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1. Introduction

Gaussian processes (Rasmussen and Williams, 2006) are a versatile probabilistic machine
learning model that have found great success in many applications, such as Bayesian opti-
misation of black-box functions (Snoek et al., 2012) or data-efficient learning in robotics
and control (Deisenroth et al., 2015). However, their effectiveness often depends on per-
forming model selection, which amounts to finding good estimates of quantities such as
kernel hyperparameters, and the amount of observation noise prescribed in the likelihood.
For Gaussian processes, these quantities are typically learned by maximising the marginal
likelihood of the training data, which balances the expressiveness and the complexity of a
model in representing the training data. Unfortunately, conventional approaches which use
the Cholesky factorisation have limited scalability, because the computational costs and
memory requirements are respectively cubic and quadratic in the amount of training data.

Many methods have been developed to improve the scalability of Gaussian processes.
Typically, they either leverage a handful of judiciously chosen inducing points to represent
the training data sparsely; or solve large systems of linear equations using iterative methods.
Sparse methods (Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009; Hensman et al.,
2013) are fundamentally limited in the number of inducing points, because the same cubic
and quadratic scaling of compute and memory requirements still applies to the number of
inducing points. With increasingly large or sufficiently complex data, a limited number of
inducing points can no longer accurately represent the original data. In contrast, iterative
methods (Gardner et al., 2018; Lin et al., 2023; Wu et al., 2024) attempt to solve the original
problem up to a specified numerical precision, therefore allowing a trade-off between compute
time and accuracy of a solution. Nonetheless, they can be slow in the large data regime due
to slow convergence properties, sometimes requiring several days of training time despite
leveraging parallel compute capabilities (Wang et al., 2019).

In this work, we consider marginal likelihood optimisation for iterative Gaussian processes.
We introduce a three-level hierarchy of marginal likelihood optimisation for iterative Gaussian
processes (Figure 2), and identify that the computational costs are dominated by solving
sequential batches of large positive-definite systems of linear equations (Figure 3). We
then propose to amortise computations by reusing solutions of linear system solvers as
initialisations in the next step, providing a warm start. Finally, we discuss the necessary
conditions and quantify the consequences of warm starts (Theorem 1) and demonstrate their
effectiveness on regression tasks (Table 1), where warm starts achieve the same results as
the conventional procedure while providing up to a 16× average speed-up among datasets.

© J.A. Lin, S. Padhy, B. Mlodozeniec & J.M. Hernández-Lobato.
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Figure 1: Two-dimensional cross-sections of quadratic objectives targeted by linear solvers
after twenty marginal likelihood steps on the pol dataset, centred at the solution
and visualised along eigendirections corresponding to the two largest eigenvalues
(left), and evolution of the distance between initialisation and solution measured
as root-mean-square error with respect to the norm induced by the curvature of
the quadratic objective (right). Initialising at the previous solution (warm start)
substantially reduces the initial distance to the solution.

2. Gaussian Process Regression and Marginal Likelihood Optimisation

Formally, a Gaussian process is a stochastic process f : X → R, such that, for any finite
subset {xi}ni=1 ⊂ X , the set of random variables {f(xi)}ni=1 follows a multivariate Gaussian
distribution. In particular, f is uniquely identified by a mean function µ(·) = E[f(·)] and a
positive-definite kernel function k(·, ·′;ϑ) = Cov(f(·), f(·′)) with kernel hyperparameters ϑ.
We write f ∼ GP(µ, k) to express that f is a Gaussian process with mean µ and kernel k.

For the purpose of Gaussian process regression, let the training data consist of n inputs
x ⊂ X and corresponding targets y ⊂ R. We consider the Bayesian model yi = f(xi) + ϵi,
where each ϵi ∼ N (0, σ2) identically and independently, and f ∼ GP(µ, k), where we assume
µ = 0 without loss of generality. The posterior of this model is f |y ∼ GP(µf |y, kf |y), with

µf |y(·) = k(·,x;ϑ)(k(x,x;ϑ) + σ2I)−1y, (1)

kf |y(·, ·′) = k(·, ·′;ϑ)− k(·,x;ϑ)(k(x,x;ϑ) + σ2I)−1k(x, ·′;ϑ), (2)

where k(·,x;ϑ), k(x, ·;ϑ) and k(x,x;ϑ) refer to pairwise evaluations, resulting in a 1× n
row vector, a n× 1 column vector and a n× n matrix respectively.

With θ = {ϑ, σ} and Hθ = k(x,x;ϑ) + σ2I, the marginal likelihood L as a function of
θ and its gradient ∇L with respect to θ can be expressed as

L(θ) = −1

2
yTH−1

θ y − 1

2
log detHθ − n

2
log 2π, (3)

∇L(θ) = 1

2
(H−1

θ y)T
∂Hθ

∂θ
H−1

θ y − 1

2
tr

(
H−1

θ

∂Hθ

∂θ

)
, (4)

where the partial derivative of Hθ with respect to each element in θ is a n× n matrix. If n
is small enough such that a Cholesky factorisation of Hθ is tractable then both L and ∇L
can be easily evaluated and used by any optimiser of choice to maximise L. However, we
are considering the case where n is too large to compute the Cholesky factorisation of Hθ.
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2.1. Marginal Likelihood Optimisation for Iterative Gaussian Processes

Iterative Optimiser
e.g. gradient descent, Adam

Gradient Estimator
e.g. Hutchinson trace estimator

Linear System Solver
e.g. conjugate gradients

Figure 2: Marginal likelihood optimi-
sation framework for itera-
tive Gaussian processes.

Marginal likelihood optimisation in iterative Gaussian
processes can be structured into a three-level hierarchy
(see Figure 2), as follows.

Iterative Optimiser Typically, a first-order opti-
miser, such as Adam (Kingma and Ba, 2015), is used
to maximise L, which only requires estimates of ∇L,
avoiding the evaluation of L and log detHθ. This
allows us to focus on tractable estimates of ∇L.

Gradient Estimator The gradient∇L (4) involves
two computationally expensive components: inverse
matrix-vector products of the form v = H−1

θ b and
the trace term. The inverse matrix-vector products
are readily approximated using iterative solvers to linear systems of the form Hθv = b. The
trace term can also be reduced into inverse matrix-vector products using stochastic trace
estimation, e.g. Hutchinson’s (Hutchinson, 1990), as follows

tr

(
H−1

θ

∂Hθ

∂θ

)
= Ez

[
zTH−1

θ

∂Hθ

∂θ
z

]
≈ 1

s

s∑
j=1

zT
j H

−1
θ

∂Hθ

∂θ
zj , (5)

where s probe vectors zj of length n are introduced and ∀j : E[zjzT
j ] = I is required for the

estimator to be unbiased. Common choices for the distribution of zj are standard Gaussian,
zj ∼ N (0, I), or Rademacher, namely uniform random signs, zj ∼ U({1,−1})n. In theory,
the latter exhibit lower estimator variance. Additionally, more advanced trace estimators
have also been developed (Meyer et al., 2021; Epperly et al., 2024). However, in practice,
standard Gaussian probes with Hutchinson’s trace estimator seem to work well.

Linear System Solver After substituting the trace estimator into (4), the approximate
gradient consists of terms that involve computing vy = H−1

θ y and vj = H−1
θ zj by solving

large systems of linear equations,

Hθ [vy,v1, . . . ,vs ] = [y, z1, . . . ,zs ] , (6)

which share the same coefficient matrix Hθ. Because Hθ is positive-definite, the solution
v = H−1

θ b to the system of linear equations Hθ v = b can also be obtained by finding the
unique minimiser of the corresponding convex quadratic objective,

v = argmin
u

1

2
uTHθ u− uTb, (7)

facilitating the use of iterative optimisers. In the context of Gaussian processes, conjugate
gradients (Gardner et al., 2018; Wang et al., 2019; Wilson et al., 2020, 2021), alternating
projections (Wu et al., 2024) and stochastic gradient descent (Lin et al., 2023, 2024) have
been applied to optimise (7), serving as linear system solvers.

Notably, the linear system solver dominates the overall computational costs, such that
reducing its runtime translates to substantial computational savings (see Figure 3). Therefore,
we propose to amortise computations by reusing solutions of linear systems to initialise the
linear system solver in the next marginal likelihood step, providing a warm start.
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Figure 3: Comparison of relative runtimes for different linear system solvers. The solver
(striped areas) dominates the total training time (coloured patches). Initialising at
the previous solution (warm start) significantly reduces the runtime of the linear
system solver, with varying effectiveness among different solvers and datasets.

3. Warm Start Marginal Likelihood Optimisation

Given that the iterative linear system solver dominates the computational costs of marginal
likelihood optimisation (see Figure 3), reducing the number of necessary solver iterations
until convergence will translate to substantial computational savings. However, iterative
solvers are typically initialised at zero for each gradient computation step, even though the
hyperparameters do not change much between steps.1 Therefore, we propose to amortise
computational costs for any solver type by reusing solutions of previous linear systems to
warm start (i.e. initialise) linear system solvers in the subsequent step.

At iterations t and t+ 1 of the marginal likelihood optimiser, associated with θ(t) and
θ(t+1), the linear system solver must solve two batches of linear systems, namely

H
(t)
θ

[
v
(t)
y ,v

(t)
1 , . . . ,v(t)

s

]
=
[
y, z

(t)
1 , . . . ,z(t)

s

]
and (8)

H
(t+1)
θ

[
v
(t+1)
y ,v

(t+1)
1 , . . . ,v(t+1)

s

]
=
[
y, z

(t+1)
1 , . . . ,z(t+1)

s

]
, (9)

where H
(t)
θ and H

(t+1)
θ are related through the change from θ(t) to θ(t+1) and v

(t)
y and v

(t+1)
y

are further related through sharing the same right-hand side y in the linear system. In such
a setting, where the coefficient matrix only changes slightly and the right-hand side remains

fixed, we can approximate v(t+1) using a first-order Taylor expansion of H
(t+1)
θ ,(

H
(t+1)
θ

)−1
≈
(
H

(t)
θ

)−1
−
(
H

(t)
θ

)−1 (
H

(t+1)
θ −H

(t)
θ

)(
H

(t)
θ

)−1
, (10)

v(t+1) ≈ v(t) −
(
H

(t)
θ

)−1 (
H

(t+1)
θ −H

(t)
θ

)
v(t). (11)

If ∆ = H
(t+1)
θ −H

(t)
θ is small then v(t) will be close to v(t+1) (see Figure 1), such that we

can reuse v(t) to initialise the linear system solver when solving for v(t+1). To satisfy the

condition of fixed right-hand sides, we propose to set z
(t)
j = zj at the cost of introducing

some bias throughout optimisation, which can be bounded, as we will now quantify.

1. Notable exceptions are Artemev et al. (2021), who warm start vy in a sparse lower bound on L, and
Antorán et al. (2023), who warm start a stochastic gradient descent solver for generalised linear models.
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Figure 4: Evolution of the required number of linear system solver iterations at each step of
marginal likelihood optimisation on the pol dataset. Initialising at the solution
of the previous step (warm start) reduces the number of required solver iterations
with varying effectiveness among different solvers.

Theorem 1 Let L and ∇L be the marginal likelihood and its gradient as defined in (3)
and (4) respectively, and let g̃ be an approximation to the gradient ∇L where the trace is
approximated with s fixed samples as in (5). Assume that the hyperparameter optimisation
domain Θ is convex, closed and bounded, and that g̃ : Θ → R is a conservative field. Then,
given a sufficiently large number of samples s, the hyperparameters θ̃∗ obtained by maximising
the objective implied by the approximate gradients g̃ will be γ-close in terms of the true
objective L to the true maximum θ∗ of the objective L,

L(θ̃∗) ≥ L(θ∗)− γ,

with probability at least 1− δ.

See Appendix A for details. In practice, a small number of samples seems to be sufficient.

4. Experiments

To investigate the effectiveness of warm starts, we performed marginal likelihood optimisation
on five UCI regression datasets (Dua and Graff, 2017), comparing the procedure described
in Section 2.1 with resampled probe vectors versus fixed probe vectors and warm starts. In
particular, we used the Matérn-3/2 kernel with length scales per input dimension and a scalar
signal scale. Observation noise, signal scale and length scales were initialised at 1.0 and
jointly optimised by performing 100 steps of Adam (Kingma and Ba, 2015) with a learning
rate of 0.1, where the gradient was estimated using (5) with s = 16 standard Gaussian probe
vectors zj ∼ N (0, I). We conducted experiments with different linear system solvers, namely
conjugate gradients (Gardner et al., 2018; Wang et al., 2019), alternating projections (Wu
et al., 2024) and stochastic gradient descent (Lin et al., 2023, 2024). See Appendix B for
further implementation details.

Figure 3 illustrates that warm starts significantly reduce the runtime of linear system
solvers, and consequently the total runtime, being most effective for alternating projections.
Figure 4 visualises that these speed-ups are due to substantial decreases in the number of
linear system solver iterations required to reach a specified tolerance. Table 1 reports the
final test log-likelihoods, computed using Cholesky factorisation, and total runtimes after 100
steps of marginal likelihood optimisation. Warm starts achieve the same test performance
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Table 1: Predictive test log-likelihoods and total runtimes after marginal likelihood optimi-
sation, and average speed-up among datasets due to warm start for different linear
system solvers, namely conjugate gradients (CG), alternating projections (AP),
and stochastic gradient descent (SGD) (mean over 10 dataset splits).

Test Log-Likelihood Total Runtime (min) Average
pol elev bike prot kegg pol elev bike prot kegg Speed-Up

CG 1.27 -0.39 2.15 -0.59 1.08 7.86 2.76 7.69 31.44 64.29 —
+ ws 1.27 -0.39 2.15 -0.59 1.08 2.00 1.07 2.18 11.27 18.81 3.2 ×

AP 1.27 -0.39 2.15 -0.59 1.08 22.39 13.55 12.31 45.42 62.24 —
+ ws 1.27 -0.39 2.15 -0.59 1.08 0.99 0.52 0.90 5.52 4.86 16.7 ×

SGD 1.27 -0.39 2.18 -0.59 1.08 41.31 4.92 81.84 46.92 360.44 —
+ ws 1.27 -0.39 2.15 -0.59 1.07 3.08 0.98 6.73 7.87 48.72 8.8 ×
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Figure 5: Evolution of hyperparameters during marginal likelihood optimisation on the pol
dataset using conjugate gradients as linear system solver. The behaviour of exact
gradient computation using Cholesky factorisation is obtained when initialising at
zero or at the previous solution. The latter does not degrade performance.

while providing an average speed-ups among datasets from 3.2× to 16.7×, showing that
fixing probe vectors and reusing solutions does not impact performance in practice. Figure 5
shows that optimisation traces obtained using warm starts are almost identical to the
traces obtained by resampling probe vectors and reinitialising at zero, and exact gradient
computation using Cholesky factorisation. See Appendix C for more experimental results.

5. Conclusion

We discussed marginal likelihood optimisation for iterative Gaussian processes and proposed
warm starts to amortise linear system solver computation. We analysed the consequences of
warm starts theoretically, and investigated their behaviour during hyperparameter optimisa-
tion on regression tasks empirically. Our experiments demonstrated that warm starts provide
substantial reductions in computational costs, while maintaining predictive performance and
matching optimisation traces of exact gradient computation using Cholesky factorisation.
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Appendix A. Mathematical Derivations

Throughout this appendix, we will denote the number of data examples as n, such that
Hθ ∈ Rn×n, and the number of samples in the trace estimator in (5) with s. We will denote
the optimisation domain for the hyperparameters as Θ, where we assume Θ ⊆ Rdθ . We will
also assume that all elements in zj have finite fourth moments E z4. For standard normal
zj , we have E z4 = 3, and for Rademacher zj we have E z4 = 1. Furthermore, we assume
that the coordinates of zj are also pairwise independent, which will again be the case for
Gaussian or Rademacher random variables.

Theorem 2 Let g = ∇L, as in (4), and let g̃ : Θ → Rdθ be an approximation to g with
s samples, as in (5). Assume that the absolute value of the eigenvalues of H−1

θ , ∂Hθ
∂θk

are
upper-bounded on the domain of θk by λmax

H−1 and λmax
∂H such that the eigenvalues of their

product are upper-bounded by λmax = λmax
H−1λ

max
∂H . Then, for any β, δ > 0, if the number of

samples is sufficiently large, we have

P
[∣∣∣∣g̃k(θ)− ∂

∂θk
L(θ)

∣∣∣∣ > β

]
< δ if s >

(
1 +

2

ϵ

)n E
[
z4
]
+ n− 2

δβ2(1− ϵ)2
nλmax, (12)

i.e. the j-th component of the approximate gradient g̃(θ) will be within distance β of the true
gradient on the entire optimisation space Θ with probability at least (1− δ) for any ϵ > 0.

Proof Let
∑n

i=1 qi(θ)λi(θ)pi(θ)
T be the eigendecomposition of H−1

θ
∂Hθ
∂θk

, where {qi}ni=1 and
{pi}ni=1 are two sets of orthonormal vectors. We will notationally suppress the dependence
of pi, qi, λi on θ going forwards. First, we rewrite g̃k(θ)− gk(θ),

g̃k(θ)− gk(θ) =

s∑
j=1

zT
j H

−1
θ

∂Hθ

∂θk
zj − Ez

[
zTH−1

θ

∂Hθ

∂θk
z

]
, (13)

=

s∑
j=1

zT
j

(
n∑

i=1

λiqip
T
i

)
zj − Ez

[
zT

(
n∑

i=1

λiqip
T
i

)
z

]
, (14)

=
n∑

i=1

λi

s∑
j=1

zT
j qip

T
i zj −

n∑
i=1

λiEz

[
zTqip

T
i z
]
, (15)

=
n∑

i=1

λi

 s∑
j=1

zT
j qip

T
i zj − Ez

[
zTqip

T
i z
] , (16)

=

n∑
i=1

λi

qTi

 s∑
j=1

zjz
T
j

pi − qTi Ez

[
zzT

]
︸ ︷︷ ︸

I

pi

 , (17)

=
n∑

i=1

λiq
T
i

 s∑
j=1

zjz
T
j

− I


︸ ︷︷ ︸

M

pi. (18)
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Therefore, we can bound the norm of the difference as

|g̃k(θ)− gk(θ)| ≤
n∑

i=1

|λi|
∣∣∣qTi Mpi

∣∣∣ , (19)

≤
n∑

i=1

|λi|∥M∥op (20)

where ∥M∥op is the operator (spectral) norm of M.

Lemma 3 P [∥M∥op > β] <
∑

c∈Σϵ

E[∥Mc∥2]
β2(1−ϵ)2

, where Σϵ is an ϵ-net on an Rn-sphere Sn−1.

Proof We turn the lower bound ∥M∥op > β on the spectral norm into a lower bound on Mc
for any c ∈ Sn−1 which is a close approximation to the largest-norm eigenvalue eigenvector.

Consider the unit vector u∗ such that ∥Mu∗∥ = ∥M∥op. Such a vector exists ∥M∥op =
supu∈Sn−1 uTMu, because the supremum is taken over a compact subspace of Rn. Note that
if we have a unit vector c ∈ Rn such that ∥c− u∗∥ < ϵ, then

∥Mc∥ ≥ ∥Mu∗∥ − ∥M
(
c− u∗)∥, △ triangle inequality (21)

= ∥M∥op − ∥M
(
c− u∗)∥, (22)

≥ ∥M∥op − ∥M∥op∥c− u∗∥, (23)

> ∥M∥op − ∥M∥opϵ = ∥M∥op(1− ϵ). (24)

Consider a finite ϵ-net Σϵ ⊂ Sn−1 on the unit sphere Sn−1. There exists such a collection
with cardinality at most

(
1 + 2

ϵ

)n
, and thus such a finite ϵ-net exists for ϵ > 0. By (21), if

∥M∥op > β, then for some c ∈ Σϵ we have that ∥Mc∥ > β(1− ϵ). Hence

P [∥M∥op > β] ≤ P [∪ci∈Σϵ [∥Mci∥ > β(1− ϵ)]] , (25)

≤
∑
ci∈Σϵ

P [∥Mci∥ > β(1− ϵ)] , △ union bound (26)

<
∑
ci∈Σϵ

E
[
∥Mci∥2

]
β2(1− ϵ)2

. △ Markov inequality (27)

Lemma 4 For pairwise independent zero-mean identity-covariance zj with pairwise inde-
pendent coordinates, and any unit vector c ∈ Rn

E

∥∥∥∥∥
(
1

s

∑
p

zpz
T
p − I

)
c

∥∥∥∥∥
2
 =

E[z4] + n− 2

s
. (28)

10



Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes

Proof∥∥∥∥∥
(
1

s

∑
p

zpz
T
p − I

)
c

∥∥∥∥∥
2

(29)

=

∥∥∥∥∥1s∑
p

zpz
T
p c− c

∥∥∥∥∥
2

(30)

=

(
1

s

∑
p

zp

(
zT
p c
)
− c

)T(
1

s

∑
q

zq

(
zT
q c
)
− c

)
(31)

=

(
1

s2

∑
p,q

(
zT
p c
)
zT
p zq

(
zT
q c
))

−

(
1

s

∑
p

(
zT
p c
)(

zT
p c
))

−

(
1

s

∑
q

(
zT
q c
)(

zT
q c
))

+ cTc

(32)

=

(
1

s2

∑
p,q

(
zT
p c
)(

zT
q c
)
zT
p zq

)
−

(
2

s

∑
p

(
zT
p c
)2)

+ cTc (33)

=

 1

s2

∑
p,q

(∑
i

zp,ici

)∑
j

zq,jcj

(∑
k

zp,kzq,k

)−

2

s

∑
p

(∑
i

zp,ici

)2
+ cTc

(34)

=

 1

s2

∑
p,q

∑
i,j,k

zp,izq,jzp,kzq,kcicj

−

2

s

∑
p

(∑
i

zp,ici

)∑
j

zp,jcj

+ 1 (35)

=

 1

s2

∑
p,q

∑
i,j,k

zp,izq,jzp,kzq,kcicj

−

2

s

∑
p

∑
i,j

zp,jzp,icicj

+ 1 (36)

Therefore, the expectation of the above can be simplified as

 1

s2

∑
p,q,i,j,k

E [zp,izq,jzp,kzq,k] cicj

−

2

s

∑
p,i,j

E [zp,jzp,i]︸ ︷︷ ︸
0 unless i = j

cicj

+ 1, (37)

=

 1

s2

∑
p,q,i,j,k

E [zp,izq,jzp,kzq,k] cicj

−

2

s

∑
p,i

1︷ ︸︸ ︷
E
[
z2p,i
]
c2i︸ ︷︷ ︸

s

+ 1, (38)

=

 1

s2

∑
p,q,i,j,k

E [zp,izq,jzp,kzq,k]︸ ︷︷ ︸
0 unless i = j, p = q
or i= j= k

cicj

− 2 + 1. (39)

11



Lin Padhy Mlodozeniec Hernández-Lobato

The expectation in the terms of the first sum will be 0 if i ̸= j: if i ̸= k then E [zp,izq,jzp,kzq,k] =

����: 0E [zp,i]E [zq,jzp,kzq,k], and if k= i ̸= j then E [zp,izq,jzp,kzq,k] =����: 0E [zq,j ]E [zp,izp,kzq,k]. Hence,
for all non-zero terms i = j and the first sum can be simplified as

∑
p,q,i,k E [zp,izq,izp,kzq,k].

Then, we again have four cases for the terms E [zp,izq,izp,kzq,k]:

E [zp,izq,izp,kzq,k] =


E[z4p,i] i = k, q = p

E[z2p,i]E[z2q,i] = 1 i = k, q ̸= p

E[z2p,i]E[z2p,k] = 1 i ̸= k, q = p

E[zp,i]E[zq,i]E[zp,k]E[zq,k] = 0 i ̸= k, q ̸= p

, (40)

and so, separating the sum into these cases, we get

E

∥∥∥∥∥1s∑
p

zpz
T
p c− c

∥∥∥∥∥
2
 , (41)

=
1

s2

∑
p,i

E
[
z4p,i
]
c2i

+

∑
p

∑
q ̸=p

∑
i

c2i

+

∑
p

∑
i

∑
k ̸=i

c2i

− 1, (42)

=
1

s2

E
[
z4
]∑

p,i

c2i

+ s(s− 1) + s(n− 1)

− 1, (43)

=
sE
[
z4
]

s2
+

s2 − s

s2
+

s(n− 1)

s2
− 1, (44)

=
E[z4] + s− 1 + n− 1− s

s
=

E[z4] + n− 2

s
. (45)

Combining the previous lemmas gives:

Lemma 5 P [∥M∥op > β] <
(
1 + 2

ϵ

)n E[z4]+n−2

sβ2(1−ϵ)2
for M as defined (13), for any β, ϵ > 0,

where E[z4] is the fourth moment of the coordinates of zj.
Proof Combining Theorems 3 and 4, and noting that there exists an ϵ-net of size at most(
1 + 2

ϵ

)n
(Vershynin, 2012) yields the result.

Finally, applying Theorem 5 to (19) gives the desired bound:

|g̃k(θ)− gk(θ)| ≤
n∑

i=1

|λi|∥M∥op <

(
1 +

2

ϵ

)n E
[
z4
]
+ n− 2

sβ2(1− ϵ)2

(
n∑

i=1

|λi|

)
, (46)

where (
∑n

i=1 |λi|) < λmaxn.

Theorem 2 implies a bound on the norm of the gradient error on the optimisation domain Θ
by a simple union bound over each coordinate of g̃(θ).

12



Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes

Theorem 6 Under the assumptions of Theorem 2,

P [∥g̃(θ)− g(θ)∥ > β] < δ if s > dθ

(
1 +

2

ϵ

)n E
[
z4
]
+ n− 2

δβ2(1− ϵ)2
nλmax, (47)

i.e. the approximate gradient g(θ) will be within β of the true gradient on the entire
optimisation space Θ with probability at least (1− δ).

Now, if g̃(θ) is a conservative field, and so is implicitly a gradient of some (approximate)
objective L̃ : Θ → R, the above result allows us to bound the error on the solution found
when optimising using the approximate gradient g̃ instead of the actual gradient g = ∇L.
However, in general, g̃(θ) need not be strictly conservative. In practice, since g̃(θ) converges
to a conservative field the more samples we take, we may assume that it is close enough
to being conservative for the purposes of optimisation on hardware with finite numerical
precision. Assuming that g̃(θ) is conservative allows us to show the following bound on the
optimum found when optimising using g̃(θ), which is a restatement of Theorem 1:

Theorem 7 Let g̃ and L be defined as in Theorem 2. Assume g̃ : Θ → R is a conservative
field. Assume the optimisation domain Θ is convex, closed and bounded. Then, given a
sufficiently large number of samples s, a maximum θ̃∗ obtained by maximising the objective
implied by the approximate gradients g̃ will be γ-close in terms of the true objective L to the
true maximum θ∗ of the objective L:

L(θ̃∗) ≥ L(θ∗)− γ if s > dθ

(
1 +

2

ϵ

)n E
[
z4
]
+ n− 2

δγ2(1− ϵ)2
nλmax∆Θ, (48)

with probability at least 1 − δ, where ∆Θ
def
= supθ,θ′∈Θ ∥θ′ − θ∥ is the maximum distance

between two elements in Θ.

Proof Let L̃ : Θ → R be an approximate objective implied by the gradient field g̃, namely a
scalar field such that ∇L̃ = g̃. Such a scalar field exists if g̃ is a conservative field, and is
unique up to a constant (which does not affect the optimum).

Assume that s is sufficiently large such that the gradient difference ∥g̃ − g∥ is bounded
by γ

∆Θ with probability at least 1− δ. As per Theorem 6, this will be the case when

s > dθ

(
1 +

2

ϵ

)n E
[
z4
]
+ n− 2

δγ2(1− ϵ)2
nλmax∆Θ. (49)

13
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For any two points θ,θ′ ∈ Θ, with ∆θ
def
= θ′ − θ, we have that∣∣∣(L(θ′)− L(θ)

)
+
(
L̃(θ′)− L̃(θ)

)∣∣∣ (50)

△ Replace difference in values with integral along path from θ to θ′

=

∣∣∣∣∫ 1

0

∂

∂t
L (θ +∆θt) dt−

∫ 1

0

∂

∂t
L̃ (θ +∆θt) dt

∣∣∣∣ , (51)

=

∣∣∣∣∫ 1

0
∆θ · ∇L (θ +∆θt) dt−

∫ 1

0
∆θ · ∇L̃ (θ +∆θt) dt

∣∣∣∣ , (52)

=

∣∣∣∣∫ 1

0
∆θ ·

(
∇L−∇L̃

)
(θ +∆θt) dt

∣∣∣∣ , (53)

≤
∫ 1

0

∣∣∣∆θ ·
(
∇L−∇L̃

)
(θ +∆θt)

∣∣∣ dt, (54)

=

∫ 1

0
∥∆θ∥

∥∥∥(∇L−∇L̃
)
(θ +∆θt)

∥∥∥ dt ≤ ∫ 1

0
∥∆θ∥

∣∣∣ γ

∆Θ

∣∣∣ dt ≤ γ. (55)

△ Difference of gradients bounded by Theorem 6

(56)

Hence,

L(θ∗)− L(θ̃∗) ≤ L(θ∗)− L(θ̃∗)−

Negative because θ̃∗ is
a maximum of L̃︷ ︸︸ ︷(
L̃(θ∗)− L̃(θ̃∗)

)
, (57)

≤
∣∣∣L(θ∗)− L(θ̃∗)−

(
L̃(θ∗)− L̃(θ̃∗)

)∣∣∣ ≤ γ, (58)

which gives the bound in the theorem.

Appendix B. Implementation Details

Our implementation uses the JAX library (Bradbury et al., 2018) and all experiments were
conducted on A100 GPUs using double floating point precision. The softplus function
was used to enforce positive value constraints during hyperparameter optimisation. During
each step of marginal likelihood optimisation, the linear system solvers were run until all
linear systems in the batch reached a relative residual norm ∥Hθv − b∥/∥b∥ of less than

ϵmean
rel = 0.01 for the linear system Hθvy = y, corresponding to the mean, and ϵsamples

rel = 0.1
for the linear systems Hθvj = zj , corresponding to the samples. Conjugate gradients and
alternating projections keep track of the residual as part of the algorithm. For stochastic
gradient descent, we estimate the current residual by keeping a residual vector in memory and
updating it sparsely whenever we compute the gradient on a mini-batch of data, leveraging
the property that the gradient is equal to the residual. In practice, we find that this estimates
an approximate upper bound on the true residual. For conjugate gradients, we did not use
any preconditioner. For alternating projections, we used a block size of 2000. For stochastic
gradient descent, we used a mini-batch size of 1000, momentum of 0.9, no Polyak averaging,
and learning rates of 90, 20, 100, 20, and 30 respectively for pol, elevators, bike, protein
and keggdirected, which were selected by performing a grid search.
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Appendix C. Additional Empirical Results

Table 2: Test root-mean-square errors, test log-likelihoods, total runtimes and solver runtimes
in minutes after 100 steps of marginal likelihood optimisation, and speed-up per
dataset due to warm start (mean ± standard error over 10 dataset splits).

Test RMSE Test LLH Total Runtime Solver Runtime Speed-Up

p
o
l

n
=

1
3
5
0
0
,
d
=

2
6 CG 0.075 ± 0.001 1.268 ± 0.008 7.857 ± 0.111 7.641 ± 0.110 —

+ ws 0.075 ± 0.001 1.268 ± 0.009 2.003 ± 0.027 1.790 ± 0.026 3.9 ×

AP 0.075 ± 0.001 1.269 ± 0.008 22.390 ± 0.331 22.158 ± 0.326 —
+ ws 0.075 ± 0.001 1.268 ± 0.009 0.993 ± 0.015 0.780 ± 0.014 22.6 ×

SGD 0.075 ± 0.001 1.266 ± 0.010 41.306 ± 0.201 41.215 ± 0.201 —
+ ws 0.075 ± 0.001 1.268 ± 0.007 3.077 ± 0.016 2.989 ± 0.016 13.4 ×

e
l
e
v
a
t
o
r
s

n
=

1
4
9
4
0
,
d
=

1
8 CG 0.355 ± 0.003 -0.386 ± 0.007 2.758 ± 0.044 2.542 ± 0.042 —

+ ws 0.355 ± 0.003 -0.386 ± 0.007 1.072 ± 0.014 0.858 ± 0.012 2.6 ×

AP 0.355 ± 0.003 -0.386 ± 0.007 13.547 ± 0.345 13.331 ± 0.344 —
+ ws 0.355 ± 0.003 -0.386 ± 0.007 0.516 ± 0.006 0.303 ± 0.004 26.2 ×

SGD 0.355 ± 0.003 -0.385 ± 0.007 4.921 ± 0.069 4.685 ± 0.015 —
+ ws 0.355 ± 0.003 -0.386 ± 0.007 0.980 ± 0.065 0.748 ± 0.004 5.2 ×

b
ik
e

n
=

1
5
6
4
2
,
d
=

1
7 CG 0.033 ± 0.003 2.150 ± 0.018 7.689 ± 0.128 7.451 ± 0.126 —

+ ws 0.033 ± 0.003 2.150 ± 0.017 2.180 ± 0.038 1.945 ± 0.036 3.5 ×

AP 0.033 ± 0.003 2.151 ± 0.018 12.306 ± 0.210 12.068 ± 0.207 —
+ ws 0.033 ± 0.003 2.153 ± 0.018 0.904 ± 0.014 0.670 ± 0.012 13.6 ×

SGD 0.033 ± 0.003 2.179 ± 0.020 81.843 ± 1.373 81.676 ± 1.372 —
+ ws 0.032 ± 0.003 2.149 ± 0.031 6.733 ± 0.168 6.567 ± 0.168 12.2 ×

p
r
o
t
e
in

n
=

4
1
1
5
7
,
d
=

9 CG 0.503 ± 0.004 -0.587 ± 0.010 31.438 ± 0.476 29.850 ± 0.458 —
+ ws 0.503 ± 0.004 -0.588 ± 0.010 11.270 ± 0.156 9.685 ± 0.138 2.8 ×

AP 0.503 ± 0.004 -0.587 ± 0.010 45.417 ± 0.622 43.829 ± 0.607 —
+ ws 0.503 ± 0.004 -0.587 ± 0.010 5.519 ± 0.068 3.934 ± 0.053 8.2 ×

SGD 0.504 ± 0.004 -0.587 ± 0.010 46.915 ± 0.350 44.661 ± 0.349 —
+ ws 0.504 ± 0.004 -0.589 ± 0.009 7.874 ± 0.024 5.621 ± 0.024 6.0 ×

k
e
g
g
d
ir
e
c
t
e
d

n
=

4
3
9
4
5
,
d
=

2
0 CG 0.084 ± 0.002 1.082 ± 0.017 64.290 ± 0.768 61.902 ± 0.760 —

+ ws 0.084 ± 0.002 1.081 ± 0.017 18.807 ± 0.228 16.415 ± 0.220 3.4 ×

AP 0.084 ± 0.002 1.082 ± 0.017 62.235 ± 0.625 59.848 ± 0.618 —
+ ws 0.084 ± 0.002 1.081 ± 0.018 4.857 ± 0.054 2.464 ± 0.046 12.8 ×

SGD 0.084 ± 0.002 1.081 ± 0.019 360.436 ± 4.079 357.734 ± 4.076 —
+ ws 0.084 ± 0.002 1.073 ± 0.014 48.721 ± 0.548 46.020 ± 0.545 7.4 ×
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Figure 6: Evolution of the required number of linear system solver iterations at each step of
marginal likelihood optimisation on different datasets. Initialising at the solution
of the previous step reduces the number of required solver iterations with varying
effectiveness among different solvers and datasets.
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Figure 7: Evolution of hyperparameters during marginal likelihood optimisation on different
datasets using conjugate gradients as linear system solver. The behaviour of exact
gradient computation using Cholesky factorisation is obtained when initialising
at zero or at the previous solution (warm start). The latter does not degrade
performance.

17



Lin Padhy Mlodozeniec Hernández-Lobato

p
o

l

S
e
le

c
te

d
L

e
n
g
th

S
c
a
le

s

0.0

0.5

1.0
N

o
is

e
S
c
a
le

0

1

2

0

1

2

1

2

3

1

2

3

0.0

0.5

1.0

S
ig

n
a
l

S
c
a
le

1

3

5

1

3

5

1

3

5

1

3

5

e
l
e
v
a
t
o

r
s

S
e
le

c
te

d
L

e
n
g
th

S
c
a
le

s

0.0

0.5

1.0

N
o
is

e
S
c
a
le

1

3

5

1

2

3

1

2

3

1

2

3

0.0

0.5

1.0

S
ig

n
a
l

S
c
a
le

1

2

3

1

2

3

1

2

3

1

2

3

b
ik

e

S
e
le

c
te

d
L

e
n
g
th

S
c
a
le

s

0.0

0.5

1.0

N
o
is

e
S
c
a
le

0

2

4

0

5

10

0

5

10

0

5

10

0.0

0.5

1.0

S
ig

n
a
l

S
c
a
le

0

1

2

0

5

10

0

5

10

0

5

10

p
r
o

t
e
in

S
e
le

c
te

d
L

e
n
g
th

S
c
a
le

s

0.0

0.5

1.0

N
o
is

e
S
c
a
le

0

1

2

0

2

4

0

2

4

0

1

2

0.5

1.0

1.5

S
ig

n
a
l

S
c
a
le

0

1

2

0

1

2

0

1

2

0

1

2

k
e
g

g
d

ir
e
c
t
e
d

S
e
le

c
te

d
L

e
n
g
th

S
c
a
le

s

0.0

0.5

1.0

N
o
is

e
S
c
a
le

1

3

5

1

3

5

1

3

5

1

3

5

0 50 100

0.0

0.5

1.0

S
ig

n
a
l

S
c
a
le

0 50 100

1

3

5

0 50 100

1

3

5

0 50 100

1

4

7

0 50 100

1

4

7

Marginal Likelihood Steps

Exact gradient computation Initialise at zero Initialise at previous solution (warm start)

Figure 8: Evolution of hyperparameters during marginal likelihood optimisation on different
datasets using alternating projections as linear system solver. The behaviour
of exact gradient computation using Cholesky factorisation is obtained when
initialising at zero or at the previous solution (warm start). The latter does not
degrade performance.
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Figure 9: Evolution of hyperparameters during marginal likelihood optimisation on different
datasets using stochastic gradient descent as linear system solver. The behaviour
of exact gradient computation using Cholesky factorisation is obtained when
initialising at zero or at the previous solution (warm start). The latter does not
degrade performance.
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