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Abstract

In-context learning (ICL) enables large lan-001
guage models (LLMs) to adapt to new tasks dur-002
ing inference using only a few demonstrations.003
However, ICL performance is highly depen-004
dent on the selection of these demonstrations.005
Recent work explores retrieval-based methods006
for selecting query-specific demonstrations, but007
these approaches often rely on surrogate objec-008
tives such as metric learning, failing to directly009
optimize ICL performance. Consequently, they010
struggle to identify truly beneficial demonstra-011
tions. Moreover, their discriminative retrieval012
paradigm is ineffective when the candidate013
pool lacks sufficient high-quality demonstra-014
tions. To address these challenges, we propose015
GENICL, a novel generative preference learn-016
ing framework that leverages LLM feedback to017
directly optimize demonstration selection for018
ICL. Experiments on 19 datasets across 11 task019
categories demonstrate that GENICL achieves020
superior performance than existing methods021
in selecting the most effective demonstrations,022
leading to better ICL performance.023

1 Introduction024

Large Language Models (LLMs) have demon-025

strated remarkable capabilities across a wide range026

of tasks. In-context learning (ICL), introduced by027

(Brown et al., 2020), enables LLMs to perform028

tasks with only a few examples as demonstration,029

without requiring parameter updates (Brown et al.,030

2020; Liu et al., 2021).031

Although ICL is promising, the selection of in-032

context demonstrations is crucial, as it significantly033

impacts LLM performance (Lu et al., 2021; Min034

et al., 2022b). Many existing approaches rely on035

retrieval-based methods, either using off-the-shelf036

retrievers (Robertson et al., 2009) or training spe-037

cialized ones (Reimers, 2019; Wang et al., 2022).038

Training-based methods typically optimize retriev-039

ers to approximate the relevance score of the candi-040

date to the given query for downstream ICL tasks,041

Figure 1: The distribution of the useful example ratio
across test sets from different datasets. The x-axis repre-
sents the ratio # useful examples

# total examples , where a ‘useful example’
is one that helps the LLM generate an accurate output
with in-context learning. The ratio remains low for most
test queries, i.e., the majority of demonstration exam-
ples are ineffective for the LLM.

often leveraging metric learning-based proxy tasks, 042

such as contrastive loss (Rubin et al., 2021; Ye 043

et al., 2023; Wang et al., 2023; Cheng et al., 2023; 044

Luo et al., 2023; Liu et al., 2024). 045

However, these methods face several challenges. 046

The most critical issue is the misalignment between 047

the surrogate learning objective of the retriever and 048

the intrinsic optimization goal of ICL. Specifically, 049

a discriminative model, trained with a metric learn- 050

ing objective to approximate the relevance score 051

between a demonstration candidate and a given 052

query, does not necessarily indicate the candidate’s 053

effectiveness as an in-context demonstration for 054

an LLM. Furthermore, the scarcity of effective 055

demonstration candidates in the retrieval pool poses 056

another challenge for training a discriminative re- 057

triever. Figure 1 illustrates the distribution of test 058

queries regarding the ratio of useful examples that 059

help the LLM achieve accurate output using ICL. 060

The figure shows that most candidates are ineffec- 061

tive for most queries, making retriever optimization 062

particularly challenging. This issue is further exac- 063
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erbated by the properties of hard labels for LLM064

feedback, as noted by (Wang et al., 2023).065

To address these challenges, we propose066

GENICL, a novel generative preference learning067

framework that directly optimizes demonstration068

selection for ICL using LLM feedback. Specifi-069

cally, we reformulate ICL as a generative Bayesian070

optimization problem, introducing a latent vari-071

able to bridge demonstration selection and LLM072

inference. GENICL then optimizes this objective073

through preference learning, which focuses more074

on the relative effectiveness between demonstration075

samples, allowing it to capture finer-grained infor-076

mation in scenarios where effective demonstrations077

are scarce. This optimization procedure on demon-078

stration selection more closely aligns with the in-079

trinsic objective of ICL. Through this approach,080

GENICL can better capture the LLM’s demon-081

stration preference and identify the truly effective082

demonstrations (preferred by the LLM). To validate083

the effectiveness of GENICL, we conducted exper-084

iments on a diverse set of datasets covering classifi-085

cation, multiple-choice, and generation tasks. The086

results demonstrate that GENICL achieves superior087

performance compared to existing methods.088

Our contributions can be summarized as follows:089

• We propose GENICL, a novel generative pref-090

erence learning framework that directly opti-091

mizes demonstration selection for ICL using092

LLM feedback, overcoming the limitations of093

sub-optimality of surrogate learning objective094

used in traditional retrieval-based methods.095

• The preference learning of paired effective and096

ineffective demonstrations leads to fine-grained097

distinguishness of demonstration preference of098

LLM.099

• We conduct extensive experiments on 19 datasets100

across 11 task categories with a quantitative and101

qualitative analysis of the effectiveness of our102

proposed method.103

The rest of the paper is organized as follows.104

Section 2 surveys the related work and points out105

the existing challenges in optimization ICL tasks.106

Section 3 details our GENICL with generative ICL107

modeling and the optimization approach of pref-108

erence learning from LLM feedback. Section 4109

introduces the experimental setup and the quanti-110

tative analysis with an analysis of how different111

methods work. Finally, Section 5 summarizes our112

paper, and Section 6 discusses the limitations.113

2 Related work 114

2.1 In-context Demonstration Selection 115

In-context learning (Brown et al., 2020) enhances 116

large language models by leveraging few-shot ex- 117

amples for task adaptation. While proficient at 118

using provided examples, LLMs heavily depend 119

on specific demonstrations (Min et al., 2022a; Luo 120

et al., 2024), making demonstration selection cru- 121

cial for downstream performance. Existing ap- 122

proaches to demonstration selection can be broadly 123

categorized into two branches. The first employs 124

off-the-shelf retrievers like BM25 (Robertson et al., 125

2009), SBERT (Reimers, 2019), and E5base (Wang 126

et al., 2022), which prioritize semantic similarity 127

but overlook downstream utility. The second cate- 128

gory involves learning the retriever based on feed- 129

back from LLM performance on selected demon- 130

strations (Li et al., 2023; Cheng et al., 2023; Luo 131

et al., 2023; Chen et al., 2024). For instance, Rubin 132

et al. (2021) trained a dense retriever using LLM- 133

generated feedback, while Wang et al. (2023) dis- 134

tilled a retriever from a metric function estimating 135

relevance scores between demonstration candidates 136

and the query. However, these methods approxi- 137

mate the relevant score of the candidate given the 138

query, which is not essentially aligned with the 139

true optimization objective of ICL resulting in a 140

sub-optimal solution. Moreover, only a minority 141

of candidates truly enhance in-context learning per- 142

formance (Figure 1), making it challenging to learn 143

a reasonably dense retriever. Therefore, a more 144

promising method is required for directly optimiz- 145

ing the intrinsic ICL objective. 146

2.2 Preference Learning 147

Preference learning plays a vital role in training 148

LLMs to align generative models with human val- 149

ues and preferences (Christiano et al., 2017; Ziegler 150

et al., 2019; Ouyang et al., 2022). It has also 151

emerged as a powerful paradigm for enhancing 152

LLM performance in complex tasks (Havrilla et al., 153

2024; Li et al., 2024). A key approach in this do- 154

main is reinforcement learning from human feed- 155

back (RLHF) (Ouyang et al., 2022), which involves 156

training a reward model to capture human prefer- 157

ences and optimizing the model using reinforce- 158

ment learning algorithms (Schulman et al., 2017). 159

More recent methods, such as Direct Preference 160

Optimization (DPO) (Rafailov et al., 2024) and 161

Kahneman-Tversky Optimization (KTO) (Etha- 162

yarajh et al., 2024), bypass explicit reward mod- 163
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eling and instead learn preferences directly from164

human feedback. While these methods have ad-165

vanced preference learning performance, they pri-166

marily focus on human feedback without explicitly167

addressing the issue of the scarcity of effective168

demonstrations.169

3 Methodology170

3.1 Problem Setting171

Consider a task sample x with ground-truth y,172

denoted as (x, y), and a set of demonstrations173

{(xk, yk)}Kk=1 ⊆ P where each demonstration174

(xk, yk) is an input-output tuple taken from the175

demonstration pool P containing all training sam-176

ples from all tasks. K is the number of demon-177

strations used for the current query. Our goal is to178

provide the appropriate demonstrations for each x179

to improve the ICL performance of LLMs as180

argmax
(xk,yk)∈P

PM(y | {(xk, yk)}Kk=1 , x) (1)181

3.2 Optimization Objective182

Most methods based on LLM feedback used metric183

learning, such as contrastive learning, as a surro-184

gate objective to train a discriminative model as the185

retriever. However, this optimization objective has186

a gap with in-context learning performance (details187

in Appendix C). Additionally, the relevance scores188

determined by the discriminative retriever come189

from a feature similarity perspective, overlooking190

optimizations at the semantic understanding level,191

which leads to the selected demonstrations that192

may not be truly useful for improving the LLM’s193

in-context learning performance. To address these194

issues, we propose a generative framework to di-195

rectly optimize demonstration selection for ICL196

performance, thereby avoiding the use of surro-197

gate objectives that have a gap. We treat in-context198

learning as generative Bayesian optimization and199

introduce a latent variable z to establish the rela-200

tionship between demonstration selection and ICL201

performance. The optimization problem is formu-202

lated as follows:203

PM(Y | {(Xk, Yk)}Kk=1, X) =204 ∫
z
PM(Y | z,X)PM(z | {(Xk, Yk)}Kk=1, X) dz

(2)

205

This transformation is also supported by the per-206

spectives of Xie et al. (2021) and Wang et al.207

(2024), where in-context learning can be viewed as 208

a Bayesian inference process. 209

The latent variable z is viewed as the repre- 210

sentation of the LLM’s demonstration preference. 211

Through z, we concretize the LLM’s preference 212

for demonstration and use it to identify effective 213

demonstrations. Eq. (2) proves from a Bayesian 214

perspective that, during the optimization process, 215

both the ground truth and demonstrations should 216

be considered simultaneously. However, in the sur- 217

rogate optimization objectives of retriever-based 218

methods, only the quality of the demonstrations is 219

considered. This is why demonstrations selected 220

by these methods do not necessarily enhance the 221

LLM’s ability to predict the ground truth within 222

ICL. 223

To obtain the demonstration preference, we pro- 224

pose to fully optimize the latent variable z by 225

jointly considering the ground truth and the pref- 226

erence of the demonstrations. We utilize the Evi- 227

dence Lower Bound (ELBO) (Kingma, 2013) and 228

Eq. (2) to obtain the following optimization ob- 229

jective, with the detailed derivation provided in 230

Appendix D. 231

L(z) = − logPM(Y | z,X) 232

− logPM(z | {(Xk, Yk)}Kk=1, X) (3) 233

Due to the combinatory search space of 234

(X1, Y1), (X2, Y2), ..., (XK , YK) being immense, 235

we simplify the optimization objective to the fol- 236

lowing formula. 237

L(z) = − logPM(Y | z,X) 238

− logPM(z | (Xk, Yk), X) (4) 239

3.3 Demonstration Preference Learning 240

The above optimization objective aims to find the 241

variable z of the demonstration preference of the 242

LLM. From an implementation perspective, z is 243

a task-specific description, and its corresponding 244

trainable parameters are θ. We optimize θ to re- 245

fine the demonstration preference distribution cor- 246

responding to z. 247

To perform effective optimization in scenarios 248

where effective demonstrations are scarce, we use 249

preference learning, as it focuses more on the rel- 250

ative relationships between demonstrations, en- 251

abling it to capture finer-grained information. To 252

learn the preference for effective demonstrations, 253

we adopt the KTO algorithm (Ethayarajh et al., 254
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Figure 2: Training and inference pipeline of GENICL.

2024), which directly maximizes the utility of255

LLM generations based on context information,256

conditioned on either the effective demonstration257

(xk, yk)w or the relatively ineffective one (xk, yk)l.258

This ensures that (xk, yk)w ≻ (xk, yk)l given the259

input x. To achieve this, we reformulate the op-260

timization objectives, − logPM(Y | z,X) and261

− logPM(z | (Xk, Yk), X) in Eq. (4), as a two-262

stage alternating optimization process.263

The First Stage. In this stage, we optimize264

the demonstration selection part − logPM(z |265

(Xk, Yk), X) in Eq. (4) with preference learning.266

Preference learning requires both preferred data267

and non-preferred data. To obtain the LLM pref-268

erences for demonstrations under the in-context269

learning paradigm, we utilize the ICL performance270

of LLM given each demonstration candidate as the271

preference score. The preference score sk is the272

log-likelihood of LLM generation w.r.t. the ground-273

truth output y given the candidate (xk, yk) and the274

input x, reflecting the LLM’s preference for the275

demonstration.276

sk = P (y|(xk, yk), x) (5)277

Since we need to score all the training data278

based on the above method to obtain the prefer-279

ence dataset, and the demonstration pool for each280

training sample is P , the complexity of scoring all281

the data is quadratic in |P|, which is computation-282

ally infeasible for an exhaustive search. Therefore,283

to reduce the search space, we use E5base (Wang284

et al., 2022) to obtain a more relevant subset ξ ⊆ P 285

as the new demonstration pool. For each training 286

sample, we select the set of candidates with the 287

highest preference scores as preferred demonstra- 288

tions (xk, yk)w, and the set of candidates with the 289

lowest preference scores as non-preferred demon- 290

strations (xk, yk)l. The demonstration-level loss is 291

formulated as follows. 292

Ld(θ) = −E((xk,yk)w,(xk,yk)l,x,z)∼D 293[
λwσ

(
β log

PM(z | (xk, yk)w, x)
PMref(z | (xk, yk)w, x)

− sdref

)
294

+λlσ

(
sdref − β log

PM(z | (xk, yk)l, x)
PMref(z | (xk, yk)l, x)

)]
(6)

295

296

sdref = E(x,y)∼D

[
β KL

(
PM(z | (xk, yk), x) 297

∥ PMref(z | (xk, yk), x)
)]

(7) 298

where β is a hyperparameter, λw and λl are hy- 299

perparameters for preferred data and non-preferred 300

data respectively. sref represents the use of KL di- 301

vergence as a constraint to prevent the model from 302

deviating too much from its original predictive abil- 303

ity, thereby enhancing the stability of the model. 304

The Second Stage. We then optimize the model 305

generation part − logPM(Y | z,X) in Eq. (4) in 306

a similar manner of preference learning. For all 307
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tasks, we treat the ground truth as the correct an-308

swer yw. For classification and multi-choice tasks,309

we consider the incorrect categories or options as310

wrong answers yl, and for generation tasks, we ran-311

domly sample answers from other samples as yl312

for the current sample. The answer-level loss is313

formulated as follows:314

La(θ) = −E(z,x,yw,yl)∼D315 [
λwσ

(
β log

PM(yw | z, x)
PMref(yw | z, x)

− saref

)
316

+λlσ

(
saref − β log

PM(yl | z, x)
PMref(yl | z, x)

)]
(8)317

saref = E(x,y)∼D

[
β KL

(
PM(y | z, x)318

∥ PMref(y | z, x)
)]

(9)319

where the hyperparameters are consistent with320

those in the first stage.321

In summary, we alternately optimize the losses322

of the two stages, and the complete optimization323

objective is as follows:324

L(θ) = La(θ) + Ld(θ) (10)325

And Algorithm 1 summarizes the whole training326

procedure.327

Algorithm 1: Demonstration Preference
Learning

1: Input: Task dataset D = {(x, y)i}|D|
i=1, latent

variable z, demonstration pool P , and learning
rates η1, η2

2: Initialization: Parameters θ
3: for each (x, y) in task D do
4: Calculate demonstration scores by Eq. (5),

and identify preferred demonstrations
(xk, yk)w and non-preferred ones (xk, yk)l

5: Compute demonstration-level loss Ld(θ) by
Eq. (6)

6: Update θ ← θ − η1∇θLd(θ)
7: Set the correct answer as yw = y, and select

an incorrect answer yl
8: Compute answer-level loss La(θ) by Eq. (8)
9: Update θ ← θ − η2∇θLa(θ)

10: end for

3.4 Demonstration Selection in Inference 328

In the training stage, we optimize the parameters θ 329

to obtain the variable z of the demonstration pref- 330

erence of the LLM. In the inference stage, we first 331

use E5base (Wang et al., 2022) to reduce the search 332

space and time cost of demonstration selection. 333

Then we leverage the LLM with the latent vari- 334

able z to select demonstrations for an input query 335

xtest. In Eq. (2), for the same x, all demonstrations 336

have the same PM(y | z, x). Therefore, we select 337

the top-K demonstrations based on the probability 338

of generating the latent variable, as shown below: 339

PM(z | (xk, yk), xtest) (11) 340

After obtaining a set of demonstrations 341

(Xk, Yk)}Kk=1, we use the frozen LLM to 342

perform in-context learning. The entire training 343

and inference pipeline is shown in Figure 2. 344

4 Experiments 345

4.1 Evaluations Setup 346

Datasets. We validate the effectiveness of 347

GENICL across a range of language processing 348

tasks including classification, multi-choice, and 349

text generation. The classification tasks include 350

Natural Language Inference (RTE (Wang, 2018), 351

SNLI (Bowman et al., 2015)), Paraphrase (PAWS 352

(Zhang et al., 2019), QQP (Wang, 2018)), Reading 353

Comprehension (MultiRC (Khashabi et al., 2018), 354

BoolQ (Clark et al., 2019))), Sentiment Classifi- 355

cation: (SST2 (Socher et al., 2013), Sentiment140 356

(Go et al., 2009)), and Topic Classification (AG- 357

News (Zhang et al., 2015)). The multi-choice tasks 358

cover Commonsense Reasoning (COPA (Roem- 359

mele et al., 2011), HellaSwag (Zellers et al., 2019), 360

OpenBookQA (Mihaylov et al., 2018)), Corefer- 361

ence (Winogrande (Sakaguchi et al., 2021)). The 362

text generation tasks contain Close QA (Natu- 363

ralQuestions (Kwiatkowski et al., 2019), SQuAD 364

v1 (Rajpurkar, 2016)), Commonsense Generation 365

(CommonGen (Lin et al., 2019)), Data-to-Text 366

(E2E NLG (Dušek et al., 2019), DART (Nan et al., 367

2020)), and Summarization (AESLC (Zhang and 368

Tetreault, 2019), Gigaword (Napoles et al., 2012)). 369

Baseline. Our evaluation compares GENICL 370

against several established baseline approaches 371

that leverage the ICL capabilities of LLMs. 372

These baselines include zero-shot (which executes 373

tasks without demonstrations), random (which se- 374

lects demonstrations arbitrarily from the available 375
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pool), and off-the-shelf retrieval models such as376

BM25 (Robertson et al., 2009), SBERT (Reimers,377

2019), and E5base (Wang et al., 2022). Further-378

more, we conduct comparative analyses against the379

following more advanced approaches.380

• EPR (Rubin et al., 2021) is a prominent method381

using LLM feedback to label candidate examples382

as positive or negative, to train the retriever.383

• LLM-R (Wang et al., 2023) trains the retriever384

using a reward model and knowledge distillation,385

which is one of the state-of-the-art retriever-based386

methods.387

• CBDS (concept-based-demonstration-selection)388

(Wang et al., 2024) first learns the latent variable389

and then selects demonstrations with the highest390

probability of predicting the corresponding latent391

variable.392

Implementation Details. To ensure a fair com-393

parison with the baselines, we use the same tem-394

plate and evaluation metrics. For detailed infor-395

mation, please refer to the Appendix E. Our ap-396

proach demonstrates enhanced efficiency through397

a reduced number of training parameters relative398

to retriever-based methodologies such as LLM-399

R (Wang et al., 2023) and E5base (Wang et al.,400

2022). For model implementation, we utilize401

Llama-7B (Touvron et al., 2023) as our primary402

LLM for both training and inference operations.403

Our inference protocol incorporates a set of 8404

demonstrations within the context, with complete405

implementation details provided in Appendix A.406

4.2 Main Results407

Table 1 presents the performance comparison of408

the proposed GENICL and various baselines for409

classification, multi-choice, and text generation410

tasks. The results demonstrate that GENICL sig-411

nificantly outperforms all the baselines on most412

tasks. Zero-shot and Random consistently yield413

the worst performance across most tasks, highlight-414

ing the importance of using high-quality demon-415

strations in ICL. Retriever methods trained based416

on LLM feedback provide only limited improve-417

ments over off-the-shelf retrievers. Specifically,418

EPR performs worse than E5base on tasks such as419

MultiRC, RTE, and Sentiment140. This indicates420

that these discriminative methods, which use proxy421

optimization objectives, often fail to select truly422

useful demonstrations. Our generative Bayesian423

method GENICL, in contrast, significantly out- 424

performs EPR and LLM-R, proving its effective- 425

ness. Although GENICL uses E5base to narrow the 426

search space, compared to directly using E5base, 427

we achieve significant improvements, especially 428

on tasks such as PAWS, BoolQ, and SNLI, where 429

our GENICL improves by more than 5 points. This 430

indicates that directly using E5base struggles to iden- 431

tify demonstrations preferred by the LLM, whereas 432

our method effectively addresses this issue. While 433

CBDS employs a comparable latent concept vari- 434

able methodology for demonstration selection, its 435

performance is constrained due to adopting a mis- 436

aligned optimization objective (details in Appendix 437

A). Through the implementation of a more refined 438

optimization objective, GENICL demonstrates su- 439

perior performance. 440

For text generation tasks, the improvements of 441

EPR and LLM-R over off-the-shelf retrievers are 442

all relatively limited. This may be because metrics 443

like ROUGE and EM typically exhibit a narrower 444

range of variation compared to classification accu- 445

racy, which is consistent with the findings of Wang 446

et al. (2023). Even so, GENICL still achieves sig- 447

nificant improvements over LLM-R and off-the- 448

shelf retrievers, particularly on the CommonGen 449

and SQuAD v1 tasks. This indicates that GENICL 450

is also highly effective for text generation tasks. 451

4.3 Ablation Study 452

To validate the effectiveness of the key design in 453

GENICL, we conduct ablation studies on the Com- 454

monGen, BoolQ, and SQuAD v1 tasks, with re- 455

sults presented in Table 2. When non-preferred 456

data is removed during training, the performance of 457

GENICL drops significantly, indicating that using 458

only useful demonstrations without considering rel- 459

ative preference relations makes it difficult to learn 460

the distribution of LLM demonstration preference. 461

This proves the necessity of optimization based on 462

preference learning. Our complete optimization ob- 463

jective consists of two parts: answer-level loss and 464

demonstration-level loss. Removing either leads to 465

a performance drop, demonstrating the correctness 466

of our proposed optimization framework and the 467

importance of considering both the ground truth 468

and the quality of demonstrations during optimiza- 469

tion. 470

4.4 Validation on Other LLMs 471

The previous experimental results were obtained us- 472

ing the LLaMA-7B model. To comprehensively as- 473
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Classification Tasks

Topic Reading Comprehension Paraphrase NLI Sentiment

AGNews BoolQ MultiRC PAWS QQP RTE SNLI
Sentim
ent140

SST2

Zero-shot 31.4 64.7 57.0 53.0 57.9 59.9 39.6 49.3 54.2
Random 65.0 69.6 60.4 49.6 54.0 65.7 40.4 78.8 64.1
BM25 90.0 74.0 58.7 56.5 80.3 59.9 47.7 88.3 84.7
SBERT 89.8 73.6 53.3 58.3 81.7 60.2 56.2 94.1 87.8
E5base 90.6 71.0 54.0 55.6 77.3 68.5 53.7 93.0 92.4
CBDS 67.3 77.6 49.3 57.6 64.2 56.3 43.5 92.5 69.2
EPR 91.8 74.8 50.4 57.7 81.7 66.8 68.4 91.4 88.7
LLM-R 92.4 74.9 50.2 57.5 80.9 61.7 80.0 91.6 93.4
GENICL (ours) 92.6 78.1 56.9 63.9 82.0 72.9 84.6 94.7 95.0

Multi-Choice Tasks Text Generation Tasks

Corefe
rence

Commonsense
Reasoning Summarize Comm

onGen Data-to-text CloseQA

Winog
rande

COPA
Hella
Swag

Open
BookQA

AE
SLC

Giga
word

Comm
onGen

DART
E2E
NLG

SQuAD
v1

Zero-shot 61.8 66.0 71.5 41.6 5.7 15.4 19.2 22.8 34.6 2.2
Random 62.1 74.0 72.1 43.0 6.5 27.2 36.3 34.5 51.1 47.3
BM25 66.4 77.0 74.6 47.8 23.9 32.5 38.3 55.4 53.8 53.7
SBERT 66.9 81.0 75.2 49.2 22.3 31.7 37.8 54.6 50.6 62.5
E5base 66.7 84.0 75.0 51.0 23.4 31.9 37.6 54.9 52.3 61.9
CBDS 66.3 83.0 73.6 47.6 20.5 29.2 34.5 52.2 50.8 59.8
EPR 66.5 82.0 75.2 49.6 26.0 32.4 39.2 56.2 53.6 64.3
LLM-R 66.9 85.0 74.6 50.8 26.0 32.5 37.2 56.0 54.4 61.8
GENICL (ours) 68.0 86.0 74.6 51.8 24.4 33.0 41.0 56.4 55.1 65.7

Table 1: Main results on classification, multi-choice, and text generation tasks.

CommonGen BoolQ SQuAD v1

GENICL 41.0 78.1 65.7
- w/o non-preferred data 38.7 71.2 62.5
- w/o answer-level loss 34.9 72.7 62.0
- w/o demo-level loss 37.9 65.8 61.7

Table 2: Ablation study.

sess the efficacy of GENICL, we expanded our eval-474

uation to encompass various LLMs, specifically475

GPT-Neo 2.7B (Black et al., 2021) and Vicuna-476

13B (Zheng et al., 2023). The comparison results477

are presented in Table 3.478

The GENICL method using language models479

of different scales shows performance improve-480

ments on most tasks, demonstrating the generaliz-481

ability and effectiveness of GENICL. Specifically,482

the GENICL method with GPT-Neo 2.7B outper-483

forms E5base on classification tasks like PAWS and484

SST2, but performs worse than the baseline on text485

generation tasks such as CommonGen and E2E486

CommonGen E2E NLG PAWS SST2

Zero-shot 19.2 34.6 53.0 54.2
Random 36.3 51.1 49.6 64.1
BM25 38.3 53.8 56.5 84.7
E5base 37.6 52.3 55.6 92.4

GENICL (ours)
- GPT-Neo 2.7B 35.3 50.1 60.5 92.7
- LLaMA-7B 41.0 55.1 63.9 95.0
- Vicuna-13B 39.7 56.3 71.7 94.0

Table 3: Performance on other LLMs.

NLG. When using LLaMA-7B and Vicuna-13B, 487

GENICL shows significant improvements in both 488

classification and text generation tasks. We specu- 489

late that text generation tasks require more complex 490

logical reasoning steps and smaller models like 491

GPT-Neo 2.7B face difficulties in understanding 492

complex semantics and performing reasoning. 493
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4.5 The Superiority of Our Optimization494

Objective495

Our optimization objective is directly derived from496

the ICL paradigm, making it more aligned with ICL497

compared to retriever-based methods. We compare498

the probability of predicting the ground truth using499

demonstrations selected by different methods, as500

described in Eq. (1). The results, shown in Figure501

3, indicate that compared to retriever-based meth-502

ods such as LLM-R and SBERT, GENICL achieves503

higher predicted probabilities for the ground truth,504

with a more concentrated probability distribution.505

This demonstrates that our optimization objective506

better enhances ICL performance, further validat-507

ing our previous conclusions.508

Figure 3: The predicted probability of the ground truth
using demonstrations selected by different methods.

4.6 The Impact of the Number and Order of509

Demonstrations510

In Figure 4, we examine how the performance of511

GENICL changes as the number of demonstrations512

varies on the following four datasets: RTE, SST2,513

CommonGen, and Gigaword. The results show that514

increasing the number of demonstrations does not515

always lead to better performance. For SST2 and516

CommonGen, a significant drop in performance517

is observed when the number of demonstrations518

is too large, while Gigaword experiences a slight519

decrease.520

To investigate the impact of the order of demon-521

strations on downstream task performance, we com-522

pare three different order settings:523

• Shuffle: the top-K selected demonstrations are524

randomly shuffled.525

• Descending: the top-K selected demonstrations526

are ordered in descending order of Eq. (11).527

• Ascending: the top-K selected demonstrations528

are ordered in ascending order of Eq. (11).529

Figure 4: The effect of demonstration number K.

The results are shown in Table 4. Lu et al. (2021) 530

have revealed that ICL is sensitive to the order 531

of demonstrations when using random examples. 532

However, we found that the order of the demon- 533

strations selected by our method has little impact 534

on the final in-context learning performance. This 535

supports the conclusion that high-quality demon- 536

strations are less sensitive to the ordering (Li et al., 537

2023; Chen et al., 2022; Li and Qiu, 2023). This 538

further illustrates that the demonstrations selected 539

by our method, based on preference learning, are 540

of high quality. 541

Demo. order Agnews QQP Gigaword E2E NLG

Shuffle 92.8 81.9 32.6 55.2
Descending 92.6 82.0 33.0 55.1
Ascending 92.8 82.5 32.6 54.9

Table 4: Comparison of different demonstration orders.

5 Conclusion 542

In this paper, we introduced GENICL, a novel 543

generative preference learning framework for op- 544

timizing demonstration selection in in-context 545

learning (ICL). By reformulating ICL as a gen- 546

erative Bayesian optimization problem, GENICL 547

bridges demonstration selection and LLM infer- 548

ence through a latent demonstration variable, align- 549

ing the intrinsic goal of ICL. GENICL also lever- 550

ages preference learning on relatively effective and 551

ineffective demonstrations from LLM feedback, 552

achieving fine-grained demonstration selection. A 553

wide range of experiments have illustrated the su- 554

periority of our proposed method GENICL. We 555

believe that our findings contribute to advancing 556

the field of ICL and hope that GENICL serves as a 557

foundation for future research in directly optimiz- 558

ing demonstration selection for LLMs. 559
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6 Limitations560

During the optimization phase, we treat each561

demonstration independently, ignoring the inter-562

actions between demonstrations (such as order and563

combination). In the inference phase, we select564

a set of demonstrations based on their scores, but565

the combination of individually optimal demonstra-566

tions does not necessarily result in the overall best567

combination.568

Our method requires scoring each candidate in569

the demonstration pool during the demonstration570

selection stage. However, the search space and571

computational cost of this process are prohibitive.572

To address this, we employ E5base to reduce the573

search space by obtaining a subset of the demon-574

stration pool as a new, smaller pool. However, this575

approach may filter out some valuable demonstra-576

tions. Additionally, improving the efficiency of577

demonstration scoring remains a promising direc-578

tion for further exploration.579
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A Implementation Details 822

We use LoRA (Hu et al., 2021) to train the param- 823

eters corresponding to the latent variable, and the 824

total number of trainable parameters is approxi- 825

mately 79M. The hyperparameters of GENICL are 826

summarized in Table 5. We use 8 NVIDIA A100- 827

80GB GPUs for both training and inference. For a 828

single task, the entire pipeline takes approximately 829

two days. For a fair comparison, our method and 830

all baselines use the same template, as shown in 831

Appendix E. 832

GENICL

Optimizer AdamW
Warmup steps 3000
Training steps 20000
Learning rate 5e-6
Batch size 32
Maximum input length 1024
Maximum output length 64
β 0.1
λw 1.0
λl 1.0

Table 5: Hyper-parameters.

Implementation Details of CBDS (Wang et al., 833

2024). For the CBDS baseline, we used the au- 834

thors’ publicly available code and followed the 835

training methodology described in the original pa- 836

per. The original CBDS setup involves concurrent 837

training across multiple tasks, with each task op- 838

timizing its own set of concept tokens θ. Specif- 839

ically, the optimization objective during training 840

is to minimize − logP (Y |θ,X). During testing, 841

demonstrations (Xk, Yk) are selected based on 842

P (θ|Xk, Yk). Training consisted of 10,000 steps 843

with a learning rate of 1e-2 and a batch size of 844

16. A crucial difference between CBDS and both 845

our method and other retriever-based approaches 846

is that CBDS uses a shared set of demonstrations 847

for all queries within a specific task. This design, 848

while computationally efficient, often leads to per- 849

formance inferior to that of retriever-based meth- 850

ods, which dynamically select demonstrations for 851

each query. This performance difference was also 852

observed in our reproduction experiments. 853
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Implementation Details of LLM-R (Wang et al.,854

2023). Following the LLM-R baseline procedure,855

we first trained a reward model and then used it856

for distillation to train the LLM-R model, which857

uses the pretrained E5base model as the initializa-858

tion model. We utilized the code provided by the859

authors, retraining both the reward model and the860

LLM-R model while maintaining the hyperparame-861

ters from the original publication. For EPR (Rubin862

et al., 2021), we directly adopt the results presented863

in the LLM-R paper (Wang et al., 2023).864

B Details about useful samples statistics865

Figure 1 illustrates the distribution of the ratio of866

useful examples within demonstration pools across867

the AGNews, HellaSwag, and OpenBookQA868

datasets. We first identified "hard queries" de-869

fined as those queries that remained answered in-870

correctly by the LLM even when provided with871

the top-8 demonstrations initially retrieved by the872

E5base (Wang et al., 2022). Subsequently, for each873

identified hard query, a set of 100 demonstrations874

was randomly sampled without replacement from875

the respective dataset’s full demonstration pool.876

Each sampled demonstration was then individ-877

ually assessed for its usefulness. A demonstra-878

tion was considered "useful" if its concatenation879

with the hard query resulted in the LLM pro-880

ducing the correct answer. The Ratio of Use-881

ful Examples was calculated for each query as882

(Number of Useful Demonstrations/100)× 100%.883

To visualize the distribution, these ratios were884

binned, and the Percentage of Queries falling885

within each bin was calculated as (Number of886

Queries in Bin / Total Number of Hard Queries)887

× 100%, where "Number of Queries in Bin" is888

the count of hard queries with a ratio within that889

bin’s range, and "Total Number of Hard Queries"890

represents the total number of hard queries for that891

dataset.892

C The Limitations of Contrastive893

Learning894

In in-context learning, it is necessary to find demon-895

strations that are truly useful for the LLM to predict896

the ground truth. The goal of in-context learning is897

as follows:898

argmax
(xk,yk)∈P

PM(y | {(xk, yk)}Kk=1 , x)899

However, the objective of contrastive learning is to 900

minimize the following loss. 901

L = − log

(
es(x,x

+,y+)

es(x,(x+,y+)) +
∑Nneg

i=1 es(x,(x
−
i ,y−i ))

)
902

In the optimization process of contrastive learn- 903

ing, the objective shifts to optimizing the retriever 904

by comparing the similarity between different sam- 905

ples. Specifically, the model is trained to distin- 906

guish between positive samples (x+, y+) and neg- 907

ative samples (x−, y−), optimizing the model by 908

maximizing the separation between positive and 909

negative samples. This method enlarges the dis- 910

tance between positive and negative samples in 911

the embedding space, which is not aligned with 912

in-context learning. Furthermore, it completely ig- 913

nores the information about the ground truth during 914

optimization, leading to demonstrations selected by 915

this method that do not improve the LLM’s ability 916

to predict the ground truth. 917

D Derivation of the Optimization 918

Objective 919

Starting from the marginal likelihood, 920

logPM(Y | {(Xk, Yk)}Kk=1, X) = 921

log

∫
z
PM(Y | z,X)× 922

PM(z | {(Xk, Yk)}Kk=1, X) dz 923

we introduce an arbitrary auxiliary distribution q(z) 924

(with
∫
q(z) dz = 1) and apply Jensen’s inequality: 925

logPM(Y | {(Xk, Yk)}Kk=1, X) 926

= log

∫
z
q(z)× 927

PM(Y | z,X)PM(z | {(Xk, Yk)}Kk=1, X)

q(z)
dz 928

≥
∫
z
q(z)× 929

log
PM(Y | z,X)PM(z | {(Xk, Yk)}Kk=1, X)

q(z)
dz 930

≜ L(q). 931

The quantity L(q) is the evidence lower bound 932

(ELBO) (Kingma, 2013). We approximate q(z) by 933

a Dirac δ distribution: q(z) = δ(z − z∗) which 934

essentially assumes that the posterior PM(z | 935
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{(Xk, Yk)}Kk=1, X) is highly concentrated at the936

optimal latent variable z∗. By the sifting property937

of the Dirac δ,938 ∫
z
δ(z − z∗)f(z) dz = f(z∗),939

for any well-behaved function f(z).940

Substituting this into the ELBO yields941

L(q) =
∫
z
δ(z − z∗)×942

log
PM(Y | z,X)PM(z | {(Xk, Yk)}Kk=1, X)

δ(z − z∗)
dz943

= log
PM(Y | z∗, X)PM(z∗ | {(Xk, Yk)}Kk=1, X)

δ(0)
.944

Although δ(0) is formally an infinite constant, it945

does not depend on z∗ and can therefore be ignored946

during optimization. Maximizing the ELBO then947

amounts to optimizing948

L(z) = − logPM(Y | z∗, X)949

− logPM(z∗ | {(Xk, Yk)}Kk=1, X)950

E Dataset Details951
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Dataset Name Template Answer Train Test Metric

AGNews ""{Sentence}" What is this text about? World,
Sports, Business, or Technology?", "{Answer}"

’World’,
’Sports’,
’Business’,
’Technology’

120,000 7,600 Accuracy

BoolQ "{Sentence1} Can we conclude that {Sen-
tence2}?", "{Answer}"

’No’, ’Yes’ 9,427 3,270 Accuracy

MultiRC "{Sentence1} Question: "{Sentence2}" Re-
sponse: "{Sentence3}" Does the response cor-
rectly answer the question?", "{Answer}"

’No’, ’Yes’ 27,243 4,848 F1

RTE "{Sentence1} Based on the paragraph above
can we conclude that "{Sentence2}"? Yes or
No?","Answer"

’Yes’, ’No’ 2,490 277 Accuracy

SNLI "If "{Sentence1}", does this mean that "{Sen-
tence2}"? Yes, No, or Maybe?", "{Answer}"

’Yes’,
’Maybe’,
’No’

549,367 9,824 Accuracy

PAWS "{Sentence1} {Sentence2} Do these sentences
mean the same thing?", "{Answer}"

’No’, ’Yes’ 49,401 8,000 Accuracy

QQP ""{Sentence1}" "{Sentence2}" Would you say
that these questions are the same?", "{Answer}"

’No’, ’Yes’ 363,846 40,430 Accuracy

Sentiment140 "{Sentence} What is the sentiment of this
tweet?", "{Answer}"

’Negative’,
’Positive’

1,600,000 359 Accuracy

SST2 "Review: "{Sentence}" Is this movie review sen-
tence negative or positive?", "answer"

’Negative’,
’Positive’

67,349 872 Accuracy

Table 6: Classification Task Dataset Details.

Dataset Name Template Answer Train Test Metric

Winogrande "How does the sentence end? {Sentence}",
"{Answer}"

’A’, ’B’ 40,398 1,267 Accuracy

OpenBookQA "{Sentence1} {Sentence2}", "{Answer}" ’A’, ’B’, ’C’,
’D’

4,957 500 Accuracy

COPA ""{Sentence1}" What is the {Sentence2}?",
"{Answer}"

’A’, ’B’ 400 100 Accuracy

HellaSwag "What happens next in this paragraph? {Sen-
tence}", "{Answer}"

’A’, ’B’, ’C’,
’D’

39,905 10,042 Accuracy

Table 7: Multi-choice Task Dataset Details.

Dataset Name Template Train Test Metric

AESLC "What is the subject line for this email? {Sen-
tence}", "{Label}"

13,181 1,750 ROUGE-L

Gigaword "Write a short summary for this text: {Sen-
tence}", "{Answer}"

2,044,465 730 ROUGE-L

SQuAD v1 "Please answer a question about the following
article about {Sentence}: {Sentence1} {Sen-
tence2}", "{Answer}"

87,599 10,570 Exact Match

CommonGen "Concepts: {Sentence}. Write a sentence that
includes all these words.", "{Answer}"

67,389 4,018 ROUGE-L

DART "Triple: {Sentence} What is a sentence that de-
scribes this triple?", "{Answer}"

62,659 2,768 ROUGE-L

E2E NLG "Attributes: {Sentence}. Produce a detailed sen-
tence about this restaurant.", "{Answer}"

33,525 1,847 ROUGE-L

Table 8: Generation Task Dataset Details.
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