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Abstract

Achieving pixel-level segmentation with low computational cost
using multimodal data remains a key challenge in crack segmen-
tation tasks. Existing methods lack the capability for adaptive per-
ception and efficient interactive fusion of cross-modal features.
To address these challenges, we propose a Lightweight Adaptive
Cue-Aware Vision Mamba network (LIDAR), which efficiently per-
ceives and integrates morphological and textural cues from dif-
ferent modalities under multimodal crack scenarios, generating
clear pixel-level crack segmentation maps. Specifically, LIDAR is
composed of a Lightweight Adaptive Cue-Aware Visual State Space
module (LacaVSS) and a Lightweight Dual Domain Dynamic Col-
laborative Fusion module (LD3CF). LacaVSS adaptively models
crack cues through the proposed mask-guided Efficient Dynamic
Guided Scanning Strategy (EDG-SS), while LD3CF leverages an
Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling
fusion strategy to effectively capture spatial and frequency-domain
cues across modalities. Moreover, we design a Lightweight Dynam-
ically Modulated Multi-Kernel convolution (LDMK) to perceive
complex morphological structures with minimal computational
overhead, replacing most convolutional operations in LIDAR. Ex-
periments on three datasets demonstrate that our method outper-
forms other state-of-the-art (SOTA) methods. On the light-field
depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU
with only 5.35M parameters. Code and datasets are available at
https://github.com/Karl1109/LIDAR-Mamba.
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1 Introduction

Cracks with diverse morphologies frequently appear on the surfaces
of real-world materials such as asphalt, concrete, plastic runways,
and masonry, primarily due to shear stress. Thus, regular and auto-
mated structural health monitoring is essential to prevent losses
in daily production and life [2, 14, 16, 19, 40, 49]. Recently, deep
learning-based methods have demonstrated strong performance in
automatic crack image segmentation [13, 23, 36, 38]. However, most
methods rely solely on single-modality RGB data, making them vul-
nerable to lighting variations and background noise [20]. They fail
to capture subsurface thermal anomalies in infrared images, model
stress-induced polarization changes, or interpret spatial hierarchies
in depth images [37], resulting in degraded performance under
complex visual conditions such as uneven illumination, cluttered
backgrounds, and ambiguous crack boundaries [21].

Recent multimodal semantic segmentation methods based on
Convolutional Neural Networks (CNNs) and Transformers have
achieved promising results [1, 35, 42, 43]. Representative methods
such as PGDENet [52], CAINet [27], and ESANet [32] utilize CNNs
to fuse high-level semantics with low-level spatial details through
progressively guided strategies that reduce modality discrepan-
cies. While CNN-based methods effectively capture morphological
cues in key regions, their limited receptive fields and inductive
biases hinder the modeling of continuous texture patterns. Addi-
tionally, lots of convolution operations lead to increased computa-
tional overhead. Transformer-based methods such as Omnivore [5],
EMMA [51], and CMX [46] encode different modalities into inter-
active embeddings and employ self-attention to model long-range
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Figure 1: Performance of LIDAR on light-field depth dataset.
(a) Comparison with SOTA methods. (b) Impact of different
convolution types on performance. (c) Segmentation results
for dual-modality images under complex conditions.

dependencies. Although they capture both morphological and tex-
tural cues effectively, the quadratic scaling of attention mechanisms
with input length makes training and inference on high-resolution
images computationally expensive and unsuitable for edge deploy-
ment [44]. Despite their promising results, all of the above methods
lack selective interaction and noise suppression across modalities
and feature levels, leading to the loss of critical details.

Recently, the Selective State Space model (S6) Mamba [7, 9]
has shown impressive performance in long-sequence modeling.
Compared to traditional linear time-invariant state space models
(S4) [6, 8], Mamba offers greater flexibility for complex data while
reducing computational cost [10, 26, 29, 39]. Its success in vision
tasks, such as Vision Mamba [54], confirms its effectiveness in
modeling both local cues and long-range dependencies by scan-
ning fixed-size pixel patches within each Visual State Space (VSS)
block. Vision Mamba has since inspired various Mamba-based vari-
ants [17, 48], where the scanning strategy is key to capturing spa-
tial dependencies across regions. PlainMamba [41], VMamba [24],
and SCSegamba [22] adopt 2D parallel, bidirectional, or combined
parallel-diagonal snake scanning to enhance the modeling of spatial
continuity, multi-directional context, and complex textures. While
such strategies improve irregular structure perception, they rely on
uniform, rule-based scanning for all images, limiting adaptability to
highly complex and image-specific texture cues and topologies. This
often results in discontinuities or blurred segmentation outputs.
Moreover, even with uniform rules, generating repeated scanning
sequences for each image introduces latency and reduces efficiency.
Sigma [34], the first to introduce Mamba into multimodal segmenta-
tion, adopts an inefficient parallel scanning strategy without selec-
tive interaction or noise suppression during fusion, resulting in high
computational cost and missed detections in high-frequency criti-
cal regions, as shown in Figure 1(c). Additionally, existing Mamba-
based methods stack many VSS blocks, increasing parameter count
and computational overhead, which can lead to redundancy and
feature degradation. Common convolutions with heavy parameters
are used in feature processing and final segmentation, limiting the
potential for deployment on resource-constrained devices.

To address the above challenges, we propose the Lightweight
Adaptive Cue-Aware Vision Mamba network (LIDAR), which ef-
ficiently captures morphological and textural crack cues across
various modalities—including RGB images, infrared thermogra-
phy, polarization informations, and light-field depth cues, while

Hui Liu et al.

handling arbitrary input sizes with low computational cost. This
enables the generation of high-quality crack segmentation maps
across diverse scenarios. As shown in Figure 1(a), LIDAR achieves
the best performance while requiring the minimal computational
resources. To make Mamba adaptable to complex modality-specific
crack features, we design the Lightweight Adaptive Cue-Aware
Visual State Space module (LacaVSS). It integrates the Efficient Dy-
namic Guided Scanning Strategy (EDG-SS) based on pre-scanned
masks, which significantly accelerates the generation of scanning
sequences. EDG-SS dynamically prioritizes crack regions based on
image content, improving both the efficiency of texture modeling
and the accuracy of crack-background separation. To reduce the
computational cost of convolutions, we introduce the Lightweight
Dynamically Modulated Multi-Kernel convolution (LDMK), which
employs a dynamic intermediate channel selection mechanism and
an adaptive selective kernel strategy. This design captures morpho-
logical cues through multiple receptive fields while maintaining
low complexity. As shown in the Figure 1(b), LDMK enables the
LIDAR to achieve the best performance while maintaining a low
number of parameters. To enable effective cross-modal and hier-
archical feature fusion, we propose the Lightweight Dual Domain
Dynamic Collaborative Fusion module (LD3CF). It incorporates an
Adaptive Frequency Domain Perceptron (AFDP) to enhance high-
frequency crack features and suppress low-frequency background
noise in both horizontal and vertical directions. Together with a
dual-pooling strategy and dynamic gating, LD3CF enables efficient
multi-level interaction with low computational cost.
In summary, our main contributions are as follows:
e We propose LIDAR for multimodal structural crack segmen-
tation. Adaptively captures morphological and textural cues
across multiple modalities at a low computational cost, gener-
ating high-quality segmentation maps.
e We design the LacaVSS based on the proposed EDG scan-
ning strategy, which enables efficient and adaptive modeling
of crack texture cues. The LDMK convolution significantly
reduces computational cost while enhancing the perception
of morphological information. The LD3CF module generates
high-quality segmentation maps through efficient perception
of frequency and spatial-domain cues, as well as a multi-level
cross-modal interaction mechanism.
o We evaluate LIDAR on three datasets. Experimental results
demonstrate that LIDAR outperforms existing SOTA methods
while maintaining minimal computational requirements.

2 Related Works
2.1 Crack Segmentation Methods

RGB-based crack segmentation methods have achieved promis-
ing results [22, 23, 25]. For instance, SFIAN [3] selectively fuses
high-resolution texture and low-resolution semantic information
at multiple scales to capture crack geometries. MGCrackNet [45]
adopts a learnable parallel CNN-Transformer hybrid module to
repeatedly fuse global and local features. CIRL [2] introduces a
clustering-inspired representation learning strategy that transforms
supervised learning into an unsupervised clustering paradigm to
extract more discriminative features. However, these methods rely
solely on single-modality RGB data, making them unable to capture
subsurface thermal anomalies, stress—polarization correlations, and
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spatial or geometric information. Consequently, their performance
deteriorates under complex lighting and environmental conditions.

Although no dedicated methods have been specifically developed
for multimodal crack segmentation, CNN and Transformer-based
methods have achieved strong performance in general semantic
segmentation tasks [30, 35, 53]. For example, CAINet [27] improves
accuracy through context-aware inference and detail aggregation,
while PDCNet [42] utilizes pixel-difference convolution and cas-
caded large kernels for cross-modal feature fusion. However, CNNs
suffer from limited receptive fields and strong inductive biases,
making it difficult to model continuous texture patterns, while their
dense convolutions result in high computational cost. Transformer-
based methods such as CMNext [47] and MCubeSNet [18] fuse com-
plementary information from arbitrary modalities and enhance seg-
mentation via region-guided filter selection. Yet, their self-attention
mechanisms introduce quadratic complexity with respect to se-
quence length, hindering deployment on resource-constrained de-
vices. Moreover, both CNN and Transformer-based approaches lack
mechanisms for selective semantic interaction and noise suppres-
sion across modalities and feature levels. Consequently, critical
cues in fine-grained regions may be overwhelmed by redundant
information. Dedicated multimodal crack segmentation methods
are needed to effectively capture essential cues across modalities
and enhance performance.

2.2 Selective State-Space Vision Model

The Selective State Space model Mamba [7] has attracted attention
for its strong performance in sequence modeling tasks. Compared
to traditional linear time-invariant models (S4) [8], Mamba provides
greater flexibility and computational efficiency for handling com-
plex data, leading to its adoption in vision tasks. At its core, the VSS
block performs block-wise scanning over feature maps to capture
both fine-grained local details and long-range dependencies. The
scanning strategy is crucial for capturing diverse structural and
textural patterns. PlainMamba [41] uses direction-aware 2D paral-
lel scanning to preserve semantic continuity, VMamba [24] adopts
bidirectional scanning to capture multi-directional dependencies,
MalR [15] applies S-shaped scans within strip regions to main-
tain locality, and SCSegamba [22] combines parallel and diagonal
snake scanning to enhance perception of complex textures. While
these methods improve continuity perception through multi-path
scanning, they rely on fixed scanning rules and lack the ability to
adaptively generate scan sequences per input image. This limits
their effectiveness in modeling highly variable textures, especially
in crack segmentation where fine details are critical, often result-
ing in blurred or fragmented outputs. Moreover, repeated static
path generation for each image introduces unnecessary latency,
reducing inference efficiency. These networks also stack many VSS
blocks and use high-parameter convolutions for feature extraction
and segmentation, leading to substantial computational cost.

3 Method

3.1 Preliminary

The overall architecture of our proposed LIDAR is illustrated in
Figure 2. It comprises two key components: the LacaVSS, which hi-
erarchically extracts morphological and textural cues from different
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modal inputs, and the LD3CF, which captures frequency and spatial-
domain information and generates high-quality segmentation maps
through multi-level cross-modal interaction. Given N input images
from different modalities {X1, X, .., XN} € RBXCX512X512 \where
B denotes the batch size and C denotes the number of channels, each
is first processed by a multi-layer LacaVSS backbone. The image
is divided into k patches, resulting in a sequence {P1, Py, ..., P} €
RBXCX8X8 These patches are scanned and processed by four La-
caVSS blocks to extract morphological and textural crack features,
producing feature maps {Fy, Fz, F3, Fy} € RBX04X04X64 f41 each
modality. Finally, LD3CF fuses the feature maps across modalities
and levels, generating the final segmentation output € RBX1x512x512,

3.2 Lightweight Dynamic Convolution

The structure of LDMK is given by Figure 3. To reduce the parame-
ter count and computational cost of convolution operations, LDMK
adopts a channel modulation mechanism to dynamically select
the most important feature channels for processing. This avoids
redundant computation, significantly lowers resource consump-
tion, and enables the extraction of critical crack-related morpho-
logical cues through multi-scale dynamic kernel selection across
multiple receptive fields. Specifically, given an input feature map
a € RBXCnxHXW DMK first applies a pointwise convolution to
project the input from Cj, to an intermediate dimension Cp,. It
then models the importance of each channel. Concretely, the impor-
tance score s for each channel can be obtained from the following
equation:

am = Convyxq (o) € REXCmXHXW (1)

s =0 (W, - ReLU(W; - AvgPool(ap,))) € RBXCm (2)

where o(-) denotes the Sigmoid activation function, and W, W,
are learnable linear layer parameters. Then, the top-k most in-
fluential channels are selected from s to generate a binary mask
M € {0,1}B%Cm which is used for channel-wise pruning:

a=am OM (3)

To prevent instability caused by the sharp fluctuation in the
number of active channels k during training, LDMK adopts an
Exponential Moving Average (EMA) strategy to smooth the channel
activation ratio:

pr=y pr-1+(1=y) - pr, pt=mean(s) (@)

where p; denotes the smoothed activation ratio at iteration ¢, and
y € [0,1) is the EMA decay factor. During training, the number of
activated channels k; = |Cp, - p¢] is adjusted according to j; to
dynamically control the channel width.

We construct multiple shared depthwise convolution kernels
W; € RCm*1xkixki here kernel sizes ki € {3,5,7} are used to
capture texture features within different receptive fields. To enhance
the adaptability of each receptive field, we introduce learnable
scaling and shifting parameters «; and f; for each branch:

Wi = (1+a;) - Wi + i (5)

where W; denotes the dynamically reparameterized depthwise con-
volution kernel. Each branch incorporates the scaling factor ; and
bias term f; to enhance adaptiveness. The output features of each
convolution branch are concatenated along the channel dimension,
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and the fused feature is subsequently processed by a pointwise con-
volution to recover the output dimension Coyt, followed by addition
with a residual connection.

3.3 Lightweight Adaptive Cue Aware

The structure of LacaVsSS is illustrated in Figure 2(b). When all
feature maps from a single modality are fed into the LacaVSS
block, they are first processed by a Dual-Pooling Dynamic De-
noiser (DPDD), which we designed to suppress local noise while
preserving prominent structural information, thereby enhancing
the stability and representational capacity of downstream modeling.
Given the input feature map w € RBXCXHXW ‘the output of the
average and max pooling operations is computed as:

w1 = AvgPool(w) + MaxPool(w) 6)

Subsequently, w; is passed through the LDMK module to adap-
tively extract local information and produce the denoised output:

@)

To further enhance the extraction of morphological crack cues, a
gating enhancement unit is integrated into the LDMK module. After
two layers of processing, a sequence of patch features enriched with
crack morphology is obtained.

Notably, before formal training, LIDAR utilizes pre-generated
masks and the EDG-SS to produce a personalized adaptive scan-
ning sequence for each set of multimodal crack images. During
pre-training, the EDG-SS in LacaVSSs is replaced by the base paral-
lel scanning strategy, and the model is trained for 10 epochs on the
multimodal crack dataset to obtain a pre-trained weight file. This
weight file is then used to traverse all RGB images in the dataset
and generate initial masks that represent general crack contours.
These masks are subsequently used by EDG-SS to generate person-
alized scanning sequences for each multimodal image group before
formal training. This process guides the model to better focus on
the morphological and textural cues of crack regions.

The EDG-SS scanning procedure is shown in Figure 2(b). Specif-
ically, EDG-SS highlights salient regions based on the crack mask
and incorporates an integral segmentation mechanism to rapidly
assess the importance of each patch in various directions, thereby
constructing adaptive scanning paths. This enables the model to
prioritize regions with potential structural cues. Given a binary
mask image M € RE*W and patch size p, the integral image is
defined as:

wout = ReLU(GroupNorm(LDMK(w1))) + @

x Y

Ixy) =),

i=0 j=

M(i, j) ®)
0

For a patch of size p X p starting from the top-left corner (i, j),
the importance score S;, j can be computed as:

Sij=I(i+p,j+p)—I(i+p,j)—I(Lj+p)+I1(ij) (9
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The EDG-SS separately traverses patches in horizontal and verti-
cal directions to compute importance scores for each patch. Denote
the importance score of the k-th patch in direction d € {h,v} as
S(d), where h and v represent horizontal and vertical directions.
Based on the importance values, all patches are divided into a crack
region set C; and a background region set By, defined as:

Ca=1{k1S >0} By=tk|s¥ =0} (10)

In each direction d, two scanning orders are defined: from the
top-left to the bottom-right (tb) and from the bottom-left to the
top-right (bt). By combining the two directions and two orders,
EDG-SS constructs four scanning sequences. These four sequences
are unified and defined as:

Cql + [Bgl, if s =tb
ol _ [Cal + [B4] = ethor 1)
[Cal™ + [B4]™Y, ifs=Dbt
where [-] denotes the operation that converts a set into an or-
dered sequence of patch indices, [-]™V denotes a reverse operation.

EDG-SS ultimately generates four scanning sequences: Ot(bh ) , O]gth),

Ot(bv)’ and Oéf). Unlike traditional scanning strategies, EDG-SS
only needs to generate scanning sequences once during the prepro-
cessing phase. All scanning sequences of the training and testing
images are saved in a JSON file. During model inference or training,
LacaVSS only needs to read the file once to retrieve the sequence
corresponding to a specific image, avoiding redundant scanning
and greatly saving computational time.

After generating all scanning sequences, the patch sequence is
fed into the core SS2D module of LacaVSS. The input patch sequence
is reordered according to the corresponding sequence Os(d), the

¢(d,5)

position ¢pes and direction embedding ;. ”* are added to each

patch to form the input sequence:
d d,

7@ =7 [0L ] + 95 + Bpos (12)
where 7 denotes the original input patch sequence extracted from
the image. The sequence is subsequently passed into the core part of
the LacaVSS block for state modeling, which is constructed based
on discrete linear state space theory. At each scan position, the
hidden state hy is updated as follows:

hy = eMhy_ + [(AA)‘1 (eAA - 1) : AB] M (13)

Yr = Chy + Dxp (14)

where n; € R? denotes the input feature at the k-th scan posi-
tion, hy represents the current hidden state, and y; is the model’s
response at this position. AA, AB,C, D are learnable parameters
used to dynamically adjust the update rate and strength of state
propagation.

This modeling process is executed in parallel across all directions
(d, s), resulting in four groups of state outputs, these outputs are
aggregated and fused, and passed through a linear projection to
obtain the output.

3.4 Lightweight Dual Domain Dynamic Fusion

As illustrated in Figure 2(a), the proposed LD3CF module aims to en-
hance and integrate multimodal features across levels by leveraging
both frequency-domain perception and spatial-domain fusion.
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The process begins with the AFDP, which receives the multi-
modal features extracted from LacaVSS. Given an input feature
map { € RBXCXHXW '3 real-valued Fast Fourier Transform (rFFT)
is first applied to project the features into the frequency domain.
Direction-aware convolutions are then performed along horizontal
and vertical axes to capture orientation-specific responses.

To isolate discriminative frequency components, we introduce a
learnable soft masking mechanism. Let délenter and dg, ., represent
the distance from each frequency bin to the spectral center in
horizontal and vertical directions, respectively. The corresponding
high-frequency and low-frequency masks are defined as:

Mﬁlgh =9 ((d(}:le’flter -r- T) ’ (15)
Miow = 1 — max (M}}lligh’ Mﬁigh)

where r is a learnable frequency separation radius, 7 is a tempera-
ture scaling factor, and o(-) denotes the Sigmoid function. These
masks are used to reconstruct directional frequency components,
which are then fused in the spatial domain through a channel-wise
gating strategy, producing frequency-enhanced features.

Based on these refined features, LD3CF proceeds to perform dual-
branch fusion to integrate information from multiple modalities.
Let 6(9) be the RGB modality feature and {5!) }?;I 1’1 the auxiliary
modality features, where M denotes the number of modals. The
RGB mode is first enhanced by the following operations:

ORGB = 50 .4 (Linear (AugPool(S(O)))) (16)

Then, each auxiliary modality interacts with Spgp through a
dual pooling strategy:

8t = w1 - AvgP(OrGr+6") +wiax - MaxP(Srgp+8") (17)

where wy and wy are learnable weights. The fused results are fur-
ther transformed by LDMK convolutions to ensure compact and
expressive representation. All modality-specific features are then
aggregated to form a unified multimodal embedding:
M-1
Ssum = 5RGB + Z 6](‘lu)se (18)
I=1
To further ensure structural consistency and semantic comple-
mentarity across different feature levels, we introduce a cross-scale
dynamic interaction mechanism. Let v("€[%3]) denote the output
feature of LD3CF at level n, and v("~1) the output from the previous
level. These are adaptively fused via a learned gate:

S =) G e (g ) 19)
e (Linear (AUgPool (v(”_l)))) (20)

where G ¢ [0, 1]BXCX1X1 geryes as a gate to balance semantic
reinforcement and structural preservation. For the lowest level
(n = 0), no previous output exists, so v(® s directly preserved
without interaction.

All scale-level fused outputs are upsampled to the same spatial
resolution and aggregated with learned weights. Subsequently, the
result is processed by a linear layer, pointwise convolution, and
further upsampling to generate the final segmentation map with
rich awareness of crack shapes and texture structures.
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Table 1: Performance comparison at dual-modal inputs. The best results are bolded and the second best results are underlined.

Method IRTCrack (RGB+Infrared) | CrackDepth (RGB+Depth) CrackPolar (RGB+AOP) CrackDepth (RGB+DOP)
ODS OIS F1  mloU| ODS OIS F1  mloU| ODS OIS F1  mloU| ODS OIS F1  mloU
CMX[46] 0.8184 0.8244 0.8468 0.8463|0.8017 0.8032 0.8032 0.8336(0.7259 0.7376 0.7120 0.7847|0.7233 0.7261 0.7113 0.7843
CAINet[27] |0.8216 0.8294 0.8367 0.8453|0.8054 0.8080 0.8044 0.8358|0.7327 0.7438 0.7174 0.7886|0.7326 0.7364 0.7180 0.7886
PrimKD[11] |0.8271 0.8345 0.8457 0.8518|0.8010 0.8082 0.8013 0.8338|0.7385 0.7499 0.7258 0.7923[0.7378 0.7433 0.7279 0.7927
SMMCL[4] [0.8090 0.8105 0.8388 0.8384|0.8019 0.8044 0.7996 0.8330|0.7289 0.7322 0.7210 0.7861|0.7284 0.7389 0.7213 0.7855
SSRS[28] 0.8198 0.8274 0.8420 0.8441(0.8143 0.8158 0.8133 0.8425|0.7314 0.7335 0.7157 0.7888|0.7264 0.7295 0.7118 0.7857
Sigma[34] 0.8260 0.8322 0.8545 0.8513(0.8168 0.8176 0.8147 0.8437|0.7327 0.7456 0.7228 0.7895|0.7303 0.7320 0.7224 0.7875
MCubeS[18] |0.8284 0.8350 0.8430 0.8516|0.8167 0.8217 0.8114 0.8436|0.7432 0.7469 0.7299 0.7960 |0.7449 0.7522 0.7347 0.7972
CMNeXT[47] |0.8256 0.8299 0.8406 0.8508|0.8031 0.8063 0.8026 0.8352|0.7359 0.7448 0.7256 0.7909|0.7405 0.7572 0.7321 0.7927
mmsFormer[50]|0.8186 0.8297 0.8421 0.8448|0.8138 0.8180 0.8124 0.8419|0.7430 0.7503 0.7307 0.79510.7362 0.7437 0.7258 0.7913
Ours 0.8305 0.8316 0.8625 0.8548(0.8213 0.8237 0.8204 0.8465(0.7479 0.7512 0.7346 0.8000(0.7500 0.7512 0.7382 0.8015
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Figure 4: Visualization comparison for dual-modal inputs. Red boxes mark critical regions and green boxes mark noisy regions.

4 Experiments

4.1 Datesets

IRTCrack [20]: The IRTCrack dataset consists of 448 paired RGB
and infrared thermal images captured using a thermal imager. It cov-
ers diverse conditions, including various crack types, background
textures, and lighting. Infrared thermography captures surface and
subsurface thermal anomalies, enabling effective crack detection.
CrackDepth: CrackDepth is a dataset we collected, including 655
paired RGB and light-field depth images acquired via a light-field
camera. Depth images are generated through post-processing. The
dataset covers four surface types under different lighting, and the
spatial and geometric cues in the depth data help distinguish crack
morphology in complex scenarios.

CrackPolar: CrackPolar is a dataset we collected, containing 986
groups of images, including RGB images, Angle of Polarization
(AoP) images, Degree of Polarization (DoP) images, as well as
polarization images captured at four typical angles: 0°, 45°, 90°,
and 135°, acquired using a polarization camera. It spans four ma-
terial types under varying lighting. Polarized images highlight
stress—polarization variations, enhancing crack-background con-
trast and detail visibility.

4.2 Implementation Details

Experimental Settings. LIDAR is implemented using PyTorch
v2.1.2 and trained on a server equipped with an Intel Xeon Platinum
8336C CPU and eight NVIDIA GeForce RTX 4090 GPUs running
Ubuntu 20.04.6. During both pretraining and main training phases,
we adopt the AdamW optimizer with an initial learning rate of 0.001.

A polynomial learning rate decay strategy is used, and the weight
decay is set to 0.01. LIDAR is pretrained for 10 epochs to generate
initial structural masks, and then trained for 60 epochs in the main
training phase. Input images are resized to a fixed resolution of
512x512 before being fed into the network. The loss function uses
the sum of the BCE [12] and Dice [33] losses. All experiments were
conducted under the same settings across all datasets.
Evaluation Metrics. We used four metrics to evaluate LIDAR’s
performance: F1 Score, Optimal Dataset Scale (ODS), Optimal Image
Scale (OIS), and mean Intersection over Union (mloU) [22].

4.3 Comparison with SOTA methods

Comparative experiments on two modality. As shown in Ta-
ble 1 and Figure 4, we evaluate LIDAR on IRTCrack [20], Crack-
Depth and the CrackPolar using RGB, AoP, and DoP combinations.
Our method consistently achieves superior performance across
nearly all evaluation metrics. On the IRTCrack [20] dataset, LIDAR
outperforms the second-best method by 0.94% in F1 score and 0.35%
in mloU, demonstrating its strong adaptability in modeling thermal
crack responses. On CrackDepth, which includes light-field depth
images, LIDAR surpasses Sigma [34] by 0.55%, 0.24%, 0.70%, and
0.33% in ODS, OIS, F1, and mloU, respectively, indicating its effec-
tiveness in capturing spatial hierarchies and geometric structures.
On the CrackPolar dataset, LIDAR maintains SOTA performance.
With RGB+AoP or RGB+DoP input, it exceeds the second-best
method by an average of 0.56% in F1 and 0.52% in mIoU. This high-
lights its capability to integrate polarization cues reflecting surface
stress and microstructural patterns, enabling precise segmentation
in fine-detail regions and robust background suppression.
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Table 2: Performance comparison at multi-modal inputs. The best results are bolded and the second best results are underlined.

Method CrackPolar (RGB+[0°,45°,90°,135°])

CrackPolar (RGB+[0°,45°,90°,135°]+AOP)

ODS OIS F1

mloU FLOPs Params Size OoDS OIS F1

mloU FLOPs Params Size

MCubeS[18] |0.7486 0.7514 0.7331 0.7975 396.76G 293.35M 3594MB| 0.7483 0.7509 0.7323 0.7975 473.62G 351.86M 4045MB
mmsFormer[50]| 0.7403 0.7457 0.7275 0.7932 76.39G 59.99M 738MB | 0.7356 0.7391 0.7214 0.7903 84.94G 73.34M 863MB
CMNeXT[47] |0.7473 0.7501 0.7302 0.7967 48.46G 57.66M 660MB |0.7515 0.7654 0.7420 0.7986 49.69G 57.67M 660MB

Ours 0.7503 0.7543 0.7383 0.8015 83.34G 13.35M 193MB |0.7576 0.7647 0.7467 0.8023 100.01G 16.01M 231MB

Method

CrackPolar (RGB+[0°,45°,90°,135°]+DOP)

CrackPolar (RGB+[0°,45°,90°,135°]+AOP+DOP)

OoDS OIS F1

mloU FLOPs Params Size ODS OIS F1

mloU FLOPs Params Size

MCubeS[18] |0.7530 0.7600 0.7417 0.8000 473.62G 351.86M 4045MB| 0.7514 0.7555 0.7380 0.7993 550.48G 410.37M 4496MB

mmsFormer[50]| 0.7523 0.7586 0.7384 0.8000 84.94G 73.34M
CMNeXT[47] |0.7583 0.7642 0.7449 0.8035 49.69G 57.67M

863MB | 0.7445 0.7485 0.7296 0.7956 93.50G 86.68M 1034MB
660MB | 0.7516 0.7583 0.7412 0.7991 50.92G 57.69M 660MB

Ours 0.7608 0.7633 0.7476 0.8044 100.01G 16.01M

231MB |0.7588 0.7668 0.7479 0.8031 116.68G 18.68M 270MB

MCubeS mmsFormer CMNext LIDAR

Figure 5: Visualization comparison for multi-modal inputs. Red boxes mark critical regions.

Table 3: Complexity comparison for dual-modal inputs.

Method Year FLOPs Params Size
MCubeS[18] CVPR 2022 |165.59G 117.76M 2253MB
mmsFormer[50] | MICCAI 2022 | 50.71G  19.96M 279MB
CMNeXT[47] CVPR 2023 44.76G  57.63M 660MB
CMX[46] TITS 2023 56.99G 66.56M 762MB
CAlINet[27] TMM 2024 37.28G 10.31M 138MB
PrimKD[11] MM 2024 114.42G 139.85M 1597MB
SMMCL[4] WACV 2024 | 61.95G 72.86M 826MB
SSRS[28] TGRS 2024 |679.09G 615.64M 7322MB
Sigma[34] WACV 2025 | 63.43G 41.68M 553MB
Ours MM 2025 33.33G 5.35M 78MB

As shown in Table 3, LIDAR also achieves the lowest complex-
ity under dual-modal input at 512X512 resolution. Compared with
CAlINet [27], it reduces FLOPs, Params, and model size by 10.59%,
48.10%, and 43.48%, respectively. These gains stem from the LDMK
convolution, the LacaVSS, and the LD3CF module, which con-
tributes only 0.25 GFLOPs and 0.02M Params. These components
enable LIDAR to efficiently extract geometric and spatial cues across
modalities and produce high-quality segmentation maps with detail
continuity and noise suppression.

Comparative experiments on multiple modalities. As shown
in Table 2 and Figure 5, LIDAR achieves the best segmentation
performance across all four polarization modality combinations
compared to existing SOTA methods. When combining RGB with

Table 4: Comparison of different convolution types.

Conv Type| ODS OIS F1  mloU FLOPs Params Size
Common [0.8099 0.8126 0.8075 0.8391 156.14G 20.56M 241MB
DSConv |0.8074 0.8115 0.8082 0.8370 47.66G 6.89M 85MB
BottConv [0.8076 0.8137 0.8068 0.8370 39.33G 5.92M 74MB
LDMK |0.8213 0.8237 0.8204 0.8465 33.33G 5.35M 76MB

polarization angles (0°, 45°, 90°, and 135°), it surpasses the second-
best method by an average of 0.71% in F1 score and 0.50% in mIoU.
This highlights LIDAR’s ability to leverage reflectance differences
across polarization angles for extracting critical morphological cues
from diverse surface materials. When using RGB in combination
with all four angles and either AoP or DoP, LIDAR further outper-
forms CMNext [47], the second-best model, by 0.50% in F1 and 0.29%
in mIoU on average. These results demonstrate LIDAR’s strength
in comprehensively capturing and fusing structural and textural
cues encoded in polarization reflection behavior, microstructural
directionality, and intensity variation.

In terms of computational efficiency, while LIDAR incurs slightly
higher FLOPs under multimodal input, it maintains the lowest pa-
rameter count and model size among all methods. For example,
under full-modal input, LIDAR reduces parameter count and model
size by 67.63% and 59.09% compared to CMNext [47]. This effi-
ciency is due to the lightweight LDMK design, LacaVSS’s adaptive
modeling of crack topology and textures, and the LD3CF module’s
capability to suppress irrelevant noise while enhancing key spatial
and frequency-domain features. Together, these components enable
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Table 5: Performance comparison with scanning strategies.
Scan Type ODS OIS F1 mloU Delay Time

Para 0.7923 0.7935 0.7901 0.8269 1.63E-03s
Diag 0.8013 0.8030 0.7984 0.8332 2.17E-03s
ParaSnake 0.7993 0.8010 0.7971 0.8317 2.21E-03s
DiagSnake 0.8067 0.8093 0.8033 0.8366 2.40E-03s
bi_ParaSnake | 0.7976 0.8010 0.7946 0.8303 1.55E-03s

bi_DiagSnake | 0.7989 0.8002 0.7980 0.8319 6.25E-04s
SASS 0.8116 0.8158 0.8081 0.8406 2.16E-03s

w/o pre 0.8198 0.8232 0.8193 0.8458 2.50E-02s

w/o pre&integral | 0.8189 0.8205 0.8186 0.8454 6.34E-02s
EDG-SS 0.8213 0.8237 0.8204 0.8465 7.15E-07s

Table 6: Performance comparison of different components
combinations in LD3CF.

AFDP DualPool CrossGate| ODS QOIS F1 mloU
v X X 0.7919 0.7932 0.7903 0.8265
X v X 0.7894 0.7911 0.7891 0.8245
X X v 0.7918 0.7929 0.7921 0.8273
v v X 0.8073 0.8107 0.8050 0.8372
v X v 0.8075 0.8094 0.8052 0.8371
X "4 v 0.8119 0.8145 0.8102 0.8403
v v v 0.8213 0.8237 0.8204 0.8465

LIDAR to produce high-quality segmentation maps with minimal
computational overhead.

4.4 Ablation Studies

We performed ablation experiments on the CrackDepth dataset.
Performance comparison under different convolution types.
Table 4 lists the performance of LIDAR with different convolution
types, including common convolution, DSConv [31] and BottConv
[22]. Our LDMK achieves the lowest FLOPs and parameter count
while delivering the best performance across all metrics, including
ODS, OIS, F1 score, and mloU. Notably, compared to common con-
volution, LDMK reduces FLOPs, Params, and model size by 78.64%,
73.97%, and 68.05%, respectively. These results confirm that LDMK
not only enhances the extraction of morphological cues across
modalities but also significantly lowers computational overhead.
Ablation studies with different scanning strategies. Table 5
lists the performance comparison of LIDAR using the proposed
EDG-SS and several classical scanning strategies, including parallel,
diagonal, parallel snake, diagonal snake, bidirectional scanning,
and SASS [22]. When EDG-SS is applied, LIDAR achieves the best
results across all metrics, including ODS, OIS, F1 score, and mloU,
surpassing SASS by 1.19%, 0.97%, 1.52%, and 0.70%, respectively. It
is noteworthy that models using conventional scanning strategies
such as parallel, diagonal, and their snake variants suffer a clear
performance drop. This indicates that fixed scanning paths lack
adaptability and fail to effectively perceive the irregular texture
cues present in different crack modalities, limiting the model’s ca-
pacity to characterize crack variations and suppress noise. While
bidirectional scanning shows moderate improvement, the disrup-
tion of contextual dependencies in the central region of the image
reduces its ability to model continuous semantic structures.

In terms of sequence generation latency, EDG-SS significantly
outperforms all other strategies. It is 874 times faster (7.15E-07s
VS 6.25E-04s) than the next-fastest method, bidirectional diagonal

Hui Liu et al.

snake scanning. Compared with variants that omit the integral
image or pre-scanning mechanism, EDG-SS achieves substantial
acceleration. These results demonstrate that EDG-SS, by leverag-
ing an integral-image-based pre-scanning mechanism and mask-
guided path selection, effectively reduces latency and improves the
model’s ability to capture continuous crack textures and suppress
irrelevant background, thereby enhancing LIDAR’s segmentation
performance in irregular crack regions.

Ablation Study on Components of LD3CF. Table 6 lists the
performance of LIDAR under different configurations of the LD3CF
module components. Since LD3CF introduces only 0.25 GFLOPs
and 0.02M parameters, the computational cost of each component
is negligible. LIDAR achieved the best performance in all evaluation
metrics when including all three components. Compared with the
variant without AFDP, the complete model improves ODS, OIS,
F1, and mIoU by 1.16%, 1.13%, 1.26%, and 0.74%, respectively. This
demonstrates that AFDP enhances crack region representation by
reinforcing high-frequency features and suppressing low-frequency
background noise, leading to clearer textures for subsequent pro-
cessing. Furthermore, removing both the dual pooling fusion and
cross-level gating results in a significant performance drop, with
F1 and mloU decreasing by 3.81% and 2.42%, respectively. These
findings indicate that the dual pooling fusion module effectively
captures structural and texture cues in the spatial domain, while
the cross-level gating mechanism enables adaptive and hierarchical
interaction of multimodal features. Together, these components
contribute to the generation of high-quality pixel-level crack seg-
mentation maps.

5 Conclusion

In this paper, we propose LIDAR, a pioneering Lightweight Adap-
tive Cue-Aware Vision Mamba network for pixel-level multimodal
structural crack segmentation. LIDAR integrates the LacaVSS and
LD3CF modules and replaces most convolutional operations with
the proposed LDMK convolution, enabling efficient extraction and
fusion of geometric, morphological, and textural cues across multi-
ple modalities at low computational cost. LacaVSS, guided by the
EDG-SS, dynamically prioritizes crack regions for more effective
modeling. LD3CF enhances segmentation quality by combining
AFDP and a dual pooling fusion module, enabling robust spatial-
frequency cue extraction and background suppression, ultimately
producing high-quality segmentation maps. Extensive experiments
on three multimodal crack datasets demonstrate that LIDAR con-
sistently outperforms SOTA methods in both performance and
efficiency. For example, LIDAR demonstrates optimal performance
across a variety of datasets and combinations of multiple modal-
ities, consistently achieving best results in diverse scenarios. In
future work, we aim to further improve LIDAR’s adaptability to
modality-specific heterogeneity and explore more efficient learn-
able scanning strategies to enhance generalization on diverse crack
datasets.
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