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Abstract001

Natural language transformation (NLT) tasks,002
such as machine translation (MT) and text003
style transfer (TST), require models to gener-004
ate accurate and contextually appropriate out-005
puts. However, existing approaches face signif-006
icant challenges, including the computational007
costs of leveraging large pre-trained models008
and the limited generalization ability of fine-009
tuned smaller models. In this paper, we pro-010
pose a novel framework that combines the flex-011
ibility of prompting with the cost-effectiveness012
of fine-tuning. Our method enhances smaller013
models by integrating In-Context Examples014
(ICE) retrieved from training data, enabling015
the model to better capture contextual infor-016
mation and align with user preferences. We017
further improve performance through hierar-018
chical contrastive learning and dynamic pref-019
erence inference mechanisms. Experimental020
results demonstrate that our approach outper-021
forms existing methods, such as Supervised022
Fine Tuning (SFT), Direct Preference Opti-023
mization (DPO), and Contrastive Preference024
Optimization (CPO), across both MT and TST025
tasks, providing a more efficient solution for026
resource-constrained environments.027

1 Introduction028

Recent advancements in natural language trans-029

formation (e.g., machine translation and text style030

transfer) have been significantly driven by large031

language models (LLMs) (Achiam et al., 2023;032

Grattafiori et al., 2024; DeepSeek-AI et al., 2024).033

Depending on whether model parameters are mod-034

ified, existing approaches can be categorized into035

two main strategies: maintaining fixed parameters036

to elicit capabilities from large models through037

prompting, and modifying parameters to optimize038

performance of smaller models via fine-tuning.039

Prompting large models leverages their inherent040

flexibility and preserves their generalization capa-041

bilities without compromising the model’s univer-042

sal applicability (Hendy et al., 2023; Jiao et al., 043

2023b; Zhu et al., 2023). This approach allows 044

for effective few-shot learning and adaptability 045

across diverse tasks. On the other hand, fine-tuning 046

smaller models, a trend gaining traction in recent 047

studies, offers a cost-effective alternative by tailor- 048

ing models to specific translation tasks (Zeng et al., 049

2023; Jiao et al., 2023a; Kudugunta et al., 2024; 050

Zan et al., 2024; Li et al., 2024; Xu et al., 2023). 051

Despite their advantages, both methods exhibit 052

significant drawbacks. While prompting large mod- 053

els can maintain high flexibility and generalization, 054

it incurs substantial computational costs, which not 055

only limits their practical deployment in resource- 056

constrained environments but also leads to unavoid- 057

able performance inefficiencies (Xu et al., 2023). 058

Conversely, fine-tuning smaller models for natural 059

language transformation tasks involves a trade-off, 060

where improving performance on specific tasks of- 061

ten comes at the cost of reduced generalization 062

ability. This decline in generalization is particu- 063

larly noticeable when the model encounters tasks 064

it was not explicitly trained on. This phenomenon 065

can be explained by the "prompt shift" effect (Li 066

et al., 2023; Li and Hoiem, 2017; Lopez-Paz and 067

Ranzato, 2022), where even small changes in the 068

prompt format (without any change in meaning) 069

can lead to a significant drop in response quality. 070

Additionally, models are typically trained on par- 071

allel corpora, which limits their inference pattern 072

to a [source text] -> [target text] mapping. This ap- 073

proach struggles to handle the polysemy that arises 074

from contextual differences in translation, as too 075

much contextual information can disrupt the format 076

of the mapping. Additionally, the preference align- 077

ment techniques employed during the fine-tuning 078

of smaller models struggle to handle data from 079

multiple distributions and diverse contexts, further 080

restricting their applicability. 081

To address these challenges, we propose a novel 082

approach that combines the flexibility of prompting 083
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Figure 1: Framework for our Model Training and Inference. The diagram illustrates the three core components:
(1) Data Augmentation through Contextual Similarity-based ICE Retrieval (top-left), (2) Hierarchical Contrastive
Loss Design for fine-tuning model outputs (center), and (3) Dynamic Preference-Aware Inference for generating
contextually relevant outputs (bottom-left). The arrows represent the flow of data and processes between these
components.

with the cost-effectiveness of fine-tuning. Through084

an innovative training and inference pipeline, our085

method enables smaller models to extract suffi-086

cient contextual information from highly diverse087

In-Context Examples (ICE) within the prompting088

paradigm, learning fine-grained target preferences089

from similar contexts, thereby improving the qual-090

ity of generated responses. Specifically, we retrieve091

similar samples from the training data, combine092

them into a few-shot learning format to enhance093

data points, and implement robustness mechanisms094

to handle the diversity of ICEs, further enhancing095

model performance through preference alignment096

design.097

2 Related Work098

In this section, we first reviewed the relevant re-099

search on Natural Language Transformation (NLT)100

tasks. Subsequently, we focused on two approaches101

based on large language models (LLMs): one102

involves leveraging the capabilities of general-103

purpose large models through the use of prompts,104

while the other entails fine-tuning smaller models105

for task-specific optimization. Finally, we analyzed106

the advantages, disadvantages, and challenges of107

both approaches in practical applications.108

2.1 Natural Language Transformation109

Natural Language Transformation (NLT) refers to110

the process of rewriting or adapting natural lan-111

guage texts at semantic, structural, or stylistic lev-112

els to fulfill specific task requirements or achieve113

desired functionalities. It encompasses a variety114

of tasks, including machine translation and text 115

style transfer, which address diverse expressive 116

objectives and application scenarios through flex- 117

ible manipulation of linguistic elements. Build- 118

ing upon the foundational principles of Natural 119

Language Transformation, recent advancements 120

in large language models (LLMs) have catalyzed 121

novel methodologies that leverage prompt-based 122

paradigms to achieve flexible and context-aware 123

language manipulation. 124

2.2 LLM-based Methods 125

Unlike traditional NLT approaches that often rely 126

on task-specific architectures or explicit feature en- 127

gineering, prompting-based methods exploit the 128

intrinsic knowledge and generative capabilities of 129

LLMs through carefully designed instructions or 130

exemplars. This shift has enabled dynamic adap- 131

tation across diverse transformation tasks—from 132

stylistic rewriting to domain-specific paraphras- 133

ing—by reformulating objectives as natural lan- 134

guage prompts. Notably, techniques such as few- 135

shot prompting, instruction tuning, and chain-of- 136

thought reasoning have demonstrated remarkable 137

efficacy in steering LLMs to disentangle semantic, 138

structural, and stylistic nuances without requiring 139

extensive fine-tuning. 140

In parallel to prompt-centric methodologies, re- 141

cent efforts have prioritized specialized adaptation 142

of compact language models through multi-stage 143

fine-tuning strategies to address the unique de- 144

mands of Natural Language Transformation (NLT). 145

This paradigm typically begins with continued pre- 146

2



training, where models undergo domain-specific147

knowledge infusion via exposure to task-aligned148

corpora—such as stylistic parallel texts or multi-149

lingual translation pairs—to recalibrate their latent150

representations for transformation-centric objec-151

tives. Building upon this foundation, instruction152

tuning further optimizes models by training them153

on structured prompt-output pairs, enabling pre-154

cise interpretation of diverse transformation intents.155

Finally, preference alignment mechanisms incor-156

porate human or automated feedback—through157

techniques like reinforcement learning from hu-158

man preferences or contrastive ranking—to refine159

outputs along critical dimensions such as stylistic160

consistency, lexical appropriateness, and domain-161

specific constraints. Collectively, this phased op-162

timization framework allows smaller models to163

achieve task-aware specialization while maintain-164

ing computational tractability, thereby offering a165

viable alternative to large-scale LLMs in scenar-166

ios requiring strict deployment efficiency or niche-167

domain expertise.168

2.3 Preference Alignment169

Building upon the foundational stages of domain170

adaptation through continued pretraining and in-171

struction tuning, preference alignment emerges as172

a critical mechanism to bridge the gap between173

model capabilities and human-centric quality re-174

quirements. While the former stages equip models175

with task-specific knowledge, the latter ensures that176

outputs adhere to nuanced desiderata: stylistic co-177

herence, lexical precision, and context-sensitive178

appropriateness, which are often underspecified in179

textual instructions. This subsection systematically180

examines cutting-edge approaches to preference181

alignment, analyzing their technical innovations in182

reconciling algorithmic optimization with human183

judgment across diverse NLT scenarios.184

Three noteworthy methods for preference185

alignment include Proximal Policy Optimization186

(PPO) (Schulman et al., 2017), Direct Preference187

Optimization (DPO) (Rafailov et al., 2024), and188

Contrastive Preference Optimization (CPO) (Xu189

et al., 2024). PPO sets a high-level goal for the190

alignment process: to maximize the "satisfaction"191

of a reward model trained on carefully organized192

preference data. While effective, this approach in-193

volves a complex pipeline, including reward mod-194

eling and iterative policy updates. In contrast, DPO195

and CPO bypass the need for explicit reward mod-196

eling. These methods directly utilize the general197

tendencies of the collected preference dataset as the 198

alignment target, thereby simplifying the alignment 199

process. Together, these methods provide a range 200

of approaches for aligning model outputs with hu- 201

man preferences, each offering unique advantages 202

depending on the complexity and constraints of the 203

task at hand. 204

3 Methods 205

In this section, we present a detailed description of 206

our framework, which comprises three core com- 207

ponents (as illustrated in Figure 1): (1) Contextual 208

Similarity-based ICE Data Augmentation, (2) Hi- 209

erarchical Contrastive Loss Design that guides the 210

model to disentangle fine-grained semantic features 211

from augmented data, and (3) Dynamic Preference 212

Inference Mechanism that enhances model outputs 213

through user-customized or retrieval-augmented 214

preference sample prompts. The subsequent sec- 215

tions will systematically elaborate on the design 216

principles and implementation details of each com- 217

ponent. 218

3.1 Contextual Similarity-Based ICE 219

Augmentation via Retrieval 220

To address the limitations of rigid [source→target] 221

mappings in conventional fine-tuning, we introduce 222

a retrieval-augmented paradigm that enriches train- 223

ing data with explicit preference signals through 224

in-context exemplars. The core objective is to en- 225

able smaller models to resolve contextual ambi- 226

guity by learning from semantically aligned pref- 227

erence pairs, thereby emulating the few-shot rea- 228

soning capabilities of large language models. Our 229

approach constructs augmented data points by re- 230

trieving semantically congruent exemplars from 231

the training corpus based on source text similar- 232

ity. This is achieved by computing cosine distances 233

between sentence embeddings derived from a pre- 234

trained language model, ensuring that the retrieved 235

in-context examples (ICEs) share comparable lin- 236

guistic patterns and domain characteristics with the 237

target source. 238

Each retrieved ICE (ICE source, ICE chosen, 239

ICE rejected) serves as explicit preference evi- 240

dence, forming an augmented input structure: [ICE 241

source, ICE chosen, ICE rejected; current source] 242

→ current chosen. This format allows the model 243

to simultaneously learn from both the target in- 244

stance and its contextual neighbors, reinforcing 245

preference consistency across analogous contexts. 246
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By integrating ICEs, the model is exposed to di-247

verse yet semantically aligned examples, enabling248

it to generalize beyond the narrow [source→target]249

mapping and capture fine-grained preference pat-250

terns conditioned on contextual semantics.251

The methodology is designed to be flexible and252

extensible. While our implementation utilizes in-253

corpus retrieval for experimental consistency, the254

architecture inherently supports integration with ex-255

ternal knowledge bases through unified embedding256

alignment. Additionally, the approach incorpo-257

rates robustness mechanisms by prioritizing high-258

similarity exemplars (top-k retrieval) and introduc-259

ing adversarial negative samples through lexical260

substitution, mitigating potential noise from subop-261

timal retrievals. This retrieval-enhanced paradigm262

fundamentally repositions smaller models from263

passive pattern memorizers to active context inter-264

preters, laying a critical foundation for subsequent265

preference alignment learning.266

3.2 Hierarchical Contrastive Learning with267

Dual ICE Augmentation268

Building upon the retrieval-augmented samples269

[ICE, prompt, chosen, reject] from the previous270

step, we introduce a hierarchical contrastive ob-271

jective that operates at both the model output and272

ICE levels. First, to strengthen the model’s abil-273

ity to distinguish between preferred and rejected274

outputs, we apply contrastive learning between275

[ICE, prompt, chosen] and [ICE, prompt, reject].276

By emphasizing the difference between the chosen277

and rejected outputs under otherwise identical con-278

textual cues, this step enhances the model’s ability279

to internalize explicit preference signals. Crucially,280

this contrastive signal helps the model capture more281

subtle features that drive user-preferred outputs,282

moving beyond simple pattern matching. The con-283

trastive loss at the output level can be expressed284

as:285

Loutput =− log σ

(
β log

πθ(yc|ICE1, x)

πθ(yr|ICE1, x)

)
(1)286

Where, πθ represents the current model, yc and yr287

stand for chosen output and rejected output. β is a288

hyperparameter, and in the experiment, we set it to289

0.15.290

Next, to further enhance the model’s ro-291

bustness to variations in the quality of ICE292

selections, we introduce a second set of293

exemplars (ICE 2) and construct new aug- 294

mented input pairs: [ICE1, prompt, chosen] and 295

[ICE2, prompt, chosen]. This dual ICE augmen- 296

tation enforces an additional contrastive objective, 297

encouraging consistent representations of the same 298

target across different in-context exemplars. By 299

aligning semantically similar but potentially diver- 300

gent examples, this approach mitigates the impact 301

of retrieval noise, ensuring that the learned pref- 302

erences remain robust despite contextual changes. 303

The contrastive loss at the ICE level can be formu- 304

lated as: 305

LICE = Sim[πθ(ICE1;x; yc);πθ(ICE2, x; yc)]
(2)

306

where πθ(ICE1;x; yc) represents the last token’s 307

logits after model computing, and Sim() means 308

cosine similarity function. 309

Finally, to stabilize learning and maintain a 310

coherent preference distribution, we introduce a 311

regularization term based on the negative log- 312

likelihood (NLL) between [ICE1, prompt, chosen] 313

and [ICE2, prompt, chosen]. This regularization 314

term can be represented as: 315

Lreg =NLL[πθ(yc|ICE1, x)]+ (3) 316

NLL[πθ(yc|ICE2, x)] (4) 317

The overall training objective combines these three 318

loss components through a weighted to balance 319

their contributions during optimization. By inte- 320

grating output-level discrimination, ICE-level con- 321

sistency, and distributional regularization, the uni- 322

fied loss function ensures the model learns robust 323

preference patterns while maintaining generation 324

stability. The total loss is defined as: 325

Ltotal = Loutput +min(
Lreg

LICE
, λ)LICE + Lreg (5) 326

where λ is weighting coefficients that control the 327

relative strength of each objective. This balanced 328

formulation allows the model to simultaneously 329

optimize for preference discrimination, contextual 330

robustness, and distributional coherence. In prac- 331

tice, we find equal weighting (λ = 1.0) provides 332

stable convergence, though domain-specific tuning 333

may further enhance performance. 334

Through this layered contrastive framework, the 335

model develops a more comprehensive and robust 336
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Figure 2: Inference Prompt in Machine Translation

understanding of user-driven preference patterns,337

laying a strong foundation for subsequent dynamic338

preference inference tasks. The modular design339

of this approach allows for easy adaptation and340

expansion to other domains, making it both flexible341

and extensible for future research and applications.342

3.3 Dynamic Preference-Aware Inference343

with Retrieval-Augmented Prompts344

After completing the hierarchical contrastive learn-345

ing process described earlier, the model enters346

the inference phase for dynamic preference-driven347

tasks. At this stage, the model leverages the ICEs348

and contrastive learning patterns acquired during349

training to generate outputs that align with user350

preferences.351

During inference, the model takes source text352

as input and dynamically customizes ICEs by re-353

trieving relevant examples based on specific sce-354

narios or user preferences. These are then com-355

bined with the source text to form an enhanced356

input in the format "[ICEs, source text]." This ap-357

proach ensures the model’s reasoning is guided by358

preference-aligned examples, producing outputs359

that maintain linguistic accuracy while adapting to360

different requirements.361

The dynamic preference-aware inference mecha-362

nism enables the model to flexibly handle diverse363

scenarios, delivering outputs that are accurate, per-364

sonalized, and contextually relevant—making it365

suitable for real-world applications where prefer-366

ences and context play a decisive role.367

4 Experiments368

To comprehensively evaluate the effectiveness of369

our proposed framework, we conduct extensive370

experiments across two dimensions: (1) comparing371

performance against state-of-the-art baselines, and372

(2) analyzing the robustness of our hierarchical373

contrastive learning mechanism through ablation374

studies. All experiments are designed to answer375

the key research question: How does our retrieval-376

augmented training inference paradigm improve 377

preference alignment compared to conventional 378

fine-tuning? 379

4.1 Data 380

We conducted experiments on the MT and TST 381

tasks. In this section, we will provide a detailed 382

explanation of how we obtained, processed, and 383

assembled our data. 384

4.1.1 Preference Data 385

For MT, we conducted the experiments on the 386

ALMA-R-Preference dataset which (Xu et al., 387

2024) released, and selected the chosen and re- 388

jected translations for the target language based on 389

the average quality of each data item. We also per- 390

formed supplementary experiments on translation 391

tasks involving other low-resource languages us- 392

ing the Flores-200 dataset (Team et al., 2022). We 393

converted the FLORES-200 dataset into a pairwise 394

preference dataset by using GPT-4o-mini to gen- 395

erate candidate translations, and applied the Feed- 396

back from Inductive Biases method (Jiang et al., 397

2024) to construct preference directions. For the 398

TST task, we directly used an open-source prefer- 399

ence dataset1. This dataset is designed to convert 400

modern language into the writing style of specified 401

literary works, encompassing idiomatic vocabulary, 402

syntactic structures, and rhetorical devices. The 403

target literary works include China’s Four Great 404

Classical Novels. 405

4.1.2 Data preparation 406

In all experiments, we split a preference dataset 407

into training and testing sets with an 4:1 ratio. In 408

the implementation of the retrieval component, we 409

use SentenceTransformer with the "xlm-r-bert- 410

base-nli-stsb-mean-tokens" model (Reimers and 411

Gurevych, 2019) to generate dense vector represen- 412

tations of input queries. The model is configured 413

with a maximum sequence length of 512. The gen- 414

erated embedding vectors serve as the foundation 415

for retrieval, effectively capturing semantic rela- 416

tionships within the source text. To enable efficient 417

similarity retrieval, we construct an IVF-Flat clus- 418

tering index based on Faiss (Douze et al., 2024). 419

The embedding space is partitioned into 50 clusters 420

to facilitate scalable retrieval. In our experiments, 421

we use the original training set as the retrieval space. 422

For each sample point, we identify the two most 423

1https://github.com/stylellm/stylellm_models
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Table 1: The main result in Translating to English (xx→en). Our methods significantly outperform all comparable
methods. The dark blue boxes indicates a significant improvement compared to their original versions , while
light blue boxes represents only a small but noticeable enhancement. All red colors indicate a slight decrease in

performance.

Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET

SFT 33.12 93.67 25.13 90.45 39.12 90.42 41.22 86.54 31.05 91.86
DPO 31.99 93.24 25.17 89.94 39.11 89.16 42.15 86.70 31.58 91.92
CPO 32.74 94.72 26.32 91.73 38.26 91.85 43.13 89.91 30.27 92.60
Ours 34.21 96.31 26.22 92.86 39.13 93.44 41.47 91.37 37.47 94.71

Table 2: The main result in Translating from English (en→xx).

Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET

SFT 30.25 88.81 27.94 87.94 27.12 88.37 26.22 87.62 25.93 89.48
DPO 29.50 90.03 27.33 88.23 26.32 87.03 26.25 88.68 25.41 89.43
CPO 30.54 90.16 24.87 89.85 25.14 89.63 27.13 88.73 27.21 90.04
Ours 31.22 91.74 26.33 90.51 27.22 90.47 29.47 89.53 26.01 90.13

similar samples based on its source text and desig-424

nate them as ICE1 and ICE2.425

4.2 Experiments Setting426

In this section, we present the baselines used in our427

comparative experiments, along with detailed ex-428

perimental configurations and the hardware setup.429

Following this, we introduce the baselines chosen430

for our experiments and explain the rationale be-431

hind these selections.432

4.2.1 Baseline433

SFT Using Supervised Fine-Tuning to adapt large434

language models to specific downstream tasks is a435

fundamental approach. Its effectiveness has been436

validated through extensive practical experiments.437

Therefore, SIT on prefer data serves as the first438

baseline in our experiments.439

DPO Direct Preference Optimization is a440

method designed to directly optimize models for441

preference alignment, focusing on aligning model442

outputs with user preferences rather than traditional443

loss functions. It has gained widespread use in the444

field of preference learning, especially in scenarios445

where the goal is to predict or rank items based446

on user preferences. DPO has become a popular447

choice in many preference alignment applications.448

Before applying the DPO method, we conducted449

preliminary training with the selected data to simu-450

late the typical pipeline for preference alignment451

using DPO.452

CPO We also compared the commonly used453

preference alignment methods in the machine trans-454

lation field. Contrastive Preference Optimization is 455

derived from the same optimization goal but reflect 456

different training objectives with DPO. Therefore, 457

these two methods serve as the primary compara- 458

tive methods for the evaluation of preference align- 459

ment. 460

4.2.2 Training Details 461

Our experiment primarily focuses on comparing 462

fine-tuning methods rather than specific base mod- 463

els. We conducted our main experiments on widely 464

used open-source large language models (Touvron 465

et al., 2023; Dubey et al., 2024). The experiments 466

employed earlier versions, namely LLaMA2-13B 467

and LLaMA3-8B, with the core research findings 468

presented in the paper. Specifically, the MT exper- 469

iments utilized LLaMA2, while the TST experi- 470

ments were performed using LLaMA3. 471

Training with LoRA For all models, we employ 472

the AdamW optimizer with a learning rate of 2e-5. 473

We fine-tuned the models using a batch size of 8, 474

across 3 epochs, and set the maximum sequence 475

length to 666 tokens to ensure efficient handling 476

of longer input sequences. The LoRA technique 477

is utilized with a rank of 32. Regarding the model 478

architecture, the following target modules are up- 479

dated during training: q_proj, k_proj, v_proj, and 480

o_proj. To prevent overfitting and enhance gener- 481

alization, we apply a dropout rate of 0.05 during 482

the training phase. The combination of these hy- 483

perparameters ensures efficient adaptation of the 484

model to the specific task while minimizing the 485

computational overhead added by the LoRA modi- 486
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Table 3: The ablation result in Translating to English (xx→en).

Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET

Ours 34.21 96.31 26.22 92.86 39.13 93.44 41.47 91.37 37.47 94.71
- LICE 35.33 95.96 25.89 93.13 37.55 92.35 43.34 90.67 30.11 93.67
- Loutput 31.19 95.43 25.78 91.76 35.54 91.97 40.13 88.72 35.02 94.39

Table 4: The ablation result in Translating from English (en→xx).

Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET

Ours 31.22 91.74 26.33 90.51 27.22 90.47 29.47 89.53 26.01 90.13
- LICE 31.41 90.66 25.89 90.23 26.20 90.11 27.88 89.27 23.73 89.26
- Loutput 29.96 89.91 25.78 88.37 27.93 89.13 28.25 87.28 25.37 89.21

fications. We adhere to the default β value of 0.1487

as suggested by Rafailov et al. (2024)488

4.3 Result489

We present the primary result of MT in Table 1490

and Table 2. Our evaluation metrics include both491

statistical and neural metrics, but we place a pri-492

mary emphasis on neural metrics, using statistical493

metrics only as a reference with a limited level494

of confidence. For neural metrics, we adopted the495

XCOMET (Rei et al., 2020) series models 2, and for496

statistical metrics, we used BLEU (Papineni et al.,497

2002). For all metrics, we calculate result with498

Chosen term of test data point. In translation tasks499

in five languages, including German, Chinese, Rus-500

sian, Czech, and Indonesian, Our methods achieved501

an average score of 92.10 of XCOMET, CPO av-502

eraged 90.92, DPO 89.43, and SIT 89.51. The503

experimental results demonstrate that our method504

outperforms the baseline approaches across multi-505

ple evaluation metrics. A more in-depth analysis506

will be presented in the section 5.507

For TST, we present the primary results in Fig-508

ure 3. For this evaluation task, we adopted the509

LLM-as-Judge method3 as the main evaluation met-510

ric, leveraging the capabilities of large language511

models to assess the quality, fluency, and stylis-512

tic consistency of the generated text. The LLM-513

as-Judge approach provides a more nuanced and514

context-aware evaluation, making it particularly515

suitable for capturing the subtle nuances in style516

transfer tasks (Zheng et al., 2023). We conducted517

a chain comparison of SFT, CPO, and our method,518

and additionally compared the labeled preference519

data in the test set using the same judge method520

2we use XCOMET-XL
3We use deepseek-chat as the judge model

Figure 3: The experimental results of the TST task,
evaluated through LLM-as-Judge, show that our method
achieves better transfer consistency with the target style.

to verify that the evaluation approach can accu- 521

rately identify the preferences. The comparison 522

results demonstrate that our method outperforms 523

both SFT and CPO under consistent preference 524

evaluation. The evaluation results are presented 525

in terms of win rate, which is calculated based on 526

pairwise comparisons conducted by LLM-as-Judge. 527

To ensure the reliability and robustness of the eval- 528

uation, each pairwise comparison was performed 529

twice independently. Only when the two indepen- 530

dent assessments yielded consistent results was a 531

winner determined; otherwise, the outcome was 532

considered a tie. This rigorous approach minimizes 533

potential biases and enhances the credibility of the 534

evaluation process. 535

5 Analysis 536

In this section, we conduct ablation studies and 537

perturbation analysis to validate the effectiveness 538

of our approach, along with generalization valida- 539

tion on more test sets and the introduction of new 540

comprehensive metrics. 541

Specifically, the ablation experiments demon- 542

strate the contribution of our hierarchical con- 543
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trastive design. By perturbing the ICE (a critical544

inference component) during inference, we provide545

a theoretical explanation for the superiority of our546

method. Furthermore, we perform additional evalu-547

ations on the WMT24 test set and employ MetricX-548

24(Juraska et al., 2024) as an evaluation metric,549

further verifying the robustness and generalization550

capability of our approach.551

Ablation Study To systematically validate the552

effectiveness of our proposed hierarchical con-553

trastive learning framework, we conducted abla-554

tion experiments by progressively removing the555

loss terms defined in Section 3.2. The experiments556

were carried out on the machine translation (MT)557

task, with a comprehensive quality evaluation us-558

ing the XCOMET metric. As shown in Table 3 and559

Table 4, removing the ICE-level contrastive loss560

leads to a performance drop, which demonstrates561

the importance of maintaining consistency across562

different contextual examples. Further removal of563

the output-level contrastive loss also results in a564

performance decline, indicating its crucial role in565

distinguishing subtle differences between selecting566

and rejecting responses.567

Perturbation Analysis We also conducted per-568

turbation experiments on the similarity ranking of569

the ICE used during retrieval in the test phase to570

investigate the impact of ICE quality on the results.571

Specifically, we experimented with four types of572

ICE: rank1 (the most similar to the source text),573

rank2, rank3 (less similar), and a fixed ICE that574

bypassed the retrieval process entirely. We per-575

formed ablation experiments on the MT (machine576

translation) task, and the specific results are shown577

in Table 5. From the results, we observed a clear578

trend: the performance of the model improved sig-579

nificantly when the ICE was more similar to the580

source text. Specifically, rank1 ICE, which exhib-581

ited the highest similarity to the source text, led to582

the most substantial performance gains, while the583

fixed ICE, which lacked similarity-based retrieval,584

resulted in the least improvement. This demon-585

strates that the quality and relevance of the ICE,586

particularly its similarity to the source text, play a587

critical role in enhancing model performance.588

Generalization Validation We evaluated all our589

original baseline models on WMT24(de, cs, zh, ru)590

and also included a few-shot prompting on base591

model as an additional baseline for comparison592

with our proposed method. For the final evaluation,593

we adopted both XCOMET-XL and MetricX-24-594

Hybrid-Large-v2p6 as our neural metrics to ensure595

Table 5: Performance trend for different rank of example

Model ICE1 ICE2 ICE3

XCOMET 95.25 94.67 94.59

Constant ICE SIT CPO

XCOMET 93.60 92.13 93.62

a more comprehensive evaluation. 596

As shown in Table 6, our additional experiments 597

confirm that our method maintains its advantage 598

even when using a limited amount of training data 599

and under degraded retrieval conditions, which 600

aligns with the trends observed in Table 5.

Table 6: Performance for different metrics and baseline
on WMT24

Metric SFT CPO

XCOMET 83.16 85.08
MetricX 4.88 4.06

Metric few-shot Ours

XCOMET 81.43 85.42
MetricX 5.22 3.96

601

6 Conclusion 602

This paper proposes a novel approach that com- 603

bines prompt learning and fine-tuning for machine 604

translation and text style transfer tasks. By retriev- 605

ing similar contextual examples, the method en- 606

ables lightweight models to better capture user pref- 607

erences. Experiments demonstrate its superiority 608

over conventional techniques in aligning with user 609

needs. The framework can be extended to other 610

NLP tasks, with further improvements achievable 611

by optimizing the retrieval mechanism and con- 612

trastive learning strategy. 613

Limitation 614

While our proposed framework successfully in- 615

tegrates prompting and fine-tuning for efficient 616

context-aware language transformation, it exhibits 617

several limitations that the method depends on high- 618

quality retrieval, faces scalability challenges with 619

large embeddings, and struggles with balancing the 620

diversity and relevance of retrieved examples for 621

effective model performance. 622
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