© © N O O A~ W N =

An Evaluation Study of Hybrid Methods for
Multilingual PII Detection

Anonymous Author(s)

Abstract

The detection of Personally Identifiable Information (PII) is critical for privacy
compliance but remains challenging in low-resource languages due to linguistic
diversity and limited annotated data. We present RECAP, a hybrid framework
that combines deterministic regular expressions with context-aware large language
models (LLMs) for scalable PII detection across 13 low-resource locales. RECAP’s
modular design supports over 300 entity types without retraining, using a three-
phase refinement pipeline for disambiguation and filtering. Benchmarked with
nervaluate, our system outperforms fine-tuned NER models by 82% and zero-
shot LLMs by 17% in weighted F1-score. This work offers a scalable and adaptable
solution for efficient PII detection in compliance-focused applications.

1 Introduction

The exponential growth of user-generated content has created vast repositories where Personally
Identifiable Information (PII) often remains exposed, posing significant privacy risks and compliance
challenges [1, 2]. To address these threats, regulations like GDPR, HIPAA, and CCPA mandate strict
safeguards and penalties for non-compliance [3, 4, 5]. Additionally, as Large Language Models
(LLMs) are deployed into production systems, robust evaluation across the model becomes paramount,
and is especially critical for sensitive tasks like PII detection, which demand high precision, reliability,
and adaptability. Yet, existing PII annotation systems struggle with ambiguity, format variability, and
scaling over low-resource languages.

In this work, we propose RECAP (REgex and Context-Aware Prompting), that combines a regex-
based deterministic solution with context-enriched LLM for PII detection, addressing key limitations
of Named Entity Recognition systems, zero-shot LLMs, and rule-based methods.

Core Challenges Addressed: (1) Low-Resource Performance Gap: Existing entity recognition
systems often perform poorly in low-resource locales ! due to lack of annotated training data, limited
linguistic resources, and the high computational cost associated with training models for each new
language or domain; (2) Scalability Bottleneck: Pure regex methods lack semantic understanding,
while transformer-based NER models suffer from limited PII type coverage. Standalone LLMs,
though flexible, produce inconsistent outputs and are prone to hallucination; and (3) Ambiguity
and Variation: PII entities exhibit both structural variation and semantic ambiguity across locales,
making them difficult to classify accurately using traditional approaches, which often result in missed
and conflicting labels, thereby reducing overall reliability.

Key Contributions: (1) To our knowledge, our work is the first to introduce a PII detection
framework that spans across 13 diverse, low-resource locales, with support for 300+ PII types
across six domains, without requiring any model training or fine-tuning; (2) Our novel solution
combines deterministic regex patterns with context-aware LLMs to advance PII detection for low-
resource locales; (3) RECAP implements a three-phased pipeline (multi-label disambiguation,
span consolidation, contextual filtering) to systematically reduce ambiguity and false positives; (4)
We present detailed benchmarking results using nervaluate evaluation framework [6], where

""Low-resource" locales have limited publicly available annotated data for training.
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RECAP outperforms the state-of-the-art baselines, NER by 82% and LLM by 17% (weighted
F1-score).

2 Related Work

Multilingual & Low-Resource PII Detection: Most work focuses on high-resource languages like
English. Exceptions include deep learning for Luganda PII [7], and few-shot cross-lingual methods
for clinical texts [8]. Datasets from MultiCoNER [9], Al4Privacy [10], BigCode [11] offer broader
coverage but still lack low-resource representation — a gap our work addresses.

Regex-based Detection: Regular expressions (Regex) have been employed for general NER tasks
like automated resume parsing [12] and high-risk PII detection [13]. However, this approach suffers
from high false positives and performs poorly on unstructured formats.

Deep Learning Methods: Models like CASSED use BERT for structured data [14], while DTL-
PIIE employs transfer learning for social media text [15]. BERT-based models show strong perfor-
mance with balanced data [16] but struggle with multi-label entities and numeric false positives.

LLM-based Approaches: LLMs are used for both PII detection and synthetic data generation (e.g.,
SPY [17], ProgGen [18]). They perform well in domain-specific settings like education [19, 20] and
chemistry [21]. Models like GPT-NER frame detection as a generation task [22], and strategic zero-
shot prompting detects sensitive information across global contexts [23]. However, these approaches
often suffer from over-redaction and hallucination, misidentifying non-PII.

3 Solution Architecture and Workflow

Our RECAP architecture (Figure 1) is designed to tackle the inherent challenges of multilingual
PII detection by combining the precision of rule-based methods for structured PIIs 2, with the
semantic understanding of LLMs for unstructured PIIs. The system employs a modular, locale-aware
design where each of the 13 supported locales has a dedicated detector containing its specific regex
patterns and optimized prompts. The core of our approach is a three-phase refinement pipeline that
progressively improves detection quality from an initial hybrid baseline to a final refined output, as
summarized in Table 1 and evidenced by the performance gains across locales in Table 3. Sample
sizes with locale information are shown in Table 2.

I. Baseline Hybrid Detection: The process begins by receiving a text sample and its associated locale,
invoking the corresponding locale-specific detector. The text is processed by a comprehensive set of
regular expressions to detect structured PIIs. These can be categorized into two types: (a) universal
patterns for entities like IP_ADDRESS that follow global formats, and (b) locale-specific patterns for
entities like national IDs (e.g., India’s AADHAAR_IN vs. Belgium’s SSN_BE), which require custom
regex patterns per country. In parallel, the entire text is passed to an LLM (GPT-40) using a carefully
engineered zero-shot prompt (Listing 1) to detect unstructured PIIs (NAME, ADDRESS, USERNAME,
and PASSWORD). This hybrid baseline provides broad coverage in terms of detecting PII entities,
but introduces three key challenges: (1) Multi-labeling from semantically different but syntactically
similar regex patterns; (2) Span overlaps, where one entity is fully or partially contained within
another, leading to redundant and inconsistent labeling; and (3) Contextual false positives on short
numeric sequences like CVV (Card Verification Value) or AGE that appear in non-sensitive contexts.

I1. Context-based Multi-label Resolution: This phase focuses on resolving ambiguity in cases
where a single entity span is assigned multiple candidate labels by the baseline. These multi-labeled
outputs typically arise from identical syntactic patterns across numerically formatted entities. While
the baseline regex method effectively identify entities, they may be unable to determine which label
is most contextually appropriate. Our resolution module identifies all entities assigned multiple
labels. For each, the original text, the character span, and the candidate labels are passed to the
LLM with a custom prompt that instructs it to analyze the surrounding context and select the
single most appropriate label (Figure 2, Top). This leverages the LLM’s semantic understanding to
resolve ambiguities that are intractable for rules alone and ensures consistent, context-aware labeling,
significantly boosting precision and recall.

II1. Ambiguity Resolution and Entity Consolidation: The final phase applies two targeted filters to
produce a clean, coherent set of predictions. (1) Entity Span Overlap Resolution: A deterministic

>We refer to Structured Plls as those which have a syntactically regular, well-defined formats and are
usually represented by numerical patterns, such as SSN (a unique ID number in the US). In a similar fashion,
Unstructured PIIs refers to entities which have semantically variable and arbitrary patterns, such as ADDRESS.
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Figure 1: RECAP Architecture tives (bottom) detection problem and resolution

algorithm processes all entities sorted by their start position, pre-defined label priority, and span
length. It removes entities that are fully contained within a longer span if they have a lower priority
(e.g., filtering out AGE="24" when it is contained within a correctly identified ADDRESS="24 Lincoln
Avenue, NY"). (2) Contextual False Positive Filtering: For high-specificity, short numeric entities
(AGE, CVV), a local context window (one sentence before and after the entity) is extracted. This
context is submitted to the LLM to verify whether the numeric value is semantically plausible as the
predicted PII type. An entity is retained only upon LLM confirmation (Figure 2, Bottom), drastically
reducing false positives that arise from numeric coincidences in non-PII settings, thereby improving
overall precision while maintaining recall.

Table 3 and 5 highlights consistent F1-score improvements across the three phases of RECAP
architecture. Most locales showed steady gains, with SV_SE and PT_BR achieving notable increases
of 77.53% and 47.76%, respectively. While NL_BE showed marginal fluctuations due to high initial
performance, the overall trend highlights the efficacy of each refinement in enhancing PII detection.

Table 1: Performance progression across different phases

Phases Baseline Hybrid Detection Context Based Label Resolution | Ambiguity and Entity Consoli-
dation

Solution Ap- | Regex detection for structured en- | Multi label disambiguation using | Suppression of overlap spans and

proach tities and zero-shot LLM for un- | LLM with context-aware resolu- | false positives using logic filtering
structured ones tion and LLM check

Weighted F1 ~ ~

Score (Gain) 0.511 (-) 0.585 (A ~ 14.48%) 0.657 (A =~ 12.30%)

Impact Establishes initial coverage across | Reduces incorrect or overly | Filters short numeric patterns and
13 locales using structured rules | generic labels to improve preci- | improves consistency by resolv-
and semantic generalization sion and semantic alignment ing labels in overlap spans

4 Benchmark Results and Comparative Evaluation

Benchmark Design: We evaluate RECAP against two strong baselines: (1) transformers-based
NER: We select the best available HuggingFace model for each locale (see Appendix, Figure 4),
representing traditional fine-tuned entity recognition models. These models are typically limited to
generic labels (PER, ORG, LOC, MISC). (2) Zero-shot LLM: We use GPT-40 with a natural language
prompt for PII extraction. While adaptable to multiple languages and label types, these models
exhibit high variability in outputs, inconsistent formatting, and require careful prompt design.

The evaluation dataset was created by experts, who authored text samples and injected synthetic
PII across six domains (Finance, Travel, Healthcare, IT, CPG, Media). This allows for a control
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Figure 3: F1 Scores by Approach and Locale

over entity types and distributions. Text length varied from short (<21 words), to medium (21-240
words), large (240-1000 words), and extra-large (up to 4500 words), and were uniformly selected
to ensure robustness. We use the nervaluate library with an Exact Evaluation Method, which
requires a predicted entity’s character span to match the gold span exactly to be counted as correct.
Since our pipeline resolves label ambiguity at a later stage, we focused on evaluating span accuracy
independently. This rigorous method emphasizes precise boundary detection, which is critical for
PII redaction tasks. The primary evaluation metrics used across all comparisons were Accuracy,
Precision, Recall, and F1 Score for label imbalance.

Comparative Results and Analysis: Figure 3 presents comparative results achieved by each
approach across all locales (full results in Table 4). In low-resource settings such as Polish (PL_PL),
RECAP (F1=0.60) achieves a 130.77% relative improvement over the NER baseline (F1=0.26) and
a 22.45% improvement over the zero-shot LLM (F1=0.49). The RECAP framework consistently
outperforms both traditional NER models and zero-shot LLMs across most locales, with ZH_SG and
NL_BE gaining F1 scores as high as 0.76 and 0.83, respectively.

In sensitive PII detection tasks, recall is particularly important, as false negatives - missed detections -
can lead to serious privacy breaches. While false positives may cause over-redaction, false negatives
risk direct data exposure. RECAP achieves a weighted recall of 0.605, compared to 0.362 for NER
(+67.13%) and 0.437 for zero-shot LLMs (+38.44%), demonstrating significantly stronger detection.

It is important to note that this is not a one-to-one comparison across approaches. Our architecture is
explicitly designed to detect a fixed schema of 300+ predefined PII types across 13 locales. While
LLMs were applied to detect this full set, their inherent variability often resulted in inconsistent
formatting and hallucinated entities outside the defined set. In contrast, NER baselines are restricted
to a narrow set of generic entity types, and do not encompass the broader set of sensitive identifiers
commonly required in PII detection tasks. As such, while we report unified F1 scores, these results
reflect fundamentally different label scopes and should be interpreted accordingly.

5 Conclusion

We presented RECAP, a hybrid PII detection architecture that combines regex patterns with prompt-
based LLMs. RECAP addresses structural variation and low-resource challenges by leveraging
rule-based precision and LLM-based contextual reasoning. Its modular design enables per-entity and
per-locale customization without retraining. Benchmarked against a fine-tuned NER system and a
zero-shot LLM, RECAP outperforms both across 13 diverse locales, particularly on complex and
region-specific entities.

6 Limitations and Future Work

Limitations: (1) Use of different NER models per locale limits consistency in cross-locale baseline
comparisons; (2) Reliance on a single LLM (GPT-40); other models may offer complementary
strengths; (3) Synthetic benchmark data may not capture the full complexity of real-user text; (4)
Label set mismatch between broad PII types (300+) and narrow NER types (e.g., PER, ORG)
complicates direct evaluation; (5) Domain coverage in our work (6 domains) may not represent all
production text types (e.g., legal, social media).

Future Work: (1) Investigate RL for automatic prompt optimization per label/locale; (2) Design
perturbation-based evaluation for robustness testing; (3) Explore LLMs for automated regex genera-
tion [24]; (4) Apply knowledge distillation for on-device inference; (5) Develop active learning with
expert feedback to refine regex and models.
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29 A Appendix

NER Model Codes

NERd: Davlan/distilbert-base-multilingual-cased-ner-hrl [25]
NERk: KB/bert-base-swedish-cased-ner [26]

NERn: N1pHUST/ner-vietnamese-electra-base [27]

NERJ: julian-schelb/roberta-ner-multilingual [28]

NERb: Babelscape/wikineural-multilingual-ner [29]

Figure 4: Pretrained model codes used for multilingual NER.

Locale Samples
sv_SE (Swedish — Sweden) 150
vi_VN (Vietnamese — Vietnam) 150+
zh_CN (Chinese — China) 105
zh_SG (Chinese — Singapore) 45
pt_BR (Portuguese — Brazil) 110+
pt_PT (Portuguese — Portugal) 45
pl_PL (Polish — Poland) 150+
hi_IN (Hindi — India) 150+
fi_FI (Finnish — Finland) 150
ar_AE (Arabic — UAE) 150
nl_NL (Dutch — Netherlands) 105
nl_BE (Dutch — Belgium) 45

no_NO (Norwegian — Norway) 150

Table 2: Benchmark Sample Count by Locale

Locale Phasel Phasell Phaselll A (1-2) AQ2—-3) A1A-3)
sv_SE 0.396 0.614 0.703 55.05% 14.50% 77.53%
Vvi_VN 0.468 0.539 0.571 15.17% 5.94% 22.01%
zh_CN 0.594 0.632 0.680 6.40% 7.60% 14.48%
zh_SG 0.590 0.742 0.758 25.76% 2.16% 28.48%
nl_NL 0.582 0.597 0.625 2.58% 4.69% 7.39%
nl_BE 0.836 0.785 0.834 -6.10% 6.24% -0.24%
no_NO 0.583 0.664 0.660 13.89% -0.60% 13.21%
hi_IN 0.486 0.503 0.696 3.50% 38.37% 43.21%
fi_FI 0.573 0.592 0.730 3.32% 23.31% 27.40%
ar_AFB  0.463 0.479 0.567 3.46% 18.37% 22.46%
pt_BR 0.446 0.547 0.659 22.65% 20.48% 47.76%
pt_PT 0.511 0.593 0.615 16.05% 3.71% 20.35%
pl_PL 0.428 0.583 0.602 36.22% 3.26% 40.65%

Table 3: Locale Performance Across Three Phases by F1 Score



Locale Approach Accuracy Precision Recall F1Score TP FP TN FN
hi_IN NERd 0.328 0.194 0.227 0.209 59 245 159 201
hi_IN Zero-shot LLM 0.472 0.801 0.534 0.641 310 77 0 22
hi_IN RECAP 0.534 0.781 0.628 0.696 364 102 0 216
fi_FI NERd 0.347 0.431 0.268 0.330 166 219 192 454
fi_FI Zero-shot LLM 0.485 0.830 0.538 0.653 534 109 0 458
fi_FI RECAP 0.574 0.744 0.716 0.730 710 244 0 282
ar_AE NERd 0.420 0.474 0.229 0.309 267 296 622 897
ar_AE Zero-shot LLM 0.362 0.667 0.442 0.531 886 443 0 1120
ar_AE RECAP 0.396 0.610 0.537 0.567 1078 736 0 928
sv_SE NERk 0.705 0.599 0.810 0.689 205 137 237 48
sv_SE Zero-shot LLM 0.344 0.720 0.397 0.512 641 249 0 974
sv_SE RECAP 0.542 0.714 0.692 0.703 1118 447 0 497
vi_VN NERn 0.737 0.602 0.818 0.694 198 131 292 44
vi_VN Zero-shot LLM 0.317 0.751 0.354 0.481 796 264 0 1454
vi_VN RECAP 0.400 0.772 0.453 0.571 1020 302 0 1230
zh_ CN NER]j 0.385 0.446 0.228 0.302 120 149 228 406
zh_CN Zero-shot LLM 0.486 0.811 0.549 0.654 625 146 0 514
zh_CN RECAP 0.515 0.652 0.709 0.680 808 431 0 331
zh_SG NERj 0.523 0.449 0.172 0.249 31 38 174 149
zh_SG Zero-shot LLM 0.523 0.799 0.603 0.687 279 70 0 184
zh_SG RECAP 0.610 0.753 0.762 0.758 353 116 0 110
nl_NL NERj 0.280 0.238 0.294 0.263 160 511 188 385
nl_NL Zero-shot LLM 0.341 0.878 0.358 0.508 473 66 0 849
nl_NL RECAP 0.456 0.790 0.517 0.625 684 182 3 638
nl_BE NERj 0.364 0.243 0.342 0.284 50 156 94 96
nl_BE Zero-shot LLM 0.446 0.840 0.487 0.617 194 37 0 204
nl_BE RECAP 0.715 0.887 0.786 0.834 313 40 0 85
no_NO NERj 0.436 0.282 0.348 0.312 162 412 390 303
no_NO Zero-shot LLM 0.433 0.873 0.462 0.604 517 75 0 604
no_NO RECAP 0.493 0.785 0.570 0.660 638 175 0 481
pt_BR NERj 0.309 0.293 0.210 0.244 136 328 240 513
pt_BR Zero-shot LLM 0.341 0.886 0.356 0.508 186 24 0 336
pt_BR RECAP 0.492 0.792 0.560 0.659 290 76 0 224
pt_PT NERj 0.309 0.293 0.210 0.244 136 328 240 513
pt_PT Zero-shot LLM 0.239 0.878 0.247 0.385 158 22 0 482
pt_PT RECAP 0.444 0.689 0.555 0.615 354 160 0 284
pl_PL NERDb 0.276 0.394 0.195 0.261 133 208 154 550
pl_PL Zero-shot LLM 0.322 0.744 0.362 0.487 128 44 0 226
pl_PL RECAP 0.425 0.614 0.579 0.602 398 244 0 242
All locales NER* 0.428 0.395 0.362 0.360 - - - -
All locales  Zero-shot LLM* 0.391 0.795 0.437 0.558 - - - -
All locales RECAP* 0.492 0.729 0.605 0.657 - - - -

Table 4: PII Detection Performance Results by Locale and Approach
Note: The last three rows (marked by *) represent weighted averages across all locales.



Locale Phase Accuracy Precision Recall F1Score TP FP TN FN
sv_SE I 0.247 0.438 0.362 0.396 584 749 0 1031
sv_SE 11 0.443 0.582 0.650 0.614 1049 753 0 566
sv_SE 111 0.542 0.714 0.692 0.703 1118 447 0 497
vi_VN I 0.326 0.551 0.407 0.468 915 747 91 1335
vi_VN 1I 0.369 0.630 0.471 0.539 1059 622 0 1191
vi_VN 111 0.400 0.772 0.453 0.571 1020 302 0 1230
zh_CN I 0.481 0.545 0.654 0.594 745 623 199 394
zh_ CN 1I 0.462 0.582 0.692 0.632 788 566 0 351
zh_CN 111 0.515 0.652 0.709 0.680 808 431 0 331
zh_SG I 0.487 0.573 0.607 0.590 281 209 90 182
zh_SG 1I 0.590 0.723 0.762 0.742 353 135 0 110
zh_SG 111 0.610 0.753 0.762 0.758 353 116 0 110
nl_NL I 0.434 0.652 0.526 0.582 695 371 69 627
nl_NL I 0.448 0.665 0.542 0.597 716 361 69 606
nl_NL 111 0.456 0.790 0.517 0.625 684 182 3 638
nl_BE 1 0.718 0.909 0.774 0.836 308 31 0 90
nl_BE I 0.645 0.871 0.714 0.785 284 42 0 114
nl_BE 111 0.715 0.887 0.786 0.834 313 40 0 85
no_NO I 0.442 0.677 0.512 0.583 573 273 75 546
no_NO I 0.497 0.780 0.578 0.664 647 182 0 472
no_NO 111 0.493 0.785 0.570 0.660 638 175 0 481
hi_IN 1 0.347 0.406 0.607 0.486 352 516 44 228
hi_IN I 0.336 0.426 0.614 0.503 356 479 0 224
hi_IN 111 0.534 0.781 0.628 0.696 364 102 0 216
fi_FI 1 0.416 0.493 0.685 0.573 680 700 42 312
fi_FI I 0.421 0.515 0.698 0.592 692 652 0 300
fi_FI 111 0.574 0.744 0.716 0.730 710 244 0 282
ar_AE I 0.316 0.421 0.514 0.463 1032 1421 73 974
ar_AE 1I 0.315 0.442 0.522 0.479 1048 1323 0 958
ar_AE 111 0.396 0.610 0.537 0.567 1078 736 0 928
pt_BR I 0.320 0.453 0.439 0.446 214 258 36 274
pt_BR 1I 0.377 0.519 0.579 0.547 294 214 0 214
pt_BR 111 0.492 0.792 0.560 0.659 290 76 0 224
pt_PT I 0.366 0.536 0.489 0.511 312 270 32 326
pt_PT 1I 0.421 0.620 0.568 0.593 352 216 0 268
pt_PT 111 0.444 0.689 0.555 0.615 354 160 0 284
pl_PL 1 0.297 0.416 0.440 0.428 308 432 40 394
pl_PL 1I 0.412 0.567 0.601 0.583 364 278 0 242
pl_PL 111 0.425 0.614 0.579 0.602 398 244 0 242
All locales T* 0.372 0.516 0.522 0.511 - - - -
All locales II* 0.419 0.584 0.601 0.585 - - - -
All locales  IIT* 0.492 0.729 0.605 0.657 - - - -

Note: The last three rows (marked by *) represent weighted averages across all locales.

Table 5: PII Detection Performance Results by Locale and Phase
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Listing 1: High-level overview of Name-extraction prompt used in experiments

System Prompt: You are a multilingual PII detection system. Your task is

to detect and extract personal names from the input text based on
the specified {locale}. Follow these rules: - Always consider locale-
specific naming conventions. - Return names exactly as they appear
in the text (including diacritics, prefixes, and original scripts). -
If no names are found, return an empty list []. Locale-specific
examples: — zh_CN / zh_SG: Extract Chinese names in original
characters. - vi_VN: Vietnamese names follow the order [Family Name]
[Middle Name] [Given Name]. — nl_NL / nl_BE: Dutch/Flemish names
may include prefixes (e.g., "van", "de"). User Prompt: LOCALE: {
locale} TEXT: "{text}"
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