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Abstract

Accurate parsing of Notices to Airmen (NO-001
TAMs) is critical for aviation safety, yet many002
existing methodologies struggle with template003
rigidity that hinders effective handling of non-004
standard syntax, regional expression ambigui-005
ties and the semantic-practice gap. In this paper,006
we propose a knowledge-guided self-evolving007
optimization framework that integrates Large008
Language Models (LLMs) with an Aviation009
Knowledge Graph (AviationKG) in order to010
achieve efficient structured NOTAM parsing.011
This framework consists of three innovative012
modules: 1) Knowledge-Enhanced Retrieval013
(KG-TableRAG), which resolves semantic am-014
biguities through binding of knowledge graph015
relations with infrastructure tables to constrain016
search spaces; 2) Self-Evolving Optimization017
(SEVO), which employs dynamic preference018
alignment and error-driven curriculum learn-019
ing to iteratively enhance complex instruction020
compliance; 3) Consensus Inference Engine021
(CIE), which improves edge-case robustness022
via terminology-preserved input diversification023
and majority voting decoding. Experimental re-024
sults demonstrate that our framework achieves025
a 30.4% accuracy improvement over the base026
model within 3-5 iterations on a labeled dataset027
of 10,000 global NOTAMs. Ablation studies028
further validate the collaborative effectiveness029
of its modular components. This research estab-030
lishes the first knowledge-driven, iteratively op-031
timized LLM solution for aviation text parsing,032
with a methodology extensible to other high-033
precision-demanding professional domains.034

1 Introduction035

Accurate NOTAM (Notice to Airmen) interpreta-036

tion is a critical yet challenging component of mod-037

ern flight operations. These specialized bulletins038

contain time-sensitive information regarding tem-039

porary airspace restrictions and navigational haz-040

ards, characterized by linguistic features distinct041

from conventional technical documentation. With042

over one million active NOTAMs published an- 043

nually worldwide (Morarasu and Roman, 2024), 044

the aviation industry urgently needs robust auto- 045

mated analysis to reduce manual workload and 046

errors. Existing systems mostly use rule-based tem- 047

plate matching, focusing research on automated 048

rule discovery or basic classification (Dieter et al., 049

2024; Mi et al., 2022). 050
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Airport VANP do has runway 32......
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Plane with code C and above：738，733，734......
Search ......

airport: ICAO code.
runway: Affected 
runway number.
affect_actype: Affected 
aircraft type
affect_region: ......

"airport": "VANP",
"runway": "32",
"affect_actype":"738,
733,734,752,744,763",
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"flight_type": 
"International, 
Domestic"

Figure 1: An illustration of NOTAM analysis task

However, NOTAMs present unique parsing chal- 051

lenges due to their heavy dependence on 300+ stan- 052

dardized abbreviations and non-standard syntac- 053

tic structures (e.g., "RWY 09L/27R CLSD DUE 054

BIRD ACT"), which frequently violate conven- 055

tional parsing rules. Furthermore, practical sce- 056

narios introduce additional complexity through re- 057

gional expression variations (e.g., "EGBA" encom- 058

passing both EGBA1A and EGBA1B) and typo- 059

graphical/grammatical errors. Beyond syntactic, a 060

key challenge is the semantic-practice gap: the 061

disconnect between textual descriptions and oper- 062

ational impacts requires implicit correlation with 063

aviation infrastructure status. For instance, inter- 064

preting "APCH LGT U/S" necessitates knowledge 065

of specific runway configurations, yet NOTAMs 066

may reference non-existent runways or omit criti- 067

cal identifiers (Patel et al., 2023). These operational 068

constraints rely on factual data from regularly up- 069

dated official sources, as illustrated in Figure 1. 070
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Recent advancements in large language models071

(LLMs), characterized by their sophisticated natu-072

ral language understanding capabilities, are paving073

new frontiers for NOTAM analysis. While no prior074

studies specifically address LLM applications in075

this domain, recent breakthroughs in complex in-076

struction following and generic information extrac-077

tion (Morarasu and Roman, 2024) establish critical078

technical foundations. Essentially, LLMs can be079

adapted to take raw NOTAM text as input and,080

with appropriate guidance, produce structured in-081

formation as output. However, NOTAMs present082

unique challenges, including domain-specific lan-083

guage and the need to link the text to structured084

aviation data. Building on this, our LLM-adapted085

framework for NOTAM analysis makes three pio-086

neering contributions to bridge this gap and enable087

effective NOTAM parsing:088

• Knowledge-Driven Architecture: Innovat-089

ing the inaugural application of LLMs to NO-090

TAM parsing, our framework integrates an091

aviation knowledge graph with TableRAG092

retrieval to overcome domain-specific chal-093

lenges through constraint-aware information094

extraction.095

• Self-Optimizing Pipeline: Through synergis-096

tic integration of dynamic preference align-097

ment, error-driven curriculum learning, and098

consensus inference mechanisms, we estab-099

lish an end-to-end optimizable system capable100

of self-evolution without manual intervention.101

• Empirical Performance Leap: Experimental102

validation demonstrates our optimized model103

achieves a 30.4% accuracy improvement over104

base LLMs, with multi-perspective analysis105

and majority voting decoding.106

2 Related Work107

2.1 NOTAM Analysis108

NLP plays a key role in reducing manual opera-109

tions in aviation, particularly in NOTAM analysis110

(Mogillo-Dettwiler, 2024; Mi et al., 2022). Early111

efforts explore transformer-based models trained112

on unlabeled NOTAMs for filtering and inconsis-113

tency correction (Bravin et al., 2020). NLP work-114

flows (TF-IDF, topic modeling, NER) are applied115

to a large dataset for automated segmentation and116

tagging (Clarke et al., 2021). Further work uti-117

lizes pre-trained BERT models on 1.2 million NO-118

TAMs for aviation knowledge extraction (Arnold119

et al., 2022). These pioneering studies, while signif- 120

icant, reveal persistent challenges (e.g., ambiguous 121

abbreviations, semantic-practical mismatches, re- 122

gional variations) that impact safety and efficiency 123

(Morarasu and Roman, 2024). Our work builds 124

upon these insights by proposing a more adaptive 125

and robust LLM-based framework specifically de- 126

signed to handle these complexities in practical 127

NOTAM parsing. 128

2.2 Recent Advances in Aviation NLP 129

Recent advances in aviation NLP have significantly 130

improved flight operations and safety management 131

through enhanced text understanding and infor- 132

mation extraction. Spoken instructions are inte- 133

grated into flight trajectory prediction, improving 134

accuracy (Guo et al., 2024). A graph-based ap- 135

proach captures trajectory point attribute relation- 136

ships (Fan et al., 2024). Trajectory prediction is 137

framed as a language modeling task using fine- 138

tuned LLMs, though facing latency issues (Luo and 139

Zhou, 2025). For communication, an NLP agent is 140

introduced for pilot training phraseology compli- 141

ance (Liu et al., 2024). Additionally, deep learning 142

is applied to classify flight phases in safety reports, 143

automating analysis (Nanyonga et al., 2023). These 144

developments demonstrate aviation NLP’s progress 145

in improving safety, traffic management, and com- 146

munication efficiency. 147

2.3 Large Language Models 148

Advances in LLMs (Zhao et al., 2023) drive 149

progress in specialized domains. NOTAM anal- 150

ysis requires integrating key capabilities like in- 151

formation extraction, tabular understanding, and 152

complex instruction following. Transformer ar- 153

chitectures (Brown et al., 2020; Chowdhery et al., 154

2022), enhanced by parameter scaling (Rae et al., 155

2021; Le Scao et al., 2022), show strong few-shot 156

learning capabilities suitable for aviation’s often 157

sparsely labeled data (Xu et al., 2023). Key aspects 158

include: 159

Knowledge Enhancement: Integrating knowl- 160

edge graphs (KGs) with LLMs is shown to improve 161

reasoning and reduce hallucinations (Ji et al., 2024; 162

Zhang et al., 2024). KG structure reorganization 163

and instruction fine-tuning address hallucination in 164

complex question answering (Ji et al., 2024). KG 165

structure is leveraged for factual reasoning enhance- 166

ment (Zhang et al., 2024). The SAC-KG frame- 167

work achieves high precision in domain-specific 168

KG construction, significantly outperforming prior 169
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methods (Chen et al., 2024a). In law, Legal-LM170

combines KGs with keyword extraction to boost171

performance (Shi et al., 2024). These studies show172

KG-enhanced LLMs improve reliability for com-173

plex reasoning tasks.174

Information Extraction: This task benefits175

from in-context learning (prompt engineering) tech-176

niques (Li et al., 2023) or supervised fine-tuning177

with instruction datasets (Wang et al., 2023). In-178

novations like code-style prompting (Sainz et al.,179

2024) and hierarchical schema representations (Li180

et al., 2024) improve output consistency, but con-181

ventional methods struggle with aviation’s dynamic182

semantics and regional variations.183

Tabular Understanding: Methods in this area184

have evolved from Text2SQL systems (Zhong185

et al., 2017) to more advanced neuro-symbolic186

approaches like TableRAG (Chen et al., 2024b).187

While TableRAG’s query expansion helps with188

large tables, limitations in NOTAM contexts in-189

clude context window constraints and poor cell190

localization with sparse schemas.191

Complex Instruction Following: Research in-192

dicates that progressively adding constraints can193

improve a model’s ability to comply with complex194

instructions (Mukherjee et al., 2023; Luo et al.,195

2024). Frameworks like Conifer (Sun et al., 2024)196

show potential for handling multi-level constraints.197

Building on this, we employ curriculum learning to198

optimize performance on NOTAMs’ heterogeneous199

instruction complexity.200

3 The Proposed Framework201

3.1 Problem Formulation202

Our primary objective is to extract structured avi-203

ation information from an input NOTAM text204

sequence X = [x1, . . . , xn], by leveraging a205

collection of aviation reference tables T =206

{T1, . . . , Tm} within a knowledge-enhanced gen-207

erative framework. Formally, this task is defined as208

maximizing the conditional probability:209

pθ(Y | X,P,K) =
m∏
i=1

pθ(Yi | X,P,K, Y<i),

(1)210

where Y = [Y1, . . . , Ym] denotes the target struc-211

tured output sequence. The term θ represents212

the parameters of the LLM, P encapsulates task-213

specific prompts and instructions, and K =214

κ(X, T ) corresponds to the factual knowledge re-215

trieved from the aviation reference tables T .216

3.2 Framework Overview 217

As illustrated in Fig. 2, our framework has three 218

stages: (1) The Retrieval Stage grounds predictions 219

in aviation domain knowledge via dynamic table 220

retrieval; (2) The Optimization Stage enables iter- 221

ative self-improvement of the foundation model 222

through adaptive preference learning; (3) The In- 223

ference Stage ensures robust parsing via diversified 224

input generation and consensus decoding. This 225

architecture addresses key NOTAM analysis chal- 226

lenges: knowledge grounding, error propagation 227

and stability. 228

3.3 Knowledge-Guided TableRAG 229

To ensure factual consistency in NOTAM parsing 230

results, this study proposes a knowledge graph- 231

enhanced Table Retrieval-Augmented Generation 232

framework (KG-TableRAG). It integrates real-time 233

aviation infrastructure tables to overcome con- 234

ventional TableRAG limitations in specialized do- 235

mains. Conventional table retrieval in aviation of- 236

ten shows domain-specific bias from insufficient 237

structural knowledge representation. For instance, 238

conventional vector retrieval often fails to capture 239

implicit cross-table correlations in "runway clo- 240

sure" events, such as those with lighting systems 241

and navigation equipment. Furthermore, existing 242

ReAct-based table retrieval methods have multi- 243

step reasoning inefficiencies, making them imprac- 244

tical for time-sensitive operations. 245

Our KG-TableRAG framework improves upon 246

TableRAG (Chen et al., 2024b) by systematically 247

integrating knowledge graphs, which are con- 248

structed using open-source methodologies with 249

manual refinements due to limited structured cor- 250

pora. Upon receiving raw NOTAMs (Notices to 251

Airmen), the framework employs LLMs to decom- 252

pose queries, executes graph queries based on ex- 253

tracted keywords, and subsequently performs vec- 254

tor searches. For a detailed illustration of the do- 255

main knowledge graph architecture, please refer to 256

Figure 4 in Appendix B. 257

Our implementation specifics include explicit 258

mappings between knowledge nodes and table 259

columns, such as dynamically binding the graph re- 260

lationship [Airport]→[Owns]→[Runway] to op- 261

erational columns like RWY-STATUS. This design 262

constrains the search space to mitigate interference 263

from irrelevant columns. A lightweight single-step 264

inference mechanism replaces traditional multi- 265

round decision processes by utilizing predefined 266
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Figure 2: Overall framework of the proposed Aviation Parser: (1) Retrieval Stage: The final outputs are based on a
set of base tables that represent real-world conditions, e.g., the number of runways at an airport. (2) Optimization
Stage: Our foundational model gains proficiency in handling complex instructions within NOTAM analysis scenarios
through iterative self-evolution. (3) Inference Stage: We rephrase the original NOTAM without altering its core
content and then extract information from multiple texts to determine the final answer via a voting mechanism.

graph paths (e.g., the chained pattern "Restric-267

tion Type-Impacted Equipment-Applicable Time268

Period") for direct Cypher query generation.269

We prioritize SmolAgents over ReAct for task-270

specific processing due to their superior computa-271

tional efficiency and scalability in complex KG-272

integrated queries. This substitution streamlines273

workflows, improves system robustness and respon-274

siveness, and collectively yields measurable accu-275

racy and efficiency gains in NOTAM information276

retrieval and analysis.277

3.4 Self-Evolving Supervised and Preference278

Optimization279

This stage iteratively refines the base model using a280

combination of supervised learning on correct pre-281

dictions and preference learning on error signals.282

Initialization Setup The process starts with:283

• Data Partitioning: An annotated dataset D0 =284

{(x ◦K,Y ∗)} is partitioned into training (Dtrain)285

and test (Dtest) sets (e.g., 8:2 ratio). Here x is the286

NOTAM text, K = κ(x, T ) is retrieved knowl-287

edge, and Y ∗ is the ground truth structured out-288

put.289

• Base Model: An initial model π0, typically an290

untuned open-source LLM (πbase).291

• Response Pool: An indexed set R, initially 292

empty, to store input-output pairs (x, Y ∗, Ŷ ) gen- 293

erated across iterations e. 294

Iterative Optimization Loop Each iteration e 295

(from 1 to a maximum E) involves intertwined 296

SFT and DPO stages (See Fig. 2 and Algorithm 1 297

in Appendix A). 298

First, using the current model πe, responses Ŷ (e) 299

are generated for inputs x ∈ Dtrain. These re- 300

sponses are compared with Y ∗ to label them as cor- 301

rect or incorrect, and the repository R is updated. 302

The error rate for an input x, ξ(x), is estimated as 303

the fraction of the last K ′ generated responses that 304

were incorrect: 305

ξ(x) =

∑K′

k=1 I(Ŷ (k) ̸= Y ∗)

K ′ (2) 306

where K ′ is a hyperparameter defining the look- 307

back window. 308

Next, supervised fine-tuning (SFT) is performed. 309

Correct input-output pairs (x◦K,Y ∗) are extracted 310

from R to form the SFT dataset D(e)
SFT. The model 311

πe is fine-tuned by minimizing the standard neg- 312

ative log-likelihood loss (where m is the target 313

sequence length): 314
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L(e)
SFT = −E

(x,Y ∗)∼D(e)
SFT

[
m∑
i=1

log πθ(Y
∗
i |315

x ◦K,Y ∗
<i)

]
(3)316

Following SFT, the dynamic preference opti-317

mization (DPO) stage begins. A preference dataset318

D(e)
pref is constructed by sampling triples (x, y∗, y−)319

from R, where y∗ is a known correct response and320

y− is incorrect for input x. Dynamic data aug-321

mentation is applied for inputs x with a high error322

rate (ξ(x) ≥ τ , where τ is a threshold), generat-323

ing Naug semantic-preserving variants Vx. Corre-324

sponding preference triples (v, y∗, y−) for v ∈ Vx325

are added to form the full DPO dataset:326

D(e)
DPO = D(e)

pref ∪
⋃

x∈Dtrain
ξ(x)≥τ

{
(v, y∗, y−) | v ∈ Vx

}
(4)327

Weighted curriculum learning is implemented328

when sampling from D(e)
DPO. The sampling weight329

we(x) for input x at iteration e adaptively focuses330

on harder examples using the error rate ξ(x) and331

a curriculum schedule αe = min(e/E, 1). Let332

N = |D(e)
DPO|, βweight controls error emphasis, and333

E is the total scheduled iterations:334

we(x) = (1− αe)
1

N
335

+ αe
exp(βweightξ(x))∑N

j=1 exp(βweightξ(xj))
(5)336

This transitions sampling from uniform towards337

error-weighted as iterations progress. Finally, the338

DPO loss is optimized using the SFT-updated339

model as the policy πθ and the model from the start340

of the iteration πe as the reference πref. Samples341

(x, y∗, y−) are drawn according to Pe(x) ∝ we(x):342

L(e)
DPO = −E(x,y∗,y−)

∼Pe(x)

[
log σ

(
343

βDPO log
πθ(y

∗|x)
πref(y∗|x)

− βDPO log
πθ(y

−|x)
πref(y−|x)

)]
(6)

344

Here, βDPO is the DPO hyperparameter. The345

sigmoid function σ(·) transforms the scaled log-346

probability difference into a probability [0, 1], rep-347

resenting the preference likelihood (y∗ over y−),348

enabling direct learning from preferences. The349

model after DPO becomes πe+1.350

The iterative loop terminates when the model 351

πe+1 achieves a target accuracy η on the test set 352

Dtest: 353

1

|Dtest|
∑

(x,Y ∗)∈Dtest

I(πe+1(x ◦K) = Y ∗) ≥ η (7) 354

where πe+1(x ◦K) is the model’s prediction. 355

Empirical results show that the framework 356

achieves commercial SOTA-level NOTAM pars- 357

ing accuracy within 3-5 iterations without model 358

distillation. 359

3.5 Integrated Inference Strategy 360

Standard QA paradigms struggle with NO- 361

TAM analysis due to models’ limited complex 362

instruction-following, often causing structural out- 363

put errors. Particularly for edge cases where minor 364

reasoning path variations could determine correct- 365

ness, we observe that the baseline model (πR1) gen- 366

erates inconsistent predictions despite demonstrat- 367

ing partial comprehension. To mitigate instability 368

and preserve domain integrity, we use input diver- 369

sification with consensus-based decoding. The ap- 370

proach begins with generating N = 5 semantically- 371

equivalent NOTAM variants through controlled 372

paraphrasing that strictly maintains original avi- 373

ation terminology (e.g., preserving "RWY" abbre- 374

viations), spatiotemporal constraints, and safety- 375

critical numerical values. Each variant undergoes 376

independent model processing to yield candidate 377

structured outputs {Ŷ (k)}Nk=1, followed by major- 378

ity voting to determine the final prediction Ŷfinal = 379

argmaxY
∑N

k=1 I(Y = Ŷ (k)). The paraphras- 380

ing mechanism combines lexical substitution (e.g., 381

"CTAM" ↔ "Controller Advisory Message"), syn- 382

tactic restructuring through voice alternation, and 383

contextual expansion with optional ICAO phrase- 384

ology clarifications. Experimental validation in 385

Section 4.3 demonstrates this technique’s effective- 386

ness, achieving 1.3% accuracy improvement by re- 387

solving 23% of borderline cases where single-pass 388

decoding produced partially correct outputs. 389

4 Experiments 390

4.1 Experimental Setup 391

Datasets. We construct a specialized dataset from 392

global NOTAMs (2024), with rule-based annota- 393

tions meticulously verified by an expert aviation 394

team for quality and operational relevance. Our 395

dataset emphasizes real-world complexity, unlike 396
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Model Light Area Runway Taxiway AVG

Popular Models

Regex Template Rule-based Matching 0.370 0.491 0.443 0.396 0.425
UIE (Lu et al., 2022) 0.270 0.380 0.320 0.430 0.350
qwen2.5-7B (Yang et al., 2024) 0.560 0.777 0.412 0.748 0.624
Mistral-7B (Jiang et al., 2023) 0.405 0.655 0.588 0.492 0.535
Llama3.1-8B-instruct (Dubey et al., 2024) 0.440 0.476 0.392 0.490 0.450
Deepseek-R1-Distill-Qwen-7B 0.410 0.484 0.446 0.492 0.458
qwen2.5-7b-instruct (SFT) 0.590 0.793 0.730 0.864 0.744
Deepseek-R1-Distill-Qwen-7B (SFT) 0.18 0.226 0.236 0.204 0.212
Deepseek-R1-Distill-Qwen-7B (ours) 0.620 0.725 0.836 0.868 0.762

Commercial Models

GPT-4o (Achiam et al., 2023) 0.605 0.851 0.770 0.914 0.785
Deepseek-R1 (DeepSeek-AI et al., 2025) 0.725 0.871 0.792 0.924 0.828

Table 1: Performance comparison on four NOTAM analysis tasks. Models are grouped into Popular (including
traditional methods and open-source LLMs) and Commercial (references). Underlined: Best result within the
Popular Models group or the Commercial Models group, respectively. Bold: Overall best result across all models.

simpler benchmarks (Arnold et al., 2022), by re-397

quiring structured information extraction grounded398

in temporal-aligned aeronautical knowledge tables399

(T ). Key characteristics, including global opera-400

tional patterns, significant textual variability, short401

validity periods, and evaluation task distributions,402

are detailed in Table 2, necessitating robust parsing403

for realistic assessment.404

Statistic Value / Count

Overall Characteristics
Total Samples 10,000
Avg. Word Count 39.2
Avg. Valid Days 8.1
Top Region (%) Asia (38.8%)
Top Q-Code (%) Movement Area (M, 49.8%)

Evaluation Task Distribution
Light 1,000
Area 4,000
Runway 2,500
Taxiway 2,500

Table 2: NOTAM Dataset Details

Baselines. We benchmark our framework against405

several baseline categories (detailed in Table 1).406

These comprise: traditional methods (a Regex407

Template Rule-based system and the UIE infor-408

mation extractor (Lu et al., 2022)); popular un-409

tuned open-source LLMs (qwen2.5-7B (Yang et al.,410

2024), Mistral-7B (Jiang et al., 2023), Llama3.1- 411

8B-instruct (Dubey et al., 2024), and our specific 412

base model, Deepseek-R1-Distill-Qwen-7B); their 413

SFT counterparts where applicable (qwen2.5-7b- 414

instruct and Deepseek-R1-Distill-Qwen-7B (SFT)); 415

and high-performance commercial models as per- 416

formance references (GPT-4o (Achiam et al., 2023) 417

and Deepseek-R1 (DeepSeek-AI et al., 2025)). To 418

ensure fairness, all LLM evaluations utilize the 419

same domain-specific prompts. 420

Evaluation Rule: A prediction is considered cor- 421

rect only if it exactly matches the ground truth 422

format and all annotated field values. 423

Implementation Details. Our implementation 424

is based on the DeepSeek-R1-Distill-Qwen-7B 425

model. Fine-tuning (standard SFT and our iter- 426

ative optimization) efficiently utilizes the Unsloth 427

framework with its recommended configurations. 428

The KG-TableRAG module’s core involves con- 429

structing the knowledge graph via the GraphFu- 430

sion methodology (Pan et al., 2024), with human 431

verification (KG architecture in Appendix A). Ex- 432

periments were conducted on a single NVIDIA 433

A800-80GB-PCIe GPU. 434

4.2 Main Results 435

We evaluate our optimized model (Deepseek-R1- 436

Distill-Qwen-7B (ours)) against baselines on four 437

key NOTAM analysis tasks. 438

Table 1 summarizes these results. Our optimized 439

model achieves an excellent average score (AVG), 440
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significantly surpassing traditional methods. Cru-441

cially, it achieves a 30.4% absolute improvement442

compared to its base model (Deepseek-R1-Distill-443

Qwen-7B), directly validating the effectiveness of444

our optimization pipeline. Furthermore, our model445

outperforms other tested untuned open-source large446

language models (e.g., Mistral-7B, Llama3.1-8B)447

and the best-performing SFT (Supervised Fine-448

Tuning) baseline model (qwen2.5-7b-instruct).449

Notably, employing only SFT can lead to a degra-450

dation in the base model’s reasoning capabilities,451

suggesting that basic SFT may be insufficient for452

analyzing and processing such complex structured453

tasks, which further motivates our adoption of our454

SEVO (Self-Evolving Optimization) approach. Fi-455

nally, as detailed in Table 1, despite our model456

having a significantly smaller parameter count than457

GPT-4o and Deepseek-R1, its performance is com-458

parable to them. This thoroughly demonstrates the459

effectiveness of our proposed overall framework,460

showcasing its ability to achieve performance com-461

parable to leading large-scale commercial models.462

4.3 Ablation Study463

To validate our design choices, we conduct system-464

atic ablation analyses removing key components:465

(1) KG-TableRAG knowledge integration and (2)466

the Reasoning Integration mechanism. Table 3467

shows the impact on AVG performance compared468

to the full system (0.762 AVG):469

Removing KG-TableRAG (-KG) results in a470

2.2% drop (0.740 AVG), particularly affecting471

knowledge-dependent interpretations (e.g., Q-code472

mapping).473

Removing Reasoning Integration (-Inf. In-474

tegr.) lead to a larger 4.1% drop (0.721 AVG),475

confirming its importance for handling semantic476

ambiguity and constraints.477

Removing Both (-KG -Inf. Integr.) yield the478

lowest performance (0.690 AVG), demonstrating479

the complementary necessity of both components.480

KG-TableRAG Inf. Integr. AVG

✓ ✓ 0.762
✓ × 0.721
× ✓ 0.740
× × 0.690

Table 3: Ablation Study Results with Structured Knowl-
edge (KG-TableRAG) and Reasoning Integration Com-
ponents. Gray background indicates full configuration.

Figure 3 shows clear benefits from our iterative 481

SEVO strategy. Over three iterations, complex 482

tasks like Taxiway saw accuracy improve from 483

64.6% to 86.8%, and Light accuracy rose from 484

45% to 62%. 485

Light Area Runway Taxiway

40

60

80

100

45

63

78.8

64.6
54

72

84.2 81.2

62

73
83.6 86.8

Performance comparison across iterations

Iteration 1 Iteration 2 Iteration 3

Figure 3: Iterative Optimization Performance (Accuracy
%) across NOTAM Categories.

Overall, the ablation and iterative results vali- 486

date the distinct contributions of each framework 487

component: KG-TableRAG for essential knowl- 488

edge grounding, Reasoning Integration for robust 489

deduction, and SEVO’s iterative optimization for 490

continuous performance enhancement, collectively 491

addressing the core challenges of accurate NOTAM 492

parsing. 493

4.4 Complexity Analysis 494

We rigorously analyze the computational charac- 495

teristics of our framework through three funda- 496

mental components. The dynamic preference op- 497

timization process is governed by the response 498

pool R(t)
x = {(Y ∗, Ŷ (k))}3Kk=1 containing outputs 499

from three models per input, the sample-wise er- 500

ror rate ξ(x) =
∑3K

k=1 I(Ŷ (k) ̸=Y ∗)
3K from (4), and the 501

active preference pairs D(t)
pref = {(x, y∗, y−)|y∗ ∈ 502

Y∗
x, y

− ∈ Y−
x }. 503

As demonstrated in Table 4, the response pool 504

grows linearly as |R(t)
x | = 3Kt with each iter- 505

ation’s triple-model generation, while the actual 506

preference pair creation instead follows quadratic 507

scaling, modulated by accuracy progression: 508

|D(t)
pref| =

∑
x∈D0

|Y∗
x| · |Y−

x |

≈ 9K2t2(1− η)

(8) 509

where ηx = 1
t

∑t
i=1 I(Ŷ (i) = Y ∗) tracks per- 510

input accuracy and η denotes global performance. 511

Our experiments reveal accuracy improvements 512

from initial 45% to final 62%, causing the error 513
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suppression term (1− η) to decrease from 0.55 to514

0.38 through three iterations.515

Metric Iter.1 Iter.2 Iter.3

Theoretical pairs 2,415 5,915 11,320
Effective pairs 1,449 3,549 6,792
Time (h) 0.58 1.5 3.2
Scale factor 1.0× 2.6× 2.1×

Table 4: Iterative Complexity Metrics with Scaling Fac-
tors

The computational cost per iteration combines516

preference pair volume with curriculum learning517

dynamics, as quantified in Table 4:518

T (t)
DPO = E · |D(t)

pref| · Ewe(x)[1/Pe(x)]

Pe(x) ∝ (1− αe)
1

N
+ αe

exp(βξ(x))∑
j exp(βξ(xj))

(9)519

where E denotes training epochs and αe =520

min(e/E, 1) implements our phased curriculum521

strategy. Three mechanisms suppress theoreti-522

cal O(t2) scaling to observed 2.3× average per-523

iteration growth: 1) Error threshold filtering (4) re-524

moves 40% of low-difficulty samples, 2) Weighted525

curriculum sampling reduces effective batch size526

by 38%, and 3) Accuracy saturation limits error527

response generation through (1 − η) decay (0.55528

→ 0.46 → 0.38).529

The framework maintains practical tractability530

through exponential complexity bounding:531

T (t)
DPO ≤ 2.3tT (0)

DPO, lim
t→∞

T (t)
DPO = O(1) (10)532

with complete convergence achieved in 3 itera-533

tions at 62% accuracy. Total wall-clock time ranges534

from 35 minutes to 3.2 hours on NVIDIA A800535

GPUs, with DPO training utilizing 1,449-6,792 fil-536

tered preference pairs per iteration as detailed in537

Table 4.538

4.5 Case Study539

This case study illustrates our framework’s advan-540

tage in reasoning about implicit, hierarchical re-541

lationships in NOTAMs, where high-level restric-542

tions affect unmentioned components.543

Consider a NOTAM for airport AGGC:544

E) CHOISEUL L BAY AIRPORT CLOSED TO ALL545
OPERATIONS...546

Correctly interpreting this airport-wide closure547

means inferring effects on associated, unlisted com-548

ponents like runways.549

Typical baseline systems, lacking structured 550

knowledge (e.g., airport-runway relationships) or 551

advanced reasoning, often fail this inference. They 552

might parse the airport closure but omit the runway, 553

providing incomplete awareness: 554

{"airport": "AGGC", "runway": "", ...} 555

Our framework addresses this challenge. KG- 556

TableRAG queries the aviation knowledge graph 557

with the airport identifier (’AGGC’), retrieving that 558

"RWY 07R" belongs to airport "AGGC". This fact 559

supplies the missing structural context. 560

The LLM then integrates the input instruction 561

("airport closed") with this retrieved fact. Through 562

semantic reasoning, it correctly infers the oper- 563

ational consequence - the runway must also be 564

closed because it is part of the closed airport, lead- 565

ing to the accurate output: 566

{"airport": "AGGC", "runway": "RWY 07R", 567
...} 568

This correct inference of runway "RWY 07R" 569

is critical for operational safety (e.g., preventing 570

routing to a closed runway). It highlights our ap- 571

proach’s advantage: integrated knowledge and rea- 572

soning for comprehensive understanding beyond 573

simple text extraction. For additional detailed ex- 574

amples, please refer Appendix D 575

5 Conclusion 576

We present a knowledge-guided framework that 577

combines LLMs with aviation expertise to address 578

key challenges in NOTAM parsing task. Our self- 579

evolving architecture addresses semantic-factual 580

contradictions through dynamic integration of in- 581

frastructure knowledge and operational constraints. 582

The framework achieves a 30.4% accuracy gain 583

over its base model via iterative optimization on 584

10,000 NOTAMs, effectively bridging NLP capabil- 585

ities with aviation requirements while maintaining 586

terminology integrity. This research establishes 587

a new paradigm for NOTAM analysis, with prin- 588

ciples extensible to other high-precision domains 589

requiring robust knowledge integration and adap- 590

tive learning. 591

The results underscore the transformative poten- 592

tial of LLM-driven solutions in enhancing airspace 593

management automation, mitigating human error 594

risks, and advancing real-time decision-making ca- 595

pabilities for global aviation systems. 596
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6 Limitation597

While our self-evolving framework improves iter-598

atively, limitations exist. First, the computational599

cost per optimization iteration increases (as de-600

tailed in our Complexity Analysis), necessitating601

potentially significant training time to achieve op-602

timal performance, akin to reinforcement learning603

paradigms. Second, the inherent complexity of NO-604

TAMs, with intricate temporal-spatial dependen-605

cies and specialized terminology, makes creating606

perfectly accurate ground truth annotations chal-607

lenging. This difficulty in capturing all nuances608

can subsequently limit the model’s performance609

ceiling, even with constraint-aware methods. Fu-610

ture work could explore LLM-assisted annotation611

combined with expert validation to further refine612

training data quality.613

7 Ethical Considerations614

While this work demonstrates potential for au-615

tomating NOTAM analysis, current accuracy lev-616

els do not meet the stringent safety requirements617

for direct, real-time deployment in aviation sys-618

tems. Therefore, the system is intended solely as619

a decision-support tool for ground analysts. Cru-620

cially, all outputs, especially critical flight informa-621

tion, must undergo rigorous manual verification by622

qualified personnel before operational use or trans-623

mission to pilots, adhering to established aviation624

safety protocols.625

Our study utilizes publicly available NOTAM626

data, and annotations are performed by domain627

experts, ensuring transparency and data integrity.628

Continuous refinement of the model is ongoing, but629

the technology must currently be treated as supple-630

mentary, augmenting rather than replacing essential631

expert judgment in this safety-critical domain.632
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A Training Algorithm Implementation829

Details830

Algorithm 1 Self-Evolving SFT & DPO Optimiza-
tion
Require: Initial dataset D0 = Dtrain ∪ Dtest (8:2 split)
1: Base model πbase, empty response poolR = ∅
2: Max iterations T , error threshold τ , temperature β, total

epochs E

3: procedure MAIN
4: πcurrent ← πbase ▷ Model initialization
5: for t = 1 to T do
6: GENERATERESPONSES(πcurrent, D0)
7: UPDATERESPONSEPOOL(R) ▷ Record

correct/incorrect responses
8: DSFT ← {(x ◦K,Y ∗)|Y ∗ ∈ Y∗

x}
9: πSFT ← SFT-TRAIN(πcurrent,DSFT)

10: GENERATERESPONSES(πSFT, D0)
11: UPDATERESPONSEPOOL(R)
12: Dpref ← BUILDPREFERENCEPAIRS(R)
13: if Dpref ̸= ∅ then
14: πDPO ← DPO-TRAIN(πSFT,Dpref)
15: πcurrent ← πDPO
16: end if
17: end for
18: end procedure

19: function DPO-TRAIN(πref,Dpref)
20: Daug ← ∅
21: for x ∈ Dpref do
22: if ξ(x) ≥ τ then ▷ Data augmentation trigger
23: Vx ←

⋃N
n=1 Augment(x, n)

24: Daug ← Daug ∪ {(v, Y ∗, Y −)}
25: end if
26: end for
27: for e = 1 to E do ▷ Curriculum learning
28: αe ← min(e/E, 1)
29: for xi ∈ Daug do
30: we(xi)← (1− αe)

1
N

+ αe
exp(βξ(xi))∑
j exp(βξ(xj))

31: end for
32: Sample batch ∼ Pe(x) ∝ we(x)
33: Update πθ using LDPO (Eq. 6)
34: end for
35: return πθ

36: end function

37: function BUILDPREFERENCEPAIRS(R)
38: Dpref ← ∅
39: for x ∈ D0 do
40: if ∃(Y ∗, Y −) ∈ Rx then ▷ Valid preference

pairs exist
41: Dpref ← Dpref ∪ {(x, Y ∗, Y −)}
42: end if
43: end for
44: return Dpref
45: end function

B Knowledge Graph Structure 831

Figure 4: Domain Knowledge Graph Architecture.

C Task Prompt 832

833
You are an AI assistant specialized in parsing 834

↪→NOTAMs. Your task is to extract information 835
↪→about the runway status from the given NOTAM 836
↪→ text. Please follow the guidelines below : 837

838
1. Identify Runway Status : 839

Closed (MRLC , MRXX): Contains keywords like 840
↪→CLOSED , CLSD , CLOSURE , NOT AVBL , 841
↪→UNAVAILABLE , SUSPENDED , etc. 842

- Limited (MRLT , MRXX): Contains phrases like 843
↪→RESTRICTED , LIMITED , RESERVED FOR , etc., 844
↪→ and is combined with "only". 845

- Open (MRAH): Contains keywords like OPEN , OPN 846
↪→TO TFC , CANCELLED CLOSURE , etc. 847

2. Evaluate the Impact: 848
- Determine if it affects takeoffs , landings , or 849

↪→ both (based on the semantics). 850
- Identify the affected flight types ( 851

↪→International , Domestic , Regional). 852
- If the restricted flight type is not 853

↪→explicitly mentioned , assign " 854
↪→International , Domestic , Regional ". 855

- If explicitly mentioned , assign only the 856
↪→restricted flight type. 857

3. Output Format: 858
Please return the result in the JSON array 859

↪→format. Each element represents a record 860
↪→ and contains the following fields: 861

- `airport `: ICAO code of the airport. 862
- `runway `: Affected runway number. 863
- `affect_actype `: Affected aircraft type. Fill 864

↪→in the field only when it involves 865
↪→wingspan , CODE C/D, or the number of 866
↪→engines. 867

- `affect_region `: The scope of closure or 868
↪→restriction , with values "TAKEOFFS", " 869
↪→LANDINGS", or "TAKEOFFS ,LANDINGS ". 870

- `flight_type `: The affected flight type ( 871
↪→International , Domestic , Regional). 872

4. Notes: 873
- Partial closure/restriction of a runway is 874

↪→also considered as a complete closure/ 875
↪→restriction. 876
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- Create a separate record for each runway if877
↪→the message involves multiple runways.878

- Extract only the information explicitly879
↪→mentioned in the NOTAM; do not make880
↪→assumptions.881

- When facing the flight type , consider using882
↪→Chinese words to represent the flight883
↪→type as mentioned in the prompt and884
↪→examples.885

- Focus on the impact on aircraft , such as the886
↪→aircraft category (CODE C/D), wingspan (887
↪→in meters), etc.888

- Fill in the `affect actype ` field based on the889
↪→ affected aircraft type. The wingspan890
↪→length may need to be converted from FT891
↪→to M for comparison.892

- The message may mention restrictions on893
↪→aircraft categories or CODEs , which need894
↪→ to be matched with the aircraft type895
↪→table.896897

D Example898

—INPUT—899

900
<instruction >:901
Q)KZDV/QMRLC/IV/NBO/A/000/999/3952902

↪→N10440W005903
A)KDEN B)2301010254 C)2301011200904
E) DEN RWY 17L/35R CLSD905

906
)907908

—OUTPUT—909

910
<result >:911
<think >912
Runway Identification: Extracted the airport ICAO913

↪→code as "KDEN" from "A) KDEN".914
Runway Status Analysis:915

"RWY 17L/35R CLSD" -> Both runways are916
↪→completely closed (CLSD=Closed).917

The default impact of closure is on takeoffs and918
↪→ landings -> affect_region: "TAKEOFFS ,!919

LANDINGS ".920
Aircraft Type Restriction:921

No mention of wingspan , CODE category , or engine922
↪→ restrictions -> affect_actype: null.923

Flight Type Inference:924
No specific restriction mentioned -> Default925

↪→impact on all types -> flight_type: "926
↪→International ,Domestic ,Regional ".927

Handling Multiple Runways:928
Create a separate record for each runway929

↪→according to the rules (one each for 17L930
↪→ and 35R).931

932
```json933
[934

{935
"airport ": "KDEN",936
"runway ": "17L",937
"affect_actype ": null ,938
"affect_region ": "TAKEOFFS ,!939

LANDINGS",940
"flight_type ": "International ,!941

Domestic ,Regional"942
},943
{944

"airport ": "KDEN",945
"runway ": "35R",946
"affect_actype ": null ,947
"affect_region ": "TAKEOFFS ,!948

LANDINGS",949
"flight_type ": "International ,!950

Domestic ,Regional"951
}952

]953954
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