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ABSTRACT

Depth estimation accuracy over long ranges is a core problem in robotics, mar-
itime autonomy, terrestrial autonomy, and environmental monitoring, where ac-
curate scene understanding is crucial for safe and informed decision-making.
Existing monocular solutions suffer a sharp accuracy drop beyond mid-range,
with errors of 10-25% at 50-100 m. Recent deep learning—based stereo net-
works (e.g., FoundationStereo, DSMNet, MonSter, RAFT-Stereo, CREStereo,
Selective-Stereo) achieve impressive results on benchmarks but struggle in real-
world extended-range scenarios—frequently collapsing at 20-30 m and beyond,
where predictions deviate by factors of 2-3x and object-level depth is often lost.
In contrast, a calibrated high-quality stereo system can deliver accurate long-range
estimates but at the expense of high computational overhead.

We introduce OptiRSDE (Optimized Robust Stereo Depth Estimation), a
lightweight yet robust classical computer vision pipeline that integrates dispar-
ity refinement, temporal smoothing, and QR-code-based synchronization. Op-
tiRSDE achieves <3% error at 50 m and 5-10% at 100 m, substantially outper-
forming both monocular methods and modern deep learning stereo baselines in
real-world conditions. Operating at 5 FPS, while requiring only standard chess-
board calibration and YOLO-based object detection for deployment. Temporal
smoothing and outlier rejection mitigate depth jitter, producing stable long-range
depth at object level. Validated on DrivingStereo|Yang et al.|(2019) and a custom
1080p stereo dataset, our system demonstrates scalable, real-time, extended-range
stereo depth estimation—delivering strong generalization where both monocular
and state-of-the-art deep learning methods fail.

1 INTRODUCTION

Real-time, accurate depth estimation is vital for applications like autonomous navigation, robotics,
and augmented reality. However, existing vision-based methods exhibit a trade-off between per-
formance and accuracy. Conventional stereo vision approaches, though theoretically precise, are
often too slow for real-time use, operating at just 0.2-0.5 fps. To boost frame rates, they often sac-
rifice accuracy, while modern monocular depth estimation models based on deep learning are too
computationally heavy for embedded or mobile systems.

Beyond computational cost, maintaining accuracy and stability in dynamic environments remains
a major challenge. Depth precision degrades at long ranges, with typical error rates of 5-10% at
50 meters. Environmental factors worsen this; even minor temperature changes can cause drift
and error accumulation of up to 25m at 100m range, requiring frequent recalibration. Temporal
instability is another issue, with unsmoothed pipelines showing depth inconsistencies up to £15%
frame-to-frame. This is worsened by stereo camera desynchronization, where a misalignment of
10-12 frames can introduce an additional 10% error at 10-50m distances.

While sensors like LiDAR offer high-accuracy depth data Wang et al.| (2020), they come with limi-
tations. High-performance units are too expensive for broad use, while affordable ones have limited
range, often below 60 meters. LiDAR also suffers from weather sensitivity and surface reflectiv-
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ity issues. Critically, an end-to-end stereo video solution that delivers object-specific depth with
dynamic detection and tracking remains largely missing.

To address these challenges, we present a novel, efficient pipeline (Figure[I)) that balances accuracy,
temporal stability, and real-time performance. Our method synchronizes stereo video streams using
QR codes (Figure[5), followed by camera calibration, undistortion, and rectification (Figure 3). We
use YOLOv11 |Khanam & Hussainl (2024) for object detection and BRISK-based feature matching
Leutenegger et al.| (2011) for robust disparity estimation. Multiple optimizations are introduced to
enhance performance. Finally, depth is computed via triangulation (Figure 2, forming a practical,
end-to-end solution for real-world deployment.

Figure 1: OptiRSDE stereo depth pipeline. Synchronized stereo videos undergo calibration, undis-
tortion, and rectification before object detection and BRISK-based feature matching. Disparity is
computed with outlier removal, followed by keypoint averaging and smoothing for depth estimation
via triangulation.

2 RELATED WORK

Recent advances in depth estimation target computational efficiency, long-range accuracy, and tem-
poral stability; yet, challenges persist for robust, object-specific, real-time depth in constrained en-
vironments.

2.1 COMPUTATIONAL OVERLOAD AND REAL-TIME PROCESSING

To address the high computational demands in stereo depth rooted in classical correspondence
frameworks|Scharstein et al.|(2001), methods like BiDAStereoJing et al.|(2024) and StereoDiffusion
Xu et al.[(2024) offer solutions. These rely on robust feature extraction and matching techniques; for
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instance, SIFT Lowe|(1999) is foundational for establishing correspondences. BiDAStereo employs
bidirectional alignment and lightweight recurrent modules, while StereoDiffusion integrates optical-
flow-warped disparities into a diffusion model for high-speed, consistent predictions. However, their
utility in low-power or embedded systems remains limited and needs further optimization.

2.2 LONG-RANGE DEPTH ACCURACY

Long-range depth estimation progresses with trinocular and attention models. For example, |Yoshi-
hara et al.[(2025)) localizes vessels up to 2.5 km; GatedStereo Walz et al.[(2023)) fuses active gated
and stereo cues for enhanced performance. While accurate, these systems remain expensive, difficult
to deploy, or unsuitable for real-time use. Monocular models like Depth Anything Yang et al.[(2024)
progress, yet stereo methods like STTR|L1 et al.[(2021a) remain superior for long-range tasks. Large
datasets like DrivingStereo|Yang et al.|(2019) and KITTI |Geiger et al.|(2012]) advance robust mid-to-
long range model training. Despite potential, dynamic environment robustness remains challenging.

2.3 CALIBRATION AND SYNCHRONIZATION

Accurate stereo depth estimation depends on effective calibration and synchronization. Solutions
like BiDAStereo and |Li et al.| (2021a)) use cross-frame alignment, disparity refinement to mitigate
misalignment. Optical flow models like CODD |Li et al.[(2021b) compensate for dynamic motion
and drift. Frequent recalibration under changing conditions remains unresolved practically.

2.4 TEMPORAL STABILITY

Temporal inconsistencies degrade real-time depth quality. Robust outlier rejection, often via
RANSAC [Fischler & Bolles| (1987), mitigates inconsistencies and noise. Building on linear fil-
tering theories |[Basar| (2001), techniques like dual-space disparity refinement|Zeng et al.[(2025) and
DynamicStereo [Karaev et al.|(2023) significantly reduce variance. StereoDiffusion Xu et al.| (2024)
incorporates temporal priors for smoothness. While these models reduce jitter, stability in dynamic
or low-texture scenes needs improvement.

2.5 OBIJECT-LEVEL DEPTH ESTIMATION

Object-specific depth estimation gains traction beyond global maps. Systems by |Yoshihara et al.
(2025) and Zheng et al.| (2022) integrate object detection with disparity for tailored depth, e.g.,
maritime vessels. Transformer pipelines like DynamicStereo [Karaev et al.| (2023) support object-
level consistency by fusing spatial-temporal features. These works emphasize coupling semantic
understanding with depth in complex, cluttered scenes.

3 METHODOLOGY

The proposed depth estimation pipeline is designed to overcome critical challenges in stereo vision
systems, including calibration inaccuracies, unreliable feature detection, instability across frames,
and high computational demands. Our approach builds upon and refines the foundational principles
of stereo depth estimation.

Classic Depth Estimation Pipeline Overview:

 Calibration: It establishes intrinsic and extrinsic camera parameters. Intrinsic parameters
correct lens distortions (radial, tangential). Extrinsic parameters determine relative camera
pose (rotation, translation).

* Rectification: Stereo image pairs are transformed for horizontal epipolar line alignment.
This rectification [Fusiello et al.| (2000) simplifies correspondence search as matching pixels
lie on the same row.

* Correspondence Matching: Feature points are identified and matched across stereo pairs.
These matched points generate a disparity map Fual(1991)), encoding relative displacement.
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3.1 STEREO VIDEO SYNCHRONISATION

Temporal alignment of left and right video streams is critical for accurate stereo depth estimation.
As our system lacked hardware synchronization capabilities, we implemented a robust software-
based method to ensure precise frame-to-frame correspondence. This approach leverages a series of
unique visual markers embedded within the video feed to determine and correct any temporal offset.
A full description of this synchronization technique is provided in Appendix A.

3.2 STEREO CAMERA CALIBRATION

Accurate 3D reconstruction and depth estimation depend on precise stereo camera calibration to
determine intrinsic and extrinsic parameters. This process is performed once, after the physical
setup is fixed, and must be repeated only if the camera positions change.

Stereo calibration is performed using a chessboard pattern held in front of both cameras. The cali-
brated parameters are then used for all future video inputs.

This process is shown in detail in Figure 3]

Figure 2: Schematic representation of stereo vi-
sion for depth estimation. An observed 3D point
projects onto corresponding points in the left
and right images, with a horizontal shift (dis-
parity) 6 = |x1 — x2|. Depth D is computed
using the known focal length f, baseline B, and
disparity: D = %.

3.3 DEPTH ESTIMATION

Figure 3: Overview of the stereo camera cal-
ibration pipeline. Chessboard corners are de-
tected in synchronized left and right images to
extract pixel coordinates. Monocular and stereo
calibration estimate intrinsic and extrinsic pa-
rameters, followed by validation through repro-
jection error and epipolar geometry checks.

Our system estimates depth using disparity-to-depth triangulation (Figure 2)) for each detected ob-
ject. BRISK [Leutenegger et al.|(2011) is employed for keypoint detection, offering enhanced re-
silience in low-texture environments compared to traditional methods like ORB |Rublee et al.|(2011)).
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This keypoint-based approach is crucial for achieving high accuracy in real-time stereo depth esti-
mation. By restricting keypoint detection to object-specific Regions of Interest (ROIs), the system
efficiently prioritizes relevant features for disparity computation. This optimization not only signif-
icantly reduces computational load by avoiding unnecessary processing across the entire image but
also substantially improves the precision of correspondence matching by adaptively expanding the
search space for stereo parallax solely within relevant bounding boxes, thereby enhancing overall
system robustness and speed.

Erroneous matches are filtered using the Inter-Quartile Range (IQR). Valid disparities from multiple
matched keypoints within each object’s bounding box are then averaged for robust depth estimation,
similar to harmonic depth averaging |Yoshihara et al.| (2025), but with a slight numerical precision
advantage.

To mitigate frame-to-frame depth fluctuations, Exponential Moving Average (EMA) temporal
smoothing is applied every 10 frames. This stabilizes predictions and suppresses noise from spurious
and transient errors.

3.4 EFFICIENCY-ORIENTED PIPELINE OPTIMIZATIONS

Several optimizations are integrated into the pipeline to balance computational efficiency and esti-
mation accuracy:

* Keypoint detection is localized to object bounding boxes through masking, dramatically
reducing processing time by avoiding exhaustive search.

* Feature matching is further constrained to filtered keypoints of corresponding image
regions, yielding 16x speed improvement for this particular component.

* The FSRCNN-based super-resolution module |Dong et al.| (2016), previously used to en-
hance image detail in Zheng et al.[(2022), was eliminated. The use of BRISK compensates
for this removal, maintaining robust performance while reducing computational overhead.

3.5 TEMPORAL STABILITY IN DYNAMIC ENVIRONMENTS

To ensure temporal consistency in depth estimation within dynamic scenes, the system integrates
two complementary techniques:

» Multi-keypoint disparity averaging within object regions, reducing sensitivity to individual
erroneous matches.

* EMA-based temporal smoothing, attenuating sudden depth variations from detection noise
or transient mismatches. The Exponential Moving Average (EMA)|Yu et al.| (2020) D; is
calculated using the current disparity P; and the previous smoothed disparity D;_1:

Dt:a-Pt—i—(l—a)-Dt,l

This strategy, detailed in Algorithm (I} significantly improves the stability and reliability of
depth predictions, even under challenging environmental conditions.

4 EVALUATION

To evaluate our stereo depth estimation system, we benchmarked OptiRSDE against monocular
(MiDaS) Ranftl et al.|(2022)) and stereo (our implementation of Zheng’s method|Zheng et al.[(2022),
BSV Ship) [Zheng et al.| (2022)) baselines for depth accuracy. Performance comparison is done
only between our method and Zheng’s method, since it is the only other object-level binocular
stereo depth estimation pipeline to the best of our knowledge. We evaluated OptiRSDE on our self-
collected dataset (ground truth from distance markers) and DrivingStereo’s test images |Yang et al.
(2024), since it provides LiDAR-based depth maps as ground truth. For our dataset, a reference grid
with known ground-truth distances (at 10-meter intervals, using a precise device) was used. Tests
were conducted on subjects across 5-100m distances.
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Algorithm 1 Temporal Smoothing for Disparity Estimation

Input: Left and right frames Fr, Fr € R7*WX3 current frame number ¢ € N, smoothing factor
a € [0, 1], expiration threshold Texpire € N, persistent object state map S.
Output: Detected objects B (list of bounding boxes), updated disparities Dyay,.

B < TrackObjects(Fr,)
D, + CalculateDisparities(Fr,, Fr, B)
Mipiax < 0
for each box b; € B at index ¢ do
idobj — GetID(bﬂ
Mip_siax[idopi) < 1
if idopj not in .S then
Slidoyj| < {disparity: null, frame: ¢}
end if
end for
: for each idp; in keys of S do
12 5 < Slido]
13: if s.frame + Toxpire < t then

PRDIUN AR

—_ =
=

14: Remove idyp; from S

15: continue

16:  end if

17: if idobj in MID%idx then

18: i — Mip—iax[idob;]

19: deurrent < Draw ['L]

20: if s.disparity = null then
21: s.disparity < deyrrent
22: else if d.yent = null then
23: Doy [i] + s.disparity
24: else

25: dsmooth <— @ * deurrent + (1 — ) - s.disparity
26: s.disparity < dsmooth
27: Draw [Z] < dsmooth

28: end if

29: s.frame <t

30:  end if

31: end for

32: return B, D,

4.1 EXPERIMENTAL SETTINGS
4.2 HARDWARE:
The system runs on an AMD Ryzen 5 4600H CPU with 8GB RAM and an NVIDIA GeForce GTX

1650 Ti GPU (4GB VRAM). The stereo vision setup consists of dual 1080p cameras mounted with
a fixed 35 cm baseline.

4.3 SOFTWARE:

The system uses Python 3.12 on Linux Mint 22.1 and OpenCV 4.5 for image processing. PyTorch
2.5.1 integrates YOLOV11 for object detection, leveraging CUDA 12.6.

4.4 CAMERA BASELINE

Our system uses a 35 cm baseline, balancing flexibility and accuracy, with potential for further
extension.
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4.5 CAMERA CALIBRATION

We used a 9x6 chessboard across 2 to 20 meters. Rectification error between stereo pairs was
reduced to under 0.75 pixels, ensuring reliable disparity estimation.

4.6 OBJECT DETECTION AND STEREO MATCHING

Up to 512 feature points were extracted per frame; only those with < 50 Hamming distance |[Liu
et al.| (2018)) were retained.

4.7 TEMPORAL SMOOTHING

To ensure consistency, an Exponential Moving Average (EMA) (o« = 0.3) was applied every 10
frames. Outlier disparities were removed using Inter-Quartile Range (IQR) Takiar{(2023)) filtering,
reducing noise and stabilizing predictions.

5 RESULTS

We compared our method (OptiRSDE) against monocular (MiDaS) Ranftl et al. (2022) and stereo
(BSYV Ship) Zheng et al.| (2022) baselines across two metrics: depth accuracy and speed. Note that
we used our own implementation of Zheng’s BSV Ship Depth Estimation methodology, since no
code is available for it publicly. Tests were conducted on 1080p stereo video at 5-100m distances.
All the results are generated from a single run of the algorithm over each video.

Method Err@50m Err@100m

Monocular (MiDaS) 12% (4%) 25% (9%)
Stereo (BSV Ship) 4% (1.4%) 10% (6.1%)

OptiRSDE 2.8% (0.5%) 7.5% (1.9%)

Method FPS
BSV Ship 0.3 (0.02)
OptiRSDE  5.38 (0.08)

Table 2: Execution performance comparison.
Mean FPS values with standard deviation in
parentheses.

Table 1: Depth estimation accuracy compar-
ison. Mean error values with standard devia-
tion in parentheses.

5.1 ANALYSIS

We evaluated OptiRSDE’s depth estimation accuracy across multiple distances. Estimated distances
were validated against calibrated ground truth using our internal dataset and DrivingStereo test im-
ages, where LiDAR-based depth maps served as ground truth. Visual results (Figure @) and quanti-
tative data (Tables are presented. OptiRSDE was compared to our implementation of Zheng’s
method (BSV Ship), MonSter|Cheng & et al.[(2025), DSMNet|Zhang et al.|(2020), FoundationStereo
Wen et al.| (2025), RAFT-Stereo [Lipson et al.| (2021)), CREStereo |Li et al.| (2022)), and Selective-
IGEV [Wang et al.| (2024). Results consistently demonstrate OptiRSDE’s superior performance,
achieving significantly lower estimation errors, especially at larger distances.

5.2 KEY FINDINGS

* Accuracy: OptiRSDE reduces errors by 77% vs. MiDaS and 30% vs. BSV Ship at 50m
and by 70% vs. MiDaS$ and 25% vs. BSV Ship at 100m. (Table [T}

* Speed: Achieves > 5 FPS—10-20x faster than traditional stereo methods. (Table 2))

* Robustness: Consistent keypoint detection ensures continuous depth estimation, overcom-
ing frequent detection failures observed in BSV Ship. (See NKD in Table 3]

* Stability: Temporal smoothing cuts depth jitter compared to unsmoothed baselines. (Refer
to supplementary videos)
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Method 10m 20m 30m 40m 50m 60m

MonSter -0.68 -0.6 +14.22  +254 2.2 +10.76
DSMNet -0.8 -1.68 +7.21  +17.65 +15.17 +30.69
FoundationStereo -0.77 -0.81 +0.04 +4.79  +16.81 +29.89
RAFT-Stereo -0.75 -0.87 -1 +1.19  +10.38 +10.29
CREStereo -5.17 -6.88 -1.24 +14.92 +16.77  +82.35
Selective-IGEV -0.53 +0.03 -0.77 +5.45 +1.78 +6.08
BSV Ship +0.68  +74.65 -2.9 -4.36 NKD +5.36

OptiRSDE (Ours) -0.62  -0.59 0.72 -0.04 +1.53 -1.77

Table 3: Depth estimation errors (in meters) for different methods. The values in the column headers
represent ground truth distances (in meters). All listed methods are different approaches for estimat-
ing depth from calibrated left-right image pairs. Bold represents the smallest errors and underline
represents the second smallest errors at a particular distance. NKD indicates cases where no key-
points were detected.

Method 8.20m 16.70m 24.19m 44.26m 47.16m
MonSter +2.72  +41.24 +0.17 +1.91 -0.17
DSMNet +0.54 -0.45 +0.37 +1.03 +0.47
FoundationStereo +0.46 0.5 +0.44 -0.75 0.61
RAFT-Stereo +0.81 -0.26 +0.51 -0.29 +1.07
CREStereo -5.62 -10.93 -15.32 -21.57 -22.32
Selective-IGEV +3.02 +0.44 +5.04 +3.05 +3.29
BSV Ship -0.16 NKD +1.23 +47.26 -1.4

OptiRSDE (Ours)  -0.01 -0.02 +0.08 +0.14 +0.30

Table 4: Depth estimation errors on DrivingStereo’s test images. Same structure as Table

Figure 4: Results of depth estimation up to 120m (a) from our own dataset. (b) from DrivingStereo’s
test images.
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6 ABLATION STUDY

To evaluate the impact of individual components in our proposed pipeline, we conducted an abla-
tion study by systematically disabling key modules and measuring their effect on depth estimation
accuracy and computational efficiency.

* Temporal Smoothing: Removing the Exponential Moving Average (EMA) filter increased
depth jitter, particularly at distances beyond 30m. Frame-to-frame variance rose from +2%
to +£10%, confirming EMA’s critical role in stabilizing long-range estimates.

* Feature Detection and Matching: Replacing BRISK with ORB significantly decreased
the robustness of keypoint detection. The results started showing more No keypoint detected
errors, as ORB has difficulty detecting keypoints in relatively low-texture regions.

* Synchronization: Without QR-based synchronization, depth errors spiked up to 10% at
20m due to misaligned stereo pairs.

* Computational Optimizations: Disabling masking before keypoint detection, removing
our keypoint matching optimization, or adding back FSRCNN significantly reduced the
FPS (Table [3), while removing IQR-based outlier rejection increased depth variance by

30%.
Method FPS
Without KP detection masking 4.85(0.11)
Without KP matching optimization ~ 4.49 (0.08)
With FSRCNN 1.53 (0.03)
No ablation 5.38 (0.08)

Table 5: Execution performance after ablation. Mean FPS values with standard deviation in paren-
theses.

7 CONCLUSION

We presented OptiRSDE, a robust stereo depth estimation pipeline integrating temporal smooth-
ing, optimized feature matching, and efficient synchronization to achieve high long-range accuracy
and performance. Key contributions include its long-range precision, where pixel disparity refine-
ment and harmonic averaging enable less than 10% depth error up to 100 meters; high performance,
with several optimizations delivering about 5 FPS; and minimal setup, leveraging QR-based syn-
chronization and chessboard calibration for simplified deployment. Ablation studies validated the
necessity of each component, while benchmarks consistently demonstrated OptiRSDE’s superior-
ity over monocular and previous stereo baselines in terms of accuracy, speed, and robustness. The
system’s precise, long-range, fast, and temporally stable depth perception offers significant utility,
poised to enhance autonomous driving (for accident detection and collision avoidance) and indus-
trial safety systems. It can also support diverse industrial applications, including advanced robotics,
object-aware automation, and sophisticated surveillance requiring accurate 3D scene understanding.
Future work may involve exploring edge-device deployment and multi-sensor fusion (e.g., LIDAR)
for robust performance in adverse weather conditions.
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8 APPENDIX

This Appendix consists of an in-depth discussion of the following topics:

* Appendix A: QR Synchronization

* Appendix B: Keypoint detection masking optimization.
* Appendix C: Keypoint matching optimization.

* Appendix D: Visual comparison of results.

Due to the supplementary material size limit, images in this document will be of lower quality. The
dataset samples and the results are also not provided in the zip file. Link for the full supplementary
material is provided in the README . t xt file.

9 APPENDIX A: QR SYNCHRONIZATION

Accurate stereo video frame synchronisation is crucial for reliable depth estimation. Since we
did not have any cameras available with hardware synchronization properties, we devised a novel
method to do automated software-based synchronization. A QR code-based synchronization
method was implemented to precisely align left and right video streams.

At the start of each stereo video, sequential QR codes (e.g., 1, 2, 3, ...) are embedded into frames
at the video’s frame rate. During preprocessing, a QR code reader extracts these numerical values
from each frame of both videos. Comparing these numbers reveals the frame offset (e.g., 14 or 20
frames) between streams. Based on this offset, unmatched or extra frames are discarded, resulting in
perfectly aligned video streams. This significantly improves subsequent stereo processing accuracy
by eliminating temporal misalignment and ensuring frame-to-frame correspondence, as shown in

Figure[3]

Our method is designed specifically for stereo videos and works best when QR-based synchroniza-
tion is used. For stereo videos without QR codes, the pipeline can still operate; however, synchro-
nization errors typically around 10 to 12 frames can arise, which may significantly increase the depth
estimation error rate.

Frame No. F83 F84 F85 F86 F87 F88 F89 F90
QrReader No. 10 11 12 13 14 15 16 17
Left Frames
Right Frames
QrReader No. 10 11 12 13 14 15 16 17
Frame No. F97 F98 [Fefe) F100 F101 F102 F103 F104

Figure 5: QR-based synchronization of stereo video frames. Sequential QR codes embedded in each
frame allow precise alignment of left and right video streams by matching decoded numbers. This
eliminates temporal offsets, ensuring accurate frame correspondence for improved depth estimation.

10 APPENDIX B: KEYPOINT DETECTION MASKING OPTIMIZATION

To optimize the computational efficiency of the BRISK keypoint detection algorithm within our
OptiRSDE pipeline, we implemented a masking strategy. This targeted approach focuses keypoint
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detection on relevant areas of the image, which significantly reduces processing time without com-
promising the integrity of the feature matching process.

10.1 OVERVIEW OF KEYPOINT DETECTION

Keypoint detection algorithms, such as BRISK, typically operate by exhaustively scanning the en-
tire image to identify distinctive features. These features are robust to various image transformations
and are crucial for tasks like feature matching. In a standard, unmasked approach, the algorithm pro-
cesses every pixel, leading to considerable computational overhead, especially for high-resolution
video. This results in a distribution of keypoints across the entire scene, including background el-
ements that may not be relevant for object-level analysis. An example of such unmasked keypoint
detection is presented in Figure[§]

Figure 6: Illustration of unmasked keypoint detection and matching in left and right frames (sepa-
rated by the white border). The left frame shows the detected objects and the estimated depths. Note
the distribution of keypoints across both relevant objects and irrelevant background areas.

10.2 MASKED KEYPOINT DETECTION FOR EFFICIENCY

Instead of processing the entire image, we leverage the results from an initial object detection step
(using YOLOV11 in our main pipeline) to define specific Regions of Interest (ROIs). For the purpose
of object-level depth estimation, keypoints are primarily needed on and around the detected objects,
not in static, irrelevant background regions of the image.

10.3 MASK GENERATION

For the left stereo image, a binary mask is generated directly from the bounding boxes provided by
the object detector. This mask effectively restricts the BRISK keypoint detection algorithm to these
object-containing regions, thereby substantially reducing the search space.

For the corresponding right stereo image, the masking strategy is critically adapted to account for
the expected horizontal parallax shift inherent in stereo vision. An object appearing at a certain
horizontal position in the left image will appear shifted to the left in the right image. Therefore,
in addition to the regions defined by the left image’s bounding boxes, we strategically expand the
masked region in the right image to include the entire left side of each corresponding bounding box.
This expansion is a crucial step to ensure that corresponding keypoints, potentially shifted due to
disparity, are still well within the detection zone.

The effect of this masked keypoint detection is visually represented in Figure Note that the
blacked-out regions in the figure are for illustrative purposes only, and the mask is passed to the
BRISK algorithm itself rather than being applied to the image pixels.

10.4 PERFORMANCE IMPACT

By focusing keypoint detection solely on these masked regions, the number of pixels that BRISK
must process is drastically reduced. This direct reduction in computational load translates into a
significant speedup for the keypoint detection phase of the pipeline. As detailed in the main pa-
per’s ablation study, disabling this keypoint detection masking resulted in a noticeable decrease in
the overall Frames Per Second (FPS), confirming its indispensable role in achieving the high-speed
efficiency of OptiRSDE. This optimization exemplifies how domain-specific knowledge can be ef-
fectively leveraged for substantial performance gains in computer vision tasks.
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Figure 7: Illustration of masked keypoint detection and matching in left and right frames (separated
by the white border). The left frame shows the detected objects and the estimated depths. Keypoints
are concentrated within the object bounding boxes in the left frame and their expanded parallax
regions in the right frame, demonstrating reduced processing area.

11 APPENDIX C: KEYPOINT MATCHING OPTIMIZATION

A primary computational bottleneck in keypoint-based stereo vision is the exhaustive matching pro-
cess. A brute-force approach compares every keypoint in the left image against every keypoint in the
right, leading to a combinatorial explosion of pairwise comparisons. This is computationally pro-
hibitive for real-time applications, especially in dynamic scenes where low latency is critical. Our
work, OptiRSDE, addresses this challenge by implementing an efficient, object-centric matching
strategy that significantly curtails the search space.

Instead of a global, exhaustive search, our method localizes the matching process to relevant regions
of interest (ROIs) defined by object bounding boxes. This targeted methodology drastically reduces
pairwise comparisons by focusing computational effort only where needed. The cumulative effect of
this optimization yielded a remarkable 16-fold performance improvement for keypoint detection and
matching. In our experiments with a 10-second, 1080p video, this optimization reduced processing
time from 110 seconds to a mere 6.9 seconds. This significant acceleration transforms a demanding
task into a tractable one, paving the way for efficient, near real-time depth estimation for dynamic
objects.

11.1 IMPLEMENTATION DETAILS

The core of our optimization is a two-stage filtering process. First, keypoints are detected across
both the left and right frames using the BRISK algorithm. However, only keypoints within the
predefined bounding boxes for each object are retained. All keypoints outside these regions are
discarded, immediately reducing the dataset for the more intensive matching algorithm.

A critical aspect of this implementation is the correct handling of stereo parallax, similar to key-
point detection masking. Due to baseline separation, an object’s projection in the right image shifts
horizontally to the left. To account for this, the ROI in the right image is expanded, but unlike the
masking stage, it is done for each object individually. While vertical bounds remain, the horizontal
search area spans from the right edge of the box to the left edge of the image frame. This ensures all
potential corresponding keypoints are included for matching, regardless of depth and disparity.

Only after this filtering and region adjustment is the brute-force matching algorithm, configured to
use Hamming distance, applied. The matching is not performed globally on the filtered keypoints.
Instead, it is done on a per-object basis, comparing keypoints from a left ROI exclusively against
those in the corresponding adjusted right ROI. This targeted, object-by-object matching is a corner-
stone of our optimized pipeline, ensuring both high speed and accuracy.

12 APPENDIX D: VISUAL COMPARISON OF RESULTS

In Figure [6] unmasked keypoint detection and stereo matching are shown. This visualization of
stereo pairs shows keypoints scattered across both object regions and irrelevant backgrounds, poten-
tially introducing noise and ambiguity in depth estimation. In contrast, Figure[7]showcases the stark
contrast of masked keypoint detection, with keypoints tightly concentrated within object bounding
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boxes and their projected parallax regions in the right frame, demonstrating reduced processing areas
and more focused feature matching.

Moreover, a set of distance visualization frames is shown as Result 1, Result 2, and Result 3 in Fig-
ure[8] Figure [0} and Figure [I0] simultaneously, where we compare depth estimation errors between
OptiRSDE and the BSV Ship’s baseline. The results clearly show that OptiRSDE achieves more
accurate depth predictions across varying distances, including at challenging longer ranges where
BSV Ship shows NKD (No Keypoint Detection) to detect keypoints. These comparisons visually
and quantitatively highlight the spatial efficiency and superior depth accuracy of OptiRSDE.

Additionally, Result 4 in Figure [IT| shows depth estimation errors on DrivingStereo’s test images,
further reinforcing the generalizability and performance of OptiRSDE on unseen data. The results
in both datasets consistently demonstrate OptiRSDE’s advantages over existing baseline methods,
particularly in terms of its robustness and precision across various and challenging distance ranges.

The visualized stereo frame pairs correspond to the Result section of the main paper, including the
depth estimation errors and the comparison between OptiRSDE and the BSV baseline methods.
These visualizations offer a direct, intuitive understanding of the performance differences between
the methods, giving a detailed visual comparison of the results presented in the Results section of
the paper.
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Figure 8: Result 1.
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Figure 9: Result 2.
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Figure 10: Result 3.
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Figure 11: Result 4.
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