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Abstract

Natural language transformation (NLT) tasks,
such as machine translation (MT) and text
style transfer (TST), require models to gener-
ate accurate and contextually appropriate out-
puts. However, existing approaches face signif-
icant challenges, including the computational
costs of leveraging large pre-trained models
and the limited generalization ability of fine-
tuned smaller models. In this paper, we pro-
pose a novel framework that combines the flex-
ibility of prompting with the cost-effectiveness
of fine-tuning. Our method enhances smaller
models by integrating In-Context Examples
(ICE) retrieved from training data, enabling
the model to better capture contextual infor-
mation and align with user preferences. We
further improve performance through hierar-
chical contrastive learning and dynamic pref-
erence inference mechanisms. Experimental
results demonstrate that our approach outper-
forms existing methods, such as Supervised
Fine Tuning (SFT), Direct Preference Opti-
mization (DPO), and Contrastive Preference
Optimization (CPO), across both MT and TST
tasks, providing a more efficient solution for
resource-constrained environments.

1 Introduction

Recent advancements in natural language trans-
formation (e.g., machine translation and text style
transfer) have been significantly driven by large
language models (LLMs) (Achiam et al., 2023;
Grattafiori et al., 2024; DeepSeek-Al et al., 2024).
Depending on whether model parameters are mod-
ified, existing approaches can be categorized into
two main strategies: maintaining fixed parameters
to elicit capabilities from large models through
prompting, and modifying parameters to optimize
performance of smaller models via fine-tuning.
Prompting large models leverages their inherent
flexibility and preserves their generalization capa-
bilities without compromising the model’s univer-

sal applicability (Hendy et al., 2023; Jiao et al.,
2023b; Zhu et al., 2023). This approach allows
for effective few-shot learning and adaptability
across diverse tasks. On the other hand, fine-tuning
smaller models, a trend gaining traction in recent
studies, offers a cost-effective alternative by tailor-
ing models to specific translation tasks (Zeng et al.,
2023; Jiao et al., 2023a; Kudugunta et al., 2024;
Zan et al., 2024; Li et al., 2024; Xu et al., 2023).

Despite their advantages, both methods exhibit
significant drawbacks. While prompting large mod-
els can maintain high flexibility and generalization,
it incurs substantial computational costs, which not
only limits their practical deployment in resource-
constrained environments but also leads to unavoid-
able performance inefficiencies (Xu et al., 2023).
Conversely, fine-tuning smaller models for natural
language transformation tasks involves a trade-off,
where improving performance on specific tasks of-
ten comes at the cost of reduced generalization
ability. This decline in generalization is particu-
larly noticeable when the model encounters tasks
it was not explicitly trained on. This phenomenon
can be explained by the "prompt shift" effect (Li
et al., 2023; Li and Hoiem, 2017; Lopez-Paz and
Ranzato, 2022), where even small changes in the
prompt format (without any change in meaning)
can lead to a significant drop in response quality.
Additionally, models are typically trained on par-
allel corpora, which limits their inference pattern
to a [source text] -> [target text] mapping. This ap-
proach struggles to handle the polysemy that arises
from contextual differences in translation, as too
much contextual information can disrupt the format
of the mapping. Additionally, the preference align-
ment techniques employed during the fine-tuning
of smaller models struggle to handle data from
multiple distributions and diverse contexts, further
restricting their applicability.

To address these challenges, we propose a novel
approach that combines the flexibility of prompting



Figure 1: Framework for our Model Training and Inference. The diagram illustrates the three core components:
(1) Data Augmentation through Contextual Similarity-based ICE Retrieval (top-left), (2) Hierarchical Contrastive
Loss Design for fine-tuning model outputs (center), and (3) Dynamic Preference-Aware Inference for generating
contextually relevant outputs (bottom-left). The arrows represent the flow of data and processes between these

components.
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with the cost-effectiveness of fine-tuning. Through
an innovative training and inference pipeline, our
method enables smaller models to extract suffi-
cient contextual information from highly diverse
In-Context Examples (ICE) within the prompting
paradigm, learning fine-grained target preferences
from similar contexts, thereby improving the qual-
ity of generated responses. Specifically, we retrieve
similar samples from the training data, combine
them into a few-shot learning format to enhance
data points, and implement robustness mechanisms
to handle the diversity of ICEs, further enhancing
model performance through preference alignment
design.

2 Related Work

In this section, we first reviewed the relevant re-
search on Natural Language Transformation (NLT)
tasks. Subsequently, we focused on two approaches
based on large language models (LLMs): one
involves leveraging the capabilities of general-
purpose large models through the use of prompts,
while the other entails fine-tuning smaller models
for task-specific optimization. Finally, we analyzed
the advantages, disadvantages, and challenges of
both approaches in practical applications.

2.1 Natural Language Transformation

Natural Language Transformation (NLT) refers to
the process of rewriting or adapting natural lan-
guage texts at semantic, structural, or stylistic lev-
els to fulfill specific task requirements or achieve
desired functionalities. It encompasses a variety

of tasks, including machine translation and text
style transfer, which address diverse expressive
objectives and application scenarios through flex-
ible manipulation of linguistic elements. Build-
ing upon the foundational principles of Natural
Language Transformation, recent advancements
in large language models (LLMs) have catalyzed
novel methodologies that leverage prompt-based
paradigms to achieve flexible and context-aware
language manipulation.

2.2 LLM-based Methods

Unlike traditional NLT approaches that often rely
on task-specific architectures or explicit feature en-
gineering, prompting-based methods exploit the
intrinsic knowledge and generative capabilities of
LLMs through carefully designed instructions or
exemplars. This shift has enabled dynamic adap-
tation across diverse transformation tasks—from
stylistic rewriting to domain-specific paraphras-
ing—by reformulating objectives as natural lan-
guage prompts. Notably, techniques such as few-
shot prompting, instruction tuning, and chain-of-
thought reasoning have demonstrated remarkable
efficacy in steering LLMs to disentangle semantic,
structural, and stylistic nuances without requiring
extensive fine-tuning.

In parallel to prompt-centric methodologies, re-
cent efforts have prioritized specialized adaptation
of compact language models through multi-stage
fine-tuning strategies to address the unique de-
mands of Natural Language Transformation (NLT).
This paradigm typically begins with continued pre-



training, where models undergo domain-specific
knowledge infusion via exposure to task-aligned
corpora—such as stylistic parallel texts or multi-
lingual translation pairs—to recalibrate their latent
representations for transformation-centric objec-
tives. Building upon this foundation, instruction
tuning further optimizes models by training them
on structured prompt-output pairs, enabling pre-
cise interpretation of diverse transformation intents.
Finally, preference alignment mechanisms incor-
porate human or automated feedback—through
techniques like reinforcement learning from hu-
man preferences or contrastive ranking—to refine
outputs along critical dimensions such as stylistic
consistency, lexical appropriateness, and domain-
specific constraints. Collectively, this phased op-
timization framework allows smaller models to
achieve task-aware specialization while maintain-
ing computational tractability, thereby offering a
viable alternative to large-scale LLMs in scenar-
ios requiring strict deployment efficiency or niche-
domain expertise.

2.3 Preference Alignment

Building upon the foundational stages of domain
adaptation through continued pretraining and in-
struction tuning, preference alignment emerges as
a critical mechanism to bridge the gap between
model capabilities and human-centric quality re-
quirements. While the former stages equip models
with task-specific knowledge, the latter ensures that
outputs adhere to nuanced desiderata: stylistic co-
herence, lexical precision, and context-sensitive
appropriateness, which are often underspecified in
textual instructions. This subsection systematically
examines cutting-edge approaches to preference
alignment, analyzing their technical innovations in
reconciling algorithmic optimization with human
judgment across diverse NLT scenarios.

Three noteworthy methods for preference
alignment include Proximal Policy Optimization
(PPO) (Schulman et al., 2017), Direct Preference
Optimization (DPO) (Rafailov et al., 2024), and
Contrastive Preference Optimization (CPO) (Xu
et al., 2024). PPO sets a high-level goal for the
alignment process: to maximize the "satisfaction"
of a reward model trained on carefully organized
preference data. While effective, this approach in-
volves a complex pipeline, including reward mod-
eling and iterative policy updates. In contrast, DPO
and CPO bypass the need for explicit reward mod-
eling. These methods directly utilize the general

tendencies of the collected preference dataset as the
alignment target, thereby simplifying the alignment
process. Together, these methods provide a range
of approaches for aligning model outputs with hu-
man preferences, each offering unique advantages
depending on the complexity and constraints of the
task at hand.

3 Methods

In this section, we present a detailed description of
our framework, which comprises three core com-
ponents (as illustrated in Figure 1): (1) Contextual
Similarity-based ICE Data Augmentation, (2) Hi-
erarchical Contrastive Loss Design that guides the
model to disentangle fine-grained semantic features
from augmented data, and (3) Dynamic Preference
Inference Mechanism that enhances model outputs
through user-customized or retrieval-augmented
preference sample prompts. The subsequent sec-
tions will systematically elaborate on the design
principles and implementation details of each com-
ponent.

3.1 Contextual Similarity-Based ICE
Augmentation via Retrieval

To address the limitations of rigid [source—target]
mappings in conventional fine-tuning, we introduce
a retrieval-augmented paradigm that enriches train-
ing data with explicit preference signals through
in-context exemplars. The core objective is to en-
able smaller models to resolve contextual ambi-
guity by learning from semantically aligned pref-
erence pairs, thereby emulating the few-shot rea-
soning capabilities of large language models. Our
approach constructs augmented data points by re-
trieving semantically congruent exemplars from
the training corpus based on source text similar-
ity. This is achieved by computing cosine distances
between sentence embeddings derived from a pre-
trained language model, ensuring that the retrieved
in-context examples (ICEs) share comparable lin-
guistic patterns and domain characteristics with the
target source.

Each retrieved ICE (ICE source, ICE chosen,
ICE rejected) serves as explicit preference evi-
dence, forming an augmented input structure: [ICE
source, ICE chosen, ICE rejected; current source]
— current chosen. This format allows the model
to simultaneously learn from both the target in-
stance and its contextual neighbors, reinforcing
preference consistency across analogous contexts.



By integrating ICEs, the model is exposed to di-
verse yet semantically aligned examples, enabling
it to generalize beyond the narrow [source—target]
mapping and capture fine-grained preference pat-
terns conditioned on contextual semantics.

The methodology is designed to be flexible and
extensible. While our implementation utilizes in-
corpus retrieval for experimental consistency, the
architecture inherently supports integration with ex-
ternal knowledge bases through unified embedding
alignment. Additionally, the approach incorpo-
rates robustness mechanisms by prioritizing high-
similarity exemplars (top-k retrieval) and introduc-
ing adversarial negative samples through lexical
substitution, mitigating potential noise from subop-
timal retrievals. This retrieval-enhanced paradigm
fundamentally repositions smaller models from
passive pattern memorizers to active context inter-
preters, laying a critical foundation for subsequent
preference alignment learning.

3.2 Hierarchical Contrastive Learning with
Dual ICE Augmentation

Building upon the retrieval-augmented samples
[ICE, prompt, chosen, reject] from the previous
step, we introduce a hierarchical contrastive ob-
jective that operates at both the model output and
ICE levels. First, to strengthen the model’s abil-
ity to distinguish between preferred and rejected
outputs, we apply contrastive learning between
[ICE, prompt, chosen] and [IC'E, prompt, reject].
By emphasizing the difference between the chosen
and rejected outputs under otherwise identical con-
textual cues, this step enhances the model’s ability
to internalize explicit preference signals. Crucially,
this contrastive signal helps the model capture more
subtle features that drive user-preferred outputs,
moving beyond simple pattern matching. The con-
trastive loss at the output level can be expressed
as:

wo(ye|ICE, x
computzloga@log oyl IOEy >> (1)

7T9(yT|ICE1, l‘)

Where, 7y represents the current model, y. and y,
stand for chosen output and rejected output. 3 is a
hyperparameter, and in the experiment, we set it to
0.15.

Next, to further enhance the model’s ro-
bustness to variations in the quality of ICE
selections, we introduce a second set of

exemplars (/CE2) and construct new aug-
mented input pairs: [/CE1, prompt, chosen] and
[IC E5, prompt, chosen]. This dual ICE augmen-
tation enforces an additional contrastive objective,
encouraging consistent representations of the same
target across different in-context exemplars. By
aligning semantically similar but potentially diver-
gent examples, this approach mitigates the impact
of retrieval noise, ensuring that the learned pref-
erences remain robust despite contextual changes.
The contrastive loss at the ICE level can be formu-
lated as:

Licg = Sim[mg(ICEy; x;ye); mo(ICEa, 3y )]
2)

where 7y (ICEq; x; y.) represents the last token’s
logits after model computing, and Sim() means
cosine similarity function.

Finally, to stabilize learning and maintain a
coherent preference distribution, we introduce a
regularization term based on the negative log-
likelihood (NLL) between [IC E, prompt, chosen]
and [/C Es, prompt, chosen|. This regularization
term can be represented as:

Lreg =NLL[mp(y| ICEy, x)]+ 3)
NLL[7g(yc| [CEa, z)] 4)

The overall training objective combines these three
loss components through a weighted to balance
their contributions during optimization. By inte-
grating output-level discrimination, ICE-level con-
sistency, and distributional regularization, the uni-
fied loss function ensures the model learns robust
preference patterns while maintaining generation
stability. The total loss is defined as:

Liotal = £0utput + min(@, )\)ﬁlCE + Ereg 5)
Lice

where )\ is weighting coefficients that control the
relative strength of each objective. This balanced
formulation allows the model to simultaneously
optimize for preference discrimination, contextual
robustness, and distributional coherence. In prac-
tice, we find equal weighting (A = 1.0) provides
stable convergence, though domain-specific tuning
may further enhance performance.

Through this layered contrastive framework, the
model develops a more comprehensive and robust



Figure 2: Inference Prompt in Machine Translation
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understanding of user-driven preference patterns,
laying a strong foundation for subsequent dynamic
preference inference tasks. The modular design
of this approach allows for easy adaptation and
expansion to other domains, making it both flexible
and extensible for future research and applications.

3.3 Dynamic Preference-Aware Inference
with Retrieval-Augmented Prompts

After completing the hierarchical contrastive learn-
ing process described earlier, the model enters
the inference phase for dynamic preference-driven
tasks. At this stage, the model leverages the ICEs
and contrastive learning patterns acquired during
training to generate outputs that align with user
preferences.

During inference, the model takes source text
as input and dynamically customizes ICEs by re-
trieving relevant examples based on specific sce-
narios or user preferences. These are then com-
bined with the source text to form an enhanced
input in the format "[ICEs, source text]." This ap-
proach ensures the model’s reasoning is guided by
preference-aligned examples, producing outputs
that maintain linguistic accuracy while adapting to
different requirements.

The dynamic preference-aware inference mecha-
nism enables the model to flexibly handle diverse
scenarios, delivering outputs that are accurate, per-
sonalized, and contextually relevant—making it
suitable for real-world applications where prefer-
ences and context play a decisive role.

4 Experiments

To comprehensively evaluate the effectiveness of
our proposed framework, we conduct extensive
experiments across two dimensions: (1) comparing
performance against state-of-the-art baselines, and
(2) analyzing the robustness of our hierarchical
contrastive learning mechanism through ablation
studies. All experiments are designed to answer
the key research question: How does our retrieval-

augmented training inference paradigm improve
preference alignment compared to conventional
fine-tuning?

4.1 Data

We conducted experiments on the MT and TST
tasks. In this section, we will provide a detailed
explanation of how we obtained, processed, and
assembled our data.

4.1.1 Preference Data

For MT, we conducted the experiments on the
ALMA-R-Preference dataset which (Xu et al.,
2024) released, and selected the chosen and re-
jected translations for the target language based on
the average quality of each data item. We also per-
formed supplementary experiments on translation
tasks involving other low-resource languages us-
ing the Flores-200 dataset (Team et al., 2022). We
converted the FLORES-200 dataset into a pairwise
preference dataset by using GPT-40-mini to gen-
erate candidate translations, and applied the Feed-
back from Inductive Biases method (Jiang et al.,
2024) to construct preference directions. For the
TST task, we directly used an open-source prefer-
ence dataset'. This dataset is designed to convert
modern language into the writing style of specified
literary works, encompassing idiomatic vocabulary,
syntactic structures, and rhetorical devices. The
target literary works include China’s Four Great
Classical Novels.

4.1.2 Data preparation

In all experiments, we split a preference dataset
into training and testing sets with an 4:1 ratio. In
the implementation of the retrieval component, we
use SentenceTransformer with the "xIlm-r-bert-
base-nli-stsb-mean-tokens" model (Reimers and
Gurevych, 2019) to generate dense vector represen-
tations of input queries. The model is configured
with a maximum sequence length of 512. The gen-
erated embedding vectors serve as the foundation
for retrieval, effectively capturing semantic rela-
tionships within the source text. To enable efficient
similarity retrieval, we construct an IVF-Flat clus-
tering index based on Faiss (Douze et al., 2024).
The embedding space is partitioned into 50 clusters
to facilitate scalable retrieval. In our experiments,
we use the original training set as the retrieval space.
For each sample point, we identify the two most

"https://github.com/stylellm/stylellm_models



Table 1: The main result in Translating to English (xx—en). Our methods significantly outperform all comparable
methods. The |dark blue boxes indicates a significant improvement compared to their original versions , while

light blue boxes represents only a small but noticeable enhancement. All red colors indicate a slight decrease in

performance.

Methods de zh ru cs ind

BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET
SFT 33.12 93.67 25.13 90.45 39.12 90.42 41.22 86.54 31.05 91.86
DPO 31.99 93.24 25.17 89.94 39.11 89.16 42.15 86.70 31.58 91.92
CPO 32.74 94.72 26.32 91.73 38.26 91.85 43.13 89.91 30.27 92.60
Ours 34.21 96.31 26.22 92.86 39.13 93.44 41.47 91.37 37.47 94.71

Table 2: The main result in Translating from English (en—xx).

Methods de zh ru cs ind

BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET
SFT 30.25 88.81 27.94 87.94 27.12 88.37 26.22 87.62 25.93 89.48
DPO 29.50 90.03 27.33 88.23 26.32 87.03 26.25 88.68 2541 89.43
CPO 30.54 90.16 24.87 89.85 25.14 89.63 27.13 88.73 27.21 90.04
Ours 31.22 91.74 26.33 90.51 27.22 90.47 29.47 89.53 26.01 90.13

similar samples based on its source text and desig-
nate them as IC'E7 and IC Es.

4.2 Experiments Setting

In this section, we present the baselines used in our
comparative experiments, along with detailed ex-
perimental configurations and the hardware setup.
Following this, we introduce the baselines chosen
for our experiments and explain the rationale be-
hind these selections.

4.2.1 Baseline

SFT Using Supervised Fine-Tuning to adapt large
language models to specific downstream tasks is a
fundamental approach. Its effectiveness has been
validated through extensive practical experiments.
Therefore, SIT on prefer data serves as the first
baseline in our experiments.

DPO Direct Preference Optimization is a
method designed to directly optimize models for
preference alignment, focusing on aligning model
outputs with user preferences rather than traditional
loss functions. It has gained widespread use in the
field of preference learning, especially in scenarios
where the goal is to predict or rank items based
on user preferences. DPO has become a popular
choice in many preference alignment applications.
Before applying the DPO method, we conducted
preliminary training with the selected data to simu-
late the typical pipeline for preference alignment
using DPO.

CPO We also compared the commonly used
preference alignment methods in the machine trans-

lation field. Contrastive Preference Optimization is
derived from the same optimization goal but reflect
different training objectives with DPO. Therefore,
these two methods serve as the primary compara-
tive methods for the evaluation of preference align-
ment.

4.2.2 Training Details

Our experiment primarily focuses on comparing
fine-tuning methods rather than specific base mod-
els. We conducted our main experiments on widely
used open-source large language models (Touvron
et al., 2023; Dubey et al., 2024). The experiments
employed earlier versions, namely LLaMA?2-13B
and LLaMA3-8B, with the core research findings
presented in the paper. Specifically, the MT exper-
iments utilized LLaMA?2, while the TST experi-
ments were performed using LLaMA3.

Training with LoRA For all models, we employ
the AdamW optimizer with a learning rate of 2e-5.
We fine-tuned the models using a batch size of 8,
across 3 epochs, and set the maximum sequence
length to 666 tokens to ensure efficient handling
of longer input sequences. The LoRA technique
is utilized with a rank of 32. Regarding the model
architecture, the following target modules are up-
dated during training: q_proj, k_proj, v_proj, and
o_proj. To prevent overfitting and enhance gener-
alization, we apply a dropout rate of 0.05 during
the training phase. The combination of these hy-
perparameters ensures efficient adaptation of the
model to the specific task while minimizing the
computational overhead added by the LORA modi-



Table 3: The ablation result in Translating to English (xx—en).

Method de zh ru cs ind
ethods BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET
Ours 34.21 96.31 26.22 92.86 39.13 93.44 41.47 91.37 37.47 94.71
- Lice 35.33 95.96 25.89 93.13 37.55 92.35 43.34 90.67 30.11 93.67
- Louput 31.19 95.43 25.78 91.76 35.54 91.97 40.13 88.72 35.02 94.39
Table 4: The ablation result in Translating from English (en—xx).
Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET
Ours 31.22 91.74 26.33 90.51 27.22 90.47 29.47 89.53 26.01 90.13
- Lice 31.41 90.66 25.89 90.23 26.20 90.11 27.88 89.27 23.73 89.26
- Louput 29.96 89.91 25.78 88.37 27.93 89.13 28.25 87.28 25.37 89.21

fications. We adhere to the default 5 value of 0.1
as suggested by Rafailov et al. (2024)

4.3 Result

We present the primary result of MT in Table 1
and Table 2. Our evaluation metrics include both
statistical and neural metrics, but we place a pri-
mary emphasis on neural metrics, using statistical
metrics only as a reference with a limited level
of confidence. For neural metrics, we adopted the
XCOMET (Rei et al., 2020) series models 2, and for
statistical metrics, we used BLEU (Papineni et al.,
2002). For all metrics, we calculate result with
Chosen term of test data point. In translation tasks
in five languages, including German, Chinese, Rus-
sian, Czech, and Indonesian, Our methods achieved
an average score of 92.10 of XCOMET, CPO av-
eraged 90.92, DPO 89.43, and SIT 89.51. The
experimental results demonstrate that our method
outperforms the baseline approaches across multi-
ple evaluation metrics. A more in-depth analysis
will be presented in the section 5.

For TST, we present the primary results in Fig-
ure 3. For this evaluation task, we adopted the
LLM-as-Judge method? as the main evaluation met-
ric, leveraging the capabilities of large language
models to assess the quality, fluency, and stylis-
tic consistency of the generated text. The LLM-
as-Judge approach provides a more nuanced and
context-aware evaluation, making it particularly
suitable for capturing the subtle nuances in style
transfer tasks (Zheng et al., 2023). We conducted
a chain comparison of SFT, CPO, and our method,
and additionally compared the labeled preference
data in the test set using the same judge method

we use XCOMET-XL
3We use deepseek-chat as the judge model

Figure 3: The experimental results of the TST task,
evaluated through LLM-as-Judge, show that our method
achieves better transfer consistency with the target style.

Left Win(Left vs. Right) Tie B Right win
Ours
Vs. 62.0 20.0 -
CPO
CPO
vs. 44.0 32.0
SFT
Test Chosen
e, 88.0 4.0
Test Rejected

to verify that the evaluation approach can accu-
rately identify the preferences. The comparison
results demonstrate that our method outperforms
both SFT and CPO under consistent preference
evaluation. The evaluation results are presented
in terms of win rate, which is calculated based on
pairwise comparisons conducted by LLM-as-Judge.
To ensure the reliability and robustness of the eval-
uation, each pairwise comparison was performed
twice independently. Only when the two indepen-
dent assessments yielded consistent results was a
winner determined; otherwise, the outcome was
considered a tie. This rigorous approach minimizes
potential biases and enhances the credibility of the
evaluation process.

5 Analysis

In this section, we conduct ablation studies and
perturbation analysis to validate the effectiveness
of our approach, along with generalization valida-
tion on more test sets and the introduction of new
comprehensive metrics.

Specifically, the ablation experiments demon-
strate the contribution of our hierarchical con-



trastive design. By perturbing the ICE (a critical
inference component) during inference, we provide
a theoretical explanation for the superiority of our
method. Furthermore, we perform additional evalu-
ations on the WMT?24 test set and employ MetricX-
24(Juraska et al., 2024) as an evaluation metric,
further verifying the robustness and generalization
capability of our approach.

Ablation Study To systematically validate the
effectiveness of our proposed hierarchical con-
trastive learning framework, we conducted abla-
tion experiments by progressively removing the
loss terms defined in Section 3.2. The experiments
were carried out on the machine translation (MT)
task, with a comprehensive quality evaluation us-
ing the XCOMET metric. As shown in Table 3 and
Table 4, removing the ICE-level contrastive loss
leads to a performance drop, which demonstrates
the importance of maintaining consistency across
different contextual examples. Further removal of
the output-level contrastive loss also results in a
performance decline, indicating its crucial role in
distinguishing subtle differences between selecting
and rejecting responses.

Perturbation Analysis We also conducted per-
turbation experiments on the similarity ranking of
the ICE used during retrieval in the test phase to
investigate the impact of ICE quality on the results.
Specifically, we experimented with four types of
ICE: rank1 (the most similar to the source text),
rank2, rank3 (less similar), and a fixed ICE that
bypassed the retrieval process entirely. We per-
formed ablation experiments on the MT (machine
translation) task, and the specific results are shown
in Table 5. From the results, we observed a clear
trend: the performance of the model improved sig-
nificantly when the ICE was more similar to the
source text. Specifically, rank1 ICE, which exhib-
ited the highest similarity to the source text, led to
the most substantial performance gains, while the
fixed ICE, which lacked similarity-based retrieval,
resulted in the least improvement. This demon-
strates that the quality and relevance of the ICE,
particularly its similarity to the source text, play a
critical role in enhancing model performance.

Generalization Validation We evaluated all our
original baseline models on WMT24(de, cs, zh, ru)
and also included a few-shot prompting on base
model as an additional baseline for comparison
with our proposed method. For the final evaluation,
we adopted both XCOMET-XL and MetricX-24-
Hybrid-Large-v2p6 as our neural metrics to ensure

Table 5: Performance trend for different rank of example

Model ICE1 ICE2 ICE3
XCOMET 95.25 94.67 94.59

Constant ICE  SIT  CPO
XCOMET 93.60 92.13 93.62

a more comprehensive evaluation.

As shown in Table 6, our additional experiments
confirm that our method maintains its advantage
even when using a limited amount of training data
and under degraded retrieval conditions, which
aligns with the trends observed in Table 5.

Table 6: Performance for different metrics and baseline
on WMT24

Metric SFT CPO
XCOMET 83.16 85.08
MetricX 4.88 4.06
Metric few-shot  Ours
XCOMET 81.43 85.42
MetricX 5.22 3.96

6 Conclusion

This paper proposes a novel approach that com-
bines prompt learning and fine-tuning for machine
translation and text style transfer tasks. By retriev-
ing similar contextual examples, the method en-
ables lightweight models to better capture user pref-
erences. Experiments demonstrate its superiority
over conventional techniques in aligning with user
needs. The framework can be extended to other
NLP tasks, with further improvements achievable
by optimizing the retrieval mechanism and con-
trastive learning strategy.

Limitation

While our proposed framework successfully in-
tegrates prompting and fine-tuning for efficient
context-aware language transformation, it exhibits
several limitations that the method depends on high-
quality retrieval, faces scalability challenges with
large embeddings, and struggles with balancing the
diversity and relevance of retrieved examples for
effective model performance.
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