 720 96 192 336 720

Timer 0.190 0.261 0.332 0.385 0.591 0.689 0.831 0.972

+ Linear-resize 0.187 0.247 0.305 0.368 0.459 0.504 0.580 0.783
Boost 1.79% 5.22% 8.13% 4.36% 22.33% 26.89% 30.24% 19.42%

+ Area-resize 0.186 0.246 0.304 0.367 0.461 0.506 0.581 0.782
Boost 2.23% 5.65% 8.41% 4.62% 21.93% 26.62% 30.08% 19.57%

+ Flex-resize 0.178 0.238 0.297 0.357 0.425 0.488 0.558 0.671
Boost 6.24% 8.81% 10.54% 7.27% 28.05% 29.17% 32.85% 30.93%

C. Full Experimental Results
C.1. Zero-shot Forecasting

We provide all the results of the zero forecasting in Table 12. As shown in Table 10, we include nine representative real-world
datasets, demonstrating that LightGTS achieves state-of-the-art forecasting performance.

C.2. Full-shot Forecasting

Table 13 provides the comprehensive results for in-distribution forecasting, showcasing the performance of LightGTS-miny
in both zero-shot and full-shot settings, as well as other baselines in the full-shot setting. Notably, LightGTS demonstrates
superior performance over all baselines in the full-shot setting. Moreover, in the zero-shot setting, LightGTS achieves
competitive results, rivaling the full-shot performance of other baseline models.

C.3. Ablation Study

Table 14 presents the detailed results of the ablation studies for LightGTS in the zero-shot setting, including periodical
tokenization and periodical parallel decoding.

15

LightGTS: A Lightweight General Time Series Forecasting Model

Table 12. Full results of zero-shot forecasting experiments. Lower MSE or MAE values indicate better predictions. A dash (’-’) denotes
datasets included in the model’s pretraining and therefore excluded from testing. Red: the best, Blue: the 2nd best.

Models LightGTS-tiny LightGTS-mini Timer MOIRAI Chronos TimesFM Time-MoE

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.307 0.359 0.283 0.340 0.698 0.530 0.353 0.363 0.402 0.373 0.363 0.369 0.309 0.357
192 0.332 0.374 0.314 0.360 0.744 0.555 0.376 0.380 0.510 0.435 0.417 0.405 0.346 0.381
336 0.353 0.393 0.338 0.377 0.801 0.582 0.399 0.395 0.590 0.477 0.447 0.428 0.373 0.408
720 0.388 0.386 0.374 0.403 0.829 0.606 0.432 0.417 0.703 0.525 0.513 0.470 0.475 0.477
avg 0.345 0.378 0.327 0.370 0.768 0.568 0.390 0.389 0.551 0.453 0.435 0.418 0.376 0.406

ET
Tm

2

96 0.166 0.260 0.165 0.256 0.225 0.300 0.189 0.260 0.192 0.263 0.206 0.267 0.197 0.286
192 0.222 0.300 0.221 0.297 0.286 0.339 0.247 0.300 0.256 0.308 0.293 0.320 0.250 0.322
336 0.267 0.333 0.269 0.331 0.335 0.369 0.295 0.334 0.315 0.346 0.411 0.414 0.337 0.375
720 0.340 0.378 0.331 0.379 0.414 0.416 0.372 0.386 0.409 0.405 0.478 0.437 0.475 0.477
avg 0.249 0.318 0.247 0.316 0.315 0.356 0.276 0.320 0.293 0.331 0.347 0.360 0.315 0.365

ET
Th

1

96 0.359 0.390 0.344 0.380 0.454 0.434 0.380 0.398 0.389 0.409 0.421 0.401 0.350 0.382
192 0.390 0.409 0.376 0.404 0.522 0.465 0.440 0.434 0.502 0.443 0.472 0.432 0.388 0.412
336 0.420 0.436 0.407 0.432 0.559 0.484 0.514 0.474 0.580 0.460 0.510 0.455 0.411 0.430
720 0.437 0.460 0.427 0.458 0.714 0.549 0.705 0.568 0.605 0.495 0.514 0.481 0.427 0.455
avg 0.401 0.424 0.388 0.419 0.562 0.483 0.510 0.469 0.519 0.452 0.479 0.442 0.394 0.420

ET
Th

2

96 0.278 0.342 0.279 0.340 0.316 0.359 0.287 0.325 0.306 0.338 0.326 0.355 0.302 0.354
192 0.345 0.383 0.335 0.383 0.374 0.398 0.347 0.367 0.396 0.394 0.397 0.400 0.364 0.385
336 0.394 0.416 0.366 0.410 0.381 0.410 0.377 0.393 0.423 0.417 0.431 0.413 0.417 0.425
720 0.430 0.445 0.413 0.445 0.408 0.434 0.404 0.421 0.442 0.439 0.446 0.444 0.527 0.496
avg 0.362 0.397 0.348 0.395 0.370 0.400 0.354 0.377 0.392 0.397 0.400 0.403 0.403 0.415

Tr
affi

c

96 0.525 0.356 0.463 0.331 0.526 0.368 - - 0.562 0.378 - - - -
192 0.547 0.365 0.504 0.353 0.561 0.385 - - 0.579 0.412 - - - -
336 0.645 0.419 0.593 0.401 0.614 0.412 - - 0.594 0.420 - - - -
720 0.722 0.457 0.685 0.440 0.749 0.464 - - 0.723 0.472 - - - -
avg 0.610 0.399 0.561 0.381 0.613 0.407 - - 0.615 0.421 - - - -

W
ea

th
er

96 0.151 0.211 0.141 0.195 0.190 0.236 0.177 0.208 0.186 0.208 - - 0.159 0.213
192 0.191 0.248 0.180 0.235 0.261 0.293 0.219 0.249 0.238 0.258 - - 0.215 0.266
336 0.236 0.284 0.224 0.272 0.332 0.340 0.277 0.292 0.313 0.353 - - 0.291 0.322
720 0.299 0.323 0.286 0.320 0.385 0.381 0.365 0.350 0.416 0.415 - - 0.415 0.400
avg 0.219 0.266 0.208 0.256 0.292 0.313 0.260 0.275 0.288 0.309 - - 0.270 0.300

Ex
ch

an
ge

96 0.084 0.203 0.085 0.204 0.095 0.219 0.096 0.213 0.099 0.219 0.096 0.215 0.145 0.267
192 0.171 0.294 0.172 0.295 0.198 0.322 0.197 0.312 0.194 0.314 0.195 0.313 0.333 0.397
336 0.310 0.402 0.311 0.403 0.349 0.431 0.349 0.425 0.341 0.423 0.332 0.416 0.367 0.439
720 0.816 0.680 0.820 0.682 0.927 0.729 0.903 0.717 0.846 0.690 0.935 0.723 0.882 0.712
avg 0.345 0.395 0.347 0.396 0.392 0.425 0.386 0.417 0.370 0.412 0.390 0.417 0.432 0.454

So
la

r

96 0.209 0.309 0.181 0.263 0.591 0.504 0.682 0.688 0.373 0.304 0.408 0.345 0.304 0.345
192 0.220 0.315 0.190 0.270 0.689 0.567 0.694 0.695 0.363 0.303 0.466 0.373 0.309 0.342
336 0.228 0.314 0.197 0.277 0.831 0.636 0.719 0.706 0.391 0.319 0.526 0.407 0.433 0.450
720 0.218 0.283 0.198 0.274 0.972 0.710 0.759 0.725 0.444 0.349 0.601 0.461 0.599 0.576
avg 0.219 0.305 0.191 0.271 0.771 0.604 0.714 0.704 0.393 0.319 0.500 0.397 0.411 0.428

El
ec

tri
ci

ty 96 0.181 0.272 0.156 0.255 0.210 0.312 0.152 0.242 - - - - - -
192 0.195 0.284 0.183 0.282 0.239 0.337 0.171 0.259 - - - - - -
336 0.253 0.338 0.240 0.338 0.284 0.372 0.192 0.278 - - - - - -
720 0.304 0.382 0.275 0.357 0.456 0.479 0.236 0.313 - - - - - -
avg 0.233 0.319 0.213 0.308 0.297 0.375 0.188 0.273 - - - - - -

1st Count 7 7 31 25 0 0 7 10 0 0 0 0 0 2

16

LightGTS: A Lightweight General Time Series Forecasting Model

Table 13. The results of LightGTS-miny in zero-shot and full-shot setting and other baselines in full-shot setting. Lower MSE or MAE
values indicate better predictions. Red: the best, Blue: the 2nd best.

Models LightGTS
(zero-shot)

LightGTS
(full-shot) PDF iTransformer Pathformer FITS TimeMixer PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.283 0.340 0.266 0.320 0.286 0.340 0.287 0.342 0.290 0.335 0.303 0.345 0.293 0.345 0.289 0.343
192 0.314 0.360 0.307 0.349 0.321 0.364 0.331 0.371 0.337 0.363 0.337 0.365 0.335 0.372 0.329 0.368
336 0.338 0.377 0.334 0.370 0.354 0.383 0.358 0.384 0.374 0.384 0.368 0.384 0.368 0.386 0.362 0.390
720 0.374 0.403 0.377 0.405 0.408 0.415 0.412 0.416 0.428 0.416 0.420 0.413 0.426 0.417 0.416 0.423
avg 0.327 0.370 0.321 0.361 0.342 0.376 0.347 0.378 0.357 0.375 0.357 0.377 0.356 0.380 0.349 0.381

ET
Tm

2

96 0.165 0.256 0.153 0.241 0.163 0.251 0.168 0.262 0.164 0.250 0.165 0.254 0.165 0.256 0.165 0.255
192 0.221 0.297 0.209 0.286 0.219 0.290 0.224 0.295 0.219 0.288 0.219 0.291 0.225 0.298 0.221 0.293
336 0.269 0.331 0.259 0.318 0.269 0.330 0.274 0.330 0.267 0.319 0.272 0.326 0.277 0.332 0.276 0.327
720 0.331 0.379 0.336 0.367 0.349 0.382 0.367 0.385 0.361 0.377 0.359 0.381 0.360 0.387 0.362 0.381
avg 0.247 0.316 0.239 0.303 0.250 0.313 0.258 0.318 0.253 0.309 0.254 0.313 0.257 0.318 0.256 0.314

ET
Th

1

96 0.344 0.380 0.340 0.375 0.360 0.391 0.386 0.405 0.372 0.392 0.376 0.396 0.372 0.401 0.377 0.397
192 0.376 0.404 0.373 0.401 0.392 0.414 0.430 0.435 0.408 0.415 0.400 0.418 0.413 0.430 0.409 0.425
336 0.407 0.432 0.404 0.420 0.418 0.435 0.450 0.452 0.438 0.434 0.419 0.435 0.438 0.450 0.431 0.444
720 0.427 0.458 0.435 0.456 0.456 0.462 0.495 0.487 0.450 0.463 0.435 0.458 0.483 0.483 0.457 0.477
avg 0.388 0.419 0.388 0.413 0.407 0.426 0.440 0.445 0.417 0.426 0.408 0.427 0.427 0.441 0.419 0.436

ET
Th

2

96 0.279 0.340 0.268 0.326 0.276 0.341 0.292 0.347 0.279 0.336 0.277 0.345 0.270 0.342 0.274 0.337
192 0.335 0.383 0.333 0.369 0.339 0.382 0.348 0.384 0.345 0.380 0.331 0.379 0.349 0.387 0.348 0.384
336 0.366 0.410 0.353 0.390 0.374 0.406 0.372 0.407 0.378 0.408 0.350 0.396 0.367 0.410 0.377 0.416
720 0.413 0.445 0.385 0.425 0.398 0.433 0.424 0.444 0.437 0.455 0.382 0.425 0.401 0.436 0.406 0.441
avg 0.348 0.395 0.335 0.377 0.347 0.391 0.359 0.396 0.360 0.395 0.335 0.386 0.347 0.394 0.351 0.395

Tr
affi

c

96 0.463 0.331 0.359 0.244 0.368 0.252 0.363 0.265 0.384 0.250 0.400 0.280 0.369 0.256 0.370 0.262
192 0.504 0.353 0.382 0.250 0.382 0.261 0.384 0.273 0.405 0.257 0.412 0.288 0.400 0.271 0.386 0.269
336 0.593 0.401 0.395 0.262 0.393 0.268 0.396 0.277 0.424 0.265 0.426 0.301 0.407 0.272 0.396 0.275
720 0.685 0.440 0.435 0.279 0.438 0.297 0.445 0.308 0.452 0.283 0.478 0.339 0.462 0.316 0.435 0.295
avg 0.561 0.381 0.393 0.259 0.395 0.270 0.397 0.281 0.416 0.264 0.429 0.302 0.410 0.279 0.397 0.275

W
ea

th
er

96 0.141 0.195 0.139 0.182 0.147 0.196 0.157 0.207 0.148 0.195 0.172 0.225 0.147 0.198 0.149 0.196
192 0.180 0.235 0.180 0.224 0.193 0.240 0.200 0.248 0.191 0.235 0.215 0.261 0.191 0.242 0.191 0.239
336 0.224 0.272 0.225 0.262 0.245 0.280 0.252 0.287 0.243 0.274 0.261 0.295 0.244 0.280 0.242 0.279
720 0.286 0.320 0.284 0.309 0.323 0.334 0.320 0.336 0.318 0.326 0.326 0.341 0.316 0.331 0.312 0.330
avg 0.208 0.256 0.207 0.244 0.227 0.263 0.232 0.270 0.225 0.258 0.244 0.281 0.225 0.263 0.224 0.261

Ex
ch

an
ge

96 0.085 0.204 0.079 0.197 0.083 0.200 0.080 0.201 0.088 0.208 0.082 0.199 0.087 0.209 0.079 0.200
192 0.172 0.295 0.162 0.290 0.172 0.294 0.155 0.287 0.183 0.304 0.173 0.295 0.178 0.300 0.159 0.289
336 0.311 0.403 0.295 0.395 0.323 0.411 0.298 0.399 0.354 0.429 0.317 0.406 0.376 0.451 0.297 0.399
720 0.820 0.682 0.750 0.650 0.820 0.682 0.749 0.650 0.909 0.716 0.825 0.684 0.897 0.711 0.751 0.650
avg 0.347 0.396 0.322 0.383 0.350 0.397 0.321 0.384 0.384 0.414 0.349 0.396 0.385 0.418 0.322 0.385

So
la

r

96 0.181 0.263 0.160 0.206 0.181 0.247 0.174 0.229 0.218 0.235 0.208 0.255 0.180 0.233 0.170 0.234
192 0.190 0.270 0.180 0.219 0.200 0.259 0.205 0.270 0.196 0.220 0.229 0.267 0.201 0.259 0.204 0.302
336 0.197 0.277 0.188 0.220 0.208 0.269 0.216 0.282 0.195 0.220 0.241 0.273 0.214 0.272 0.212 0.293
720 0.198 0.274 0.190 0.234 0.212 0.275 0.211 0.260 0.208 0.237 0.248 0.277 0.218 0.278 0.215 0.307
avg 0.191 0.271 0.179 0.220 0.200 0.263 0.202 0.260 0.204 0.228 0.232 0.268 0.203 0.261 0.200 0.284

El
ec

tri
ci

ty 96 0.156 0.255 0.124 0.216 0.128 0.222 0.134 0.230 0.135 0.222 0.139 0.237 0.153 0.256 0.143 0.247
192 0.183 0.282 0.145 0.240 0.147 0.242 0.154 0.250 0.157 0.253 0.154 0.250 0.168 0.269 0.158 0.260
336 0.240 0.338 0.163 0.252 0.165 0.260 0.169 0.265 0.170 0.267 0.170 0.268 0.189 0.291 0.168 0.267
720 0.275 0.357 0.191 0.282 0.199 0.289 0.194 0.288 0.211 0.302 0.212 0.304 0.228 0.320 0.214 0.307
avg 0.213 0.308 0.156 0.248 0.160 0.253 0.163 0.258 0.168 0.261 0.169 0.265 0.185 0.284 0.171 0.270

1st Count 5 1 31 42 0 0 3 1 0 0 3 0 0 0 0 0

17

LightGTS: A Lightweight General Time Series Forecasting Model

Table 14. Ablations on key components of LightGTS in zero-shot setting, including periodical tokenization, and periodical parallel
decoing.

Decoding Periodical Parallel Decoding Autoregressive Decoding Masked Autoencoder

Tokenization Periodical Fixed Periodical Fixed Periodical Fixed

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.283 0.340 0.658 0.509 0.320 0.368 0.623 0.499 0.351 0.385 0.768 0.572
192 0.314 0.360 0.667 0.523 0.342 0.381 0.659 0.515 0.371 0.397 0.792 0.593
336 0.338 0.377 0.686 0.541 0.361 0.394 0.704 0.544 0.387 0.411 0.808 0.603
720 0.374 0.403 0.704 0.559 0.390 0.414 0.734 0.565 0.448 0.457 0.852 0.627
avg 0.327 0.370 0.679 0.533 0.353 0.389 0.680 0.531 0.389 0.412 0.805 0.599

ET
Tm

2

96 0.165 0.256 0.210 0.297 0.169 0.260 0.208 0.294 0.202 0.291 0.308 0.356
192 0.221 0.297 0.276 0.335 0.226 0.300 0.280 0.339 0.259 0.328 0.391 0.404
336 0.269 0.331 0.336 0.369 0.272 0.335 0.346 0.380 0.293 0.355 0.423 0.425
720 0.331 0.379 0.433 0.423 0.331 0.380 0.444 0.436 0.379 0.420 0.492 0.466
avg 0.247 0.316 0.314 0.356 0.250 0.319 0.320 0.362 0.283 0.349 0.404 0.413

ET
Th

1

96 0.344 0.380 0.364 0.396 0.365 0.397 0.365 0.397 0.401 0.423 0.393 0.415
192 0.376 0.404 0.391 0.413 0.392 0.415 0.392 0.415 0.433 0.449 0.452 0.459
336 0.407 0.432 0.409 0.430 0.401 0.427 0.411 0.436 0.444 0.463 0.532 0.513
720 0.427 0.458 0.421 0.451 0.420 0.453 0.432 0.453 0.534 0.529 0.623 0.572
avg 0.388 0.419 0.396 0.423 0.394 0.423 0.400 0.425 0.453 0.466 0.500 0.490

ET
Th

2

96 0.279 0.340 0.283 0.346 0.279 0.341 0.285 0.344 0.307 0.368 0.378 0.411
192 0.335 0.383 0.339 0.385 0.339 0.384 0.342 0.387 0.383 0.423 0.454 0.461
336 0.366 0.410 0.382 0.413 0.386 0.419 0.385 0.419 0.464 0.463 0.463 0.470
720 0.413 0.445 0.412 0.438 0.463 0.469 0.455 0.465 0.550 0.517 0.465 0.477
avg 0.348 0.395 0.354 0.396 0.367 0.403 0.367 0.404 0.426 0.443 0.440 0.455

W
ea

th
er

96 0.141 0.195 0.164 0.210 0.154 0.211 0.164 0.211 0.188 0.249 0.239 0.281
192 0.180 0.235 0.219 0.261 0.194 0.248 0.219 0.266 0.227 0.278 0.319 0.333
336 0.224 0.272 0.282 0.308 0.244 0.286 0.285 0.315 0.273 0.309 0.359 0.363
720 0.286 0.320 0.381 0.371 0.314 0.336 0.392 0.379 0.351 0.368 0.437 0.417
avg 0.208 0.256 0.262 0.288 0.226 0.270 0.265 0.293 0.260 0.301 0.339 0.349

El
ec

tri
ci

ty 96 0.156 0.255 0.192 0.287 0.197 0.287 0.199 0.297 0.245 0.321 0.207 0.299
192 0.183 0.282 0.205 0.297 0.210 0.303 0.212 0.307 0.277 0.355 0.263 0.357
336 0.240 0.338 0.231 0.320 0.233 0.326 0.236 0.327 0.318 0.395 0.396 0.460
720 0.275 0.357 0.275 0.355 0.276 0.361 0.279 0.372 0.450 0.495 0.623 0.597
avg 0.213 0.308 0.226 0.315 0.229 0.319 0.231 0.326 0.322 0.392 0.372 0.428

Tr
affi

c

96 0.463 0.331 0.579 0.383 0.603 0.392 0.592 0.394 0.656 0.425 0.607 0.402
192 0.504 0.353 0.591 0.389 0.612 0.402 0.600 0.396 0.690 0.453 0.686 0.470
336 0.593 0.401 0.630 0.407 0.639 0.408 0.641 0.417 0.740 0.487 0.874 0.586
720 0.685 0.440 0.686 0.433 0.682 0.440 0.686 0.438 0.900 0.571 1.044 0.679
avg 0.561 0.381 0.621 0.403 0.634 0.410 0.630 0.411 0.746 0.484 0.803 0.534

So
la

r

96 0.181 0.263 0.222 0.304 0.190 0.270 0.212 0.308 0.205 0.290 0.464 0.490
192 0.190 0.270 0.345 0.371 0.207 0.282 0.368 0.385 0.213 0.294 0.508 0.504
336 0.197 0.277 0.400 0.423 0.211 0.287 0.446 0.468 0.217 0.300 0.561 0.532
720 0.198 0.274 0.529 0.542 0.215 0.296 0.535 0.505 0.235 0.330 0.724 0.645
avg 0.191 0.271 0.374 0.410 0.206 0.284 0.390 0.417 0.217 0.304 0.564 0.543

18

