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Abstract

Accurate parsing of Notices to Airmen (NO-
TAMs) is critical for aviation safety, yet many
existing methodologies struggle with template
rigidity that hinders effective handling of non-
standard syntax, regional expression ambigui-
ties and the semantic-practice gap. In this paper,
we propose a knowledge-guided self-evolving
optimization framework that integrates Large
Language Models (LLMs) with an Aviation
Knowledge Graph (AviationKG) in order to
achieve efficient structured NOTAM parsing.
This framework consists of three innovative
modules: 1) Knowledge-Enhanced Retrieval
(KG-TableRAG), which resolves semantic am-
biguities through binding of knowledge graph
relations with infrastructure tables to constrain
search spaces; 2) Self-Evolving Optimization
(SEVO), which employs dynamic preference
alignment and error-driven curriculum learn-
ing to iteratively enhance complex instruction
compliance; 3) Consensus Inference Engine
(CIE), which improves edge-case robustness
via terminology-preserved input diversification
and majority voting decoding. Experimental re-
sults demonstrate that our framework achieves
a 30.4% accuracy improvement over the base
model within 3-5 iterations on a labeled dataset
of 10,000 global NOTAMs. Ablation studies
further validate the collaborative effectiveness
of its modular components. This research estab-
lishes the first knowledge-driven, iteratively op-
timized LLM solution for aviation text parsing,
with a methodology extensible to other high-
precision-demanding professional domains.

1 Introduction

Accurate NOTAM (Notice to Airmen) interpreta-
tion is a critical yet challenging component of mod-
ern flight operations. These specialized bulletins
contain time-sensitive information regarding tem-
porary airspace restrictions and navigational haz-
ards, characterized by linguistic features distinct
from conventional technical documentation. With

over one million active NOTAMs published an-
nually worldwide (Morarasu and Roman, 2024),
the aviation industry urgently needs robust auto-
mated analysis to reduce manual workload and
errors. Existing systems mostly use rule-based tem-
plate matching, focusing research on automated
rule discovery or basic classification (Dieter et al.,
2024; Mi et al., 2022).
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Figure 1: An illustration of NOTAM analysis task

However, NOTAMs present unique parsing chal-
lenges due to their heavy dependence on 300+ stan-
dardized abbreviations and non-standard syntac-
tic structures (e.g., "RWY 09L/27R CLSD DUE
BIRD ACT"), which frequently violate conven-
tional parsing rules. Furthermore, practical sce-
narios introduce additional complexity through re-
gional expression variations (e.g., "EGBA" encom-
passing both EGBA1A and EGBA1B) and typo-
graphical/grammatical errors. Beyond syntactic, a
key challenge is the semantic-practice gap: the
disconnect between textual descriptions and oper-
ational impacts requires implicit correlation with
aviation infrastructure status. For instance, inter-
preting "APCH LGT U/S" necessitates knowledge
of specific runway configurations, yet NOTAMs
may reference non-existent runways or omit criti-
cal identifiers (Patel et al., 2023). These operational
constraints rely on factual data from regularly up-
dated official sources, as illustrated in Figure 1.



Recent advancements in large language models
(LLMs), characterized by their sophisticated natu-
ral language understanding capabilities, are paving
new frontiers for NOTAM analysis. While no prior
studies specifically address LLM applications in
this domain, recent breakthroughs in complex in-
struction following and generic information extrac-
tion (Morarasu and Roman, 2024) establish critical
technical foundations. Essentially, LLMs can be
adapted to take raw NOTAM text as input and,
with appropriate guidance, produce structured in-
formation as output. However, NOTAMs present
unique challenges, including domain-specific lan-
guage and the need to link the text to structured
aviation data. Building on this, our LLM-adapted
framework for NOTAM analysis makes three pio-
neering contributions to bridge this gap and enable
effective NOTAM parsing:

* Knowledge-Driven Architecture: Innovat-
ing the inaugural application of LLMs to NO-
TAM parsing, our framework integrates an
aviation knowledge graph with TableRAG
retrieval to overcome domain-specific chal-
lenges through constraint-aware information
extraction.

* Self-Optimizing Pipeline: Through synergis-
tic integration of dynamic preference align-
ment, error-driven curriculum learning, and
consensus inference mechanisms, we estab-
lish an end-to-end optimizable system capable
of self-evolution without manual intervention.

* Empirical Performance Leap: Experimental
validation demonstrates our optimized model
achieves a 30.4% accuracy improvement over
base LLMs, with multi-perspective analysis
and majority voting decoding.

2 Related Work
2.1 NOTAM Analysis

NLP plays a key role in reducing manual opera-
tions in aviation, particularly in NOTAM analysis
(Mogillo-Dettwiler, 2024; Mi et al., 2022). Early
efforts explore transformer-based models trained
on unlabeled NOTAMs for filtering and inconsis-
tency correction (Bravin et al., 2020). NLP work-
flows (TF-IDF, topic modeling, NER) are applied
to a large dataset for automated segmentation and
tagging (Clarke et al., 2021). Further work uti-
lizes pre-trained BERT models on 1.2 million NO-
TAMs for aviation knowledge extraction (Arnold

etal., 2022). These pioneering studies, while signif-
icant, reveal persistent challenges (e.g., ambiguous
abbreviations, semantic-practical mismatches, re-
gional variations) that impact safety and efficiency
(Morarasu and Roman, 2024). Our work builds
upon these insights by proposing a more adaptive
and robust LLM-based framework specifically de-
signed to handle these complexities in practical
NOTAM parsing.

2.2 Recent Advances in Aviation NLP

Recent advances in aviation NLP have significantly
improved flight operations and safety management
through enhanced text understanding and infor-
mation extraction. Spoken instructions are inte-
grated into flight trajectory prediction, improving
accuracy (Guo et al., 2024). A graph-based ap-
proach captures trajectory point attribute relation-
ships (Fan et al., 2024). Trajectory prediction is
framed as a language modeling task using fine-
tuned LLMs, though facing latency issues (Luo and
Zhou, 2025). For communication, an NLP agent is
introduced for pilot training phraseology compli-
ance (Liu et al., 2024). Additionally, deep learning
is applied to classify flight phases in safety reports,
automating analysis (Nanyonga et al., 2023). These
developments demonstrate aviation NLP’s progress
in improving safety, traffic management, and com-
munication efficiency.

2.3 Large Language Models

Advances in LLMs (Zhao et al., 2023) drive
progress in specialized domains. NOTAM anal-
ysis requires integrating key capabilities like in-
formation extraction, tabular understanding, and
complex instruction following. Transformer ar-
chitectures (Brown et al., 2020; Chowdhery et al.,
2022), enhanced by parameter scaling (Rae et al.,
2021; Le Scao et al., 2022), show strong few-shot
learning capabilities suitable for aviation’s often
sparsely labeled data (Xu et al., 2023). Key aspects
include:

Knowledge Enhancement: Integrating knowl-
edge graphs (KGs) with LLMs is shown to improve
reasoning and reduce hallucinations (Ji et al., 2024;
Zhang et al., 2024). KG structure reorganization
and instruction fine-tuning address hallucination in
complex question answering (Ji et al., 2024). KG
structure is leveraged for factual reasoning enhance-
ment (Zhang et al., 2024). The SAC-KG frame-
work achieves high precision in domain-specific
KG construction, significantly outperforming prior



methods (Chen et al., 2024a). In law, Legal-LM
combines KGs with keyword extraction to boost
performance (Shi et al., 2024). These studies show
KG-enhanced LLMs improve reliability for com-
plex reasoning tasks.

Information Extraction: This task benefits
from in-context learning (prompt engineering) tech-
niques (Li et al., 2023) or supervised fine-tuning
with instruction datasets (Wang et al., 2023). In-
novations like code-style prompting (Sainz et al.,
2024) and hierarchical schema representations (Li
et al., 2024) improve output consistency, but con-
ventional methods struggle with aviation’s dynamic
semantics and regional variations.

Tabular Understanding: Methods in this area
have evolved from Text2SQL systems (Zhong
et al., 2017) to more advanced neuro-symbolic
approaches like TableRAG (Chen et al., 2024b).
While TableRAG’s query expansion helps with
large tables, limitations in NOTAM contexts in-
clude context window constraints and poor cell
localization with sparse schemas.

Complex Instruction Following: Research in-
dicates that progressively adding constraints can
improve a model’s ability to comply with complex
instructions (Mukherjee et al., 2023; Luo et al.,
2024). Frameworks like Conifer (Sun et al., 2024)
show potential for handling multi-level constraints.
Building on this, we employ curriculum learning to
optimize performance on NOTAMs’ heterogeneous
instruction complexity.

3 The Proposed Framework

3.1 Problem Formulation

Our primary objective is to extract structured avi-
ation information from an input NOTAM text
sequence X = [x1,...,%,|, by leveraging a
collection of aviation reference tables 7 =
{T1,...,T,,} within a knowledge-enhanced gen-
erative framework. Formally, this task is defined as
maximizing the conditional probability:

m

po(Y | X,P,K) =[] pe(Yi | X, P, K,Y),

i=1
(1
where Y = [Y7,...,Y,,] denotes the target struc-
tured output sequence. The term 6 represents
the parameters of the LLM, P encapsulates task-
specific prompts and instructions, and K =
k(X,T) corresponds to the factual knowledge re-
trieved from the aviation reference tables 7.

3.2 Framework Overview

As illustrated in Fig. 2, our framework has three
stages: (1) The Retrieval Stage grounds predictions
in aviation domain knowledge via dynamic table
retrieval; (2) The Optimization Stage enables iter-
ative self-improvement of the foundation model
through adaptive preference learning; (3) The In-
ference Stage ensures robust parsing via diversified
input generation and consensus decoding. This
architecture addresses key NOTAM analysis chal-
lenges: knowledge grounding, error propagation
and stability.

3.3 Knowledge-Guided TableRAG

To ensure factual consistency in NOTAM parsing
results, this study proposes a knowledge graph-
enhanced Table Retrieval-Augmented Generation
framework (KG-TableRAG). It integrates real-time
aviation infrastructure tables to overcome con-
ventional TableRAG limitations in specialized do-
mains. Conventional table retrieval in aviation of-
ten shows domain-specific bias from insufficient
structural knowledge representation. For instance,
conventional vector retrieval often fails to capture
implicit cross-table correlations in "runway clo-
sure" events, such as those with lighting systems
and navigation equipment. Furthermore, existing
ReAct-based table retrieval methods have multi-
step reasoning inefficiencies, making them imprac-
tical for time-sensitive operations.

Our KG-TableRAG framework improves upon
TableRAG (Chen et al., 2024b) by systematically
integrating knowledge graphs, which are con-
structed using open-source methodologies with
manual refinements due to limited structured cor-
pora. Upon receiving raw NOTAMs (Notices to
Airmen), the framework employs LLMs to decom-
pose queries, executes graph queries based on ex-
tracted keywords, and subsequently performs vec-
tor searches. For a detailed illustration of the do-
main knowledge graph architecture, please refer to
Figure 4 in Appendix B.

Our implementation specifics include explicit
mappings between knowledge nodes and table
columns, such as dynamically binding the graph re-
lationship [Airport]—[Owns]—[Runway] to op-
erational columns like RWY-STATUS. This design
constrains the search space to mitigate interference
from irrelevant columns. A lightweight single-step
inference mechanism replaces traditional multi-
round decision processes by utilizing predefined
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Figure 2: Overall framework of the proposed Aviation Parser: (1) Retrieval Stage: The final outputs are based on a
set of base tables that represent real-world conditions, e.g., the number of runways at an airport. (2) Optimization
Stage: Our foundational model gains proficiency in handling complex instructions within NOTAM analysis scenarios
through iterative self-evolution. (3) Inference Stage: We rephrase the original NOTAM without altering its core
content and then extract information from multiple texts to determine the final answer via a voting mechanism.

graph paths (e.g., the chained pattern "Restric-
tion Type-Impacted Equipment-Applicable Time
Period") for direct Cypher query generation.

We prioritize SmolAgents over ReAct for task-
specific processing due to their superior computa-
tional efficiency and scalability in complex KG-
integrated queries. This substitution streamlines
workflows, improves system robustness and respon-
siveness, and collectively yields measurable accu-
racy and efficiency gains in NOTAM information
retrieval and analysis.

3.4 Self-Evolving Supervised and Preference
Optimization

This stage iteratively refines the base model using a

combination of supervised learning on correct pre-

dictions and preference learning on error signals.

Initialization Setup The process starts with:

* Data Partitioning: An annotated dataset Dy =
{(z o K,Y™)} is partitioned into training (Diain)
and test (Dyeg) sets (e.g., 8:2 ratio). Here x is the
NOTAM text, K = k(z, T ) is retrieved knowl-
edge, and Y™ is the ground truth structured out-
put.

* Base Model: An initial model 7y, typically an
untuned open-source LLM (7pyse ).

* Response Pool: An indexed set R, initially
empty, to store input-output pairs (z, Y*,Y") gen-
erated across iterations e.

Iterative Optimization Loop Each iteration e

(from 1 to a maximum F') involves intertwined

SFT and DPO stages (See Fig. 2 and Algorithm 1

in Appendix A).

First, using the current model 7., responses y(e)
are generated for inputs * € Diygin. These re-
sponses are compared with Y* to label them as cor-
rect or incorrect, and the repository R is updated.
The error rate for an input z, {(z), is estimated as
the fraction of the last K’ generated responses that
were incorrect:

K’ (k) *

where K’ is a hyperparameter defining the look-
back window.

Next, supervised fine-tuning (SFT) is performed.
Correct input-output pairs (xo K, Y™*) are extracted
from R to form the SFT dataset Dé;)T The model
me is fine-tuned by minimizing the standard neg-
ative log-likelihood loss (where m is the target
sequence length):
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Following SFT, the dynamic preference opti-
mization (DPO) stage begins. A preference dataset
Défgf is constructed by sampling triples (x,y*, y ™)
from R, where y* is a known correct response and
y~ is incorrect for input . Dynamic data aug-
mentation is applied for inputs = with a high error
rate ({(z) > 7, where 7 is a threshold), generat-
ing Ny, semantic-preserving variants V.. Corre-
sponding preference triples (v,y*,y~) forv € V,
are added to form the full DPO dataset:

Diigo =Dk U {wy'y7) [ve v}
ZE€Dyain
§(z)>T

“)
Weighted curriculum learning is implemented
when sampling from D]()ego. The sampling weight
we(z) for input z at iteration e adaptively focuses
on harder examples using the error rate £(z) and
a curriculum schedule . = min(e/E,1). Let
N = \foﬁo , Bweight controls error emphasis, and
I is the total scheduled iterations:

e eXp(/BWeight‘E(x)) (5)

Z;'Vzl exp(ﬂweightf(xj ))

This transitions sampling from uniform towards
error-weighted as iterations progress. Finally, the
DPO loss is optimized using the SFT-updated
model as the policy 7y and the model from the start
of the iteration 7, as the reference 7. Samples
(x,y*,y~ ) are drawn according to P.(x) o< w(z):

£1()6120 = 7E(:}c,y*,y‘) |:10g0'<

~Pe(x)
To(y*|z mo(y~ |
Bopo log Lj) — Bopo log 9(y|)>]
Trer (Y*|) Tret (Y~ |2)
(6)
Here, Oppo is the DPO hyperparameter. The

sigmoid function o (-) transforms the scaled log-
probability difference into a probability [0, 1], rep-
resenting the preference likelihood (y* over y7),
enabling direct learning from preferences. The
model after DPO becomes ¢ 1.

The iterative loop terminates when the model
Te+1 achieves a target accuracy n on the test set
Diest:

1
| Drest| 2

(z,Y*)EDrest

[(7ep1(zo K)=Y")>n (7)

where 7.1 (x o K) is the model’s prediction.

Empirical results show that the framework
achieves commercial SOTA-level NOTAM pars-
ing accuracy within 3-5 iterations without model
distillation.

3.5 Integrated Inference Strategy

Standard QA paradigms struggle with NO-
TAM analysis due to models’ limited complex
instruction-following, often causing structural out-
put errors. Particularly for edge cases where minor
reasoning path variations could determine correct-
ness, we observe that the baseline model (7gr;) gen-
erates inconsistent predictions despite demonstrat-
ing partial comprehension. To mitigate instability
and preserve domain integrity, we use input diver-
sification with consensus-based decoding. The ap-
proach begins with generating N = 5 semantically-
equivalent NOTAM variants through controlled
paraphrasing that strictly maintains original avi-
ation terminology (e.g., preserving "RWY" abbre-
viations), spatiotemporal constraints, and safety-
critical numerical values. Each variant undergoes
independent model processing to yield candidate
structured outputs {¥ (¥) }AV_,, followed by major-
ity voting to determine the final prediction Yﬁnal =
argmaxy Y p_ I(Y = Y®)). The paraphras-
ing mechanism combines lexical substitution (e.g.,
"CTAM" <> "Controller Advisory Message"), syn-
tactic restructuring through voice alternation, and
contextual expansion with optional ICAO phrase-
ology clarifications. Experimental validation in
Section 4.3 demonstrates this technique’s effective-
ness, achieving 1.3% accuracy improvement by re-
solving 23% of borderline cases where single-pass
decoding produced partially correct outputs.

4 Experiments

4.1 Experimental Setup

Datasets. We construct a specialized dataset from
global NOTAMs (2024), with rule-based annota-
tions meticulously verified by an expert aviation
team for quality and operational relevance. Our
dataset emphasizes real-world complexity, unlike



Model Light Area Runway Taxiway AVG
Popular Models

Regex Template Rule-based Matching 0.370 0.491 0.443 0.396  0.425
UIE (Lu et al., 2022) 0.270 0.380  0.320 0.430  0.350
qwen2.5-7B (Yang et al., 2024) 0.560 0.777 0412 0.748  0.624
Mistral-7B (Jiang et al., 2023) 0.405 0.655  0.588 0492  0.535
Llama3.1-8B-instruct (Dubey et al., 2024) 0.440 0476  0.392 0.490 0450
Deepseek-R1-Distill-Qwen-7B 0.410 0.484 0.446 0.492 0.458
gwen2.5-7b-instruct (SFT) 0.590 0.793  0.730 0.864  0.744
Deepseek-R1-Distill-Qwen-7B (SFT) 0.18 0.226 0.236 0.204 0.212
Deepseek-R1-Distill-Qwen-7B (ours) 0.620 0.725 0.836 0.868 0.762

Achiam et al., 2023
DeepSeek-Al et al.. 2025

Table 1: Performance comparison on four NOTAM analysis tasks. Models are grouped into Popular (including
traditional methods and open-source LLMs) and Commercial (references). Underlined: Best result within the
Popular Models group or the Commercial Models group, respectively. Bold: Overall best result across all models.

simpler benchmarks (Arnold et al., 2022), by re-
quiring structured information extraction grounded
in temporal-aligned aeronautical knowledge tables
(7). Key characteristics, including global opera-
tional patterns, significant textual variability, short
validity periods, and evaluation task distributions,
are detailed in Table 2, necessitating robust parsing
for realistic assessment.

Statistic Value / Count
Overall Characteristics

Total Samples 10,000
Avg. Word Count 39.2
Avg. Valid Days 8.1

Top Region (%)
Top Q-Code (%)

Asia (38.8%)
Movement Area (M, 49.8%)

Evaluation Task Distribution

Light 1,000
Area 4,000
Runway 2,500
Taxiway 2,500

Table 2: NOTAM Dataset Details

Baselines. We benchmark our framework against
several baseline categories (detailed in Table 1).
These comprise: traditional methods (a Regex
Template Rule-based system and the UIE infor-
mation extractor (Lu et al., 2022)); popular un-
tuned open-source LLMs (qwen2.5-7B (Yang et al.,

2024), Mistral-7B (Jiang et al., 2023), Llama3.1-
8B-instruct (Dubey et al., 2024), and our specific
base model, Deepseek-R1-Distill-Qwen-7B); their
SFT counterparts where applicable (qwen2.5-7b-
instruct and Deepseek-R1-Distill-Qwen-7B (SFT));
and high-performance commercial models as per-
formance references (GPT-40 (Achiam et al., 2023)
and Deepseek-R1 (DeepSeek-Al et al., 2025)). To
ensure fairness, all LLM evaluations utilize the
same domain-specific prompts.

Evaluation Rule: A prediction is considered cor-
rect only if it exactly matches the ground truth
format and all annotated field values.
Implementation Details. Our implementation
is based on the DeepSeek-R1-Distill-Qwen-7B
model. Fine-tuning (standard SFT and our iter-
ative optimization) efficiently utilizes the Unsloth
framework with its recommended configurations.
The KG-TableRAG module’s core involves con-
structing the knowledge graph via the GraphFu-
sion methodology (Pan et al., 2024), with human
verification (KG architecture in Appendix A). Ex-
periments were conducted on a single NVIDIA
A800-80GB-PCle GPU.

4.2 Main Results

We evaluate our optimized model (Deepseek-R1 -
Distill-Qwen-7B (ours)) against baselines on four
key NOTAM analysis tasks.

Table 1 summarizes these results. Our optimized
model achieves an excellent average score (AVG),



significantly surpassing traditional methods. Cru-
cially, it achieves a 30.4% absolute improvement
compared to its base model (Deepseek-R1-Distill-
Qwen-7B), directly validating the effectiveness of
our optimization pipeline. Furthermore, our model
outperforms other tested untuned open-source large
language models (e.g., Mistral-7B, Llama3.1-8B)
and the best-performing SFT (Supervised Fine-
Tuning) baseline model (qwen2.5-7b-instruct).
Notably, employing only SFT can lead to a degra-
dation in the base model’s reasoning capabilities,
suggesting that basic SFT may be insufficient for
analyzing and processing such complex structured
tasks, which further motivates our adoption of our
SEVO (Self-Evolving Optimization) approach. Fi-
nally, as detailed in Table 1, despite our model
having a significantly smaller parameter count than
GPT-40 and Deepseek-R1, its performance is com-
parable to them. This thoroughly demonstrates the
effectiveness of our proposed overall framework,
showcasing its ability to achieve performance com-
parable to leading large-scale commercial models.

4.3 Ablation Study

To validate our design choices, we conduct system-
atic ablation analyses removing key components:
(1) KG-TableRAG knowledge integration and (2)
the Reasoning Integration mechanism. Table 3
shows the impact on AVG performance compared
to the full system (0.762 AVG):

Removing KG-TableRAG (-KG) results in a
2.2% drop (0.740 AVQG), particularly affecting
knowledge-dependent interpretations (e.g., Q-code
mapping).

Removing Reasoning Integration (-Inf. In-
tegr.) lead to a larger 4.1% drop (0.721 AVG),
confirming its importance for handling semantic
ambiguity and constraints.

Removing Both (-KG -Inf. Integr.) yield the
lowest performance (0.690 AVG), demonstrating
the complementary necessity of both components.

KG-TableRAG Inf. Integr. AVG
v v 0.762
v X 0.721
X v 0.740
X X 0.690

Table 3: Ablation Study Results with Structured Knowl-
edge (KG-TableRAG) and Reasoning Integration Com-
ponents. Gray background indicates full configuration.

Figure 3 shows clear benefits from our iterative
SEVO strategy. Over three iterations, complex
tasks like Taxiway saw accuracy improve from
64.6% to 86.8%, and Light accuracy rose from
45% to 62%.

Performance comparison across iterations
| |

100 |- 84.283.6 5868 |
80 72 73
60 |-
0|5 H ﬂ
nght Area Runway Tax1way

’ [0 Tteration 10 0Tteration 2l 0 Tteration 3 ‘

Figure 3: Iterative Optimization Performance (Accuracy
%) across NOTAM Categories.

Overall, the ablation and iterative results vali-
date the distinct contributions of each framework
component: KG-TableRAG for essential knowl-
edge grounding, Reasoning Integration for robust
deduction, and SEVO’s iterative optimization for
continuous performance enhancement, collectively
addressing the core challenges of accurate NOTAM
parsing.

4.4 Complexity Analysis

We rigorously analyze the computational charac-
teristics of our framework through three funda-
mental components. The dynamic preference op-
timization process is governed by the response
pool RY = {(v*, Y #))}3K  containing outputs
from three models per input, the sample-wise er-
w from (4), and the

active preference pairs DI()Qf = {(z,y"y7)|y" €

2y~ €V

As demonstrated in Table 4, the response pool
grows linearly as \Rg(f)| = 3Kt with each iter-
ation’s triple-model generation, while the actual
preference pair creation instead follows quadratic
scaling, modulated by accuracy progression:

DS =S il Y

= ®)
~ 9Kt (1 —n)

ror rate (z) =

where 7, = %25:1 I(Y(® = Y*) tracks per-
input accuracy and 7 denotes global performance.
Our experiments reveal accuracy improvements
from initial 45% to final 62%, causing the error



suppression term (1 — 1) to decrease from 0.55 to
0.38 through three iterations.

Metric Iter.1  Iter.2 Iter.3
Theoretical pairs 2,415 5915 11,320
Effective pairs 1,449 3,549 6,792
Time (h) 0.58 1.5 32
Scale factor 1.0x 2.6x 2.1x

Table 4: Iterative Complexity Metrics with Scaling Fac-
tors

The computational cost per iteration combines
preference pair volume with curriculum learning
dynamics, as quantified in Table 4:

T = E- DY By () [1/P.(2)]

pre
L o, oBEE) O
N TS exp(Be(ay))

where E denotes training epochs and a, =
min(e/E, 1) implements our phased curriculum
strategy. Three mechanisms suppress theoreti-
cal O(t?) scaling to observed 2.3x average per-
iteration growth: 1) Error threshold filtering (4) re-
moves 40% of low-difficulty samples, 2) Weighted
curriculum sampling reduces effective batch size
by 38%, and 3) Accuracy saturation limits error
response generation through (1 — ) decay (0.55
— 0.46 — 0.38).

The framework maintains practical tractability
through exponential complexity bounding:

P.(z) x (1

Tieo < 23T, Jim Ty = O(1)  (10)
t—00

with complete convergence achieved in 3 itera-
tions at 62% accuracy. Total wall-clock time ranges
from 35 minutes to 3.2 hours on NVIDIA A800
GPUs, with DPO training utilizing 1,449-6,792 fil-
tered preference pairs per iteration as detailed in
Table 4.

4.5 Case Study

This case study illustrates our framework’s advan-
tage in reasoning about implicit, hierarchical re-
lationships in NOTAMSs, where high-level restric-
tions affect unmentioned components.

Consider a NOTAM for airport AGGC:

E) CHOISEUL L BAY AIRPORT CLOSED TO ALL
OPERATIONS. ..

Correctly interpreting this airport-wide closure
means inferring effects on associated, unlisted com-
ponents like runways.

Typical baseline systems, lacking structured
knowledge (e.g., airport-runway relationships) or
advanced reasoning, often fail this inference. They
might parse the airport closure but omit the runway,
providing incomplete awareness:

{"airport”": "AGGC", "runway": "", ...}

Our framework addresses this challenge. KG-
TableRAG queries the aviation knowledge graph
with the airport identifier C AGGC’), retrieving that
"RWY @7R" belongs to airport "AGGC"”. This fact
supplies the missing structural context.

The LLM then integrates the input instruction
("airport closed") with this retrieved fact. Through
semantic reasoning, it correctly infers the oper-
ational consequence - the runway must also be
closed because it is part of the closed airport, lead-
ing to the accurate output:

{"airport”: "AGGC", "runway": "RWY @7R",
)

This correct inference of runway "RWY @Q7R"
is critical for operational safety (e.g., preventing
routing to a closed runway). It highlights our ap-
proach’s advantage: integrated knowledge and rea-
soning for comprehensive understanding beyond
simple text extraction. For additional detailed ex-
amples, please refer Appendix D

5 Conclusion

We present a knowledge-guided framework that
combines LL.Ms with aviation expertise to address
key challenges in NOTAM parsing task. Our self-
evolving architecture addresses semantic-factual
contradictions through dynamic integration of in-
frastructure knowledge and operational constraints.

The framework achieves a 30.4% accuracy gain
over its base model via iterative optimization on
10,000 NOTAMs, effectively bridging NLP capabil-
ities with aviation requirements while maintaining
terminology integrity. This research establishes
a new paradigm for NOTAM analysis, with prin-
ciples extensible to other high-precision domains
requiring robust knowledge integration and adap-
tive learning.

The results underscore the transformative poten-
tial of LLM-driven solutions in enhancing airspace
management automation, mitigating human error
risks, and advancing real-time decision-making ca-
pabilities for global aviation systems.



6 Limitation

While our self-evolving framework improves iter-
atively, limitations exist. First, the computational
cost per optimization iteration increases (as de-
tailed in our Complexity Analysis), necessitating
potentially significant training time to achieve op-
timal performance, akin to reinforcement learning
paradigms. Second, the inherent complexity of NO-
TAMs, with intricate temporal-spatial dependen-
cies and specialized terminology, makes creating
perfectly accurate ground truth annotations chal-
lenging. This difficulty in capturing all nuances
can subsequently limit the model’s performance
ceiling, even with constraint-aware methods. Fu-
ture work could explore LLM-assisted annotation
combined with expert validation to further refine
training data quality.

7 Ethical Considerations

While this work demonstrates potential for au-
tomating NOTAM analysis, current accuracy lev-
els do not meet the stringent safety requirements
for direct, real-time deployment in aviation sys-
tems. Therefore, the system is intended solely as
a decision-support tool for ground analysts. Cru-
cially, all outputs, especially critical flight informa-
tion, must undergo rigorous manual verification by
qualified personnel before operational use or trans-
mission to pilots, adhering to established aviation
safety protocols.

Our study utilizes publicly available NOTAM
data, and annotations are performed by domain
experts, ensuring transparency and data integrity.
Continuous refinement of the model is ongoing, but
the technology must currently be treated as supple-
mentary, augmenting rather than replacing essential
expert judgment in this safety-critical domain.
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A Training Algorithm Implementation
Details

Algorithm 1 Self-Evolving SFT & DPO Optimiza-
tion
Require: Initial dataset Do = Digain U Diest (8:2 split)
1: Base model Tpase, empty response pool R = ()
2: Max iterations 7', error threshold 7, temperature 3, total
epochs

3: procedure MAIN

4. Teurrent $— Thase > Model initialization

5: fort =1to T do

6: GENERATERESPONSES(Tcurrent, Do)

7: UPDATERESPONSEPOOL(R) > Record
correct/incorrect responses

8: Dser + {(x o K, Y™)|Y* € Vi}

9: TSFT <— SFT—TRAIN(71'currem7 DSFT)

10: GENERATERESPONSES(7sgr, Do)

11: UPDATERESPONSEPOOL(R)

12: Dypref < BUILDPREFERENCEPAIRS(R)

13: if Dpref # @ then

14: mppo <— DPO-TRAIN(7skr, Dpref)

15: Tcurrent $— TTDPO

16: end if

17: end for

18: end procedure

19: function DPO-TRAIN(7ref, Dprer)

20: Dagg + 0

21: for z € Dy do

22: if £(z) > 7 then > Data augmentation trigger

23: Vo Uf:;l Augment(z,n)

24: Dag  Dawg U{(v,Y*, Y )}

25: end if

26: end for

27: fore = 1to E do > Curriculum learning

28: ae < min(e/FE, 1)

29: for z; € Dy do

30: we(x;) (1 — ae)% T e ijepx(gfﬁ(gd;))

31: end for

32: Sample batch ~ P.(z) o we(z)

33: Update 7y using Lppo (Eq. 6)

34: end for

35: return 7y

36: end function

37: function BUILDPREFERENCEPAIRS(R)

38: Dorer + 0

39: for x € Do do

40: if3(Y*,Y ™) € R, then > Valid preference
pairs exist

41: Doret < Dpret U { (2, Y*, Y )}

42: end if

43: end for

44: return Dyt

45: end function

12

B Knowledge Graph Structure

Figure 4: Domain Knowledge Graph Architecture.

C Task Prompt

You are an AI assistant specialized in parsing
“—>NOTAMs. Your task is to extract information
“~>about the runway status from the given NOTAM
> text. Please follow the guidelines below

1. Identify Runway Status
Closed (MRLC, MRXX): Contains keywords like

“>CLOSED, CLSD, CLOSURE, NOT AVBL,

“—>UNAVAILABLE, SUSPENDED, etc.

- Limited (MRLT, MRXX): Contains phrases like
“—>RESTRICTED, LIMITED, RESERVED FOR, etc.,
<> and is combined with "only".

- Open (MRAH): Contains keywords like OPEN,
<>TO TFC, CANCELLED CLOSURE, etc.

2. Evaluate the Impact:

- Determine if it affects takeoffs, landings,
> both (based on the semantics).

- Identify the affected flight types (
“International, Domestic, Regional).

- If the restricted flight type is not
~—>explicitly mentioned, assign "
~>International, Domestic, Regional”.

- If explicitly mentioned, assign only the
“—restricted flight type.

3. Output Format:

Please return the result in the JSON array
~>format. Each element represents a record
> and contains the following fields:

- “airport”: ICAO code of the airport.

- “runway : Affected runway number.

- “affect_actype ™ : Affected aircraft type.
~>in the field only when it involves

OPN

or

Fill

“—>wingspan, CODE C/D, or the number of
“~—>engines.

- “affect_region™: The scope of closure or
“—restriction, with values "TAKEOFFS", "
“>LANDINGS"”, or "TAKEOFFS,LANDINGS".

- ~flight_type™: The affected flight type (
“~International, Domestic, Regional).

4. Notes:
- Partial closure/restriction of a runway is
“>also considered as a complete closure/
“—restriction.



- Create a separate record for each runway if
“—>the message involves multiple runways.

- Extract only the information explicitly
~—rmentioned in the NOTAM; do not make
“—>assumptions.

- When facing the flight type, consider using
“>Chinese words to represent the flight
“—>rtype as mentioned in the prompt and
“—>examples.

- Focus on the impact on aircraft, such as the
“—raircraft category (CODE C/D), wingspan (
“~>in meters), etc.

- Fill in the ~affect actype™ field based on the
<> affected aircraft type. The wingspan
~>length may need to be converted from FT
“~—>to M for comparison.

- The message may mention restrictions on
“—raircraft categories or CODEs, which need
<> to be matched with the aircraft type
“—rtable.

D Example
—INPUT—

<instruction>:

Q)KZDV/QMRLC/IV/NBO/A/000/999/3952
~—+N10440W005

A)KDEN B)2301010254 C)2301011200

E) DEN RWY 17L/35R CLSD

—OUTPUT—

<result>:

<think>

Runway Identification: Extracted the airport ICAO
~—>code as "KDEN" from "A) KDEN".

Runway Status Analysis:

"RWY 17L/35R CLSD"” -> Both runways are
~>completely closed (CLSD=Closed).

The default impact of closure is on takeoffs and
<> landings -> affect_region: "TAKEOFFS,!

LANDINGS".
Aircraft Type Restriction:

No mention of wingspan, CODE category, or engine
“—> restrictions -> affect_actype: null.

Flight Type Inference:

No specific restriction mentioned -> Default
“—rimpact on all types -> flight_type: "
~—>International ,Domestic,Regional”.

Handling Multiple Runways:

Create a separate record for each runway
—>according to the rules (one each for 17L
—» and 35R).

T json
C
{
"airport”: "KDEN",
"runway”": "17L",
"affect_actype”: null,
"affect_region”: "TAKEOFFS,!
LANDINGS",
"flight_type"”: "International,!
Domestic,Regional”
3,
{
"airport”: "KDEN",
"runway"”: "35R",
"affect_actype”: null,
"affect_region”: "TAKEOFFS,!
LANDINGS",
"flight_type”: "International,!
Domestic,Regional”
3}
]
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