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Abstract

Cross-domain reinforcement learning (CDRL) is meant to improve the data effi-
ciency of RL by leveraging the data samples collected from a source domain to
facilitate the learning in a similar target domain. Despite its potential, cross-domain
transfer in RL is known to have two fundamental and intertwined challenges: (i)
The source and target domains can have distinct representations (either in states or
actions), and this makes direct transfer infeasible and thereby requires sophisticated
inter-domain mappings; (ii) The domain similarity in RL is not easily identifiable a
priori, and hence CDRL can be prone to negative transfer. In this paper, we propose
to jointly tackle these two challenges through the lens of hybrid Q functions. Specif-
ically, we propose QAvatar, which combines the Q functions from both the source
and target domains with a proper weight decay function. Through this design, we
characterize the convergence behavior of QAvatar and thereby show that QAvatar
achieves robust transfer in the sense that it effectively leverages a source-domain Q
function for knowledge transfer to the target domain, regardless of the quality of
the source-domain model and domain similarity. Through extensive experiments,
we demonstrate that QAvatar achieves superior transferability across domains on a
variety of RL benchmark tasks, including locomotion and robot arm manipulation,
even in the scenarios of potential negative transfer.

1 Introduction

Reinforcement learning (RL) has witnessed significant progress in various challenging domains, such
as game playing [1, 2], robot control [3, 4], and language models [5], mainly due to the integration
of general RL techniques with advancements in data collection and computation for large-scale
training. However, data inefficiency of RL remains one significant obstacle to its deployment in many
real-world applications, where online data collection is either costly (e.g., robotics and autonomous
driving) or even hazardous (e.g., medical treatments). As one promising solution, cross-domain RL
(CDRL) serves as a practical framework to improve the sample efficiency of RL from the perspective
of transfer learning, which leverages the data or the pre-trained models from a source domain to
enable knowledge transfer to the target domain, under the presumption that the data collection and
model training are much less costly in the source domain (e.g., simulators).

A plethora of the existing CDRL methods focuses on knowledge transfer across environments that
share the same state-action spaces but with different transition dynamics. This setting has been
extensively studied from a variety of perspectives, such as domain randomization [6], learning
similarity metrics [7], reward augmentation [8, 9], and data filtering [10]. Despite the above progress,
to fully realize the promise of CDRL, there are two further fundamental challenges to tackle: (i)
Distinct state and/or action representations between domains: To support flexible transfer across
a wide variety of domains, the generic CDRL algorithms are required to address the discrepancies
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in the state and action representations between source and target domains. Take robot control
as an example. One common scenario is to apply direct policy transfer across robot agents of
different morphologies [11], which naturally leads to discrepancy in representations. This discrepancy
significantly complicates the transfer of either data samples or learned source-domain models. (ii)
Unknown domain similarity and negative transfer: Typical CDRL presumes that the source and
target domains are sufficiently similar such that effective transfer is achievable. However, in practice,
given that the data budget of the target domain is limited, it is rather difficult to determine a priori
the similarity of a pair of domains, and this becomes even more challenging when the state-action
representations of the two domains are distinct. Moreover, this issue can also be highlighted by the
phenomenon of negative transfer [12, 13], where transfer learning from the source domain can have
a negative impact on the target domain. As a consequence, despite that CDRL has been shown to
succeed in various scenarios, without a proper design, the performance of CDRL could actually
be much worse than the vanilla target-domain model learned without using any source knowledge
beyond these good-case scenarios. Notably, to tackle (i), several approaches have been proposed to
address such representation discrepancy by learning state-action correspondence, either in the typical
RL [14] or unsupervised settings [11, 15]. However, these existing solutions are all oblivious to the
issues of domain dissimilarity and negative transfer and therefore do not provide any performance
guarantees. As a result, one fundamental research question about CDRL remains largely open: How
to achieve efficient and robust cross-domain transfer in RL across domains of distinct state-action
representations with worst-case guarantees?

In this paper, we answer the above question in the affirmative. Specifically, we revisit the cross-
domain transfer problem in RL from the perspective of mixing the source-domain and target-domain
Q functions and propose a new CDRL framework termed QAvatar, where an “avatar", as described
in the movie Avatar, refers to a genetically engineered body that is created by combining human
DNA with the DNA of the native inhabitants of the alien moon Pandora. These avatars allow humans
on Earth to remotely control these bodies and quickly adapt to the toxic environment of the planet
Pandora. By drawing an analogy between the cross-planet transfer of humans and the cross-domain
transfer of models in RL, we propose to construct a QAvatar, which updates the target-domain
policy based on the weighted combination of the learned target-domain Q function and the given
source-domain Q function and learn the state-action correspondence by minimizing a cross-domain
Bellman loss. To substantiate this idea, we first present a prototypical algorithm of QAvatar in the
tabular setting and establish that QAvatar enjoys a nice upper bound on the sub-optimality under
a properly designed weight decay function, regardless of the similarity between the source and
target domains. This result also suggests that QAvatar can achieve improved sample efficiency of
CDRL while preventing the potential negative transfer. Based on these findings, we further propose a
practical implementation by integrating the QAvatar algorithm with a neural mapping function based
on a normalizing flow model in learning the state-action correspondence.

The main contributions of this paper can be summarized as follows: 1) We propose the QAvatar
framework that achieves knowledge transfer between two domains with distinct state and action spaces
for improving sample efficiency. We then present a prototypical QAvatar algorithm and establish its
convergence property, showing that QAvatar can improve sample efficiency while avoiding negative
transfer. 2) We further substantiate the QAvatar framework by proposing a practical implementation
with a normalizing-flow-based state-action mapping. This further demonstrates the compatibility of
QAvatar with off-the-shelf methods for learning state-action correspondence. 3) Through extensive
experiments and an ablation study, we show that QAvatar significantly outperforms the benchmark
CDRL algorithms in various popular RL benchmark tasks, regardless of the quality of source-domain
models and domain similarity.

2 Related Work

CDRL across domains with distinct state and action representations. The existing approaches
can divided into three main categories: (i) Manually designed latent mapping: In [16] and [17], the
trajectories are mapped manually and by sparse coding from the source domain and the target domain
to a common latent space, respectively. The distance between latent states can then be calculated to
find the correspondence of the states from the different domains. In [18], the correspondence of the
states is found by dynamic time warping and the mapping function which can map the states from two
domains to the latent space is found by the correspondence. (ii) Learned inter-domain mapping: In
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the literature [19, 11, 20, 15, 21], the inter-domain mapping is mainly learned by enforcing dynamics
alignment (or termed dynamics cycle consistency in [11]), i.e., aligning the one-step transitions of
the two domains. Additional properties have also been incorporated as auxiliary loss functions in
learning the inter-domain mapping in the prior works, including domain cycle consistency [11, 20],
effect cycle consistency [21], maximizing mutual information between states and embeddings [20],
and alignment of target-domain rewards with the embeddings [20]. Moreover, as the state and action
spaces are typically bounded sets and these methods directly map the data samples between the two
domains, adversarial learning has been used to restrict the output range of the mapping functions
[11, 15]. On the other hand, in [22], the state mapping function is found by Unsupervised Manifold
Alignment [23]. Despite the above progress, the existing approaches all presume that the domains are
sufficiently similar and do not have any performance guarantees (and hence can suffer from negative
transfer in bad-case scenarios). By contrast, this paper proposes a robust CDRL method that can
achieve transfer regardless of source-domain model quality or domain similarity with guarantees.

CDRL across domains with identical state and action representations. In CDRL, a variety of
methods have been proposed for the case where source and target domains share the same state and
action spaces but are subject to dynamics mismatch. (i) Using the data samples from both source
and target domains for policy learning: One popular approach is to use the data from both domains
for model updates [8, 9, 10]. For example, for compensating the discrepancy between domains in
transition dynamics, [8] proposes to modify the reward function, which is learned by an auxiliary
domain classifier that distinguishes between the source-domain and target-domain transitions. [9]
handles the dynamics shift problem in offline RL by augmenting rewards in the source-domain
dataset. [10] proposes to address dynamics mismatch by a value-guided data filtering scheme,
which ensures selective sharing of the source-domain transitions based on the proximity of paired
value targets. (ii) Explicit domain similarity: [7] proposes to selectively apply direct transfer of the
source-domain policy to the target domain based on a learnable similarity metric, which is essentially
the TD error of target domain trajectories with source Q function. Moreover, based on the policy
invariant explicit shaping [24], [7] further uses the potential function as a bias term for selecting
actions. (iii) Using both Q-functions for the Q-learning updates: Target Transfer Q-Learning [25]
calculates the TD error by the source and target domains Q functions in order to select the TD target
from the two Q functions. (iv) Domain randomization: To tackle sim-to-real transfer with dynamics
mismatch, domain randomization [26, 6, 27, 28] and [28] collects data from multiple similar source
domains with different configurations to learn a high-quality policy that can work robustly in a
possibly unseen but similar target domain. Although many CDRL methods are applied when state
and action representations are identical, they can’t handle the negative transfer and lack the theoretical
guarantees.

3 Preliminaries

In this section, we provide the problem formulation and basic building blocks of CDRL as well
as the useful notation needed by subsequent sections. For a set X , we let ∆(X ) denote the set of
probability distributions over X . As in typical RL, we model each environment as an infinite-horizon
discounted Markov decision process (MDP) denoted byM := (S,A, P, r, γ, µ), where (i) S and A
represent the state space and action space, (ii) P : S ×A → ∆(S) denotes the transition function,
(iii) r : S ×A → [−Rmax, Rmax] is the reward function, (iv) γ ∈ [0, 1) is the discounted factor,
and (v) µ ∈ ∆(S ×A) denotes the initial state-action distribution. Notably, the use of an initial
distribution over states and actions is a standard setting in the literature of natural policy gradient
(NPG) [29, 30, 31, 32, 33]. Given any policy π : S → ∆(A), we use τ = (s0, a0, r1, · · · ) to denote
a (random) trajectory generated under π inM, and the expected total discounted reward under π is
defined as V πM(µ) := E[

∑∞
t=0 γ

tr(st, at)|π; s0, a0 ∼ µ]. Moreover, as usual, we use QπM(s, a) and
V πM(s) to denote the Q function and value function of a policy π. We also define the state-action
visitation distribution (also known as the occupancy measure in the MDP literature) of a policy π as
dπ(s, a) := (1− γ)

(
µ(s, a) +

∑∞
t=1 γ

tP(st = s, at = a;π)
)
, for each (s, a).

Problem Formulation of Cross-Domain RL. In typical CDRL, the knowledge transfer involves
two MDPs, namely the source-domain MDPMsrc := (Ssrc,Asrc, Psrc, rsrc, γ, µsrc) and the target-
domain MDPMtar := (Star, Atar, Ptar, rtar, γ, µtar)

1. Here we assume that the two MDPs share the

1Throughout this paper, we use the subscripts “src" and “tar" to represent the objects in the source domain
and the target domain, respectively.
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same discounted factor γ, which is rather mild. Moreover, the trajectories of the two domains are
completely unpaired. Let Πtar be the set of all stationary Markov policies forMtar. The goal of the
RL agent is to learn a policy π∗ in the target domain such that the expected total discounted reward
is maximized, i.e., π∗ := argmaxπ∈Πtar V

π
Mtar

(µtar). To improve sample efficiency via knowledge
transfer (compared to learning from scratch), in CDRL, the target-domain agent is granted access to
(πsrc, Qsrc, Vsrc), which denotes a policy and the corresponding Q and value functions pre-trained in
Msrc. Notably, we make no assumption on the quality of πsrc (and hence πsrc may not be optimal to
Msrc), despite that πsrc shall exhibit acceptable performance in practice.

In this paper, we focus on designing a robust CDRL algorithm in the sense that it effectively leverages
a source-domain Q function Qsrc for knowledge transfer to the target domain, regardless of the quality
of Qsrc and domain similarity.

Inter-Domain Mapping Functions. To address the discrepancy in state-action representations in
CDRL, learning an inter-domain mapping function is one common building block of many CDRL
algorithms. Specifically, there are a variety of ways to construct the mapping functions, such as
handcrafted functions [16], encoders and decoders trained by cycle consistency [20] like cycle-
GAN [34], neural networks trained by dynamics alignment of the MDPs [15]. Moreover, mapping
functions have various candidate target spaces, such as a latent space, state or action spaces of the
target domain (i.e., from Ssrc,Asrc to S tar,Atar), and state or action spaces of the source domain
(i.e., from S tar,Atar to Ssrc,Asrc). For example, [15] proposed to learn two mapping functions
G1 : S tar → Ssrc and G2 : Asrc → Atar through dynamics alignment, which infers the unknown
mapping between the unpaired trajectories ofMsrc andMtar by aligning the one-step state transitions.
Specifically, dynamics alignment can be implemented by minimizing the loss function defined as
L(G1, G2) = Estar∼ρ,s′tar,s

′
src

[
∥s′src −G1(s

′
tar)∥1

]
, where star is drawn from some target-domain state

distribution ρ and s′tar ∼ Ptar(·|star, G2(asrc)) with asrc ∼ πsrc(·|G1(star)). However, this approach
provides no performance guarantee as it can suffer from identification issue due to its unsupervised
nature. By contrast, in this work, we propose to learn inter-domain state and action mapping functions
in the form of ϕ : S tar → Ssrc and ψ : Atar → Asrc by leveraging a cross-domain Bellman-like loss
function with guarantees, as described subsequently in Section 4.

Notation. Throughout this paper, for any real-valued function h : S ×A → R, for any policy π,
we use h(s, π) and h̄(s, a;π) as the shorthand for Ea∼π(·|s)[h(s, a)] and h(s, a)−Ea∼π(·|s)[h(s, a)],
respectively. For any real vector z and any p ≥ 1, we use ∥z∥p to denote the ℓp-norm of z.

4 Methodology

In this section, we first describe the prototypical framework of QAvatar in the tabular setting (i.e.,
S tar and Atar are finite) and establish convergence guarantees. We then extend this framework to a
practical deep RL implementation.

4.1 The QAvatar Framework

The main idea of QAvatar is to utilize a weighted combination of a learned target-domain Q function
and the given source-domain Q function for robust cross-domain knowledge transfer. In this way,
QAvatar can enjoy improved sample efficiency in good-case scenarios (e.g., Msrc and Mtar are
similar) while avoiding potential negative transfer in other scenarios. Specifically, QAvatar consists
of the following three major components:

• Inter-domain mapping: Under QAvatar , we propose to learn the inter-domain mappings ϕ :
S tar → Ssrc and ψ : Atar → Asrc by minimizing a cross-domain Bellman-like loss function as

LCD(ϕ, ψ;Qsrc, πtar,Dtar) := Ê(s,a,r,s′)∈Dtar

[∣∣r+γEa′∼πtar [Qsrc(ϕ(s
′), ψ(a′))]−Qsrc(ϕ(s), ψ(a))

∣∣],
(1)

where Qsrc is the pre-trained source-domain Q function and Dtar = {(s, a, r, s′)} denotes a set of
on-policy target-domain samples drawn under πtar. Intuitively, the loss in (1) looks for a pair of
mapping functions ϕ, ψ such that Qsrc aligns as much with the target-domain transitions as possible.
In the special case ofMsrc =Mtar and ϕ, ψ being identity maps, (1) simply reduces to the standard
loss function of temporal difference (TD) learning.
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Algorithm 1 QAvatar

Require: Source-domain Q function Qsrc, weight decay function α : N→ [0, 1], and η ∈ (0, 1−γ2 ].
1: Initialize the state mapping function ϕ, the action mapping function ψ, number of on-policy

samples per iteration Ntar, and the target-domain policy π(0)

2: for iteration t = 1, · · · , T do
3: Sample D(t)

tar = {(s, a, r, s′)} of N (t)
tar on-policy samples using π(t) in the target domain

4: Update Qtar by minimizing the TD loss in (2), i.e., Q(t)
tar ← argminQtar LTD(Qtar;π

(t),D(t)
tar )

5: Update ϕ and ψ by minimizing (1), i.e., ϕ(t), ψ(t) ← argminϕ,ψ LCD(ϕ, ψ;Qsrc, π
(t),D(t)

tar ).
6: Update the target-domain policy by adapting NPG to CDRL as in (3).
7: end for
8: Return Target-domain policy π(T )

tar ∼ Uniform({π(1), · · · , π(T )}).

• Target-domain Q function: To implement the idea of a hybrid Q function, QAvatar maintains
a target-domain Q function Qtar, which is essentially a critic of the current target-domain policy.
Specifically, in each iteration t, Qtar is obtained by a policy evaluation step via minimizing the
standard TD loss for least-squares policy evaluation (LSPE) [35, 36, 37]2, i.e.,

LTD(Qtar;πtar,Dtar) := Ê(s,a,r,s′)∈Dtar

[∣∣r + γEa′∼πtar [Qtar(s
′, a′)]−Qtar(s, a)

∣∣2], (2)

where Dtar = {(s, a, r, s′)} denotes on-policy target-domain samples.

• NPG-like policy update with a weighted combination of Q functions: The core idea of QAvatar
is to leverage both Qsrc and Qtar to determine policy updates. In the tabular setting, inspired by [33]
in the offline-to-online RL literature, we adapt the classic natural policy gradient (NPG) update
[38], which takes an exponential-weight form on the Q function in the policy space (cf. [29, 39]),
to the CDRL setting. In each iteration t,

π(t+1)(a|s) ∝ π(t)(a|s) exp
(
η ·

(
(1− α(t))Q(t)

tar (s, a) + α(t)Qsrc(ϕ
(t)(s), ψ(t)(a))

))
, (3)

where α : N→ [0, 1] is the weight decay function to be configured. Intuitively, α(t) shall be close
to one for small t to achieve knowledge transfer from Qsrc and gradually diminish with t to escape
from potential negative transfer.

The pseudo code of QAvatar is provided in Algorithm 1.
Remark 1. In Line 8 of Algorithm 1, QAvatar outputs the final policy by choosing uniformly at
random from the set of all intermediate polices. This is a standard procedure in the optimization
literature to connect the average sub-optimality with the performance of output policy. In the
experiments, we show that using the last-iterate policy is sufficient and performs well.

4.2 Performance Guarantees of QAvatar

In this section, we formally present the theoretical guarantee of QAvatar and thereby describe how
to choose the proper decay parameter α(·). Before stating the theorem, we first describe a useful
definition on the coverage in terms of state-action distribution [33].
Definition 1 (Coverage). Given a comparator policy π† inMtar, we say that π† has coverage Cπ† if
for any policy π ∈ Πtar, we have ∥dπ†

/dπ∥∞ ≤ Cπ† .

Notably, one can verify that Cπ† is finite if ∥dπ†
/µtar∥∞ is finite (given that ∥µtar/d

π∥∞ ≤ 1/(1−γ)
for all π, by the definition of dπ), and this can be satisfied under an exploratory initial distribution with
µtar(s, a) > 0 for all (s, a), which is one standard assumption in the NPG literature [29, 30, 31, 32, 33].
Intuitively, the coverage is needed to enable direct comparison of the Bellman error between policies.

Assumption 1. The initial distribution is exploratory, i.e., µtar(s, a) > 0, for all s, a.
2These works on LSPE are shown under linear function approximation, which includes the tabular setting as

a special case by using one-hot feature vectors.
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Definition 2 (TD Error). For each state-action pair (s, a) and t ∈ N, the TD error ϵ(t)td (s, a) is
defined as ϵ(t)td (s, a) :=

∣∣Q(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a),a′∼π(t)(·|s′)[Q

(t)
tar (s

′, a′)]
∣∣.

Definition 3 (Cross-Domain Bellman Error). Given a source-domain Qsrc, for each state-action pair
(s, a) and t ∈ N, the cross-domain Bellman error ϵ(t)src,be(s, a;Qsrc) is defined as ϵ(t)src,be(s, a;Qsrc) :=∣∣Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a),a′∼π(t)(·|s′)[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

∣∣.
Below we use ∥ϵ(t)src, be(Qsrc)∥∞ and ∥ϵ(t)td ∥∞ as shorthand for ∥ϵ(t)src, be(·, ·;Qsrc)∥∞ and ∥ϵ(t)td (·, ·)∥∞,
and we use µtar,min as a shorthand for mins,a µtar(s, a). We are ready to present the main theoretical
result, and the detailed proof is provided in Appendix B.

Theorem 1. (Average Sub-Optimality) Under the QAvatar in Algorithm 1 and Assumption 1, the
average sub-optimality over T iterations can be upper bounded as

1

T

T∑
t=1

(
V π

∗
(µtar)− V π

(t)

(µtar)
)

≤ 2

1− γ

√
log(A)

T︸ ︷︷ ︸
(a)

+
C0

T

T∑
t=1

α(t)∥ϵ(t)src, be(Qsrc)∥∞︸ ︷︷ ︸
(b)

+
C0

T

T∑
t=1

(1− α(t))∥ϵ(t)td ∥∞︸ ︷︷ ︸
(c)

,
(4)

where C0 := 2
√
Cπ∗/((1− γ)2µtar, min).

Notably, in (4), the term (a) reflects the learning progress of NPG, the (b) reflects the effect of
cross-domain transfer, and (c) indicates the error of policy evaluation for the target-domain policy.
The term (c) reflects the sample complexity of the standard least-squares TD-based policy evaluation
[35, 40, 36, 37] and can be made small with sufficient samples (i.e., sufficiently large N (t)

tar ).

Remark 2. Note that the proof of Theorem 1 bears some high-level resemblance with [33] as they
also use NPG in their hybrid actor-critic (HAC) algorithm. That said, QAvatar is fundamentally
different from HAC in two aspects: (i) QAvatar addresses cross-domain transfer while HAC focuses
on using offline and online data from the same domain. (ii) QAvatar utilizes the hybrid Q function
while HAC applies a hybrid squared error regression loss (i.e., the sum of TD errors calculated from
both offline and online data).

Corollary 1. By choosing α(t) = t−β with β ≥ 1/2, the policy returned by Algorithm 1 satisfies

E[V π
∗
(µtar)− V π

(T )
tar (µtar)] ≤

2

1− γ

√
log(A)

T
+ C1 max

{ 2

T β
,
2 ln(T )

T

}
+
C0

T

T∑
t=1

∥ϵ(t)td ∥∞,

where C1 := 2C0Rmax/(1− γ).

Based on the above, we can observe multiple features of the proposed algorithm:

• Domain similarity is reflected by the cross-domain Bellman error: Theorem 1 naturally reflects
the domain similarity through the term (b) in (4), which involves cross-domain Bellman error. In
fact, in the special case whereMtar =Msrc and Qsrc is near-optimal, ϵsrc,be can be already close to
zero in the first iteration.

• QAvatar supports effective cross-domain knowledge transfer while avoiding potential negative
transfer: When effective knowledge transfer is possible (i.e., the cross-domain Bellman error
ϵsrc,be is small), the term (b) in the upper bound (4) can be small even for small t (i.e., early training
stage). On the other hand, if the two domains are fairly different such that negative transfer can
likely happen, one can escape from this with the help of the weight decay α(t).

• Weight decay function offers a flexible trade-off between transfer learning and target-domain
RL: As shown in Corollary 1, choosing α(t) = t−β with any β ≥ 1/2 is sufficient to bound the
term (b) in (4). This resulting wide range of α(t) can serve as a flexible control of the trade-off
between cross-domain transfer and the learning of the target domain per se.
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4.3 Practical Implementation of QAvatar

We extend the QAvatar framework in Algorithm 1 to a practical deep RL implementation for
continuous state and action spaces by applying the following design choices. The pseudo code is
provided in Algorithm 2 in Appendix.

• Learning the target-domain policy and the Q function. To go beyond the tabular setting and
handle continuous state and action spaces, we extend QAvatar by first connecting NPG with soft
policy iteration (SPI) [41]. In the entropy-regularized RL setting, SPI has been shown to be a special
case of NPG [42]. Based on this connection, we choose to integrate QAvatar with soft actor-critic
(SAC) [41], i.e., updating the target-domain critic Qtar by the critic loss of SAC and updating the
target-domain policy π(t) by the SAC policy loss function with the weighted combination of Qtar
and Qsrc of QAvatar . Regarding the weight decay function α(t), we follow the theoretical result
and set α(t) = t−β with β ≥ 1/2.

• Learning the inter-domain mapping functions with an augmented flow model. Similar to
the tabular setting, we learn the inter-domain mappings by minimizing the cross-domain Bellman
loss. Notably, in practical RL problems, the state and action spaces are mostly bounded sets.
As a result, we need to ensure that the outputs of the inter-domain mappings ϕ : S tar → Ssrc
and ψ : Atar → Asrc fall within the feasible regions. As mentioned in Section 2, adversarial
learning is widely adopted to solve this practical problem in the existing literature [19, 11, 15, 21].
However, we observe that adversarial learning could suffer from unstable training process in
practice. Therefore, we use the method proposed by [43] and train a normalizing flow model that
can map the outputs of the mapping functions to the feasible regions.

5 Experiments

In this section, we show that QAvatar achieves effective cross-domain transfer amd improves the
sample efficiency on various RL benchmark tasks. Moreover, we demonstrate that QAvatar can still
perform well even with the existence of negative transfer between the source and target domains.
Unless stated otherwise, all the results reported in this section are averaged over 5 random seeds.

5.1 Experimental Settings

Table 1: Dimensionalities of the source and tar-
get domains (“Src" and “Tar" represent the source
domain and the target domain.

Environment State Action

Src Tar Src Tar

Swimmer 8 10 2 3
Hopper 11 13 3 4
HalfCheetah 17 23 6 9
Ant 27 31 8 10
IP / Modified IDP 4 11 1 1

Block Lifting 42 47 8 7
Door Opening 46 51 8 7
Table Wiping 37 34 7 6

Baselines. We compare the performance of
QAvatar with various recent CDRL benchmark
algorithms under distinct state-action represen-
tations, including Dynamics Cycle-Consistency
(DCC) [11], Cross-Morphology-Domain Pol-
icy Adaptation (CMD) [15], and Cross-domain
Adaptive Transfer (CAT) [20]. For a fair compar-
ison, all these benchmark methods and QAvatar
use the same set of source-domain models (i.e.,
the policy and the corresponding Q-networks),
which are pre-trained by using SAC in the source
domain. Moreover, as the original DCC is imple-
mented in the batch setting (i.e., a fixed number
of trajectories are collected for learning the inter-
domain mappings), we further consider a variant
of DCC that can learn in the online setting (i.e.,
learning while collecting new trajectories itera-
tively). Accordingly, we call these two versions “DCC-Batch" and “DCC-Online" in our experiments,
respectively. We also consider two versions of CMD as our baselines, namely “CMD-Random"
and “CMD-Policy". Specifically, CMD-Random represents that CMD collects target-domain data
with a random policy continuously, as in the default setting of the original paper [15]. However,
CMD-Random can suffer if the collected trajectories are mostly of low return due to the random
exploration. Accordingly, we also consider CMD-Policy, which collects target-domain data with the
target-domain policy induced by the source-domain pre-trained policy and the current inter-domain
mapping functions. For CAT and DCC, we use the implementation provided by the original papers
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(a) Swimmer (b) Hopper (c) HalfCheetah

(d) Block Lifting (e) Door Opening (f) Table Wiping

Figure 1: The training curves of QAvatar and the benchmark methods: (a)-(c): Locomotion tasks in
MuJoCo ; (d)-(f): Robot arm manipulation tasks in Robosuite. Note that the shading represents one
standard deviation above and below the mean.

with no change. Moreover, we reproduce CMD by referring to the source code of DCC as they
are similar and there is no CMD implementation available. Moreover, to demonstrate the sample
efficiency of QAvatar , we also compare it with the standard SAC algorithm [41] that learns from
scratch in the target domain and hence can serve as a baseline. The hyperparameters are provided in
Appendix E.

Evaluation Environments. We evaluate QAvatar on two types of RL benchmark tasks: (i) Locomo-
tion: We use the original MuJoCo environments, including Swimmer-v3, Hopper-v3, HalfCheetah-v3
and Ant-v3, as the source domains and modify them for the target domains [11], [10]. The details
about the morphology is in Appendix E. Additionally, we use Inverted Pendulum-v2 as the source
domain and use Inverted Double Pendulum-v2 as the target domain for evaluation in the scenario
of negative transfer. (ii) Robot arm manipulation: We use the environments provided by Robosuite,
a popular package for robot learning released by [44]. We evaluate our algorithm on three tasks,
including block lifting, door opening and table wiping. For each task, we use the Panda robot
arm as the source domain and set the UR5e robot arm as the target domain. Table 1 provides the
dimensionalities of the state and action spaces in all the tasks.

5.2 Experimental Results

Does QAvatar improve data efficiency? As shown by the training curves in Figure 1, we observe
that QAvatar achieves better data efficiency than SAC throughout the training process in all the
MuJoCo and Robosuite tasks, despite that these tasks have rather different dimensionalities as shown
in Table 1. CAT achieves moderate performance in Swimmer and Table Wiping but does not learn
effectively in the other tasks. These appear reasonable as CAT has no performance guarantees and
can suffer if the source and target are rather dissimilar, despite that CAT applies policy gradient
with target-domain rewards to align the inter-domain mapping with the target domain. Regarding
CMD, we observe that CMD cannot obtain good returns in most of the tasks, and these results are
consistent with those in the original CMD paper. Moreover, in some environments like Ant, CMD
appears very unstable due to its adversarial learning module for restricting the output of their mapping
functions. DCC performs well only in Swimmer but rather poorly in all the other tasks (including
HalfCheetah). This trend is similar to that in the original paper [11]. The rewards obtained by DCC
in our experiments are slightly lower than the rewards shown in [11] despite that we try our best to
reproduce their results. That said, the performance of QAvatar is still better than that of DCC in [11].
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We conjecture that the undesired performance of CMD and DCC results from that they learn in an
unsupervised manner and hence does not take target-domain rewards into account. Additionally,
when we consider the time to threshold metric, our algorithm requires 268k fewer steps to achieve
the threshold than SAC does in the best case. When we consider the asymptotic performance metric,
our algorithm can obtain higher final rewards than SAC. The results of these two metrics are shown
in the Appendix D.1 and D.2.

(a) Ant (b) Modified IDP

Figure 2: The training curves of QAvatar and the bench-
mark methods in the negative transfer cases.

Does QAvatar still perform robustly well
when negative transfer is likely to hap-
pen? We construct negative transfer sce-
narios as follows: (i) We add an extra right-
middle leg to the original Ant. Due to the
fact that the original ant has no middle leg,
the inter-domain action mapping cannot
find a reasonable mapping to make this ex-
tra leg take a proper action. (ii) We use
Inverted Pendulum (IP) as the source do-
main and Inverted Double Pendulum (IDP)
as the target domain. Then, we modify
the configuration of IDP by swapping the
meaning of the actions “left” and “right"
(termed “Modified IDP"). As a result, negative transfer shall easily occur if we deactivate the inter-
domain action mapping ψ of QAvatar (such that QAvatar cannot learn by simply mapping to “left"
in IDP to “right" in IP. As shown in Figure 2, we discover that QAvatar performs better than all
the baselines (and even better than SAC) despite the negative transfer scenarios. This confirms the
robustness of QAvatar offered by the use of hybrid Q function.

(a) Swimmer (b) Door Opening

Figure 3: The training curves of QAvatar under
different decay functions α.

(a) Swimmer (b) Door Opening

Figure 4: The training curves of QAvatar with
a high-quality and a low-quality source model.

Is QAvatar sensitive to the decay function? We evaluate QAvatar with α(t) as 1/
√
t, 1/t, and

1/t1.5. As shown in Figure 3, the training curves of QAvatar are better than SAC and appear
consistently favorable under all these choices of α(t).

Does QAvatar still perform robustly with a low-quality source-domain model? We further run
QAvatar with low-quality source-domain Q networks, which are pre-trained only for 10k and 5k steps
in Swimmer and Door Opening, respectively. As shown by Figure 4, we find that despite QAvatar is
affected by the low-quality source model initially, it can quickly catch up and achieve total reward
comparable to SAC. This appears consistent with the theoretical result in Theorem 1.

6 Concluding Remarks and Limitations

In this paper, we present QAvatar, the first CDRL method that can handle distinct state-action
representations between domains with performance guarantees. Based on the idea of combining
the source-domain and target-domain Q functions, QAvatar achieves robust knowledge transfer and
tackles the negative transfer issue. Through extensive experiments, we show that QAvatar indeed
serves as a promising and generic solution to cross-domain transfer in RL. One limitation of this
work is that we follow the standard CDRL formulation and consider only one source domain and one
target domain. Extending the idea of QAvatar to achieve knowledge transfer from multiple source
and target domains is a promising future research direction.
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A Supporting Lemmas

Lemma 1 (Performance difference lemma). For any two policies π and π′, for any state s, we have

V π
′
(µ)− V π(µ) = 1

1− γ
Es,a∼dπ′ [Aπ(s, a)],

where Aπ(s, a) := Qπ(s, a)− V π(s) is the advantage function.

Proof. This can be directly obtained from Lemma 6.1 in [45].

Lemma 2 ([33], Lemma 6). Suppose f (t) and π(t) denote the value function and the policies at
iteration t. Then, for any η ≤ 1−γ

2 and policy π∗, we have∑
t

Es,a∼dπ∗ [f (t)(s, a)− f (t)(s, π(t)(s))] ≤ 2

1− γ
√
log(A)T

Lemma 3 ([46], Chapter 4). Let τ = (s0, a0, s1, a1, · · · ) denote the (random) trajectory generated
under a policy π in an infinite-horizon MDPM. For any function f : S ×A → R, we have

Eτ
[ ∞∑
t=0

γtf(st, at)

]
=

1

1− γ
E(s,a)∼dπ

[
f(s, a)

]
. (5)

Lemma 4 (Importance Ratio). Given a fixed policy π and a fixed state-action pair (s, a), let pk(s, a)
denote the probability of reaching (s, a) under an initial distribution dπ and policy π after k time
steps. Then, for any k ∈ N, we have

pk(s, a)

dπ(s, a)
≤ 1

(1− γ)µ(s, a)
. (6)

Proof. To begin with, recall the definition of dπ as

dπ(s, a) := (1− γ)
(
µ(s, a) +

∞∑
t=1

γtP (st = s, at = a;π)
)
≡

∞∑
t=0

γtP (st = s, at = a;π). (7)

Let snext,k and anext,k denote the state and action after k time steps. Then, we can write down pk(s, a):

pk(s, a) =
∑

(s0,a0)

P(snext,k = s, anext,k = a|s0, a0;π)dπ(s0, a0) (8)

=
∑

(s0,a0)

P(snext,k = s, anext,k = a|s0, a0;π) · (1− γ) ·
∞∑
t=0

γt P(st = s0, at = a0;π) (9)

= (1− γ) ·
∞∑
t=0

γt
∑
s0,a0

P(snext,k = s, anext,k = a|s0, a0;π) · P(st = s0, at = a0;π) (10)

= (1− γ)
∞∑
t=0

γt P(st+k = s, at+k = a;π) (11)

Then, we have

pk(s, a)

dπ(s, a)
=

(1− γ)
∑∞
t=0 γ

t P(st+k = s; at+k = a;π)

(1− γ)
∑∞
t=0 γ

t P(st = s, at = a;π)
(12)

=

∑∞
t=0 γ

t P(st+k = s, at+k = a;π)∑∞
t=0 γ

t P(st = s, at = a;π)
(13)

≤
∑∞
t=0 γ

t∑∞
t=0 γ

t P(st = s;π)
(14)

=
1

1− γ
· 1∑∞

t=0 γ
t P(st = s;π)

(15)
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where (14) holds by P(st+k = s, at+k = a;π) ≤ 1 and (15) holds by taking the sum of an infinite
geometric sequence. By

∑∞
t=0 γ

t P(st = s, at = a;π) = µtar(s) +
∑∞
t=1 γ

t P(st = s, at = a;π),
we have

1

1− γ
· 1∑∞

t=0 γ
t P(st = s, at = a;π)

=
1

1− γ
· 1

µ(s, a) +
∑∞
t=1 γ

t P(st = s, at = a;π)
(16)

≤ 1

(1− γ)µ(s, a)
(17)

where (17) holds by
∑∞
t=1 γ

t P(st = s, at = a;π) ≥ 0.

B Proof of Theorem 1

Recall that for any policy π, we use dπ to denote the discounted state-action visitation distribution
under policy π in the target domain.
Lemma 5. Under Algorithm 1, for any t ∈ N, we have

E
(s,a)∼dπ(t)

[(
f̄ t(s, a)−Aπ

t

(s, a)
)2]

≤ 4

(1− γ)2µ2
tar, min

E
(s,a)∼dπ(t)

[(
(1− α(t))ϵ(t)td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

)2
] (18)

Proof. Recall the definitions that f̄ (t)(s, a) := f (t)(s, a) − f (t)(s, π(t)(s)) and Aπ
(t)

(s, a) :=

Qπ
(t)

(s, a)−Qπ(t)

(s, π(t)(s)). Then, we have

E
(s,a)∼dπ(t)

[(
f̄ (t)(s, a)−Aπ

(t)

(s, a)
)2]

(19)

= E
(s,a)∼dπ(t)

[(
f (t)(s, a)− f (t)(s, π(t)(s))−Qπ

(t)

(s, a) +Qπ
(t)

(s, π(t)(s))
)2]

(20)

≤ E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2

+ 2
(
Qπ

(t)

(s, π(t)(s))− f (t)(s, π(t)(s))
)2]

(21)

where (21) holds by the fact that (x + y)2 ≤ 2x2 + 2y2 for any x, y ∈ R. Then, by linearity of
expectation, we obtain

E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2

+ 2
(
Qπ

(t)

(s, π(t)(s))− f (t)(s, π(t)(s))
)2]

(22)

= E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

+ E
s∼dπ(t)

[
2
(
Qπ

(t)

(s, π(t)(s))− f (t)(s, π(t)(s))
)2]

(23)

= E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

+ E
s∼dπ(t)

[
2
[
Ea′∼π(t)(s)

[
Qπ

(t)

(s, a′)− f (t)(s, a′)
]]2]

(24)

≤ E
(s,a)∼dπ(t)

[
2
(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

+ E
(s,a′)∼dπ(t)

[
2
(
Qπ

(t)

(s, a′)− f (t)(s, a′)
)2]

(25)

≤ 4E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

(26)

where (25) holds by Jensen’s inequality. Then, we proceed to derive an upper bound on
E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ(t)

(s, a)
)2]

. By the definition of f (t) := (1 − α(t))Q
(t)
tar (s, a) +

α(t)Qsrc(ϕ
(t)(s), ψ(t)(a)), we have

E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

(27)

= E
(s,a)∼dπ(t)

[(
(1− α(t))Q(t)

tar (s, a) + α(t)Qsrc(ϕ
(t)(s), ψ(t)(a))−Qπ

(t)

(s, a)
)2]

(28)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a) + rtar(s, a)

)
+ α(t)

(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a) + rtar(s, a)
)
−Qπ

(t)

(s, a)
)2

] (29)
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= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a) + rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]

+ γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
)
+ α(t)

(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a) + rtar(s, a)

− γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))] + γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
)

−Qπ
(t)

(s, a)
)2

]
(30)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+
(
1− α(t)

)
γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)] + α(t)γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

+ rtar(s, a)−Qπ
(t)

(s, a)
)2

]
(31)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)
)2

] (32)

where we obtain (29) by adding the dummy terms
(
1 − α(t)

)(
− rtar(s, a) + rtar(s, a)

)
and α(t)

(
− rtar(s, a) + rtar(s, a)

)
to the inner part of (28), (30) is obtained by

adding
(
1 − α(t)

)(
− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)] + γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
)

and α(t)
(
−

γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))] + γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
)

to the inner part

of (29), (31) holds by rearranging the terms in (30), and (32) holds by the definition of f (t). Then,
by adding γ Es′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]− γ Es′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)] to the inner part of (32),

we can rewrite (32) as

E
(s,a)∼dπ(t)

[((
1− α(t)

)(
Q

(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)

+ γ Es′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]− γ Es′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
)2

]
(33)
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= E
(s,a)∼dπ(t)

[∣∣∣∣(1− α(t))(Q(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)

+ α(t)
(
Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)
+ γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)

+ γ Es′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]− γ Es′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣2]

(34)

≤ E
(s,a)∼dπ(t)

[(∣∣∣(1− α(t))(Q(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
)∣∣∣

+
∣∣∣α(t)(Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)∣∣∣
+
∣∣∣γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)] + rtar(s, a)−Qπ

(t)

(s, a)
∣∣∣

+
∣∣∣γ Es′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]− γ Es′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣)2]

(35)

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

) ∣∣∣Q(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
∣∣∣︸ ︷︷ ︸

=:ϵ
(t)
td (s,a)

+ α(t)
∣∣∣(Qsrc(ϕ

(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

)∣∣∣︸ ︷︷ ︸
=:ϵ

(t)
src,be(s,a;Qsrc)

+
∣∣∣γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[f (t)(s′, a′)]− γ Es′′∼Ptar(·|s,a)

a′′∼π(t)(·|s′′)
[Qπ

(t)

(s′′, a′′)]
∣∣∣

+
∣∣∣rtar(s, a)−Qπ

(t)

(s, a) + γ Es′′∼Ptar(·|s,a)
a′′∼π(t)(·|s′′)

[Qπ
(t)

(s′′, a′′)]
∣∣∣︸ ︷︷ ︸

=0

)2
]

(36)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γ
∣∣∣Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′′)

[
f (t)(s′, a′)−Qπ

(t)

(s′, a′)
]∣∣∣)2

] (37)

= E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′′)

[∣∣f (t)(s′, a′)−Qπ(t)

(s′, a′)
∣∣])2

] (38)

where (34) holds by the fact that x2 = |x|2, (35) holds by triangle inequality, (36) by the facts
that 0 ≤ α(t) ≤ 1 and 0 ≤ 1 − α(t) ≤ 1, (37) holds by coupling (s′, a′) and (s′′, a′′) and
applying Bellman expectation equation as well as the definitions that ϵ(t)td (s, a) :=

∣∣Q(t)
tar (s, a) −

rtar(s, a)−γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Q
(t)
tar (s

′, a′)]
∣∣ and ϵ(t)src,be(s, a;Qsrc) :=

∣∣Qsrc(ϕ
(t)(s), ψ(t)(a))−rtar(s, a)−

γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[Qsrc(ϕ
(t)(s′), ψ(t)(a′))]

∣∣. By recursively applying the procedure from (27) to (38)
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to
∣∣f (t)(s′, a′) −Qπ(t)

(s′, a′)
∣∣, we obtain a bound on E

(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ(t)

(s, a)
)2]

as
follows:

E
(s,a)∼dπ(t)

[(
f (t)(s, a)−Qπ

(t)

(s, a)
)2]

(39)

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[∣∣f (t)(s′, a′)−Qπ(t)

(s′, a′)
∣∣])2

] (40)

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γ Es′∼Ptar(·|s,a)
a′∼π(t)(·|s′)

[(
1− α(t)

)
ϵ
(t)
td (s′, a′) + α(t)ϵ

(t)
src,be(s

′, a′;Qsrc)

+ Es′′∼Ptar(·|s′,a′)
a′′∼π(t)(·|s′′)

[∣∣f (t)(s′′, a′′)−Qπ(t)

(s′′, a′′)
∣∣]])2

] (41)

≤ E
(s,a)∼dπ(t)

[((
1− α(t)

)
ϵ
(t)
td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

+
1

(1− γ)µtar,min

(
γ
(
1− α(t)

)
ϵ
(t)
td (s, a) + γα(t)ϵ

(t)
src,be(s, a;Qsrc)

+ γ2
(
1− α(t)

)
ϵ
(t)
td (s, a) + γ2α(t)ϵ

(t)
src,be(s, a;Qsrc) + · · ·

))2] (42)

≤ 1

(1− γ)4µ2
tar,min

E
(s,a)∼dπ(t)

[(
(1− α(t))ϵ(t)td (s, a) + α(t)ϵ

(t)
src,be(s, a;Qsrc)

)2
]

(43)

where (41) holds by applying the procedure from (27) to (38) to f (t)(s′, a′)−Qπ(t)

(s′, a′), (42) holds
by applying the procedure from (27) to (38) to all the subsequent time steps and using importance
sampling with the importance ratio bound in Lemma 4 and then using the same dummy variables (s, a)
for all the subsequent state-action pairs, and (43) holds by taking the sum of an infinite geometric
sequence.

Theorem 1. (Average Sub-Optimality) Under the QAvatar in Algorithm 1 and Assumption 1, the
average sub-optimality over T iterations can be upper bounded as

1

T

T∑
t=1

(
V π

∗
(µtar)− V π

(t)

(µtar)
)

≤ 2

1− γ

√
log(A)

T︸ ︷︷ ︸
(a)

+
C0

T

T∑
t=1

α(t)∥ϵ(t)src, be(Qsrc)∥∞︸ ︷︷ ︸
(b)

+
C0

T

T∑
t=1

(1− α(t))∥ϵ(t)td ∥∞︸ ︷︷ ︸
(c)

,
(4)

where C0 := 2
√
Cπ∗/((1− γ)2µtar, min).

Proof. We start by providing an upper bound on the sub-optimality gap V π
∗
(µtar)− V π

(t)

(µtar) at
each iteration. Recall that dπtar denotes the discounted state-action visitation distribution of policy π in
the target domain. Note that

V π
∗
(µtar)− V π

(t)

(µtar) (44)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
Aπ

(t)

(s, a)
]

(45)

=
1

1− γ
E(s,a)∼dπ∗

tar

[
f̄ (t)(s, a)− f̄ (t)(s, a) +Aπ

(t)

(s, a)
]

(46)
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=
1

1− γ
E(s,a)∼dπ∗

tar

[
f̄ (t)(s, a)

]
+

1

1− γ
E(s,a)∼dπ∗

tar

[
− f̄ (t)(s, a) +Aπ

(t)

(s, a)
]

(47)

≤ 1

1− γ
E(s,a)∼dπ∗

tar

[
f̄ (t)(s, a)

]
+

1

1− γ

√
E(s,a)∼dπ∗

tar

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
, (48)

where (45) holds by the performance difference lemma (cf. Lemma 1), (46) is obtained by adding
f̄ t(s, a) − f̄ t(s, a), (47) is obtained by rearranging the terms in (46), and (48) holds by Jensen’s
inequality. By the fact that ∥ d

π∗

dπ
(t) ∥∞ ≤ C, we have

1

1− γ
E(s,a)∼dπ∗

[
f̄ (t)(s, a)

]
+

1

1− γ

√
Es,a∼dπ∗

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
(49)

≤ 1

1− γ
E(s,a)∼dπ∗

[
f̄ (t)(s, a)

]
+

1

1− γ

√
C · E

s,a∼dπ(t)

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
. (50)

Recall the definitions of ϵ(t)td (s, a) and ϵ(t)src, be(s, a;Qsrc) as

ϵ
(t)
td (s, a) :=

∣∣Q(t)
tar (s, a)− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Q

(t)
tar (s

′, a′)]
∣∣, (51)

ϵ
(t)
src,be(s, a;Qsrc) :=

∣∣Qsrc(ϕ
(t)(s), ψ(t)(a))− rtar(s, a)− γ Es′∼Ptar(·|s,a)

a′∼π(t)(·|s′)
[Qsrc(ϕ

(t)(s′), ψ(t)(a′))]
∣∣.

(52)

Recall that we also define

∥ϵ(t)td ∥∞ := max
(s,a)∈S ×A

ϵ
(t)
td (s, a), (53)

∥ϵ(t)src, be(Qsrc)∥∞ := max
(s,a)∈S ×A

ϵ
(t)
src, be(s, a;Qsrc). (54)

We are ready to put everything together and establish the cumulative sub-optimality. By taking the
summation of (50) over iterations, we have

T∑
t=1

Es∼µtar

[
V π

∗
(s)− V π

(t)

(s)
]

(55)

≤
T∑
t=1

1

1− γ
Es,a∼dπ∗

[
f̄ (t)(s, a)

]
+

T∑
t=1

1

1− γ

√
CE

s,a∼dπ(t)

[(
− f̄ (t)(s, a) +Aπ(t)(s, a)

)2]
(56)

≤ 2

1− γ
√
log(A)T +

2
√
C

(1− γ)2µtar,min

T∑
t=1

α(t)∥ϵ(t)src, be(Qsrc)∥∞

+
2
√
C

(1− γ)2µtar,min

T∑
t=1

(1− α(t))∥ϵ(t)td ∥∞.

(57)

where (56) follows directly from (50) and (57) holds by Lemma 5 and Lemma 2.

C Implementation Details of QAvatar

C.1 Pseudo Code of the Practical Implementation of QAvatar

In this section, we provide the pseudo code of the practical version of QAvatar in Algorithm 2.

C.2 Inter-Domain Mapping Network Augmented With a Normalizing Flow Model

18



Algorithm 2 Practical Implementation of QAvatar

Require: Source-domain Q-network Qsrc, value function Vsrc, and the decay function α : R→ [0, 1].
1: Initialize the state mapping function ϕ, the action mapping function ψ, the target-domain policy

network π, and entropy coefficient β
2: for iteration t = 1, · · · , T do
3: Sample D(t)

tar = {(s, a, r, s′)} of Ntar samples using π(t) in the target domain
4: Update the target-domain {Qtar,1, Qtar,2} by SAC’s critic loss:

Q
(t)
tar,j = argmin

Qtar
Ê
(s,a,r,s′)∈D(t)

tar

[∣∣r + γEa′∼π(t)

[
Qtar(s

′, a′)− β log(π(a′|s′))
]
−Qtar(s, a)

∣∣2].
(58)

5: Update the state mapping function ϕ and action mapping function ψ by minimizing
6: the following loss

ϕ(t), ψ(t) = argmin
ϕ,ψ

Ê
(s,a,r,s′)∈D(t)

tar

[∣∣r + γVsrc(ϕ(s
′))−Qsrc(ϕ(s), ψ(a))

∣∣]. (59)

7: Update the target-domain policy π

π(t+1) = argmin
π

Ê
(s,a,r,s′)∈D(t)

tar ,a
′∼π(t)(·|s)

[
β log π(a′|s)− f (t)(s, a′)

]
, (60)

f (t)(s, a′) = (1− α(t)) min
j=1,2

Q
(t)
tar,j(s, a

′) + α(t)Qsrc(ϕ
(t)(s), ψ(t)(a′)). (61)

8: end for

Figure 5: Integration of the map-
ping function and the normalizing
flow model.

As mentioned in Section 4, we use the flow model to map the
outputs of the mapping functions to the feasible regions. The
way to integrate these two components is shown in Figure 5.

D Additional Experimental Results

D.1 Final Rewards

In this section, we show the asymptotic performance of all base-
lines and our algorithm. In the MuJoCo environments except
for Ant and Inverted Double Pendulum, we train all the target-
domain models for 500k steps. In Ant and Inverted Double
Pendulum, we train all the target-domain models for 350k and
20k steps, respectively. In Robosuite environments, we train
all the target-domain models for 20k steps. The asymptotic
performances of all baselines and our algorithm are shown in
the following tables.

Table 2: Final rewards of QAvatar and all baselines in the MuJoCo environments.
Algorithm Swimmer Hopper HalfCheetah Ant Modified IDP

QAvatar 247 ± 187 2762 ± 440 12316 ± 586 2234 ± 1112 9241 ± 62
SAC 177 ± 168 2086 ± 257 10986 ± 1822 1620 ± 527 9212 ± 152
CMD Random -14 ± 4 39 ± 28 -427 ± 84 -1713 ± 475 50 ± 7
CMD Policy -7 ± 5 59 ± 46 -253 ± 344 778 ± 144 72 ± 12
DCC Batch 100 ± 37 48 ± 27 292 ± 418 -430 ± 138 115 ± 8
DCC Online -7 ± 44 30 ± 16 -631 ± 185 -1240 ± 838 95 ± 6
CAT 104 ± 28 154 ± 156 46 ± 250 17 ± 27 41 ± 10
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Table 3: Final rewards of QAvatar and all baselines in the Robosuite environments
Environment Block Lifting Door Opening Table Wiping

QAvatar 98.0 ± 21.1 185.2 ± 66.9 67.1 ± 9.1
SAC 90.3 ± 23.4 160.1 ± 40.3 47.2 ± 7.1
CMD Random 1.2 ± 0.5 7.4 ± 0.9 0.7 ± 0.5
CMD Policy 0.9 ± 0.6 7.8 ± 6.4 0.8 ± 0.4
DCC Policy 1.4 ± 1.1 18.7 ± 16.0 1.0 ± 1.1
DCC Online 0.6 ± 0.2 8.2 ± 4.7 0.9 ± 0.7
CAT 15.0 ± 14.3 34.7 ± 8.4 55.5 ± 29.7

D.2 Time To Threshold

In the following table, we discover that QAvatar uses the less data to reach the threshold than SAC
does. In Hopper, QAvatar only needs half the amount of data SAC needs to reach the goal.

Table 4: Time to threshold of QAvatar and all baselines
Environment Threshold QAvatar SAC SAC / QAvatar

Swimmer 175 284K 484K 1.70
Hopper 2000 218K 486K 2.23
HalfCheetah 10000 288K 400K 1.39
Ant 1600 254K 344K 1.35
Block Lifting 85 90K 94K 1.04
Door Opening 150 80K 94K 1.18
Table Wiping 45 74K 96K 1.30
Inverted Double Pendulum 9000 16K 18K 1.13

D.3 Ablation Study: Deactivating the Flow Model

(a) Swimmer (b) Door Opening

Figure 6: Ablation Study: QAvatar without the
flow model

As mentioned above, we use a normalizing flow
model to restrict the output range of the map-
ping functions in the feasible regions. In this
experiment, we disable the flow model and eval-
uate QAvatar in Swimmer and Door Opening.
In Figure 6, QAvatar without a flow model per-
forms worse thanQAvatar with a flow model. In
Swimmer, the ewma values of rewards obtained
by QAvatar without the flow model isn’t higher
than 50. Additionally, although the ewma values
of rewards obtained by it are higher than 100
in Door Opening, it has to spend more time at-
taining high rewards than QAvatar with the flow
model does.

E Configuration Details of The Experiments

E.1 MuJoCo Environments

As mentioned in Section 5, the source domains of our experiments are the original MuJoCo envi-
ronments such as Swimmer-v3, Hopper-v3, HalfCheetah-v3 and Ant-v3. The target domains are
the modified MuJoCo environments such as Swimmer with four limbs, Hopper with an extra thigh,
HalfCheetah with three legs and Ant with five legs. The environments are shown in Figure 7.
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(a) Swimmer (b) Hopper (c) HalfCheetah (d) Ant

(e) Four-limb Swimmer (f) Three-thigh Hopper (g) Three-leg HaldCheetah (h) Five-leg Ant

Figure 7: The environments of the source domains and the target domains. (a)-(d): Source domains –
Original MuJoCo environments. (e)-(h): Target domains – Modified MuJoCo environments.

E.2 Robosuite Environments

Robosuite is a popular robot learning package. We evaluate QAvatar on three tasks, including block
lifting, door opening, and table wiping. For each task, we consider cross-domain transfer from
controlling a Panda robot arm to controlling a UR5e robot arm. These three tasks are illustrated in
Figure 8.

(a) Block Lifting: Panda (b) Door Opening: Panda (c) Table Wiping: Panda

(d) Block Lifting: UR5e (e) Door Opening: UR5e (f) Table Wiping: UR5e

Figure 8: The environments of the source domains and the target domains. (a)-(c)The source domains:
control Panda to solve the tasks. (d)-(f)The target domains: control UR5e to solve the tasks.

E.3 The Implementation Details of Baselines

SAC. The implementation of SAC used in our experiments is released by stable-baselines3 [47].
The settings of all hyperparameters except for the discouted factor γ follows the default settings of
SAC in the documentation of stable-baselines3. The discouted factor is set as 0.9999 in Swimmer-v3
and 0.99 in all other MuJoCo environments, which follows the setting shown in Hugging Face. As
for in the Robosuite environments, we set the discouted factor to 0.9.
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CMD. We implement CMD by ourselves according to the pseudocode of CMD shown in its original
paper [15]. We follow the setting of the hyperparameters which is revealed in its original paper.
Additionally, we change CMD from collecting the fixed amount of data to collecting data continuously
for a fair comparison. As for the source model, we use the same model used in our algorithm.

DCC. We use the original implementation of [11] (https://github.com/sjtuzq/Cycle_
Dynamics) with their default setting [11]. For a fair comparison, we use the same source model used
in QAvatar and change DCC from collecting the fixed amount of data to collecting data continuously.

CAT. We use the authors’ implementation (https://github.com/TJU-DRL-LAB/
transfer-and-multi-task-reinforcement-learning/tree/main/Single-agent%
20Transfer%20RL/Cross-domain%20Transfer/CAT) and use PPO as the target-domain base
algorithm following the original paper. For a fair comparison, we use the same source model used in
QAvatar . The hyperparameters are shown in the following table and "n epochs" means the number
of epochs when optimizing the surrogate loss.

Table 5: A list of candidate hyperparameters for Robosuite and MuJoCo.
Parameter MuJoCo Robosuite

learning rate 0.0001, 0.0003, 0.0004, 0.0008 0.0001, 0.0003
length of rollouts 500, 2000 (50, 100 for Modified IDP) 2000
batch size 50, 100 (20, 25 for Modified IDP) 50, 100, 200
entropy coefficient (ent. coef.) 0.01, 0.002 0.01, 0.002
n epochs 10, 20 5, 10
num. of hidden layer of encoder/decoder 1 1
num. of hidden layer of actor/critic 2 2
hidden layer size 256 256

Table 6: Final hyperparameters chosen for each environment.
learning rate len. of rollouts batch size ent. coef. n epochs

Swimmer 0.0003 500 50 0.01 10
Hopper 0.0008 2000 100 0.002 20
HalfCheetah 0.0001 500 50 0.002 10
Ant 0.0004 500 50 0.002 10
InvertedDoublePendulum 0.001 100 20 0.01 20
Robosuite 0.0003 2000 100 0.01 10

E.4 Detailed Configuration of QAvatar

The base algorithm, SAC, is implemented by stable-baselines3 [47]. As for the compute resource,
we use NVIDIA GeForce RTX 3090 to do the experiments. Finishing the whole training process
including training the source-domain model, target-domain model and flow model once needs 44
hours in the MuJoCo environments and 39 hours in the Robosuite environments. The Hyperparameters
of QAvatar are shown in the following two tables. The consider functions of decay functions are
1/
√
t, 1/t, 1/t2 and 1/t3 and the final decay functions chosen for each environments are shown in

the table 8. The settings of hyperparameters such as critic/actor learning rate, batch size, buffer size
and discounted factor are same as SAC.
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Table 7: A list of hyperparameters of QAvatar .
Parameter Value

critic/actor learning rate 0.0003
state mapping function learning rate 0.01
action mapping function learning rate 0.01
batch size 256
replay buffer size 106

optimizer Adam
number of hidden layer of mapping functions 1
hidden layer size 256

Table 8: A list of environment-specific hyperparameters of QAvatar .
Environment Decay Function α

Swimmer-v3 1/t
Hopper-v3 1/t2

HalfCheetah-v3 1/t3

Ant-v3 1/
√
t

InvertedDoublePendulum-v2 1/t
Block Lifting 1/t
Door Opening 1/t
Table Wiping 1/t
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