
Online Quadrotor Trajectory Generation and Autonomous Navigation
on Point Clouds

Fei Gao and Shaojie Shen

Abstract— In this paper, we present a framework for online
generation of safe trajectories directly on point clouds for au-
tonomous quadrotor flight. Considering a quadrotor operateing
in unknown environments, we use a 3-D laser range finder for
state estimation and simultaneously build a point cloud map of
the environment. Based on the incrementally built point cloud
map, we utilize the property of the fast nearest neighbor search
in KD-tree and adopt the sampling-based path finding method
to generate a flight corridor with safety guarantee in 3-D space.
A trajectory generation method formulated in quadratically
constrained quadratic programming (QCQP) is then used
to generate trajectories that constrained entirely within the
corridor. Our method runs onboard within 100 milliseconds,
making it suitable for online re-planning. We integrate the
proposed planning method with laser-based state estimation and
mapping modules, and demonstrate the autonomous quadrotor
flight in unknown indoor and outdoor environments.

I. INTRODUCTION

Micro aerial vehicles (MAVs), especially quadrotors, have
drawn increasing attention for security and safety missions
thanks to their superior mobility in complex environments
that are inaccessible or dangerous for human or other ground
vehicles. In search and rescue missions, quadrotors should
be able to online generate and execute smooth and safe
trajectories from a start position to a target position, while
avoiding unexpected obstacles. In this paper, we build on top
of the state-of-the-art laser-based solution [1] for state esti-
mation and mapping in large-scale unknown environments,
and propose an online trajectory generation method that
directly operates on point clouds for safe aerial navigation.
We integrate all modules into a complete system and present
online experimental results.

Given estimation of the vehicle state, many approaches
have been proposed to convert range measurements generated
by onboard sensors into a global map. Representative meth-
ods include voxel grid [2], octomap [3], elevation map [4],
etc. Each of these methods has pros and cons in particu-
lar environments. For instances, voxel grids are good for
fine-grain representation of small volumes, but the storage
complexity scales badly. Octomaps are memory efficient
when representing environments with large open spaces, at
the expense of costly maintenance of the map structure.
Elevation maps is good for representing man-made structures
consist of mostly vertical walls, but less efficient when
representing natural scenes. In this paper, instead of using

All authors are with the Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and Technology, Hong Kong,
China. fgaoaa@connect.ust.hk, eeshaojie@ust.hk

(a) Autonomous flight in unknown indoor environment

(b) Autonomous flight in unknown outdoor environment

Fig. 1. Our quadrotor testbed equipped with a Velodyne VLP-16 3-D
LiDAR, an IMU and a sonar. Onboard computation is an Intel NUC with
i5-4250U CPU running at 1.30 GHz. We demonstrate autonomous flight
through complex indoor and outdoor environments. Video is available at
http://www.ece.ust.hk/˜eeshaojie/ssrr2016fei.mp4

post-processed maps, we opt to plan trajectories directly on
globally-registered point clouds. This bypasses the costly
map building process and achieves the best adaptivity for
different environments, which is one of the key requirements
for search and rescue missions.

As presented by Mellinger et al. [5], a quadrotor system
enjoys the differential flatness property, making it possible to
reduce the full state space to the 3-D position and yaw angle
and their derivatives. Smooth piecewise polynomial trajecto-
ries of 3-D position with bounded derivatives therefore can
be followed by a properly designed geometric controller [6].
We utilize this property and design a novel method for
generating collision-free smooth trajectories directly on point
clouds using convex optimization. Our method employs a
randomized flight corridor generation method utilizing fast
neighbor search on KD-tree [7], followed by an optimization-

http://www.ece.ust.hk/~eeshaojie/ssrr2016fei.mp4


based polynomial trajectory generator. We summarize our
contributions as follows:

1) A sampling-based, rapidly exploring random graph
(RRG) method, combined with an A* path finding
algorithm, for finding a collision-free flight corridor
that consists of multiple overlapping free space balls.

2) A quadratically constrained quadratic programming
(QCQP)-based trajectory generation method that op-
erates within the flight corridor with safety guarantee.

3) Real-time implementation with online map update and
trajectory (re)generation within 100 milliseconds, en-
abling online navigation and exploration of unknown
complex environments.

4) Integration with state estimation and mapping modules
and presenting online experiments in unknown indoor
and outdoor environments

We discuss relevant literature in Sect. II, and introduce
the overall system architecture in Sect. III. Laser-based state
estimation and mapping, which build the prerequisite for our
method, are presented in Sect. IV. Our corridor generation
and trajectory optimization methods are detailed in Sect. V
and Sect. VI respectively. In Sect. VII, implementation
details, as well as simulation and experimental results are
presented. The paper is concluded in Sect. VIII.

II. RELATED WORK

There are a large number of algorithms and applications on
robotic motion/trajectory planning, ranging from sampling-
based methods [8], to optimization-based methods [5]. Here
we provide an overview of approaches that are relevant to
the task of quadrotor trajectory planning.

The approach in [9] combines a fixed final state and free
final time controller with the rapidly-exploring random tree*
(RRT*) method to ensure asymptotic optimality. In this way,
closed-form solutions for optimal trajectories can be derived.
Karaman and Frazzoli [10] proposed the RRG method, which
is an extension of the RRT algorithm, as it connects new
samples not only to the nearest node but also all other nodes
within a ball. Another method combining the RRG and the
belief roadmap was proposed by Bry and Roy et al. [11], in
which a partial ordering is introduced to trade-off the belief
and the distance.

Control-based approaches can also be used to solve plan-
ning and obstacle avoidance problems. [12] considered a
linear quadrotor model, and proposed the linear quadratic
gaussian (LQG) obstacle set to represent target states that
lead to collision. Safe control commands can be generated
as long as target states are outside of this set. A receding
horizon control policy was proposed in [13] for similar
purpose.

Mellinger et al. [5] pioneered a minimum snap trajectory
generation algorithm. There is a large body of follow-
up works. A mixed integer quadratic programing (MIQP)
is proposed in [14] to enforce avoidance of both static
obstacles and other agents in a heterogeneous quadrotor
team. Unconstrained quadratic programming (QP) with a
closed-form solution is formulated in [15], in which RRT*

Fig. 2. The architecture of our quadrotor system. The point cloud
registration generates odometry at 20 Hz using the method proposed in [1].
Registered point clouds stored in a KD-Tree data structure is updated at
10 Hz. Measurements from a 100 Hz onboard IMU is fused with the
laser odometry and height measurements from a sonar using an EKF. The
flight corridor generation and trajectory generation runs on-demand and can
usually be completed within 100 milliseconds.

is used to find a feasible straight-line path, followed by a
waypoints-based trajectory. If the trajectory intersects with
obstacles, additional intermediate waypoints are added and
the trajectory is generated again.

Trajectory generation assisted by geometric constraints has
been becoming popular recently. In [16], iterative regional
inflation by semi-definite programming (IRIS), a recently
developed convex segmentation method, is used to approx-
imate the free space with convex regions. Then a sums-of-
squares (SOS) programming is used to assign the smooth
trajectories to these convex regions. Chen et al. [17, 18]
proposed an online method that utilizes efficient operations
in the octomap data structure for online generation of a flight
corridor. Quadratic programming is used for the generation
of safe and dynamically feasible trajectories.

Our approach belongs to the same class of geometrically-
constrained trajectory optimization methods, except that we
propose to bypass the mapping process and directly operate
on point clouds. In [19], a path planning algorithm that
takes a point cloud as the input is proposed. This method
utilizes tensor voting to reconstruct surfaces and find local
flat regions for ground vehicle navigation. However, this al-
gorithm is fundamentally different from ours as we generate
trajectories in full 3-D space.

III. OVERVIEW

We begin by presenting the overall architecture of our
autonomous quadrotor system (Fig. 2). Range measurements
from the Velodyne VLP-161 3-D LiDAR are used for pose
estimation [1] and generation of the globally-registered point
cloud map. During this process, a generalized ICP-based
method is used for frame-to-frame 6-DOF motion estimation.
This incremental motion is used as the initial guess for a
second stage of frame-to-map alignment to achieve global
consistency, also using an ICP-based algorithm. KD-Tree is
used as the data structure for map storage and for nearest
neighbor search. To obtain the high-rate state estimates
for feedback control, the laser-based pose estimation is

1http://velodynelidar.com/vlp-16.html

http://velodynelidar.com/vlp-16.html


Fig. 3. Pipeline of laser-based perception modules. State estimation runs at
20 Hz, while the point cloud map is updated at 10 Hz. We only keep a fixed
size local map in order to bound the computation and storage complexity.

fused with IMU and sonar measurements using an extended
Kalman filter (EKF).

Using the point cloud, a sampling-based method is adopted
to generate a collision-free flight corridor. In this method,
we sample and connect free space with shape of balls which
has locally maximum radius. Radius search can be done very
efficiently using the KD-tree structure. The corridor is thus
a series of connected balls. Using the flight corridor as geo-
metric constraints, an optimization-based method is used to
generate collision-free piecewise polynomial trajectories that
fit entirely within the corridor. The corridor and trajectory
generation can be done within 100 milliseconds, making it
possible for online trajectory (re)generation for avoidance of
unexpected obstacles. Finally, a feedback controller is used
for trajectory tracking.

IV. LASER-BASED STATE ESTIMATION AND MAPPING

We now present our implementation of a laser-based state
estimation and point clouds mapping method. Our approach
is adopted from [1] and it forms the perception foundation
for a complete navigation system that is able to utilize our
trajectory generation approach.

The pipeline of our laser-based state estimator is shown in
Fig. 3. We extract edges and surfaces from each 360 degree
3-D range measurements. A generalized iterative closest
point (ICP) scan matching algorithm is performed to do
the pose estimation between scan Si and Sj , with steps
summarized as follows:
• For each 3-D point on an edge of Si, we search for the

closest two points in Sj . The distance (ds) from a point
(x0
i ) to a line (formed by x1

j and x2
j ) is calculated as

de =

∣∣(x2
j − x1

j )× (x1
j − x0

i )
∣∣∣∣x2

j − x1
j

∣∣ , (1)

• For each 3-D point on a surface of Si, we search for
the closest three points in Sj that are not co-linear, and
calculate the distance (ds) from a point (x0

i ) to a surface
(formed by x1

j , x2
j , x3

j ) as:

ds =
(x2
j − x1

j )× (x3
j − x1

j )∣∣(x2
j − x1

j )× (x3
j − x1

j )
∣∣ · (x0

i − x1
j ) (2)

• We stack the distance from each feature point, and use
the Levenberg-Marquardt method [20] to minimize the
sum of distances for both lines and surfaces to obtain
the 6-DOF relative pose.

(a) Passing between buildings (b) Circling a field

(c) Mapping the laboratory (d) Moving through the lobby

Fig. 4. Snapshots of point cloud maps built online. Color codes indicate
the height of points.

We use the same ICP algorithm for both scan-to-scan (i =
j − 1) and scan-to-map (Sj is the global point cloud map)
alignment to obtain the 6-DOF laser pose. The result of scan-
to-scan alignment is used as the initial guess for the scan-
to-map alignment, after which points from the current scan
is added into the map M. Additionally, we highlight two
features of our point cloud map:

1) We maintain constant computation complexity by lim-
iting the total number of points. We bound the volume that
the point cloud can spread, and restrict the spatial density of
points. This results in a local map that slides with the UAV.

2) We dynamically update the weight (w) for each point
in the map in order to clear out moving objects and outlier
measurements. At the time of the ith scan, we can define the
weight update function for the point xki as follows:

w(xki+1) =


min(w(xki )− α+ β, λH), if ∃ xki+1, s.t.

‖xki − xki+1‖ ≤ δ
max(w(xki )− α, λL), otherwise

(3)
where α and β are parameters that control the rate of
decreasing and increasing of the weight. δ is a small number
for determining whether the same point has been observed.
λH and λL are upper and lower bounds of the weight, at
which the point is considered as permanently added or re-
moved from the map. Points that are observed repeatedly will
eventually be fixed in the map, while points that received few
observations, such as points on moving objects or outliers,
will be removed after a number of updates. Snapshots of
point cloud maps are shown in Fig. 4.

To achieve the high-rate state estimation required for
feedback control. We use an EKF to fuse laser pose estima-
tion with IMU and sonar measurements. For compensating
the delay in each sensor, we adopt a ring-buffer method
presented by Lynen [21]. In our filter, acceleration and
angular velocity measurement from the IMU are used as the



process model, while odometry from LiDAR and sonar are
both used as relative measurement models for 6-DOF pose
and height. Our 3-D LiDAR has only 30 degrees of vertical
coverage, making it prone to failure in altitude estimation
in environments containing only vertical structures. The
addition of a downward facing sonar solves this issue.

V. FLIGHT CORRIDOR GENERATION ON POINT CLOUDS

A. KD-Tree-Based Environment Representation

Our laser-based state estimation algorithm is performed
utilizing the KD-tree [7] data structure for fast nearest neigh-
bor points search. A balanced KD-tree with N points can
be constructed in O(NlogN) time with a space complexity
of O(kN), and the M nearest neighbors search has a time
complexity of O(MlogN). For state estimation, the KD-tree
is useful for point cloud registration. But from a point of view
of planning, the nearest neighbor search can also be used to
find the distance between an arbitrary unoccupied location
in the 3-D space and its nearest point (obstacle) in the map.
This distance indicates the safe radius with respect to that
location, from which a safe region in the shape of a ball can
be generated. Note that the KD-tree is a static data structure,
which means inserting points into a KD-tree dynamically
will make it unbalanced. Therefore, every time the map is
updated, we reconstruct the KD-tree. However, as shown in
Fig. 13, the time required for reconstructing a KD-tree with
80,000 points is acceptable for real-time applications.

B. Generation of A Graph of Ball-Shape Safe Regions

As presented in Sect. V-A, the safe radius of an arbitrary
point in the map can be found by fast nearest neighbor search
in the KD-tree. Based on this property, we adopt a random
sampling-based method to generate corridors connecting the
starting point and the target point. To begin, we use RRG
to construct a randomly sampled graph with vertices being
the centers of ball-shape safe regions, and edges being the
connectivities between safe regions. The flight corridor then
consists of a sequence of connected ball-shape safe regions,
where the location, size of the regions, as well as the
connectivities between them are determined by this RRG.

As shown in Algorithm. 1, a graph G is initialized with
only the starting node ns. A node n in the graph represents a
free space ball with two properties, the 3-D location n.c and
the radius n.r. When a new location cr is randomly sampled,
nearest(c,G) finds its nearest node nc in the graph. Our
algorithm ensures the generation of a graph with edges being
collision-free connection between ball-shape safety regions.
The intersect() function generates a ray from cr to nc.c, and
returns the intersection point of the ray with nc’s sphere. We
set this point as the center of a new node nn.c. We perform
radius search radius search(nn.c,M) to find the largest
ball-shape safe region centered at nc.c against the point cloud
mapM. If nn.r is sufficiently large, the node will be added
to the graph and connected with nc. We also find all nodes
at the neighbor of nn using a nearest neighbor within G.
We connect them with nn if the overlapping volume, which

Algorithm 1 RRG on Point Clouds
Requires M
G ← ns, i← 0
while i ≤ N do
cr ← sample()
nc ← nearest(cr, G)
nn.c← intersect(cr, nc.c)
nn.r ← radius search(nn.c,M)
if nn.r > λr then
G ← G

⋃
nn

connect(nc, nn)
for all nj ∈ neighbor(nn, G) do

if overlap volume(nj , nn) > λv then
connect(nj , nn)

end if
end for

end if
i← i+ 1

end while

can be calculated very conveniently in closed form, is larger
than a safety margin to allow the quadrotor to safely travel
through two balls.

Since every time we sample a new point, we create a
new node only centered on the nearest node’s sphere, the
expansion rate of the graph varies according the sparsity of
obstacles, making it particularly efficient for environments
with large volumes of free spaces. The RRG stops based on
a predefined iteration limit N .

C. Generation of the Flight Corridor

Having the connected graph of safe regions, we can utilize
search-based algorithms such as the A* search method to find
a path from the starting position to the target position on the
graph. Note that since the start position and target position
might be contained in one of many overlapping safe regions,
there might be multiple choices of start and target regions.
We opt to use a heuristic to pick the target region as the one
nearest to the starting position in Euclidean metric. The flight
corridors found by A* are illustrated in in Fig. 5. Note that
the algorithm we use here has the characteristic of asymptotic
optimality. As the number of safe region samples increases,
it will eventually densely fills the total free space, making it
equivalent to running search-based algorithm on uniformly
and finely discretized voxel grids.

VI. OPTIMIZATION-BASED TRAJECTORY GENERATION
WITH SAFETY GUARANTEE

In this section, we present our optimization-based method
for generating smooth trajectories that are constrained by
the safe flight corridor (Sect. V). Thanks to the differential
flatness property of the quadrotor model, the full state space
of the quadrotor system {x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r} is
reduced to the 3-D position and the yaw angle{x, y, z, ψ}
and their derivatives in which the trajectory is generated. A



(a) Flight corridor through ob-
stacles

(b) Downward-facing view of
the same flight corridor

Fig. 5. Flight corridor found by our ball-shape RRG and A* algorithm. The
overlapping and connected white balls are the ball-shape safe regions that
are used to form the flight corridor. Color blocks are random 3-D obstacles.

geometric tracking controller [6] can be applied for feedback
control. Since we have a 360-degree LiDAR onboard our
quadrotor, we skip the planning of the yaw angle.

A. Polynomial Trajectory Generation

The trajectory consisting of piecewise polynomials are
parametrized to the time variable t in each dimension µ out
of x, y, z. The M-segment trajectory of one dimension can
be written as follows:

fµ(t) =



∑N
j=0 p1j(t− T0)j T0 ≤ t ≤ T1∑N
j=0 p2j(t− T1)j T1 ≤ t ≤ T2

...
...∑N

j=0 pMj(t− TM−1)j TM−1 ≤ t ≤ TM ,
(4)

where pij is the jth order polynomial coefficient of the ith

segment of the trajectory. T1, T2, ..., TM are the end time
of each segment, with total time of T = TM − T0. The
polynomial coefficients are computed by minimizing a cost
function of the kthφ derivative along the trajectory.

The cost function is the integral of the square of the
kthφ derivative. In this paper we minimize the jerk along
the trajectory, so kthφ is 3. Instead of formulating the cost
function for each dimension as in [5], in this paper, the
coefficients in all x, y, z dimensions are coupled into one
single equation:

J =
∑

µ∈{x,y,z}

∫ T

0

(
dkφfµ(t)

dtkφ

)2

dt, (5)

The objective function can be written in a quadratic
formulation pTQop, where p is a vector containing all
polynomial coefficients (aij) in all three dimensions of x,
y, z, and Qo is the Hessian matrix of the objective function.
For brevity, we omit the detailed construction of the cost
function. We must also enforce a number of constraints to
ensure the smoothness and safety of the trajectory:

1) Waypoint Constraints: If needed, we can fix waypoints
(such as start and target positions) and their first kφ - 1
derivatives dik. If a fixed waypoint exists at the time of Ti,
we have:

f (k)µ (Ti) = dik, (6)

(a) Free space inflation in
connected regions

(b) Downward-facing view of
the same flight corridor

Fig. 6. Flight corridor with connected region inflation. Markers in this
figure can be interpreted similarly as in Fig. 5. Additionally, green spheres
represent the inflated connection regions in the flight corridor.

2) Continuity Constraints: The trajectory must be contin-
uous at all the kth derivatives at the connecting point between
two polynomial segments, where 0 ≤ k ≤ kφ − 1:

lim
t→T−

i

f (k)µ (t) = lim
t→T+

i

f (k)µ (t), (7)

3) Intersection Between Safe Regions: At the end time of
each polynomial segment, the position of the trajectory must
be inside the connected ball-shape safety regions:{∑

µ∈{x,y,z}(fµ(Ti)− cµi )
2 ≤ r2i∑

µ∈{x,y,z}(fµ(Ti)− cµi+1)
2 ≤ r2i+1,

(8)

where Ti(i = 1, 2, ...,M) are the end time of the piecewise
polynomial, ci is the ball center and ri is the radius.

The first and second constraints can be reformulated as
linear equality constraints (Aeqp = beq), while the third
constraint must be written in a quadratic inequality con-
straints form (pTQip + aip ≤ bi). Thus, the trajectory
generation problem can be reformulated as a quadratically
constrained quadratic programming (QCQP) problem:

min pTQop

s.t. pTQip+ aip ≤ bi, i = 0, · · · ,M − 1 (9)
Aeqp = beq,

In practice, small numerical errors in high order poly-
nomial coefficients may cause serious errors in the over-
all trajectory. We therefore adopt the method proposed by
Richter et al. [22] in which the derivatives at each end time
of trajectory segments are calculated, then mapped to the
original polynomial coefficients. Additionally, we use the
time normalization method proposed by Mellinger et al. [5]
to avoid large numerical errors in the Hessian matrix caused
by the large time value in each segment.

B. Effects on Adjustment of Segment Connecting Points

As is shown by Chen et al. [17], a flight corridor with
large overlapping regions can introduce a large space for
the transition between polynomial segments. This provide an
opportunity to implicitly adjust the time allocation. Larger
overlapping regions are therefore desired as they provide
more freedom for the optimization to reduce the trajectory
cost. In this paper, we inflate the connected region between



two consecutive balls into a new ball. As shown in Fig. 6,
the green spheres are the inflated connection regions with
diameters being the chord of two intersecting balls. Thus we
can modify our quadratic constraint as∑

µ∈{x,y,z}

(fµ(Ti)− cµj )
2 ≤ r2j , (10)

where cj and rj are center and radius of the inflated
ball. This modification not only inflates more space for the
adjustment of segment connecting points, but also halves the
number of quadratic constraints.

C. Enforcing Safety and Dynamical Constraints

The trajectory must be fully constrained within the flight
corridor to ensure collision avoidance. We also need to
impose maximum velocity and acceleration constraints to
ensure dynamical feasibility. In the previous section we
enforced the trajectory remaining within the corridor at
the end time of each segment, and now we should make
sure it will not go beyond the corridor at any other time.
We adopt Chen’s method [17], which proves that a finite
number of point constraints that are iteratively added at the
polynomial’s extrema lead to fully bounded trajectories. The
drawback of applying this method in our algorithm is that
we might constrain the extrema into the original overlapping
safe regions rather than the inflated connection region. By
doing so, the effect on segment connecting point adjustment
may be reduced, resulting in less optimal, but still safe and
feasible trajectories.

VII. RESULTS

Simulation results and experiments of indoor and outdoor
autonomous flight are presented in this section. Our trajec-
tory generation module is implemented in C++11 using a
general convex solver Mosek2 under a free academic license
and the sparse matrix library in Eigen. The simulation is
done on a laptop equipped with a 2.20 GHz Intel Core i5-
5200U CPU and 8 GB RAM. The flight experiments are
done on a DJI M100 quadrotor (Fig. 1) equipped with an
Intel NUC (dual-core CPU i5-4250U at 1.30 GHz and 16GB
RAM). The simulation is done with a known map of our
university built by an offline mapping software. Autonomous
flight experiments are done in unknown environments using
only online sensor measurements. The point cloud maps built
online are visualized in Figs. 10 and 11. The sampling num-
ber in simulation and experiments is set as 5000, according
to Fig. 13, the sampling time in experiments is acceptable.

A. Simulation Results

The 3-D point cloud map used in the simulation is built
by Altizure3 using the data collected from high altitude by a
drone. The map contains more than 400,000 points, covering
160 meters in horizontal directions and 40 meters in the
vertical direction. We limit the altitude of the simulated

2https://www.mosek.com
3https://www.altizure.com/explore

(a) The simulated quadrotor traveling between buildings

(b) The simulated quadrotor flies above the wall

Fig. 7. Simulated flight in a known map (Sect. VII-A). The map is built
offline and contains more than 400,000 points. Red curves are the generated
smooth trajectory. White spheres and green spheres are the flight corridor
(Sect. V) and the inflated connection regions (Sect. VI-B), respectively.

quadrotor to 30 meters to mimic the practical scenario in
close-proximity search and rescue missions. In Fig. 7(a),
the collision-free trajectory with a total length of 95.138
meters is computed in 74.3 milliseconds on our standard
laptop. Fig. 7(b) shows another scenario, where the length
of the trajectory is 60.884 meters, and is computed in 60.8
milliseconds. The simulation shows that our algorithm is suf-
ficiently fast in large-scale environments and the computation
complexity scales favorable with respect to travel distance.

B. Autonomous Indoor Flight

The indoor experiment is done in our laboratory with
randomly placed obstacles (Fig. 1(a)). The quadrotor is com-
manded to fly through a number of predefined waypoints.
State estimation, mapping, and trajectory generation are all
performed online without any prior information about the
environments. The Velodyne 3-D LiDAR that runs at 20 Hz
outputs 15,000 points in each scan. State estimation runs
at the same rate as the sensor, while the point cloud is
updated at 10 Hz. After map update, the quadrotor checks
the collision status of the current trajectory and re-generates
if necessary. We set a safety margin considering the size of
the quadrotor and reserve 0.15 meters in the radius for each
safe region in the flight corridor to account for control error.
In the experiment, three targets are sent to the quadrotor

https://www.mosek.com
https://www.altizure.com/explore


sequentially, and four trajectory (re)generation occurred due
to the online detection of obstacles (Figs. 8 and 9).

(a) 1st target, 1st trajectory (b) 2nd target, 2nd trajectory

(c) 2nd target, 3rd trajectory (d) 3rd target, 4th trajectory

Fig. 8. Autonomous indoor flight experiment (Sect. VII-B). The generated
desired trajectories are in red, while actual trajectories, i.e. the odometry
that the quadrotor have already flown are in blue. Safe flight corridor is
shown as green balls.

0

10

8

6

4 20

15
2

10

0.5

5
0

0

1

trajectory1

trajectory2

trajectory3

trajectory4

Fig. 9. Trajectories generated during indoor autonomous flight (Sect. VII-
B). different trajectories are indicated in different colors. Trajectory re-
generation occurred when flying towards the second target due to the
detection of new obstacles.

Fig. 10. Final point cloud map built from autonomous indoor flight
(Sect. VII-B).

C. Autonomous Outdoor Flight

The outdoor experiment is done in a complex environment
with obstacles of various shapes and sizes, such as trees,

bushes and tables. A snapshot of the flight is shown in
Fig. 1(b). Three trajectory generation occurred. Results are
shown in Figs. 11 and 12. For each trajectory generation in
both indoor and outdoor flights, the time consumed for KD-
tree construction, RRG sampling, A* search and trajectory
generation are shown in Fig. 13. In our method, although the
KD-tree is reconstructed after every map update, the time
consumption is still acceptable. Additionally, the time spent
in sampling is proportional to the number of samples, making
it a trade-off between the optimality of the corridor and the
computation complexity.

(a) 1st target, 1st trajectory

(b) 2nd target, 2nd trajectory

(c) 3rd target, 3rd trajectory

Fig. 11. Visualization of autonomous outdoor flight (Sect. VII-C). Markers
can be interpreted in the same way as Fig. 8



0

6

4

2

20

150
10

5
-2

0

-5
-4

-10

1

2

trajectory1

trajectory2

trajectory3

Fig. 12. Trajectories generated in the autonomous outdoor flight (Sect. VII-
C). Markers in this figure have the same meaning as in Fig. 9

1 2 3 4
trajectory number

0

0.02

0.04

0.06

0.08

0.1
Indoor Flight

Kd-tree

Sampling

A*

Trajectory

1 2 3
trajectory number

0

0.02

0.04

0.06

0.08

0.1
Outdoor Flight

Kd-tree

Sampling

A*

Trajectory

Fig. 13. Time consumption for each system module for both indoor and
outdoor flights (Sect. VII-B and Sect. VII-C). Note that the computing time
in A* is too short to be noticeable in the figure.

VIII. CONCLUSION AND FUTURE WORK

We propose a method for online trajectory generation
in unknown environments for a quadrotor. Our method
utilizes the point cloud map to directly find a collision-free
flight corridor, followed by an optimization-based trajectory
generation method with smoothness and safety guarantee.
Our method is implemented onboard a quadrotor equipped
with a LiDAR, and is suitable for fast online re-planning for
avoidance of unexpected obstacles. The proposed trajectory
generation method can be used directly on point cloud maps
built by any other mapping modules. And we have already
implemented the proposed method on point cloud maps built
by monocular dense mapping, the results will be presented
in the future.

In the future, we aim to improve our work to achieve large-
scale planning and exploration, which targets autonomous
exploration in unknown, large-scale environments without
any pre-specified targets. In this way, after the exploration,
the map of the unknown environments can be built; and
during the exploration, smooth and safe trajectories can
be generated to avoid any possible collisions. Additionally,
although the KD-tree is capable of performing fast nearest
neighbor search, it has an obvious drawback that every time
we update our map, we have to reconstruct the KD-tree. We
plan to utilize more advanced data structures for incremental
update of the point cloud map, and the randomized flight
corridor search graph as well.

REFERENCES

[1] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Proc. of Robot.: Sci. and Syst., UCB, USA, July 2014, pp.
109–111.

[2] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[3] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: A probabilistic, flexible, and compact 3d map rep-
resentation for robotic systems,” in Proc. of the IEEE Intl. Conf. on
Robot. and Autom., Anchorage, AK, US, May 2010.

[4] S. Choi, J. Park, E. Lim, and W. Yu, “Global path planning on uneven
elevation maps,” in Proc. of the IEEE Intl. Conf. on Ubiquitous Robot.
and Ambient Intelligence, Daejeon, Korea, Nov. 2012.

[5] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. of the IEEE Intl. Conf. on Robot. and
Autom., Shanghai, China, May 2011, pp. 2520–2525.

[6] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se (3),” in Proc. of the IEEE Control and
Decision Conf., Atlanta, GA, Dec. 2010, pp. 5420–5425.

[7] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[8] J. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of time-
optimal off-road vehicle maneuvers using the RRT*,” in Proc. of the
IEEE Control and Decision Conf., Orlando, FL, Dec. 2011, pp. 3276–
3282.

[9] D. J. Webb and J. van den Berg, “Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics,” in Proc. of
the IEEE Intl. Conf. on Robot. and Autom., Karlsruhe, Germany, May
2013, pp. 5054–5061.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, pp. 846–894, 2011.

[11] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Proc. of the IEEE Intl. Conf. on Robot.
and Autom., Shanghai, China, May 2011, pp. 723–730.

[12] J. van den Berg, D. Wilkie, S. J. Guy, M. Niethammer, and
D. Manocha, “LQG-Obstacles: Feedback control with collision avoid-
ance for mobile robots with motion and sensing uncertainty,” in Proc.
of the IEEE Intl. Conf. on Robot. and Autom., Saint Paul, MN, May
2012, pp. 346–353.

[13] M. Watterson and V. Kumar, “Safe receding horizon control for
aggressive mav flight with limited range sensing,” in Proc. of the
IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., Hamburg, Germany,
sept. 2015, pp. 3235–3240.

[14] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Proc. of the IEEE Intl. Conf. on Robot. and Autom., Saint Paul, MN,
May 2012, pp. 477–483.

[15] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Proc. of
the Intl. Sym. of Robot. Research, Singapore, Dec. 2013.

[16] D. Robin and T. Russ, “Efficient mixed-integer planning for UAVs in
cluttered environments,” in Proc. of the IEEE Intl. Conf. on Robot.
and Autom. Seattle, Washington, USA: IEEE, May 2015, pp. 42–49.

[17] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,” in
Proc. of the IEEE Intl. Conf. on Robot. and Autom., Stockholm, Swe-
den, May 2016, URL http://www.ece.ust.hk/∼eeshaojie/icra2016jing.
pdf.

[18] J. Chen, K. Su, and S. Shen, “Real-time safe trajectory generation
for quadrotor flight in cluttered environments,” in Proc. of the IEEE
Intl. Conf. on Robot. and Biom., Zhuhai, China, Aug. 2015, URL
http://www.ece.ust.hk/∼eeshaojie/robio2015jing.pdf.

[19] M. Liu, “Robotic online path planning on point cloud,” IEEE Trans-
actions on Cybernetics, 2015, in press.

[20] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[21] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
robust and modular multi-sensor fusion approach applied to mav
navigation,” in Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots
and Syst., Tokyo, Japan, Nov. 2013, pp. 3923–3929.

[22] R. Charles, B. Adam, and R. Nicholas, “Polynomial trajectory plan-
ning for aggressive quadrotor flight in dense indoor environments,” in
Proc. of the Intl. Sym. of Robot. Research, Singapore, Dec. 2013.

http://www.ece.ust.hk/~eeshaojie/icra2016jing.pdf
http://www.ece.ust.hk/~eeshaojie/icra2016jing.pdf
http://www.ece.ust.hk/~eeshaojie/robio2015jing.pdf

	Introduction
	Related Work
	Overview
	Laser-based State Estimation and Mapping
	Flight Corridor Generation on Point Clouds
	KD-Tree-Based Environment Representation
	Generation of A Graph of Ball-Shape Safe Regions
	Generation of the Flight Corridor

	Optimization-Based Trajectory Generation with Safety Guarantee
	Polynomial Trajectory Generation
	Waypoint Constraints
	Continuity Constraints
	Intersection Between Safe Regions

	Effects on Adjustment of Segment Connecting Points
	Enforcing Safety and Dynamical Constraints

	Results
	Simulation Results
	Autonomous Indoor Flight
	Autonomous Outdoor Flight

	Conclusion and Future Work
	References

