
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUIDED DOMAIN SOLVER:
STRUCTURED EXPLORATION OF DOMAIN-SPECIFIC
TASKS WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This work presents a method to solve domain-specific problems by leverag-
ing Monte Carlo Tree Search (MCTS), Knowledge Graphs and Large Language
Model (LLM) agents. At the core of this approach lies a MCTS algorithm,
which explores the complex solution space of a given domain in a goal-directed
and sample-efficient manner. In the expansion phase of the MCTS, a domain-
specific knowledge graph is incorporated to encode concepts, relationships and
constraints. This structured representation enables an LLM agent to make in-
formed decisions for the node expansion. By combining a structured search of the
solution space through MCTS, a representation of domain knowledge through the
knowledge graph and the generalization abilities of an LLM agent, this method
can solve complex tasks in domains where both creativity and adherence to expert
rules are essential. In a first step, this approach is used to solve Sokoban, a puzzle
game that requires planning and creativity to place several boxes at specific targets
with as few moves as possible.

1 INTRODUCTION

LLMs based on the Transformer architecture (Vaswani et al., 2017) achieve good results in gen-
eralizing many tasks and excel particularly in tasks such as text generation or translation. Despite
these impressive advances, they tend to hallucinate or have errors in reasoning, especially when per-
forming complex tasks (Chang et al., 2023; Hadi et al., 2023; Ji et al., 2023; Momennejad et al.,
2023). In order to improve these shortcomings, several attempts were made to improve the planning
of LLMs (Minaee et al., 2025).

Fine-tuning LLMs can be tricky and requires a lot of high-quality data, as well as the construction of
a training pipeline, both of which can be costly (Cao et al., 2024). In order to provide the LLM with
the latest data without having to retrain it, various connections to databases (Lewis et al., 2021) and
search engines (Xiong et al., 2024) were explored.

Deep Reinforcement Learning (DRL) algorithms can be applied for complex planning tasks in an
environment. Since rewards are usually sparse in these domains, training is often inefficient. To
overcome this, the task is usually divided into sub-goals (Pastukhov, 2025). When changes are
made in the environment, DRL agents can lose performance, resulting in retraining or the need for
specialized methods (Liu et al., 2023; Chen et al., 2025).

In this work, a method was developed that explores a domain step by step using an MCTS (Coulom,
2007). This allows even complex planning tasks to be addressed. These include tasks such as
robotics planning, engineering design automation, puzzle games and scientific discovery. The LLM
does not need to be retrained, as recent and enriched data can be embedded in the Knowledge Graph.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Fine-tuning the LLM is expected to result in a more efficient exploration of the solution space. Dur-
ing inference, LLM test-time compute is performed through reasoning and expanding the Knowl-
edge Graph, which can be more effective than scaling model parameters (Snell et al., 2024).

2 RELATED WORK

Sokoban is a popular testing ground for approaches that aim to improve the planning capabilities
of LLMs. There have been several impressive attempts to solve the game, using LLMs that are
retrained on search strategies, as in Searchformer (Lehnert et al., 2024). In this approach, an LLM
is fine-tuned on the search dynamic of A* (Hart et al., 1968) to solve Sokoban. Other attempts
involve building a world model to solve the game, as in WorldCoder (Tang et al., 2024). Here,
knowledge about the game is translated into Python code, which represents the world model. This
knowledge is highly interconnected, as in the Knowledge Graph, but is more difficult to expand.

Knowledge Graph combined with LLMs to enhance their capabilities is a promising field of research
(Pan et al., 2024; Kau et al., 2024). The field is usually divided into these three categories: Knowl-
edge Graph enhanced LLMs (Lewis et al., 2021; Baek et al., 2023), LLM augmented Knowledge
Graph (Hu et al., 2023; Hao et al., 2023), or hybrid approaches (Zhang et al., 2019; Wang et al.,
2023).

MCTS has often been used to plan the next action in a large problem space. Examples of this include
AlphaZero from Silver et al. (2017) or the External and Internal Planning with Language Models
from Schultz et al. (2025).

3 GUIDED DOMAIN SOLVER

The Guided Domain Solver uses an MCTS to search a large problem space step by step. Expert
knowledge is embedded in a Knowledge Graph and can be used to make the search for promising
states more effective. The Knowledge Graph, which is stored in a graph-based database such as
Neo4J, contains information about all visited states and the currently selected state. This information
is summarized using several Cypher queries to prompt an LLM which evaluates the next action. An
overview of the method can be seen in Figure 1.

Figure 1: Overview that describes the Guided Domain Solver. The upper half shows the MCTS
procedure. The lower half provides a more detailed view of the expansion step, showing how the
LLM agent is prompted with the structured information from the Knowledge Graph.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1 DOMAIN: SOKOBAN

Sokoban is a Japanese puzzle game in which the player must move boxes in a warehouse so that
they reach specified target fields. The implementation as OpenAI Gym was created by Schrader
(2018). An example of the starting point of the game can be seen on the left side of Figure 2. The
player can only move one box at a time. If two boxes are lined up behind each other, they cannot be
moved. Dragging boxes is not allowed. A strategic approach is required to avoid maneuvering the
boxes into dead ends or blocking the access to the remaining boxes (Racanière et al., 2017).

Figure 2: On the left is the starting position of a Sokoban game. To the right is the optimal sequence
of actions to solve the game.

The goal is to solve the game in as few steps as possible. An optimal solution looks like the example
on the right side of Figure 2. In order to achieve an optimal solution in larger scenes, it is necessary
to develop creative long-term strategies.

3.2 MONTE CARLO TREE SEARCH

The algorithm is based on MCTS to find a solution for the Sokoban game. It involves the steps
of selection, expansion, simulation, and backpropagation, which are repeated several times. The
resulting search tree is stored in the Knowledge Graph so that already explored game states can be
factored into the expansion of new ones.

3.2.1 SELECTION

During the selection phase of MCTS, the algorithm traverses the current search tree to identify the
most promising node for further investigation. Normally, an upper confidence bound (UCB) for
trees (Auer et al., 2002) is used to find a balance between exploitation and exploration:

UCBi = Vi + C ·
√

lnNi

ni
(1)

The exploitation is defined by the value of the state Vi. Exploration is controlled by the exploration
constant C. Ni is the number of visits to the parent node, whereas ni is the number of visits to
the child node. In the case of the Sokoban game, only exploitation is used. This is because it
is a fully observable domain and therefore an error-free simulation can be used. Thus, the most
promising node that still contains unexplored actions is selected. Once the node has been selected,
the Knowledge Graph is updated with the current game status.

3.2.2 EXPANSION

In the expansion step, the search tree is extended with a new node. Multiple Cypher queries are
made on the Knowledge Graph, which summarize the current state of the game and game states that
have already been reached. In addition, the shortest paths to place each of the remaining boxes are
calculated. For this purpose, all other boxes are considered walls, which makes some box placements
impossible. Missing box placements should be interpolated by the LLM agent using the additional

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

information. With all this information, an LLM agent is prompted to execute the next action in the
game state. An example prompt can be seen in Figure 3.

Example Prompt

system: You are a player who tries to solve a Sokoban game.

Keep the reasoning short.

Respond only with a single action out of [’UP’, ’DOWN’, ’LEFT’, ’RIGHT’].

human: Use the following results retrieved from a database to provide the next

action for the Sokoban game.

Environment: {environment}

Shortest paths to place remaining boxes: {paths_to_place_remaining_boxes}

Attempted Actions: {attempted_actions}

Possible Actions: {possible_actions}

Action:

response: {action}

Figure 3: Example prompt for evaluating the next action in a Sokoban game.

During expansion, it is possible to introduce hard rules using domain knowledge. In the Sokoban
game, the actions are mapped to the discrete action space. If the LLM agent does not provide a
feasible action, a random possible action is selected as a fallback.

3.2.3 SIMULATION

In the simulation phase, the result of the newly added node is evaluated by simulating a trajectory
from this point to a final state using an efficient policy. Normally, a ratio of games won to lost is
used to determine the value of the game state. Since the Sokoban game has a very sparse distribution
of games won, finding a solution using this method can take considerably longer. Here, it is possible
to take advantage of the fact that the possible game states of Sokoban are finite. Therefore, the
remaining steps to solve the game state are used as the value of the game state. This evaluation is
determined using a breadth-first search, which represents an error-free evaluation of the game state
that cannot be achieved in many other domains. A description of the breadth-first search algorithm
can be found in the Appendix A.

3.2.4 BACKPROPAGATION

In the backpropagation step, the result of the simulation is propagated back through the search tree,
updating the value estimates of each node along the path. In the case of the Sokoban game, the
following update rule is applied here:

V (st)← V (st) + αγnV (st+n) (2)

The update rule is an adapted variation of the n-step temporal difference learning approach from
Sutton & Barto (2020) without rewards. It gets applied upwards on each node in the search tree to
determine the new value of the game state V (st). During the update, the number of steps n in the
update rule depends on how deep the simulated node is in the search tree. The learning rate α and
the discount factor γ can be tuned.

3.3 KNOWLEDGE GRAPH

The Knowledge Graph allows domain-specific knowledge to be encoded in a structured manner,
allowing for precise queries, cross-system integration, and human-interpretable data. This is used
to provide the LLM agent with domain knowledge without having to retrain the model. In the
case of the Sokoban game, a representation of the game status and the MCTS is stored. The state
of the game is divided into static, dynamic, and action layers, as shown in Figure 4. Dividing
the Knowledge Graph into layers can be helpful in separating logical structures from one another,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

resulting in optimized queries, better maintainability, and improved reasoning. The nodes of the
static layer are set at the beginning and do not change during the game. All moving objects are
mapped in the dynamic layer. The nodes in this layer remain throughout the game and only their
relations change. The action layer determines the possible actions that can be performed in the
current state. In any given state, nodes in this layer can disappear or be added.

Figure 4: Conversion of the Sokoban game state to a graph representation in the Knowledge Graph.

The nodes of the floors contain the target positions of the boxes as properties. In the relations, the
positions of the player and the boxes on the playing field are encoded. This allows effective queries
to be performed to determine which box is closest to the player or which box can be placed the
fastest. The complete schemas of the Knowledge Graph can be found in the Appendix B.

4 EXPERIMENTS

The models Qwen3:32b (Yang et al., 2025), Deepseek-R1:70b (DeepSeek-AI et al., 2025), and GPT-
OSS:120b (OpenAI, 2025) were used as LLM agents. These were run locally on an Nvidia RTX
A6000. The solutions found for the Sokoban game are equivalent to the optimal solutions, as the
same number of steps are required to solve the game. This is made possible by the optimal function
within the simulation step. A subset of the solved games can be found in the Appendix C.

Since the optimal solution is always achieved in this domain, the number of nodes required to find
the optimal solution is compared here. Therefore, three different methods are evaluated to determine
the expansion efficiency as seen in Figure 5. One was expansion with a random possible action. In
comparison, random sampling takes a random action from the shortest paths to place the unplaced
boxes. The last approach was to use different LLM agents which receives all the information about
the environment as well as the shortest paths to place the unplaced boxes.

Figure 5: Normalized branching factor across methods, showing that the LLM agent explores fewer
nodes relative to solution length, suggesting improved search efficiency.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The plot shows a comparison of the different methods in a greedy selection scenario. An error-free
expansion would generate a branching factor of 1, which means that the best action is always taken.
It can be seen that the LLM agents are able to make better decisions than the random methods.
However, it requires significantly more time for evaluation and reasoning.

5 CONCLUSION

The Guided Domain Solver can solve the Sokoban game in an optimal way. Thereby the problem
space is searched by the MCTS in an efficient, targeted manner. This initial application demon-
strates the powerful combination of MCTS, LLM agent and Knowledge Graph. It paves the way for
further applications in other domains that require a balance between flexibility and compliance with
constraints. In future work, the method could also be extended to allow the LLM agent to execute
its own queries in the Knowledge Graph. In addition, the method could be extended to continuous
action spaces or used for continuous domain states.

REFERENCES

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2):235–256, 2002. ISSN 0885-6125, 1573-0565. doi: 10.1023/
A:1013689704352. URL https://link.springer.com/10.1023/A:1013689704352.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompt-
ing for zero-shot knowledge graph question answering, 2023. URL http://arxiv.org/abs/2306.

04136.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence I. Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,
Matthew Macfarlane, Andries P. Smit, Nathan Grinsztajn, Raphael Boige, Cemlyn N. Waters,
Mohamed A. Mimouni, Ulrich A. Mbou Sob, Ruan de Kock, Siddarth Singh, Daniel Furelos-
Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of scalable
reinforcement learning environments in jax, 2024. URL https://arxiv.org/abs/2306.09884.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
for tuning large language models, 2024. URL http://arxiv.org/abs/2307.06290.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
Xing Xie. A survey on evaluation of large language models, 2023. URL http://arxiv.org/abs/

2307.03109.

Xinqi Chen, Erci Xu, Dengyao Mo, Ruiming Lu, Haonan Wu, Dian Ding, and Guangtao Xue.
MasterPlan: A reinforcement learning based scheduler for archive storage. ACM Transactions
on Architecture and Code Optimization, 22(1):1–25, 2025. ISSN 1544-3566, 1544-3973. doi:
10.1145/3708542. URL https://dl.acm.org/doi/10.1145/3708542.

Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and Clifford Stein. Introduction to
algorithms. MIT Press, third edition edition, 2009. ISBN 978-0-262-03384-8 978-0-262-27083-
0.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers (eds.), Computers and Games,
pp. 72–83. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-75538-8.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang

6

https://link.springer.com/10.1023/A:1013689704352
http://arxiv.org/abs/2306.04136
http://arxiv.org/abs/2306.04136
https://arxiv.org/abs/2306.09884
http://arxiv.org/abs/2307.06290
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.03109
https://dl.acm.org/doi/10.1145/3708542


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. DeepSeek-r1: Incentivizing reasoning capability in LLMs via reinforce-
ment learning, 2025. URL http://arxiv.org/abs/2501.12948.

Muhammad Usman Hadi, Qasem Al Tashi, Rizwan Qureshi, Abbas Shah, Amgad Muneer, Muham-
mad Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, and Seyedali Mirjalili.
Large language models: A comprehensive survey of its applications, challenges, limitations, and
future prospects, 2023. URL https://www.techrxiv.org/doi/full/10.36227/techrxiv.23589741.v3.

Shibo Hao, Bowen Tan, Kaiwen Tang, Bin Ni, Xiyan Shao, Hengzhe Zhang, Eric P. Xing, and Zhit-
ing Hu. BertNet: Harvesting knowledge graphs with arbitrary relations from pretrained language
models, 2023. URL http://arxiv.org/abs/2206.14268.

Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968. ISSN 0536-1567. doi: 10.1109/TSSC.1968.300136. URL http://ieeexplore.ieee.org/

document/4082128/.

Nan Hu, Yike Wu, Guilin Qi, Dehai Min, Jiaoyan Chen, Jeff Z. Pan, and Zafar Ali. An empirical
study of pre-trained language models in simple knowledge graph question answering, 2023. URL
http://arxiv.org/abs/2303.10368.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Delong
Chen, Wenliang Dai, Ho Shu Chan, Andrea Madotto, and Pascale Fung. Survey of hallucination
in natural language generation. ACM Computing Surveys, 55(12):1–38, 2023. ISSN 0360-0300,
1557-7341. doi: 10.1145/3571730. URL http://arxiv.org/abs/2202.03629.

Amanda Kau, Xuzeng He, Aishwarya Nambissan, Aland Astudillo, Hui Yin, and Amir Aryani.
Combining knowledge graphs and large language models, 2024. URL http://arxiv.org/abs/

2407.06564.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
ping, 2024. URL http://arxiv.org/abs/2402.14083.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks, 2021. URL http:

//arxiv.org/abs/2005.11401.

Hongyun Liu, Peng Chen, Xue Ouyang, Hui Gao, Bing Yan, Paola Grosso, and Zhiming Zhao.
Robustness challenges in reinforcement learning based time-critical cloud resource scheduling:
A meta-learning based solution. Future Generation Computer Systems, 146:18–33, 2023. ISSN

7

http://arxiv.org/abs/2501.12948
https://www.techrxiv.org/doi/full/10.36227/techrxiv.23589741.v3
http://arxiv.org/abs/2206.14268
http://ieeexplore.ieee.org/document/4082128/
http://ieeexplore.ieee.org/document/4082128/
http://arxiv.org/abs/2303.10368
http://arxiv.org/abs/2202.03629
http://arxiv.org/abs/2407.06564
http://arxiv.org/abs/2407.06564
http://arxiv.org/abs/2402.14083
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0167739X. doi: 10.1016/j.future.2023.03.029. URL https://linkinghub.elsevier.com/retrieve/

pii/S0167739X23001061.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey, 2025. URL http://arxiv.org/abs/

2402.06196.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira, Hiteshi Sharma, Robert Osazuwa Ness, Nebojsa
Jojic, Hamid Palangi, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with CogEval, 2023. URL http://arxiv.org/abs/2309.15129.

OpenAI. gpt-oss-120b. https://huggingface.co/openai/gpt-oss-120b, August 2025. URL https:

//huggingface.co/openai/gpt-oss-120b. Hugging Face model repository.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data
Engineering, 36(7):3580–3599, 2024. ISSN 1041-4347, 1558-2191, 2326-3865. doi: 10.1109/
TKDE.2024.3352100. URL http://arxiv.org/abs/2306.08302.

Sergey Pastukhov. Solving sokoban using hierarchical reinforcement learning with landmarks, 2025.
URL http://arxiv.org/abs/2504.04366.

Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Raz-
van Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-
augmented agents for deep reinforcement learning. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.

neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf.

Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/gym-sokoban, 2018.

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel
Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, Tom Zahavy, Petar Veličković, Laurel
Prince, Satinder Singh, Eric Malmi, and Nenad Tomašev. Mastering board games by external
and internal planning with language models, 2025. URL http://arxiv.org/abs/2412.12119.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL http://arxiv.org/abs/1712.01815.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute opti-
mally can be more effective than scaling model parameters, 2024. URL http://arxiv.org/abs/

2408.03314.

Richard S. Sutton and Andrew Barto. Reinforcement learning: an introduction. Adaptive computa-
tion and machine learning. The MIT Press, second edition edition, 2020. ISBN 978-0-262-03924-
6.

Hao Tang, Darren Key, and Kevin Ellis. WorldCoder, a model-based LLM agent: Building world
models by writing code and interacting with the environment, 2024. URL http://arxiv.org/abs/

2402.12275.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL http://arxiv.org/

abs/1706.03762.

Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering, 2023. URL http://arxiv.org/abs/2308.11730.

Haoyi Xiong, Jiang Bian, Yuchen Li, Xuhong Li, Mengnan Du, Shuaiqiang Wang, Dawei Yin, and
Sumi Helal. When search engine services meet large language models: Visions and challenges,
2024. URL http://arxiv.org/abs/2407.00128.

8

https://linkinghub.elsevier.com/retrieve/pii/S0167739X23001061
https://linkinghub.elsevier.com/retrieve/pii/S0167739X23001061
http://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2309.15129
https://huggingface.co/openai/gpt-oss-120b
https://huggingface.co/openai/gpt-oss-120b
https://huggingface.co/openai/gpt-oss-120b
http://arxiv.org/abs/2306.08302
http://arxiv.org/abs/2504.04366
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://github.com/mpSchrader/gym-sokoban
http://arxiv.org/abs/2412.12119
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2402.12275
http://arxiv.org/abs/2402.12275
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2308.11730
http://arxiv.org/abs/2407.00128


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL http://arxiv.org/abs/2505.09388.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. ERNIE: Enhanced
language representation with informative entities, 2019. URL http://arxiv.org/abs/1905.07129.

A BREADTH-FIRST SEARCH

Breadth-first search is a graph traversal algorithm that explores nodes in order of their depth. It visits
all immediate neighbors before moving on to nodes at the next level (Cormen et al., 2009).

Algorithm 1 Breadth-First Search

Require: Graph G = (V,E), start node s
Ensure: Visits all nodes reachable from s in BFS order

1: Initialize an empty queue Q
2: Mark all nodes as unvisited
3: Mark s as visited and enqueue it into Q
4: while Q is not empty do
5: u← dequeue(Q)
6: process node u
7: for all neighbors v of u do
8: if v is not visited then
9: Mark v as visited

10: Enqueue v into Q
11: end if
12: end for
13: end while

B KNOWLEDGE GRAPH SCHEMAS

The nodes and their relationships are shown in the schemas of the Knowledge Graph. Following are
the schemas of the Knowledge Graph for Sokoban.

B.1 ENVIRONMENT NODES

{

"Player": {

"labels": [],

"properties": {

"id": {"unique": false, "indexed": false, "type": "INTEGER", "existence": false}

,

"caption": {"unique": false, "indexed": false, "type": "STRING", "existence":

false},

"y": {"unique": false, "indexed": false, "type": "INTEGER", "existence": false},

"x": {"unique": false, "indexed": false, "type": "INTEGER", "existence": false}

},

"relationships": {

"ON_TOP_OF": {

"direction": "out",

"labels": ["Floor"],

9

http://arxiv.org/abs/2505.09388
http://arxiv.org/abs/1905.07129


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

"properties": {}

},

"CAN_MOVE": {

"direction": "out",

"labels": ["Action"],

"properties": {}

}

}

},

"Box": {

"labels": [],

"properties": {

"id": {"unique": false, "indexed": false, "type": "INTEGER", "existence": false}

,

"caption": {"unique": false, "indexed": false, "type": "STRING", "existence":

false},

"y": {"unique": false, "indexed": false, "type": "INTEGER", "existence": false},

"is_on_target": {"unique": false, "indexed": false, "type": "BOOLEAN", "

existence": false},

"x": {"unique": false, "indexed": false, "type": "INTEGER", "existence": false}

},

"relationships": {

"ON_TOP_OF": {

"direction": "out",

"labels": ["Floor"],

"properties": {}

},

"SHOULD_GO_TO": {

"direction": "out",

"labels": ["Floor"],

"properties": {}

}

}

},

"Floor": {

"labels": [],

"properties": {

"id": {"unique": false,"indexed": false,"type": "INTEGER","existence": false},

"has_box_target": {"unique": false,"indexed": false,"type": "BOOLEAN","existence

": false},

"caption": {"unique": false,"indexed": false,"type": "STRING","existence": false

},

"y": {"unique": false,"indexed": false,"type": "INTEGER","existence": false},

"x": {"unique": false,"indexed": false,"type": "INTEGER","existence": false}

},

"relationships": {

"ON_TOP_OF": {

"direction": "in",

"labels": ["Player", "Box"],

"properties": {}

},

"CAN_GO_TO": {

"direction": "out",

"labels": ["Floor", "Floor"],

"properties": {}

},

"SHOULD_GO_TO": {

"direction": "in",

"labels": ["Box"],

"properties": {}

}

}

}

}

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

B.2 MONTE CARLO TREE SEARCH NODES

{

"Path": {

"labels": [],

"properties": {

"id": {"unique": false, "indexed": false, "type": "INTEGER", "existence": false}

,

"possible_actions": {"unique": false, "indexed": false, "type": "LIST", "

existence": false},

"reward": {"unique": false, "indexed": false, "type": "FLOAT", "existence":

false},

"trajectory": {"unique": false, "indexed": false, "type": "LIST", "existence":

false},

"done": {"unique": false, "indexed": false, "type": "BOOLEAN", "existence":

false},

"value": {"unique": false, "indexed": false, "type": "FLOAT", "existence": false

},

"caption": {"unique": false, "indexed": false, "type": "STRING", "existence":

false},

"parent_id": {"unique": false, "indexed": false, "type": "INTEGER", "existence":

false}

},

"relationships": {

"MOVE": {

"direction": "out",

"labels": ["Path"],

"properties": {

"id": {"indexed": false, "type": "INTEGER", "existence": false, "array":

false},

"caption": {"indexed": false, "type": "STRING", "existence": false, "array":

false}

}

}

}

}

}

C SOLVED SOKOBAN GAMES

In the following Figure 6 are several examples of Sokoban games that were solved using the Guided
Domain Solver. In each case, the game was solved with the minimum number of steps.

(a) Solved example from Bonnet et al. (2024). (b) Solved generated Sokoban game.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

(c) Solved generated Sokoban game. (d) Solved generated Sokoban game.

(e) Solved generated Sokoban game. (f) Solved generated Sokoban game.

(g) Solved generated Sokoban game. (h) Solved generated Sokoban game.

Figure 6: A subset of optimally solved Sokoban games. The images show the start of the game.
Numbered green arrows indicate the actions that lead to the solution of the game. The final state of
the game is shown in the form of a translucent overlay.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

D USE OF LARGE LANGUAGE MODELS

During the writing of this paper, LLMs were used as a general-purpose assist tool. Enhancement
suggestions from the Overleaf assistant were used to polish the writing style. In addition, DeepL
Translator was used for translations or for finding synonyms.

13


	Introduction
	Related Work
	Guided Domain Solver
	Domain: Sokoban
	Monte Carlo Tree Search
	Selection
	Expansion
	Simulation
	Backpropagation

	Knowledge Graph

	Experiments
	Conclusion
	Breadth-first search
	Knowledge Graph Schemas
	Environment Nodes
	Monte Carlo Tree Search Nodes

	Solved Sokoban games
	Use of Large Language Models

